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The adaptive control of gait training robots is aimed at improving the gait performance by assisting motion. In conventional
robotics, it has not been possible to adjust the robotic parameters by predicting the toe motion, which is considered a tripping
risk indicator. The prediction of toe clearance during walking can decrease the risk of tripping. In this paper, we propose a novel
method of predicting toe clearance that uses a radial basis function network. The input data were the angles, angular velocities,
and angular accelerations of the hip, knee, and ankle joints in the sagittal plane at the beginning of the swing phase. In the
experiments, seven subjects walked on a treadmill for 360 s. The radial basis function network was trained with gait data ranging
from 20 to 200 data points and tested with 100 data points. The root mean square error between the true and predicted values
was 3.28mm for the maximum toe clearance in the earlier swing phase and 2.30mm for the minimum toe clearance in the later
swing phase. Moreover, using gait data of other five subjects, the root mean square error between the true and predicted values
was 4.04mm for the maximum toe clearance and 2.88mm for the minimum toe clearance when the walking velocity changed.
This provided higher prediction accuracy compared with existing methods. The proposed algorithm used the information of
joint movements at the start of the swing phase and could predict both the future maximum and minimum toe clearances
within the same swing phase.

1. Introduction

Robotic technology for physical human-robot interaction
has the potential to improve human locomotion. More-
over, robotic assistance can guide gait motion and provide
direct somatosensory information. Robotic guidance is
effective because the effects of training last longer when
people instinctively modify their motion, compared with
when they consciously modify their motion [1]. Assistance
should be provided only when it is required because the
human movement ability decreases when it is not actively
used [2]. Hence, there is a need for developing adaptive
robotic assistance technology that encourages maximum
active patient participation.

The human-centered control of robotics for gait training
is being investigated in an attempt to make robotic systems
more human-friendly [3]. Gait training robots, such as ALEX
and Lokomat, have an interaction force field controller,

which allows patients to walk in a matter that is different
from the desired trajectory determined for a healthy person
[4–6]. LOPES II, which is an end-effector type robot, is able
to switch between low and high mechanical impedance
modes using admittance control [7]. These robots adapt to
individual differences and adjust their reference trajectory
to recover motor functioning for gait trajectory generation.
Conventional algorithms are adaptive after human action,
and assistance methods for determining the robotic parame-
ters by previously predicting the gait motion have not yet
been established.

Falling is one of the most serious problems with locomo-
tion. The risk of falling encourages people to stay indoors,
which leads to the weakening of their bodies. Moreover,
tripping accounts for 53% of falling incidents [8]. Older
individuals are in more risk of tripping while taking small
steps because it is difficult for them to assess the height
difference at the edges of rugs or carpets [9]. Toe clearance
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must be ensured to avoid falling and controlled to reduce the
dispersion. The possibility of tripping occurs if the toe
approaches the ground at an arbitrary point in the gait cycle.
The prediction of toe clearance can reduce the risk of
tripping. For robotic assistance to increase the toe clearance
when it decreases in the gait cycle, a method of predicting
toe clearance is required.

Calculation techniques with wearable sensors deriving
the toe clearance have been developed mainly for ambulatory
estimation and monitoring of the toe clearance without a
camera system [10–14]. The integration of the inertial
parameters of the inertial measurement unit (IMU), which
consists of triaxial accelerometers and gyroscopes, was
carried out to estimate the toe parameters [10–12]. The
dedrifted integration of two wirelesses IMUs attached to the
feet can estimate the foot clearance with an error of approx-
imately 20mm [12]. Owing to this large error, the integration
method has a large limitation with regard to calculating the
position. A machine learning method has been developed
to estimate the gait parameters after the learning phase in
each person [13–15]. Using machine learning with Gaussian
functions and a hill-climbing feature-selection method, the
root mean square error (RMSE) of 6.6mm was estimated
for young individuals [14]. In previous research, the
parameters of toe clearance were predicted by a regression
model [15]. To the best of our knowledge, Gaussian func-
tions that were applied using acceleration features through
the double differentiation of the toe position captured with
a motion capture system could predict the minimum toe
clearance most accurately (an RMSE of 3.7mm) for one
gait cycle ahead.

The existing prediction method has a limitation with
regard to establishing robotic assistance that increases the
toe clearance when it decreases, because the system does
not use wearable sensors that can communicate with a robot
controller. The estimation accuracy is lower when the wear-
able inertial sensor is used, compared with when the motion
capture system is used to extract the input data. Moreover,
the existing method is not sufficiently accurate for handling
the toe clearance variability between the gait cycles. Addi-
tionally, it has been reported that the interquartile range of
the minimum toe clearance is approximately 4.3mm for
young individuals and approximately 5.3mm for older
individuals [16]. Detecting a lower value for the minimum
toe clearance with a probability of more than 50% may be
difficult using this method. Hence, a more accurate toe
clearance prediction method that uses wearable sensors to
obtain the input data is required for robotic assistance.

We developed a prediction algorithm of minimum toe
clearance using the angular information of the lower limb
joints [17]. Our hypothesis is that the articular motion infor-
mation at the lower limb joints at the time when people start
to swing their leg is related to the future toe clearance because
the toe motion is generated by the swing motion of the lower
limb. People control their leg motion based on interjoint
coordination, and the angular coordination maintains low
dispersion at the limb end points [18]. Therefore, we
assumed that the difference between the angular information
in a certain phase is related to the difference of toe clearance

among the gait cycles. Moreover, we assumed that adding the
angular velocity and acceleration of the lower limb joint
would be beneficial because these parameters contain
information regarding the movement over time. Previous
studies have investigated computational technology, such
as accelerometers [19, 20], gyroscopes [21, 22], and IMUs
[23], for the detection of foot-contact state using wearable
sensors and machine learning strategies implementing
support vector machines (SVM) [24], linear discriminant
analysis (LDA) [25], Gaussian mixture model (GMM)
[26], and hidden Markov model (HMM) [27, 28]. Notably,
none of these methods can detect the characteristic points
of phase change in the angular trajectory. In a previous
work, we extracted the characteristic angular point with
consideration to the change of synergy between the hip,
knee, and ankle joints and only predicted the minimum
toe clearance with higher accuracy [17]. However, the
wearable sensor tends to deviate while people walk, and
the sensed values always contain noises. Compensation is
required for the deviation of the sensed values.

In this study, we established an algorithm to predict the
characteristic toe clearance parameters in the swing phase
using the angles, angular velocities, and angular accelerations
of the lower limb joints. We applied machine learning-based
regression with Gaussian functions to probabilistically pre-
dict the toe clearance with consideration to the noise of the
input data. Additionally, we investigated the relationship
between the number of training data and the prediction accu-
racy, and we evaluated the prediction algorithm to investigate
whether our method could more accurately predict the toe
clearance and detect the lower value of toe clearance.

2. Materials and Methods

The proposed method consisted of extraction of input data
and a regression algorithm using the radial basis function
network (RBFN) to predict the characteristic parameters of
the toe clearance as shown in Figure 1. The algorithm was
designed to automatically extract the input data points in
an earlier swing phase and normalize these input values to
reduce the effect of the deviation of the sensor.

The characteristic phase of input data was extracted with
consideration to the synergy between the hip, knee, and ankle
joints. The angular trajectory in the angular space is on the
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Figure 1: Overview of the dataflow of the proposed algorithm.
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planes during walking [29], and the planes of these angles are
different in the phases [30]. Detecting the change from the
stance phase to the swing plane can be done more clearly in
the planes, whereas detecting changes with the angle readings
is difficult owing to the presence of noise and fluctuations in
the angle range. As shown in Figure 2, the controller explores
four planes in one gait cycle because the gait motion of the
lower limb consists of the swing of the leg to lift the foot
(swing up), the swing of the leg to prepare foot-ground con-
tact (swing down), the loading response to absorb the shock
of foot contact (loading response), and support for the body
(support). First, the controller derives basis vectors of the
planes by extracting parts of the angular data in each phase
(block 1 of Figure 1). Second, the controller detects the
switching points from the support phase to the swing up
phase in an angular space so as to detect the time points when
the swing phase starts (block 2 of Figure 1).

Parts of the angular data were extracted based on the hip
angle to derive the planes for deriving the basis vectors of the
planes (block 1 of the Figure 1). The maximum angle was
defined as 100%, and the minimum angle was defined as
0%. First, the angular data were categorized as belonging to
the motion of the swing up and were extracted when the
hip motion was in more than 10% flexion and the knee joint
was in flexion. Next, the angular data corresponding to the
motion of the swing down were extracted when the knee joint
extended and the hip flexion angle was within 30% after the
swinging motion. Additionally, angular data corresponding
to the loading response (i.e., dual-support phase) were
extracted when the hip joint was in extension, the knee joint
was in flexion, and the dorsiflexion angle of the ankle joint
was less than 10% from the second minimum value. Finally,

the parts of the angular data corresponding to the motion
of supporting the body were extracted when the hip joint
was in extension and the ankle joint was in dorsiflexion.
The robot extracted the angular data in the middle of the
swing or stance phase based on the hip angle readings.

Two basis vectors constituting the plane can be derived
using principal component analysis (PCA) and the extracted
parts of the angular data. The controller calculates the eigen-
vectors of the first and second components, which are the
basis vectors of the plane, using PCA. The vector from the
preprojection coordinates to the postprojection coordinates
is orthogonal to the basis vectors of the plane. Moreover,
the two eigenvectors w1 and w2 are perpendicular to each
other. Using this relationship, the coordinates P on the plane
are defined as follows:

P = a1w1 + a2w2 +G,

a1 =Q ·w1 −G ·w1,

a2 =Q ·w2 −G ·w2,

1

where a1 and a2 are the coefficients of the eigenvectors,
G denotes the coordinates of the mean angle data, and
Q denotes the sensed coordinates of the lower limb
articular angular space before projection. a1 and a2 are
calculated using the inner product of the eigenvectors
and orthogonal vectors.

The algorithm calculates the distance from the preprojec-
tion coordinates to the postprojection coordinates on each
plane to derive the switching points of the planes (block 2
of Figure 1). Additionally, the algorithm calculates the inner
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Figure 2: Overview of the algorithm for deriving the four planes in the angular space of the hip, knee, and ankle joints and for detecting the
transitions of the planes.
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product between the unit vector from a previously sensed
angular point to the currently sensed angular point and the
unit vector from a previous projected point to the current
projected point. The sensed angular data are recognized as
a phase whose plane is closer to the data, compared with
the other planes, when the distance is the local minimum
and the inner product is more than 0.9.

The phase when the swing starts can be derived by
observing whether the angular trajectory passes through the
section plane that was previously calculated using the plane
structure as shown in Figure 3. The section plane is calculated
because it is difficult to detect the switching points of the
planes in real time owing to the shifting of the plane during
walking. First, the switching points from the plane of support
to the plane of swing up were derived using the data obtained
from the 20 gait cycles. Next, the section plane of the angular
trajectory is calculated when the swing phase starts. The
average switching point is estimated, and the normal vector
of the section plane is calculated by deriving the vector from
the detected switching points to the next sensed angular
point. The orthogonal vector v of the normal vector can be
calculated as follows:

v = 2bc, –ac, –ab , 2

where a, b, and c denote the hip, knee, and ankle joint angles
that constitute the normal vector, respectively. The basis
vectors of the section plane are two orthogonal vectors of
the normal vector, which is calculated by deriving the cross
product between the first orthogonal vector and the normal

vector. Finally, as shown in Figure 4, the angular points for
the input data are extracted by finding the time point where
the distance from the sensed angular point to the point
projected onto the section plane is minimum.

The parameters of toe clearance were calculated using the
RBFN with Gaussian functions, as shown in Figure 5. The
RBFN is the linear sum of the radial basis functions, such
as the Gaussian functions, for nonlinear curve fitting. The
RBFN consists of an input layer, a hidden layer with radial
basis functions, and an output layer. This network calculates
the distance between the vector of the input data and the
centroids of each Gaussian, which are derived using the
K-means clustering algorithm to partition the dataset into
a predetermined number of groups according to the Euclid-
ean distance. The RBFN structure is expressed as follows:

y = 〠
N

k=1
wk exp −

x − ck 2

σ
+ α, 3

where y denotes the output vector, wk is the weight vector, x
is the input vector, ck is the centroid vector, N is the number
of RBF units, α is a variable coefficient, and σ is a variable
related to the standard deviation of the Gaussian function.
σ is derived as follows [31]:

σ = dmax
Nmm

, 4

where dmax denotes the maximum distance among the data
and m is the dimension of the data.
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Figure 3: Extraction method of input values by finding the angular point that is the closest to the section plane when the gait state changes
from the stance phase to the swing phase.
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The angles of the hip, knee, and ankle joints in the sagittal
plane were sensed with wearable angle sensors. The angular
velocity and angular acceleration of these joints were derived
by differentiating the angles with a pseudo differential. The
angles were smoothed using a low-pass filter (with a cutoff
frequency of 6Hz). The equation of the pseudo differential
based on an s-plane to z-plane transformation is expressed
as follows:

Yn =
Xn − Xn−1 + TdYn−1

ΔT
, 5

where Td denotes the time constant, ΔT denotes the
sampling time, which was 8.33ms, and Yn and Xn denote
the nth differential value and nth input value, respectively.
In this study, Td was considered 167ms to differentiate the
data whose frequency was lower than 6Hz.

All input values were normalized to reduce the effect of
attachment position deviation of the wearable angle sensors.
The minimum values in the previous gait cycle were
subtracted from the input values. Moreover, all input values
were divided by their range of values in the first gait cycle
in the training phase for RBFN so as to decrease the effect
of the range of values.

3. Human Walking Experiment

Four healthy younger adults (three men and one woman; aged
27 ± 5 years, body weight 57 ± 13 kg, height 1 64 ± 0 13 cm)
and two healthy older adults (two men; aged 65 ± 2 years,
body weight 62 ± 1 kg, height 1 68 ± 0 03 cm) were recruited
in the first experiment. Five healthy young adults (four men
and one woman; aged 25 ± 3 years, body weight 58 ± 9 kg,
height 1 63 ± 0 7 cm) were recruited in the second experi-
ment. All of them did not have neurological injuries or
gait disorders. Before the experiment, the subjects were
provided with a detailed account of our experimental
objectives and were informed that they could withdraw
from the experiment whenever they desired, and we
obtained their consent. This experiment was also approved
by the institutional review board at Waseda University
(No. 2017-085).

Because the maximum values are an indicator of how
high people raise their foot and the minimum values are an
indicator of how high people can keep their foot above the
ground, the maximum toe clearance in the earlier swing
phase and the minimum toe clearance in the later swing

phase were measured to give characteristic toe clearance data.
The toe coordinates of the right foot were measured with a
motion capture system (Raptor-E; Motion Analysis, Santa
Rosa, CA, USA). The marker for the measurement was
attached to the first metatarsophalangeal joint of the foot.
The angles of the right hip, knee, and ankle joints were
measured with goniometers (SG110 and SG150, Biometrics
Ltd., Newport, UK), which are wearable angle sensors. The
subjects walked on a treadmill as shown in Figure 6.

The 6 subjects were instructed to continue walking for
360 s at a preferred constant speed ranging from 2.1 km/h
to 3.0 km/h in the first experiment. We investigated the
number of training data points required for the RBFN to
improve the prediction accuracy. We used 20 to 200 gait
cycle data points for the training and 100 gait cycle data
points for the RBFN test. The number of RBF units was set
from two to twenty.

The 5 subjects walked for 600 s at 2.0 km/h, 2.5 km/h,
and 3.0 km/h in the second experiment. The duration of
walking at 2.5 km/h was 360 s, and the duration of walking
at 2.0 km/h and 3.0 km/h was 120 s. We investigated
whether the RBFN could predict the toe clearance if the
walking speed changed. Approximately 160 cycle data of
2.5 km/h walking were used as the training data based
on the result of the first experiment, and the 100 gait cycle
data points of 2.0 km/h and 3.0 km/h were used as the test
data. The number of RBF units was set from two to
twenty. Moreover, we added the goniometers for a left
leg in this experiment.

We derived the time from the time point where the
system extracted the input data to the time points for
the maximum and minimum toe clearances. We calculated
the average time of all training data and the standard devia-
tion to evaluate whether the system could have previously
predicted both the maximum and minimum clearances.

We normalized the maximum and minimum toe clear-
ance values by defining the average of the training data as
zero as shown in Figure 7. The toe clearance values that were
lower than the average were negative (minus sign), while the
values that were higher than the average were positive (plus
sign). We calculated the RMSE between the true value and
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the predicted value of the maximum and minimum toe
clearances, as follows:

RMSE = ∑n
k=1 yk − yk

2

n
, 6

where yk denotes the true value, yk denotes the predicted
value, and n is the number of data points.

Additionally, we estimated the accuracy percentage of the
predicted data according to the accuracy of the plus or minus
signs and counted the number of predicted values with the
same sign as the true value, which was then divided by the
total number of data points.

4. Results and Discussion

Figure 8 shows the time from the time points where the
system extracted the input data to the time points of the
maximum or minimum toe clearances. The input data were
extracted 0.1 s before the toe clearance reached the maximum
value in the earlier swing phase.

Figures 9 and 10 show the RMSE between the true and
predicted data for the maximum and minimum toe clear-
ances corresponding to the number of training data points.
The RMSE tended to decrease as the number of training data
increased. Particularly, the RMSE was minimum when the
number of training data points was 200 for subjects 1, 3,
and 6. The other subjects had a minimum RMSE when the
number of training data points was between 80 and 180.
For the maximum toe clearance, the average minimum
RMSE was 2.99mm, and the lowest RMSE was 2.31mm.
For the minimum toe clearance, the average minimum
RMSE was 2.34mm, and the lowest RMSE was 1.79mm.
The number of RBF units that minimized the RMSE was
approximately five.

Figures 11 and 12 show the accuracy rate of the predicted
data for the maximum and minimum toe clearances corre-
sponding to the number of training data points. The average
accuracy rate was 71% for the maximum toe clearance and
68% for the minimum toe clearance.

Figure 8 shows the average time from the time points
where the system extracted the input data to the time points
where the maximum or minimum toe clearances were
positive. This means that the proposed algorithm was able
to extract the input data before the toe clearance reached its
maximum value in the earlier swing phase. However, time
was not always constant. The standard deviation was large
compared with the time of the gait cycle, which was approx-

imately 1.4 s in this experiment. The variance in the detection
time plays a role in reducing the time. By improving the accu-
racy of phase detection, the prediction can be made earlier.

As shown in Figures 9 and 10, the RMSE between the real
toe clearance measured by the motion capture system and the
predicted toe clearance was the lowest between 80 and 200
training data points. Moreover, the accuracy rate tended to
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increase when the number of training data points increased.
Therefore, a higher number of training data points tended
to improve the prediction accuracy, presumably because it
became easier to extract the characteristics of the input data
space when more training data were provided. The RBFN
clusters the input data and calculates the median values of
each cluster in the training phase. The output values are
determined according to the distance of the input data values
from the median values of each cluster. If the number of
training data points decreases, it becomes difficult to pre-
cisely determine the RBFN parameters because the effect of
the input data noise increases. In this experiment, the cluster-
ing of training data points and the derivation of the median
required approximately 100 to 200 training data points to
reduce the variance and the effect of the noise that is always
present in data.

As shown in Figures 9 and 10, the RMSE was 2.99mm for
the maximum toe clearance and 2.34mm for the minimum
toe clearance, which is a more accurate prediction compared
with previous methods. The RMSE of the maximum toe
clearance was higher than the RMSE of the minimum toe
clearance, because the variance of the maximum toe
clearance was higher than the variance of the minimum toe
clearance. The individual difference between the RMSE
tended to be higher as the variance of the toe clearance

between cycles increased. The probability of detecting a value
lower than that of the median toe clearance was higher than
68%; that is, the probability was higher than the probability
of random detection.

Figures 13 and 14 show the RMSE and the accuracy rate
of the predicted data for the maximum and minimum toe
clearances of 100 test data by training the RBFN using
approximately 160 training data in the case of the walking
velocity. The prediction error of the minimum toe clearance
was lower compared with the previous researches even when
the walking speed changed after the RBFN was learned with a
constant walking speed. Moreover, the proposed algorithm
could detect the value lower than that of the median toe
clearance with the probability that was higher than the
probability of random detection if walking velocity changed.
We assumed that the RBFN parameters reflected the differ-
ence of foot kinematics related to the change of the walking
velocity because the input data were related to the kinematics
of the lower limb. However, the RMSE of the minimum toe
clearance and the maximum toe clearance increased when
the walking velocity changed. It will be beneficial to train
the RMSE with the input data in several conditions for
generalized regression. Besides, the standard deviation of
the RMSE of all subjects decreased when the left leg joints’
information was included as the input values. We assumed
that it indicated that more numbers of input parameters
related to foot kinematics improved the prediction accuracy.
As a future work, we will focus on both the feet and increase
of the input parameters of joints of both lower limbs.

The proposed algorithm has an advantage of deriving the
toe clearance preliminarily in real time while most previous
calculation methods were developed for the estimation of
toe clearance [10–14]. Moreover, the prediction accuracy of
the proposed algorithm was higher than that of the previous
method [15]. Although we normalized the data of the toe
clearance for evaluating whether the algorithm could detect
the value lower than that of the median toe clearance, the
toe height from the ground could be derived because the
subtracted value is clear. The proposed system has a limita-
tion because learning is needed in each person, which is
similar to previous MTC estimation methods using wearable
sensors. Therefore, it requires a learning phase with a camera
system before using the algorithm.

The accuracy was lower for subjects whose gait motion
and planes in an angular space tended to vary. The angular
information always changes with time within one gait cycle.
One point on the periodic trajectory in an angular space
was extracted in each gait cycle. If phase detection errors
occur, it is difficult to compare the articular angle, angular
velocity, and angular acceleration differences between the
gait cycles. We used the planes of the articular space for the
hip, knee, and ankle joints to detect the phase of the angular
periodic trajectory. Because the trajectory varied between gait
cycles, the planar vectors varied throughout the experiment.
The proposed algorithm considered the change of planes by
calculating the section plane of the trajectory around the
switching points, which was detected by calculating the
planes in each gait cycle. However, the phase when the input
data were extracted might vary. This study demonstrated that
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the toe clearance parameters can be predicted using only
angular information in the sagittal plane. The accuracy of gait
phase detection and the prediction of toe clearance may
improve by increasing the input parameters, such as the
angles in the coronal plane or the foot contact information.

5. Conclusions

This paper proposes a novel toe clearance prediction algo-
rithm with an RBFN using the angles, angular velocities,
and angular accelerations of the hip, knee, and ankle joints
in the sagittal plane. The proposed algorithm can predict
both the maximum toe clearance in the earlier swing phase
and the minimum toe clearance in the later swing phase at
the same time. The error was 2.99mm for the maximum
toe clearance and 2.34mm for the minimum toe clearance.
Moreover, the root mean square error between the true and
predicted values was 4.04mm for the maximum toe
clearance, and 2.88mm for the minimum toe clearance when
the walking velocity changed. The errors of the minimum toe
clearance are smaller compared with previous methods. The
probability of detecting a value lower than the median toe
clearance was higher than 68%; that is, the probability was
higher than the probability of random detection. Therefore,

a robot using this algorithm may be able to influence the
variance of human toe clearance.

In a future work, we will improve the gait phase detection
method. Moreover, we will conduct experiments to investi-
gate the effect of robotic assistance with the proposed toe
clearance prediction algorithm on older people.
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