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I. Introduction

Background
The U.S. Department of Education launched College
Scorecard in September 2015 as a means of gathering
more data on degree-granting institutions, the demo-
graphics of college students, and the status of alumni
of these institutions [1]. By doing so, the U.S. Depart-
ment of Education hopes to empower students to make
more informed college decisions through a data-driven
approach.

Considering the soaring cost of higher education as
well as the accompanying rise of student debt, prospec-
tive students can greatly benefit from such information.
However, College Scorecard has faced scrutiny due to its
omission of over 700 colleges, particularly community
colleges, in its data set [2]. Hence, applying machine
learning to fill in omissions in the data set, particularly
related to earnings and debt, and finding correlations
between characteristics of colleges and the future success
of their alumni has great value to society.

Despite the relevance of machine learning to this
issue, fairly little research has been done in this area.
Machine learning has been used in several related topics,
such as predicting corporate earnings and predicting
income based on census data about individuals [3, 4].
However, no research has been conducted on using col-
lege data to predict the earnings and debt of its alumni,
potentially because higher-education institutions do not
condone a solely numbers-based approach to the college
selection process.

Goals
We hope to use a variety of machine learning models
to make predictions regarding post-college earnings
and debt of alumni who were on federal financial aid
from various institutions based on factors that reflect
the current status of each institution, such as majors
and degrees offered, tuition, and admissions rates. Such
statistics are easier to obtain than post-college earnings,
so our predictions can be used to fill in gaps in the cur-
rent data set and potentially unearth interesting factors
that influence alumni earnings and debt. In addition,
alumni earnings can be compared with tuition costs and
average student debt to determine the typical interest
and length of student loans for a particular school.

Previous Work
As College Scorecard is a newly-released data set and
is more comprehensive than past college data sets, not
much analysis has been done on College Scorecard or
even on the topic of predicting post-collegiate earnings
and debt. The most relevant past work in this area was
conducted in the late 1980s and early 1990s.

Brewer et al. looked at the effect of college quality
on future earnings based on individual and family char-
acteristics of high school students entering into college,
and found that elite private institutions had a higher
return on investment in terms of future wages [5]. James
et al. attempted to predict future earnings (for only male
college graduates) using a mix of individual student
information, institutional information, individual col-
lege experience variables, and labor market variables [6].
They found a general trend that selective private schools
on the East Coast generally correlated to higher future
earnings, but also found that the college experience vari-
ables contributed to the majority of the variance in the
data. Hence, they concluded that each individual’s col-
lege experience, and what each individual makes of the
opportunities at his or her college, is the best indicator
of future earnings. Lewis C. Solmon, one of the most
widely-cited experts in this field, performed a study
on what features determine college quality and what
impact college quality has on earnings [7]. He used re-
gression analysis to find that variables like college level,
average S.A.T. scores, and average faculty salaries drove
up alumni earnings the most.

While these papers have made large strides in us-
ing machine learning to understand what fuels alumni
earnings, and were very careful in avoiding bias with re-
spect to minority communities and other similar factors,
they also have some shortcomings. All of these studies
were based off of individual alumni data (things like
personal and family background, individual major, etc);
no one has yet attempted to predict alumni earnings and
debt solely based off of anonymized institutional data.
Furthermore, these studies focused on the most elite
institutions and did not provide analysis on smaller and
lesser-known institutions, which are the organizations
that could most benefit from a study like ours.

As we were working with a new dataset, there were
a number of data quality issues to resolve. These are
largely detailed in the following section, but of particular
note are metrics that had partially missing data (only
some schools had listed values). There is is ample re-
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search on missing data problems in machine learning;
Marlin (2008) gives an overview of major methods [8].
The most useful family of methods for our dataset is
statistical imputation, which is detailed in Rubin (1996)
in the context of an overview of multiple imputation [9].
We will return to these papers in the next section.

II. Data and Feature Set Preprocessing

Data
College Scorecard provides a publicly available data
set consisting of approximately 2000 metrics for 7805
degree-granting institutions [1]. These metrics include
demographic data, test scores, family income data, data
about the percentages of students in each major, finan-
cial aid information, debt and debt repayment values,
earnings of alumni several years after graduation, and
more. We chose to focus on the 2011 data set because
it was the least sparse data set in the last five years
(more future earnings information was available than
for more recent years). Our first tasks were to select
variables to predict, transform the dataset into pairs of
features and prediction variables, and segment the data
for evaluation purposes.

Selecting Features and Prediction Values
We chose two values for our prediction variables – the
median postgraduate debt and the median postgraduate
earnings for alumni 6 years after graduation. We then
went through several steps to prune the full feature set
to an initial feature list.

We first eliminated all features that had non-
numerical/categorical values (primarily school name).
Additionally, we removed unrelated features that should
not be used to make predictions, such as features that
provided the number of students in different data collec-
tion cohorts.

We also removed all features related to debt, earn-
ings, and repayment. All metrics in these categories
are highly correlated with the two we chose to predict,
so they would be weighted very strongly compared to
other features and would hurt the ability of our models
to generalize to schools without any of this information
available, which is the motivation for this project.

Finally, after the preprocessing steps listed above
and the non-standard data value processing described
below, we removed all features (mostly null-indicators
and unused categories) which had only one value for all
examples, as they offer no predictive power.

Preprocessing Non-Standard Data Values
Some features in the data set were categorical fields;
we chose to turn each category into separate indicator
features. Many values in the data set were listed as

"NULL", and a portion of these were meaningful (for ex-
ample, indicating the absence of a binary feature) rather
than indicative of missing data. In order to transform
the nulls into usable numeric values while preserving
the original meaning of the nulls, we replaced each null
value with 0 and created an extra feature for each feature
that contained null values. This new feature used 1s
and 0s to indicate whether the value in the previous
feature was null or non-null. For categorical fields that
contained null values, we created just one null indicator
feature in addition to the category indicators described
previously.

Handling Privacy-Suppressed Values
All values in our dataset that were computed using data
from fewer than 30 students were listed as "Privacy-
Suppressed". Privacy-suppressed values are more com-
mon for smaller schools than larger schools and many
privacy-suppressed values occurred in potentially useful
metrics. One approach for handling these values was to
simply remove all features with any privacy-suppressed
entries. However, discarding hundreds of features in this
fashion, especially for features with a low percentage of
privacy-suppressed values, was undesirable.

In Marlin’s overview of approaches to missing data,
alternatives to case deletion (the above strategy) include
mean imputation (setting missing values to the mean of
observed values), regression imputation (learning regres-
sion models based on observed values), and the class of
multiple imputation solutions (sampling multiple values
from a simpler/generalized model over observed values
and running analyses on each for later aggregation) [8].
We determined that mean imputation was not appro-
priate in this case, since many features of schools vary
significantly based on school size, degree level, and so
on.

We implemented regression imputation by training a
linear regression model (with ordinary least squares cost
function) to the fully-observed features with respect to
each feature with privacy-suppressed values. To avoid
training these models with limited data, we imposed a
requirement that imputed features must have missing
data for less than 30% of schools. We then replaced
the missing values with predictions of the appropriate
model. This is a single imputation method (though since
the model cost function is convex, it is very similar to
multiple imputation methods with this same choice of
model). As noted by Rubin, multiple imputation meth-
ods capture variability of the data that is lost with single
imputation [9]. Future work might involve using more
generalized models for imputation, such as a mixture of
Gaussians, and running multiple imputation.
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Selecting Training and Testing Examples
We removed all examples (schools) that were missing the
values for our two label variables: median postgraduate
debt and median postgraduate earnings 6 years after
graduation (among the provided options of 6, 8, and
10 years post-graduation, 6 years had the least sparse
data). From the remaining examples, we set aside 3500
for training, 1000 for development, and the rest (∼800)
for testing.

III. Prediction Models and Methodology

Linear Regression
We pose our learning task as a regression problem: given
a processed list of features for a school, we would like
to predict real values for that school’s students’ median
debt at graduation and median earnings 6 years after
graduation. Linear regression is a natural choice of
baseline model for regression problems, so we first ran
simple linear regression on the full feature set (including
imputation of privacy-suppressed features), using our
3500 training examples and 1000 development examples.
The performance of this baseline was 12.97% mean ab-
solute percent error (average of the absolute values of
percent error made on each soon) on the development
set for earnings and 20.20% for debt. In addition to
tuning the number of privacy-suppressed features to
include in the feature set, we saw two avenues for lower-
ing this error: pruning the feature space and enabling
our model to learn nonlinear relationships between the
features and earnings/debt.

Feature Selection
After data preprocessing and statistical imputation of
privacy-suppressed values, 599 features remained. This
is a large number of features in comparison to the train-
ing set size of 3500 schools, especially as we moved from
simple linear regression to more complex models. We
therefore explored the use of feature selection to shrink
the number of input features.

To select the most important features to keep, we ran
sequential forward-based feature selection on our 3500
training examples, using our median earnings prediction
variable and median debt prediction variable in turn to
evaluate and select the most relevant features [10]. Fea-
tures were selected based on their mean-squared error,
using 10-fold-cross-validation, and selection was termi-
nated at the point where the prediction error stabilized.
This procedure yielded 170 features for earnings pre-
diction and 165 features for debt prediction, with 70
features in common.

The top 5 features yielded after running statistical
imputation and feature selection were:

Table 1: Top features for median earnings and debt.

We also tried using PCA on the school/feature data
matrix to transform the data into a smaller set of un-
correlated model inputs. After full optimization under
each approach, a model using PCA performed only
slightly worse than a model using forward-based fea-
ture selection. However, the use of PCA for feature
selection would require collection of data for all fea-
tures when adding new schools to the dataset, since the
principal components need to be recomputed when the
data matrix grows. By contrast, after running feature
selection on the existing dataset, adding new schools to
the dataset requires collecting data only for the selected
feature subset. If too many new schools were added, the
feature selection results may become outdated. However,
since the number of examples in our task is limited by
the number of colleges in the United States, and since
the initial dataset is fairly comprehensive and the rate of
school closures/openings is low compared to the total
number of institutions, this is not a major concern.

Locally Weighted Linear Regression
To capture local nonlinearities between the features and
debt/earnings, we added local weighting to the cost
function for our linear regression model. Using the Eu-
clidean norm, our weight function for a training example
x(i) with respect to an input example x was:

w(i) = exp

(
− ||x

(i) − x||2
τ2

)
To make the Euclidean distance (the norm in the

equation above) meaningful, we standardized features
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to zero mean and unit variance prior to computing the
weights. The parameter τ in the weighting function
above was tuned on the development set data for vari-
ous other model choices (feature selection, inclusion of
privacy-suppressed values).

Figures 1 and 2 show the results of tuning τ for each
output variable and model. We found that the best lin-
ear regression model on the development set used local
weighting, feature selection, and imputation of privacy-
suppressed values.

Figure 1: τ values plotted against percent error for
median earnings.

Figure 2: τ values plotted against percent error for
median debt.

KNN Regression
We also used the non-parametric k-nearest-neighbors
model in order to capture nonlinearities in prediction
of debt and earnings, using imputation of privacy-
suppressed values and the same data standardization
technique used for weighted linear regression. The KNN
algorithm predicts debt and earnings as a weighted com-
bination of debt and earnings of an input’s k nearest (de-
fined here as Euclidean distance) neighbors. The weight-
ing schemes tried were uniform weights and weights
proportional to inverse distance.

Figure 3 shows the performance of KNN regression
on the development set across values of k. Inverse-
distance weighting outperformed uniform weighting,
giving evidence that school with similar graduate earn-
ings and debt are clustering in our feature space, but
KNN with optimal k had higher error than the best
weighted linear regression model.

Figure 3: k values plotted against percent error for
median earnings and debt.

Capturing Nonlinearities Among Features
Lastly, we explored using models that can automatically
capture nonlinear relationships among the variables, in
addition to nonlinearities between the variables and out-
puts.

First, we used a support vector machine with data
standardization and feature selection to make predic-
tions. We used the RBF kernel and L2-regularized L1-
loss support vector regression; L2-regularized L2-loss
support vector regression yielded similar results. We
tuned our regularization term coefficients on the devel-
opment set and found 0.000003 and 0.00000007 to be the
optimal parameters for earnings and debt, respectively.

We also trained simple neural networks with a single
hidden layer, using the previous feature selection and
imputation for privacy-suppressed values [11]. A single
hidden layer was chosen because there was insufficient
training data (number of schools) to fit a model with
more parameters without significant overfitting. The
network is trained using the Levenberg-Marquadt al-
gorithm for minimization with the logistic function as
the activation function, and it uses a randomly held-out
set from the training set as a validation set and ceases
training when improvement on the held-out set plateaus.

The number of nodes in the neural network was
tuned by examining the performance on the develop-
ment set; results were mostly consistent for networks up
to 10 nodes, after which the network suffered an overfit-
ting problem. A hidden layer with 4 nodes performed
optimally for debt with 19.36% error, and a hidden layer
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with 6 hidden nodes performed optimally for earnings
with 11.74% error.

IV. Results

Tables 2 and 3 show the test set performance of the opti-
mized (with respect to the development set) model from
each class for earnings and debt. The primary error
metrics were mean absolute percent error, which penal-
izes errors of different sizes and directions equally, and
RMSE (root mean squared error), which penalizes larger
deviations superlinearly. For the best model under both
metrics, weighted linear regression, the R2 measure be-
tween predicted and actual values in the test set was
0.9079 for earnings and 0.9221 for debt. Our absolute
error is lower for debt than for earnings, but since the
dollar amounts for debt are typically lower than those
of earnings, we have a higher percentage error for debt
prediction.

Table 2: Error for earnings across all models.

Table 3: Error for debt across all models.

V. Discussion

Overall, much of the variance in earnings and debt in-
formation was in fact captured by the static school data
provided in College Scorecard. Our incremental model
selection process showed that regression imputation
of privacy-suppressed values improved overall perfor-
mance. In addition, local weighting helped adapt linear
regression to nonlinear relationships between school
characteristics and graduate debt/earnings. The num-
ber of training examples is limited by the number of
schools, but feature selection helped constrain the com-
plexity of our models in this setting. In addition, test set

performance was very similar to development set perfor-
mance, so optimizing our model parameters through the
development set did not lead to excessive overfitting.

Support vector regression did worse than all other
models, even after optimization of regularization param-
eters. The test set performance was only marginally
worse than errors for the training and development sets,
so overfitting was not an issue. This indicates that learn-
ing decision boundaries in our kernelized feature space
is not very helpful for the values we want to predict.

Several selected features relate to socioeconomic
backgrounds of the student population. The College
Scorecard data set included earning and debt data subdi-
vided by background, but most of this data was privacy-
suppressed. For future work, partnering with the U.S.
Department of Education to gain access to this data
could help provide more accurate or individualized esti-
mates.

If we examine the predictions made by weighted lin-
ear regression for median earnings, approximately 40%
of the test set schools had predictions within $1,000 of
the true value, and almost 90% of schools had predic-
tions within $5,000 of the true value, meaning that the
function did well for the majority of schools. However,
ten of the schools had absolute percent errors above 50%;
in examining these schools, the majority only instructed
specialized skills, e.g. cosmetology, massage therapy.
Therefore, it seems like the current algorithm has trou-
ble extending to trade schools, in which future debt and
earnings may be best characterized by a different set of
features than those emphasized by College Scorecard.

We also explored whether our best model general-
ized well outside of our training, development, and test
sets by running it on the 2371 schools missing earnings
or debt information. Though we have no benchmark
to calculate accuracy for predictions on these schools,
we qualitatively examined the schools with the highest
predicted earnings. The Columbia College of Nursing
had the highest predicted earnings; the rest of the top
ten included two other health care-related schools, six
law schools, and the Hawaii Technology Institute. Since
health care-related schools dominated the top earnings
schools list for our labeled data (schools which had earn-
ings information already in the dataset), their presence
in the predictions for the unlabeled data is expected.
However, the labeled data had no law schools and law
schools made up only 1.5% of the unlabeled data, indi-
cating that our features were general enough to correctly
predict high earnings for law school graduates.

With below 10% average error for earnings data, our
best weighted linear regression model could be used
to fill in gaps in the current College Scorecard data set,
given a proper disclaimer.
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