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Abstract—This paper introduces predictive framework for 

asset management risk assessment that utilizes big data. It 

describes the data analytics required for integrating the big data 

in time and space. The proposed assets management framework 

is novel since it implements a dynamic proactive maintenance 

scheduling. The dynamic maintenance scheduling overpowers the 

conventional periodic scheduling, by taking into account variety 

of factors that are changing over time and generating up to date 

estimations of components’ state of risk. The framework 

complements the condition-based maintenance scheduling by 

providing additional knowledge extracted from historical data 

and measurements taken from the sources besides the utility 

measurements, such as weather data. This enables the integration 

of various types of ever-changing environmental impacts into the 

assets failure assessment leading to prevention through optimized 

maintenance. The framework is demonstrated with the example 

of the predictive line insulator maintenance scheduling. 
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I.  INTRODUCTION 

The changing weather conditions and varying utility 
operating states caused by introduction of distributed 
generation and renewables create dynamic conditions that may 
be harmful to the assets due to the extreme stresses [1]. Under 
such conditions, the main  asset management goal is to 
minimize the cost of the asset repair and replacement while 
maximizing the resilience of the system.  

Traditional approach to assets condition monitoring is  to 
perform laboratory tests to asses initial properties of the asset 
and its performance breakdown point, and then use it  as a 
reference for the filed assessment when periodic examinations 
are done [2]. The frequency of field examination varies based 
on the device type and operating conditions and can range from 
several months to several years or even a decade. Another 
approach to assets management is “run-to-failure”, where the 
components are never being inspected and actions are taken 
only after the component breaks [3]. In recent decades, 
technological advances have made it possible to closely 
monitor asset’s states and characteristics using various sensors 
[4]. Today, these sensors are typically integrated with 

intelligent electronic devices (IEDs) and provide a continuous 
on-line condition-based monitoring of equipment [5].  

Another approach is a risk-based maintenance scheduling 
illustrated by several recent studies.  In [6] the risk-based 
allocation of maintenance resources to various distribution 
system assets is described. The method uses linear optimization 
to balance risk reduction and economic losses. Research in [7] 
uses decoupled risk factor and mixed-integer linear formulation 
for optimization of maintenance tasks. Work in [8, 9] 
demonstrates the application of the risk assessment analysis of 
a structured asset model with the function-oriented business 
process model. In [10] a nonparametric regression method is 
used to develop failure rate model based on proportional 
hazards modeling. Study in [11] develops risk assessment 
framework for the extreme events caused by simultaneous or 
cascading faults. All the mentioned studies are modeling the 
risk factor using statistical data. There is a lack of risk-based 
maintenance strategies that can incorporate all the different 
data collected by various sensors networks available today.  

Our paper provides a new predictive framework for asset 
maintenance scheduling that combines the sensor monitoring 
data with the excessive sets of weather, lightning, vegetation, 
and GIS (Geographical Information System) data. Instead of 
statistical estimation of failure rates, the variety of data is used 
to train the prediction model based on linear regression. The 
state of the network assets is automatically updated resulting in 
the dynamic risk maps allowing optimized scheduling of assets 
based on dynamically unfolding risk assessment. The 
maintenance schedule is created whenever new set of data 
become available and component state is automatically updated 
over time. The advantages of this framework are illustrated 
using the intelligent monitoring and maintenance scheduling 
for transmission line insulators. 

The rest of the paper is organized as follows. First, the 
background about asset management in general, and the 
insulator management in particular are introduced in section II. 
The stages for spatio-temporal correlation of data are described 
in section II, and the spatiotemporal predictive risk analysis 
with optimal maintenance scheduling in section III. The results 
are given in section IV and Conclusions in Section V.  



II. ASSET MANAGEMENT APPROACHES 

There are several basic approaches to maintenance 
scheduling [12]: 

• Run-to-failure (RTF): in this approach maintenance is 
only performed after the component fails. The 
advantage is that there are no expenses associated with 
the equipment monitoring and analysis but there is no 
mechanism to predict outages due to the equipment 
failure resulting in higher cost to re-instate service.  

• Condition-based maintenance (CBM): this type of 
maintenance is initiated by the monitoring equipment 
indicating that certain performance degradation 
thresholds are exceeded requiring maintenance action. 
While this method allows prevention of an outage by 
“just in time” action, it is typically costly due to the 
requirement that each individual component is closely 
monitored. 

• Reliability-centered maintenance (RCM): the 
maintenance schedule is prioritized based on the 
likelihood of equipment failure. This kind of 
maintenance scheduling does observe the whole system 
and prioritizes the maintenance area. However, in the 
existing RCM studies the likelihood is determined 
statistically and it is equal for all components, 
neglecting the variety of factors affected the individual 
components over the years. 

• Optimization techniques (OT): the maintenance 
scheduling is optimized based on the economic impacts. 
This kind of maintenance takes into account restrictions 
such as: availability of maintenance crews, travel 
expenses, restricted time intervals but still does not get 
the benefit of the predictive risk assessment based on 
unfolding threats and vulnerabilities.  

The method presented in this paper is an extension of the 
RCM method. It calculates the risk reduction dynamically by 
mining large amount of data coming from various sources. Our 
method offers many advantages over previous methods. The 
larger scale implementation observing the entire network is 
feasible due to the spatiotemporal analytics that is scalable. 
Variety of relevant data such as weather, lightning, and 
vegetation data is used providing additional data relevant for 
asset “wear and tear”. Prediction model is trained using 
historical knowledge extraction leading to advanced warning 
about potential asset failures. The method introduces the 
unfolding risk assessment allowing associated maintenance 
schedules to be created dynamically, both in time and space 
Using our method, every component is mapped with a unique 
state of risk, and geographical and electrical interdependencies 
between the components are taken into account. 

A. Asset Management for Insulators 

The insulator strength is quantified with the Basic 
Lightning Impulse Insulation Level (BIL). BIL is a voltage at 
which insulator has 10% probability of a flashover [13]. 
Conventionally BIL is determined by the manufacturer by 
performing a set of type tests for the standard atmospheric 
conditions. It should be noted that these tests are performed 

before any kind of environmental exposure of the insulator, so 
they do not reflect the actual strength of the insulator after the 
prolonged exposure. 

Insulators exhibit two types of failures, [14]: 1) mechanical 
failures caused by physical deformities due to manufacturing 
defects or severe material erosion; and 2) electrical stress 
failures caused by increased leakage current mostly due to a 
high number of experienced flashovers. Due to exposure to 
different environmental impacts, the mechanical and electrical 
performances of insulators deteriorate over time. These 
changes in insulator performances are not always easily 
observable.  

The insulator deterioration can be classified into two stages, 
[15]: 1) the deterioration of hydrophobic properties where 
insulator may age chemically, but it still retains its electrical 
properties; 2) hydrophobic properties of insulator start to 
deteriorate causing the degradation in insulator electrical 
performance. Based on study presented in [14], the second 
stage can be further separated into three groups: i) weathered, 
with a small or moderate loss of hydrophobic properties, ii) 
mature with a very low hydrophobicity, and iii) at risk with a 
fully hydrophilic surface, or total loss of insulation properties. 
The overview of the deterioration rates is presented in Fig 1. 

There are multiple measurements that can be performed in 
order to estimate the conditions of network insulators. At the 
network level, the history of outages and disturbances can be 
used to quantify the insulator failure rates. At the component 
level, the individual insulator can be tested for its electrical and 
mechanical properties. The tests can be destructive (only 
performed in laboratory) or non-destructive (performed in field 
with system energized or not energized depending on the test 
type) [16]. Following parameters can be measured in a non-
destructive way [14]: i) leakage current magnitude, ii) 
flashover voltage, iii) electric field distribution, iv) corona 
discharge, v) radio interference voltage. In addition, it is 
possible to characterize the insulator material by performing 
one of the following in-field tests [14]: i) visual inspection, ii) 
Infrared reflection thermography, iii) hydrophobicity, and iv) 
remote chemical analysis. 

This paper focuses on the deterioration of electrical 
performances of insulators during the second stage of 
deterioration when the insulator is experiencing the loss of 
electrical strength. During this period, the manufacturer’s (BIL) 
no longer can be used as the measure of insulator electrical 

 

Figure 1. Insulator deterioration process, [14] 

 

 



strength. 

B. Enviromental Impacts on Insulators 

Overhead line insulators are exposed to variety of 
environmental impacts, [r]: i) lightning strikes, ii) temperature 
and pressure variations, iii) ultraviolet radiation and ozone, iv) 
wind impact, v) rain, humidity, hail, snow, fog, and vi) 
pollution. 

In addition, a variety of environmental factors affects the 
probability and characteristics of flashover. Vegetation 
coverage around the line will lover the probability of lightning 
strike affecting the network, the phenomena called “shielding 
by trees” [17]. Elevation data is of importance also, since 
lightning strikes are more likely to affect locations with higher 
altitude [18]. The type of soil at the tower location determines 
the tower grounding resistance which has a big impact on 
overvoltage propagation on the line [19]. 

III. DATA PREPROCESSING 

A. Feature Identification 

First step is to identify all the parameters of interest for the 
development of the predictive risk model. There are six groups 
of parameters: insulator physical characteristics, insulator 
deterioration group and in-field measurements, weather, 
lightning and other environmental factors, historical network 
data. The Table I lists all the parameters.  

B. Spatial data analytics 

Spatial correlation of data is done using ESRI’s ArcGIS 
platform [20]. Any kind of data with a spatial component can 
be integrated into GIS as another layer of information. As new 
information is gathered by the system, these layers can be 
automatically updated. Two distinct categories of GIS data, 
spatial and attribute data, can be identified. Data which 
describes the absolute and relative context of geographic 
features is spatial data. For transmission towers, as an example, 
the exact spatial coordinates are usually kept by the operator. In 
order to provide additional characteristics of spatial features, 
the attribute data is included. Attribute data includes 
characteristics that can be either quantitative or qualitative. For 
instance, a table including the physical characteristics of a 

transmission tower can be described along with the attribute 
data. 

In terms of the spatial data representation, raster and vector 
data can be used. In case of vector data, polygons, lines and 
points are used to form shapes on the map. Raster presents data 
as a visual grid where every cell is associated with one type of 
data classification. Typically, different data sources will 
provide different data formats and types. One thing to consider 
is the spatial resolution of data. In most cases different data sets 
come in different spatial resolutions.  

The geospatial data model is presented in Fig. 2. Utilities 
maintain geodatabase with the locations of all towers, 
substations, and lines. These are typically stored as shapefiles. 
Based on the network geodata the area of interest for correlated 
weather data can be selected. This area is then split into 1 km 
blocks and all weather parameters are interpolated to the 
locations of these blocks. The final weather data contains a set 
of shapefiles with polygons where each time step has one 
shapefile assigned to it.  

Vegetation data is clipped to the buffer around the lines. 
This data identifies the parts of a circuit that have tree coverage 
and are not likely to have lightning caused outages. The 
vegetation, elevation, soil, and lightning frequency data is 
added to the tower shapefile one by one performing a spatial 
join in order to extract the features of selected file that are 
closest to the tower point features. Insulator physical 
characteristics, in-field measurement locations, and historical 
network data are already geocoded to the tower points so their 
attributes can simply be added to the tower attribute table. In-
field measurements and historical network data (including 
historical outage, maintenance, and component replacement 
data) have temporal component. Thus, for each tower the 
pointer to the location of historical file on the disk is created 
and added to the attribute table.  

The final product of spatial correlation of data are the 
following datasets: 

• Weather Dataset, contains one file for each time step. 
Every file is a shapefile containing polygons associated 
with the locational weather parameters. 

• Tower Dataset, contains all the parameters projected to 

TABLE I. LIST OF PARAMETERS 

Historical Network Data In-field Measurements Weather Lightning 

Outage Reports Leakage Current Magnitude Temperature Peak Current 

Maintenance Orders Flashover Voltage Humidity Polarity 

Replacement Orders Electric Field Distribution Pressure Type of Lightning 

Insulator Physical 

Characteristics 

Corona Discharge  

Detection 

Wind Parameters (speed, 

direction, gust) 

Other Environmental 

Parameters 

Surge Impedances of Towers 

and Ground Wires 

Infrared Reflection 

Thermography  

Pollution  

(sodium chloride) 

Vegetation Index (presence 

and canopy height) 

Footing Resistance Visual Inspection Reports UV index Elevation 

Component BIL Radio Interference Voltage Precipitation Soil  

 



the tower location as a point. In addition, tower dataset 
contains the link to the historical dataset repository. 

• Historical Dataset, which is not a geospatial dataset. 
Each tower in the network has a set of four files inside 
historical dataset that list all the events of interest that 
occurred in the tower’s history. 

Spatial correlation of data is performed only once as a part 
of preprocessing. After the initial setup of database, the 
information is automatically updated with every timestep, as 
described in the following chapter. 

C. Temporal data analytics 

All data must be time referenced in a unique fashion. 
Following factors are important for time correlation of data: 

 

Figure 2. Spatial Correlation of Data 



• Time scales: data can be collected with different time 
resolution: yearly, monthly, daily, hourly, once every 
few minutes or even seconds. In addition, different 
applications may require different rates of data 
acquisition. 

• Atomic Time: Variety of different data sources use 
different atomic time standards [21], such as UTC – 
Coordinated Universal Time, GPS Satellite Time, and 
TAI – International Atomic Time. All time calculations 
have to be set into a unified time frame. 

• Synchronization protocols: Accuracy of a time stamp is 
highly dependent on the type of the signal that is used 
for time synchronization. Different measuring devices 
that use GPS synchronization can use different 
synchronization signals, such as NTP – Network Time 
Protocol [22] or PTP – Precision Time Protocol [23]. 

Fig. 3 demonstrates the steps in temporal correlation of data. 
Different datasets are collected in different time zones. The 
UTC time standard has been chosen, and all the temporal data 
was converted to the UTC time zone. The lightning data needs 
to be temporally correlated with: 1) weather data, by 
interpolating weather parameters at the time instance of the 
lightning strike, and 2) historical outage data, by identifying 

which lightning strike corresponds to the historical lightning 
outage.  

Following actions are performed automatically as concurrent 
processes: 

• Lightning Impact: After each lightning strike the 
changes are applied to the lightning performance 
characteristics of the insulator and insulator state is 
updated accordingly. 

• Weather Impact: After each month, the weather impacts 
on the insulator are summarized and the insulator state 
is updated. 

• Measurement Based State Update: Whenever the 
measurement in the field is performed the predicted 
state of insulator is compared to the measured 
characteristics. If there is a difference the state of 
insulator is calibrated to the measured value. 

• Outage Impact: Based on the collected outage data the 
severity of lightning strike impact on the insulator is 
determined. 

• Maintenance/Replacement: Whenever there is a 
restorative action in the network the associated insulator 
state is refreshed to the repaired value in case of 

 

Figure 3. Temporal correlation of data 



maintenance, or new component value in case of 
replacement. 

IV. GEOSPACIALY AND TEMPORALY REFERENCED RISK 

ASSESMENT  

The State of Risk is represented as a stochastic process [24] 
that changes over time and has an assigned value in each 
location of the network. Thus, the state of risk R is a function 
of time and space as follows: 

         tGTtGCPtGTP ,,,tX,R             

where G represents the spatial location of a single component 
expressed in terms of longitude and latitude, and t represents a 
specific moment in time for which the State of Risk is 
calculated. The parameter T represents the threat intensity. The 
first term in (1) P[T] is a hazard probability, calculated based 
on the weather forecast data for the specific time and location. 
The second term P[C|T] is calculated based on the historical 
weather, outage and assets data. The purpose of the second 
term is to estimate the network vulnerability for the given 
weather hazard.  

A. Hazard 

Table II presents the threat levels for different 
environmental impacts, while the Table III demonstrates 
hazard classification based on likelihood and threat intensity. 
Threat describes the severity of the event. In case of the 
lightning impact, threat can be quantified by lightning peak 
current value. For the rest of the threats the level of threat is 
determined based on the length of exposure to the severe 
impact. While threat in case of lightning strike is instantaneous, 
the exposure to other weather parameters is summarized over 
time (months, years) in order to construct the threat level. 
Based on the weather forecast model the probability of a 

specific weather event or amount of exsposure is estimated.  

B. Vulnerability 

For the prediction of network vulnerability levels the 
Gaussian Conditional Random Field (GCRF) algorithm is used 
[25]. The advantages of this algorithm are: capability to model 
the network as interconnected graph with assigned 
geographical locations and time reference; and capability to 
model the interdependencies between different nodes in the 
network.  

The GCRF can be expressed in canonical form as follows: 
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Where x is a set of input variables, y is a set of outputs, Rk 
are unstructured predictors, Sij represent similarities between 
outputs determined based on their geographical locations, and 
α and β are learning parameters.  

Input variables x include: lightning peak current, lightning 
polarity, temperature, humidity, pressure, precipitation, 
temperature variations, UV, and pollution experienced during 
time step Δt, presence of catastrophic event, leakage current 
magnitude, flashover voltage, corona discharge detection, radio 
interference voltage, flag for inspection changes detected, BIL, 
and insulator state. The output y of the prediction algorithm is 
predicted insulator state after the time step Δt. Based on the 
predicted insulator state the insulator is placed in one of four 
groups (as new, weathered, mature, and at risk), and the 
probability of insulator failure is determined from the function 
presented in Fig. 1.  

C. Optimal Maintenance Scheduling 

The purpose of maintenance scheduler is to provide balance 
between system reliability and the maintenance costs. The 
scheduler is trying to maximize the risk reduction for a system 
while minimizing the expenses of insulator replacement and 
maintenance. The available maintenance actions are classified 
into three groups: do nothing, perform maintenance, or replace 
component. For each time instance, every insulator in the 
network can be assigned one of these three values. In order to 
reduce the number of permutations only insulators that have 
risk value higher than 60% are considered for maintenance, and 
those that have risk higher than 80% are considered for 
replacement. The rest of the network is assigned the “do 
nothing” action. The maintenance and replacement actions are 
varied in the selected insulator set until the best maintenance 
plan is found. 

The optimal solution for maintenance plan is determined by 
solving the following optimization problem that maximizes the 
system risk reduction: 
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With following constrains: 

TABLE II. THREAT CLASSIFICATION 

Threat 
level 

Lightning 
strikes 

Temp. 
variations 

UV 

radiation 

Catastrophic 
events 

Pollution 

0      

1      

2      

3      

4      

5      

TABLE III HAZARD CLASSIFICATION 

Likelihood 

[%] 

 Threat level 

0 1 2 3 4 5 

0-20       

20-40       

40-60       

60-80       

80-100       
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Where a is a selected insulator, N is a total number of 
insulators in the network, ΔRM(a) is a reduction in risk for an 
insulator that was under maintenance, ΔRR(a) is a reduction in 
risk for an insulator that was replaced. SM(a) is 0 if there was 
no maintenance action and 1 if there was maintenance; SR(a) is 
0 if there was no replacement action and 1 if there was 
replacement, MC(a) is a cost of maintenance for a component 
a, MA is a total allocated maintenance found, RC(a) is a cost of 
replacement of component a, RA is a total allocated 
replacement found.  

V. EXAMPLES AND ADVANTAGES 

The method has been simulated and tested on a 36 
substation, 65 transmission lines section of a network, with a 
total of 1590 towers. The data coming from three weather 
stations [26] located in the vicinity of the network was used, 
and lightning data was obtained from the National Lightning 
Detection Network operated by Vaisala [27]. Weather forecast 
data used in this study was downloaded from the National 
Digital Forecast Database [28]. Soil data was obtained from 
[29]. Vegetation indices were calculated based on the study 
presented in [30]. 

In Fig. 4 the example of Hazard map is presented. Hazard 
map is created based on the interpolated weather data and 
presented as a polygon grid where each block has an assigned 
hazard probability. Example of Vulnerability map is presented 
in Fig. 5. Each tower has a vulnerability value assigned to it. 
The vulnerability value represents the probability of an 
insulator failure if presented Hazard in Fig. 4 has occurred.  

In Fig. 6 the example of risk map for one time instance is 
presented. The advantage of this method is that risk maps are 
generated continuously over time. At each moment new data is 
available; the appropriate risk map is assigned based on the 
current weather forecast and current conditions of network 
assets.  

Based on the overall risk map created for a period of one 
year, and associated economic cost, the optimal maintenance 
plan is presented in Table IV. The presented maintenance plan 
is expected to reduce overall risk by 56% during one year of 
application. With this method, the asset maintenance schedule 
is determined dynamically and it differs based on different 
environmental impacts on the network. The dynamic scheduler 
is constantly learning, hence adjusting the maintenance 
schedule to include the impact of all the events in the network. 

VI. CONCLUSIONS  

This paper described a dynamic maintenance scheduling for 
predictive asset management of geo-spatially and temporally 
referenced data. Following are the contributions of this paper: 

• A novel predictive asset management framework is 
proposed that optimizes the maintenance schedule 
based on the dynamically created State of Risk. 

• The spatial and temporal integration of input data 
results in locational assessment of asset deterioration 
over time. 

• The model is capable of predicting the future State of 
Risk based on the GCRF model, which is scalable to 
include large number of asset components. 

 

Figure 4. Weather Hazard Map 

 

Figure 5. Tower Vulnerability Map 



• The prediction model takes into account the spatial 

interdependencies of the input data, providing the 
additional knowledge for more precise prediction of the 
State of Risk. 

• The method combines sensor data used for condition 
monitoring with additional data obtained from sources 
outside of electric utility, such as weather data, which 
gives more precise assessment of asset ageing problem. 
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