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Introduction 

The progress of computing technology over the last 15 years has opened new 
areas of research in almost every field of science. In biology, chemistry, 
medicine and in physics, researchers have turned to the use of computing for 
testing hypotheses in silico and for making wide hypothesis-free searches for 
leads and answers1. 

The future of science lies to a large degree in quantitative studies, where 
complex systems can be explored for functional mechanisms much like an 
1862 gold digger in Boise Basin would sift through his pan looking for a 
nugget. This thesis addresses the search for nuggets in vast amounts of data 
to explain which factors control an outcome, for example, the search for 
variants in our DNA to explain why some people have certain diseases, and 
the search for shared behavior in cancer screening to explain why some pa-
tients are detected early enough for effective treatment whereas some pa-
tients are detected too late. 

The advancement of computing has made possible Machine Learning 
(ML), predictions based on statistical inference from previous observations 
much like a human would predict traffic congestion based on his or her pre-
vious experience. While ML has been around for quite some time in theory2, 
it has not been practically applicable on a wide scale until the last twenty 
years or so. The sheer amount of data and computing power needed for ML 
to produce statistically sound results made it unfeasible. Even today we are 
greatly limited in terms of computing, especially in the search for combina-
torial effects. As an example, the scoring schema in Paper III required 142 
days. During this time, the algorithm computed over 2,508,271,955,205 pos-
sible solutions requiring 571,057,686,141,794 propagations of the data.  

The availability of ML in scientific computing is a recent development, 
and it remains to be deployed in many areas. In biological science the im-
portance of statistically sound analyses was quickly recognized as it is a field 
of research where data with a high noise level is frequently encountered. In 
medicine it has taken longer, as befits a field where lives are at stake in vali-
dation tests, but the use of ML has increased in recent years.  

Computing has also changed the field of genetics, making possible the 
rapid analysis of entire genomes, corresponding to enormous amounts of 
quaternary data. The capacity for analysis has opened up genomics far be-
yond simply looking at nucleotides, allowing for exploring the genome and 
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its related products in a systems context and observing how components 
interact with the genome.  

The central theme of this thesis is computing in medicine and genetics. It 
addresses the use of ML in the context of cervical cancer screening in the 
search for the differences in the history of women that develop cancer and 
those who do not and a program has been developed to make those ML 
computations practical. Also, the development of a pipeline for filtering ge-
nomic variations down to only those highly relevant for the development of 
disease is described.  
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The Basics 

Nucleotides 
A nucleotide is an organic molecule that serves as the building block (mon-
omer) for deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) poly-
mers. The structure of the nucleotide is the basis for all genetic information, 
from that controlling the simplest virus to that of humans, and sequences of 
nucleotides are used to encode all the data we need to function. It consists of 
three parts; a nitrogenous base, a five-carbon sugar, and a phosphate group 
(Figure 1). Nucleotides in the genome form long chains (polymers) by form-
ing a bond between the phosphate group of one nucleotide and the sugar 
molecule of another. These chains will form helices, either single (RNA) or 
double (DNA). 
 

 
Figure 1 The four nucleotides of DNA. The pentose sugar (blue) binds to the phos-
phate group (grey) of another nucleotide to form polymers capable of dimerizing 
and forming helices. The nitrogenous bases are labelled with the character represent-
ing them in DNA (G = guanine, T = thymine, A = adenine, C = cytosine). Image 
courtesy of Scientific Reports3  
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DNA 
All information required to develop a human being is stored in deoxyribonu-
cleic acids (DNA). DNA is stored in the cell nucleus, in long X-shaped 
stretches called chromosomes. To fit in the nucleus, the DNA is wrapped 
tightly around circular proteins called histones.  There are 23 chromosome 
pairs in total, each parent contributing one chromosome to the pair. Of these, 
22 pairs are the same for men and women. The last pair contains the X and Y 
chromosomes, and these differ between male and female as women have two 
X chromosomes, while men have one X and one Y.  

DNA has many different regions used for different purposes. A gene will 
contain a starting point and a stopping point so that the transcription to form 
proteins knows where to begin and where to end, as well as “data” regions 
called exons and “flow control” regions called introns. When put together, 
the exons contain the “code” of a gene, and introns offer control flow so that 
different versions of the “code” can be created. Before the starting point of a 
gene there is also a promoter region that is needed to activate the transcrip-
tion of the gene, and somewhere there might also be an enhancer region, 
which greatly increases the transcription rate of the gene.  

DNA is regulated by multiple systems. The availability of DNA is regu-
lated by modifications of the histone tails, enabling the DNA to uncoil from 
the histones so it can be accessed by proteins. The activity of DNA is regu-
lated by methylation, as methyl groups attached to the cytosine nucleotide 
prevent it from binding peptides. The gene transcription is regulated by tran-
scription factors (TFs), peptides that bind to the promoter and enhancer of a 
gene to attract RNA polymerase, the enzyme that creates RNA strands. The 
proximity of the enhancer to the promoter is regulated by architectural TFs 
such as CTCF that create loops in the DNA to bring distant regions together. 

DNA is a complex blueprint for proteins, the building blocks of the cell. 
To create a protein, the corresponding DNA sequence is unwound from the 
histones and replicated into single-stranded RNA. The RNA is then pro-
cessed further into a final blueprint, which is read by the ribosome protein 
complex and the sequence of the amino acids, the protein, is based on this 
RNA.  

The DNA of any two humans is estimated to differ by 0.6%4, or 20 mil-
lion nucleotide pairs. This variation comes from mutations. These mutations 
can be inherited from the parents, called germline, or they can be developed 
over the lifetime of the individual, called somatic. Most mutations will have 
no effect on the individual and will never be noticed unless the DNA is se-
quenced. A few mutations may have severe effects on the individual, such as 
causing cancer. In the case of sickle-cell anemia5 only a single nucleotide 
mutation is needed in the β-globin gene. Sources of somatic mutations in-
clude exposure to ultraviolet radiation, errors in DNA replication, and cer-
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tain chemicals. Mutations include a variety of specific changes to the ge-
nome, such as single nucleotide polymorphisms.  

Single Nucleotide Polymorphisms 
The substitution of a single nucleotide at a specific position in the genome is 
called Single Nucleotide Polymorphism (SNP). The possible variations are 
referred to as alleles for the affected gene. A SNP will change the nucleotide 
in one sequence only, leaving the other in its original state. This is the most 
common type of genetic variation, and each human carries somewhere be-
tween four to five million SNPs4 in their DNA.  

SNPs can have a wide range of effects depending on which region they 
are located in. If they are within a gene coding region there is a chance they 
will alter which amino acid is expressed at the position, though in most cases 
this has no effect on the function of the expressed protein, the phenotype. 
Sometimes this single change is enough to cause a disease and single SNPs 
can cause sickle-cell anemia and β-thalassemia6. If the SNPs fall within the 
non-coding region, there is a chance they might alter the specificity of regu-
latory TFs like CTCF, resulting in altered expression for the whole domain 
of the affected binding site and even adjoining domains7.  

SNPs can also have combinatorial effects, making it difficult to identify 
the function of any singular SNP without proper context. The study of prox-
imal contexts have provided some insights, i.e. studying genes close to the 
SNP. The addition of techniques for capturing long distance interactions of 
DNA, such as Chromatin Conformation Capture8 (3C) and its derivations 
(4C, 5C, Hi-C, ChIA-PET), have allowed for identifying distal interactions 
of SNPs. Even with these additions it is difficult to trace a disease back to 
the causative SNPs, as there are many factors involved and there can be mul-
tiple disease pathways, as for example with cancer9, a disease driven by mu-
tations in DNA. 

Genome-wide Association Studies 
Genome wide association studies (GWAS) attempt to identify disease caus-
ing SNPs using statistical analysis10. Observing the genetic variants of a 
population, the GWA study attempts to find statistical correlation between 
observed SNPs and observed traits (Figure 2). There have been many GWA 
studies to date, and some have been successful in identifying disease associ-
ated SNPs11. Unfortunately, statistical analysis means that a stronger correla-
tion is related to higher frequency of occurrence. As a result, to find less 
common disease associated SNPs, larger and larger study populations are 
needed, with recent studies exceeding 1.3 million participants12. Even at 
these numbers, it can be hard to find associated SNPs with low frequencies 
of occurrence. 
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A GWA study only explores the association between SNP and a trait, it 
does not assert a causative relation; that part will have to be explored in a 
more direct study of the functional effect of the SNP. In a combinatorial 
setting, only a part of the set of SNPs causing the disease may be discovered, 
complicating the more in-depth analysis at the level where causative mecha-
nisms are studied. Given the vast number of disease-associated SNPs and the 
time required to properly explore their function, finding the correct ones to 
evaluate further is quite important. 

 

 
Figure 2 Example of how a genome-wide association is measured. The variant ob-
served has a higher frequency in the case group than the control group for some 
disease. Image courtesy of EMBL-EBI. 

DNA Sequencing and Chromatin Immunoprecipitation 
DNA sequencing is the identification of the nucleotide sequence in DNA and 
forms the basis for research on genetic inheritance and mutation. Since its 
invention it has opened up new areas of research in biology and medicine13. 
Sequencing data is often combined with large-scale transcription factor bind-
ing analysis to see not only the nucleotide sequence, but also which areas of 
the nucleotide sequence that interact with various peptides and proteins. This 
large scale binding analysis is studied using Chromatin Immunoprecipitation 
sequencing14, or ChIP-seq. ChIP-seq is a two-step process where DNA asso-
ciated to a TF is first selected and then sequenced using high-throughput 
sequencing15. ChIP-seq must be done for a specific TF and will quantify the 
interactions between regions in the DNA and this protein to an accuracy of 
50-100 base-pairs. The choice of TF will allow conclusions about the likely 
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role of that DNA region. An architectural protein like CTCF can indicate the 
bases of DNA looping regions, which cluster long DNA sequences into a 
single domain of related genes. Proteins more specific for the expression of 
certain genes can be used to test the effect of mutations on the related ex-
pression.  

In practice, multiple proteins are used to ensure that the analysis is cor-
rect. For experiments on the effect of a single SNP on gene expression, it is 
common to use a protein involved in the gene expression, histone modifica-
tion proteins to observe the chromatin status of the region, and DNase I en-
zyme (through DNase-seq) to show the overall transcriptional activity of the 
region. 

Some Biology Concepts 
eQTL 
Expression Quantitative Trait Loci (eQTL) are genomic loci involved in 
some or all of the variation in expression levels of mRNA16. An eQTL SNP 
is a polymorphism that causes the transcription rate of a gene to change, 
either to increase or to decrease. It can be compared to a dial on the oven, 
increasing or decreasing the temperature, potentially turning the oven off 
completely. eQTL SNPs always affect the expression levels, but the process 
through which that occurs can be of several kinds.  

AS-SNP 
Allele-specific Single Nucleotide Polymorphisms (AS-SNPs) are SNPs that 
have a statistically significant impact on the binding affinity of an allele17. 
This causes transcription factors (TFs) to bind preferentially to one allele 
over the other resulting in one of the two DNA sequences to become domi-
nantly expressed.  

TAD 
A Topologically Associated Domain (TAD) is a region in the DNA that is 
physically associated18. It is a loop that is created by the DNA when archi-
tectural protein complexes bind together an anchor site pair, forcing them 
together, forming a shape much like a noose. This noose can be a taut circle 
or a loose and serpentine one. This noose-like loop effectively allows distal 
enhancers to fold in and connect to their associated promoters and assist in 
gene transcription. TADs are often co-expressed and have associated func-
tions, making it practical to express them all at the same time. 
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LD 
Linkage Disequilibrium (LD) in population genetics is a term for correlation 
of occurrence between alleles, either negative or positive19. That is, in any 
given genome they appear together more frequently than expected by 
chance, much like how socks frequently but not always are of matching col-
or and size. The co-occurrence is simply too frequent to have arisen random-
ly.  

PMM 
A Parsimonious Markov Model (PMM) is a predicted motif that accounts for 
the spatial context of TF binding20. A predicted motif is a sequence of nucle-
otides computed in silico for the likelihood of binding some specific set of 
TFs. 
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Cervical Cancer and Screening 

Human Papillomavirus 
Papillomaviridae is an ancient family of non-enveloped DNA viruses21. The 
many types of this family have been found to infect every type of mammal 
investigated22 as well as various other vertebrates23.  

The virus replicates by entering a host cell nucleus and inserting its DNA 
into the host cell DNA. The viral proteins can then be expressed by the same 
machinery as the regular cell proteins.   

Most often an infection is asymptomatic, but some types may cause be-
nign tumors, more commonly known as warts or papilloma. Certain types of 
Human Papillomavirus (HPV) are well known for causing cervical and anal 
cancer and are also implicated in oropharyngeal, penile, vaginal, vulvar24, 
and Head & Neck cancers25. 

 Papillomaviruses are usually host specific and rarely transmit between 
species. They replicate exclusively in their type-specific basal layer of sur-
face tissue22, such as skin or the mucosal epithelium of genitals, anus, mouth, 
or airways; a quality that can make it difficult for the immune system to de-
tect the infection26. 

Human Papillomaviruses infect a variety of surfaces: HPV1 infects the 
soles of the feet while HPV2 infects the palms of the hands. HPV6 infects 
the penile, vaginal, and anal epithelial layers. The most well-known HPV 
types are 16 and 18, both of which can cause cervical cancer. Infections by 
these two types account for approximately 70% of all cervical cancer cases 
in the west. HPV types 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73, and 
8227, account for the remaining 30%.  

Cervical Cancer 
Cervical cancer is estimated to have afflicted around 570,000 women 
worldwide in 2018 alone28. It is a disease driven by HPV DNA expressing 
proteins that have inactivated important tumor suppressing functions within 
the cell, allowing it to grow cancerous and replicate without inhibition. In-
fection by persistent high-risk HPV, most commonly HPV16 or HPV1829, is 
a requirement for developing cervical cancer. The development of cervical 
cancer from HPV starts with the transfection of HPV DNA into the cell 
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DNA. The cell’s gene expression process then starts expressing virus pro-
teins. These proteins, in particular E6 and E7, suppress the expression of 
tumor suppressor genes30,31. E6 primarily binds and initiates the degradation 
of the p53 tumor suppressor protein, a critical cancer inhibiting component 
that can kill the cell when tumor-inducing behavior occurs, and E7 acts simi-
larly towards several proteins of the Retinoblastoma family, proteins in-
volved in the suppression of genes required for cell cycle progression. In 
HPV16, only a very specific form of E7 will induce carcinogenesis, and it is 
possible that it develops in situ as a result of the human immune system29.  

With these important functions inactivated, the cell can replicate freely 
and thus create more virus particles. As a side effect of virus replication the 
surface of the cervix may in time develop into a cancer tumor.  

The development of cervical cancer tends to be slow, and there are sever-
al clinical diagnoses for the different stages. When changes occur, but before 
the growth is considered a cancer, it is called a Cervical Intraepithelial Neo-
plasia, or CIN. This occurs in three stages defined by how abnormal the cells 
look under a microscope and how much of the cervical tissue is affected 
(Figure 3, Figure 4).  
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Figure 3 Normal cervical epithelium. (hematoxylin/eosin staining).  

 

 
Figure 4. Cervical Intraepithelial Neoplasia Grade 3 (CIN3). There are many undif-
ferentiated cells and they are spanning more than two thirds of the epithelium, the 
cells differ greatly in size, and many cells have  irregular shapes. 
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A CIN3 is what may eventually develop into an invasive cancer. The mildest 
form of cancer is similar to CIN3 and can be treated the same way, with 
removal of the tumor via a surgical procedure. If the cancer develops further 
the likelihood of survival is reduced and the treatments become more severe, 
including radiotherapy, chemotherapy and surgical hysterectomy. 

HPV Vaccination  
The introduction of nationwide vaccination has been effective in reducing 
cervical cancer incidence, in some countries by up to 72%32. The first vac-
cine, Cervarix, protected against HPV 16 and 18, the two main culprits be-
hind cervical cancer development. The vaccines that followed extended the 
protection.  Gardasil protected against four different types: 6, 11, 16, 18. 
HPV 6 and 11 are low-risk types, but they do cause papilloma. The latest 
vaccine, Gardasil 9, protected against HPV types 6, 11, 16, 18, 31, 33, 45, 52 
and 58, with all except 6 and 11 being high-risk HPV types. The clinical 
effects of Gardasil 9 will not be seen for a while yet, as it was approved in 
December of 2014.  

Screening 
Screening is the process of systematically testing a population for symptoms 
of a disease before it has developed. The purpose is to find dangerous condi-
tions early on in the development stage, before they become fatal, as a medi-
cal intervention at an early stage is both safer to perform and more likely to 
prevent fatal disease outcomes. Cervix, breast, and prostate cancer are well 
known diseases to screen for, but there are many other diseases screened for, 
such as tuberculosis, depression, fetal abnormalities, or pneumoconiosis. 

In screening, individuals from the at-risk population are invited to attend 
a local clinic where they can be examined for disease biomarkers. A bi-
omarker is anything indicative of an underlying condition, such as visual 
changes in a cell that could eventually lead to cervical cancer, or high levels 
of prostate specific antigen (PSA) in the blood that could signify a potential 
development of prostate cancer. This examination of biomarkers is repeated 
at intervals, usually every three years for cervical cancer, until the individual 
is no longer considered part of the at-risk population. If a risk biomarker is 
discovered during these assessments, the individual is remitted for further 
examination and possible medical intervention. 

Screening can be of different types. Mass screening tests a whole popula-
tion regardless of status while high-risk or selective screening test only the 
individuals considered likely to develop a disease. Well known screening 
programmes, such as liquid-based cytology or mammography, commonly 
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test a majority of the whole population, based on age, without consideration 
of risk factors.  

Diseases should only be screened for when intervention is practical. There 
are considerable financial and social burdens associated with screening in 
the form of high costs and overdiagnosis, the latter leading to unnecessary 
medical interventions. Overdiagnosis refers to the discovery and treatment of 
disease symptoms that would not lead to a disease outcome, such as benign 
growths in the prostate or breast. Treating these symptoms cause unneces-
sary risk to the individual for little or no benefit, and further congests the 
clinics.  

There is considerable discussion regarding the use of prostate cancer screen-
ing33 due to the side effects of the confirmation test, where a small sample of 
the prostate is extracted, and it is currently unclear whether screening for 
prostate cancer actually reduces the mortality of the disease34. Breast cancer 
screening seems to offer only a marginal, if any, reduction in mortality as 
well35. Conversely, screening for cervical cancer has been highly successful 
in reducing both cancer incidence and mortality36. 

Cervical Cancer Screening Registries 
Screening programmes record all examinations and store them in a registry. 
This information can then be used for quality control and auditing of the 
programme, as well as tracing problems or faults at the associated clinics. 
Each screening examination stored contains information about the individu-
al, the diagnosis, the clinic, and the date. 

Some Screening Concepts 
There are many different aspects of screening and most countries with a 
cervical cancer screening programme have their own standards and proto-
cols. There may even be regional differences within countries. To provide 
the best care and transparency for those involved in the screening pro-
grammes, there is a set of standards for definitions and processes. These are 
intended to make screening programmes comparable and to enforce mini-
mum standards of performance and safety. 

SNOMED  
The Systematized Nomenclature of Medicine (SNOMED) is a computer-
processable collection of medical items37. It is an international standardiza-
tion protocol such that a screening diagnosis of cervical intraepithelial neo-
plasia I (M74006) in Sweden means exactly the same as mild dysplasia 
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(M74006) in the United States. In a medical scenario, small differences can 
have drastic consequences and standardization prevents these differences 
from causing problems. It also furthers research and communication between 
different countries as the population-wide results become directly compara-
ble. 

ICD 
The Tenth International Statistical Classification of Diseases and Related 
Health Problems (ICD-10) is a set of medical diagnoses intended to clearly 
specify diseases38. The ICD standard defines diseases and health problems, 
such as diabetes or a personal history of breast cancer.  

Auditing 
During the course of a screening programme, it is necessary to test and vali-
date the performance of the processes involved. This is done via audits. A 
sample of the recorded statistics from the registry is collected and compared 
to expected outcomes. If cancer incidence is higher in certain counties then 
further analysis and observation of the guidelines and practices of these re-
gions are warranted. The level of detail of the data in Swedish registries al-
lows for tracing irregularities and unexpected statistical outcomes down to 
the clinic and the responsible clinician if necessary.  

Some Clinical Abbreviations 
ACIS – Adenocarcinoma in Situ 
AGUS – Atypical Glandular Cells of Unknown Significance 
ASCUS – Atypical Squamous Cells of Unknown Significance 
ASC-H – Suspected Malignant Dysplasia of the Squamous Epithelium 
CIN1/2/3 – Cervical Intraepithelial Neoplasia Grade 1/2/3 
HSIL – High-grade Squamous Intraepithelial Lesion 
LSIL - Low-grade Squamous Intraepithelial Lesion 
NILM - Negative for Intraepithelial Lesion or Malignancy 
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Machine Learning 

Machine Learning (ML) is the use of statistical knowledge from data for the 
purpose of inferring knowledge about unknown data. It can be described as a 
statistical version of a medical doctor, diagnosing a possible disease in a 
patient based on the patient’s symptoms, or if no disease fits the symptoms, 
inferring what family of disease the unknown malady belongs to. The reason 
the doctor can make such a diagnosis is that he has previous experience of 
disease symptoms, and based on that experience he guesses the most likely 
disease from the current symptoms.  

ML comes in two formats: supervised and unsupervised. Supervised re-
fers to objects having a known outcome, and this type of outcome is what 
classification will predict in objects where the outcome is unknown. This 
method focuses on finding differences between objects with different out-
comes. An example of this would be trying to predict if a boat will perform 
well during certain weather conditions by looking at its performance during 
other weather conditions.  

Unsupervised learning does not have objects with an outcome and focuses 
on clustering objects in an n-dimensional space based on what similarities 
the objects have. An example of this would be trying to cluster a sample of 
different cells into groups based on their observed similarities.  

ML can be applied in any number of ways to create a model for classifica-
tion. Support Vector Machines (SVMs) work by creating an equation that 
separates the objects from different outcomes in a n-dimensional space. De-
cision Trees take a sequential approach to classification and create a pathway 
to different outcomes based on whichever object features provides the most 
information at each point. Rough Set classifiers create minimal sets of fea-
tures that can separate between some of the objects belonging to different 
outcomes. 

Statistical Variance 
Variance refers to the frequency of variation, that is, the likelihood that any 
datapoint in a dataset will differ between samples. In the context of the hu-
man genome, any position in the DNA can have one of four nucleotide ba-
ses: adenine, cytosine, guanine, or thymine (A, C, G, T). If a position always 
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has the same nucleotide when looking at genomes from different people, it 
has no variance.  
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Aims 

The purpose of this study was to find pragmatic approaches to predictive 
health, in particular the advancement of cervical cancer screening practices. 
This included three different aspects: 
  

 The development of tools for finding genetic markers of future 
risk to increase the number of variables that could be used for pre-
diction. 

 The development of Machine Learning models for projecting fu-
ture risk of developing cervical cancer. 

 The development of tools for facilitating the discovery process of 
candidate markers to be used in the predictions.  
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Methods 

Some statistical concepts 
Object 
An object in ML is a row in the dataset. The object can represent anything, 
the values of different tests run on a patient, the different properties of a car, 
the expression levels of genes from a particular cell, or the various physical 
characteristics of a person.  

Feature 
A feature is known by many names, and these usually vary between fields as 
well. It can be referred to as feature, attribute, variable, property, characteris-
tic, parameter, dimension, class, vector, array, and many more. It refers to 
anything for which the objects have a recorded value. For instance, color can 
be a feature of cars and blood pressure can be a feature of patients.  

Decision Class 
The decision class is the outcome of an object, the purpose of the prediction. 
It is the “goal value” of the object that the classifier attempts to find out by 
using the other feature values. For predicting the risk of cervical cancer, the 
decision class can be the cancer status of the individual, and the classifier 
will try to predict the objects as either being a cancer case or a control case. 
For predicting the sex of a person based on physical properties, the outcome 
can be male or female and the classifier will be using features such as height, 
weight, shoe size and so on.  

Classifier 
A classifier is an algorithm that takes a dataset and attempts to classify all 
objects in the dataset to one of the decision classes, outcomes, using whatev-
er patterns have been developed. It can be seen as the “prediction machine” 
that guesses the outcome of an object based on its experiences of other ob-
jects. It is usually the last algorithm to be run in ||-ROSETTA, and generates 
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all the statistics about the prediction performance. In ||-ROSETTA, the clas-
sifier uses the rules to predict the most likely outcome. 

Odds Ratio 
The Odds Ratio (OR) is a comparison of the likelihoods of two groups 
reaching some outcome, for example the likelihood of developing lung can-
cer based on smoking or not39. OR requires an exposure (smoking) and a 
known outcome (lung cancer), creating four different categories (Table 1). It 
is the odds of the outcome given exposure and non-exposure.   

Table 1 An example of the Odds Ratio calculation. The four values correspond to 
the numbers in the study population. De = smoker with lung cancer, He = smoker and 
healthy, Dn = non-smoker with lung cancer, Hn = non-smoker and healthy. De/He is 
the ratio of smokers with lung cancer to smokers who do not have cancer, i.e. a 
measure of the risk of having cancer if you smoke. Dn/Hn is the ratio of non-smokers 
with lung cancer to healthy non-smokers, i.e. the risk for cancer for those who do 
not smoke. The ratio of ratios describes the risk of smokers vs the risk of non-
smokers for having lung cancer.  

 Lung cancer Healthy 
Smoking De He 
Non-smoking Dn Hn 
  

From Table 1, The OR can be calculated as ܴ ൌ
஽೐ு೙
஽೙ு೐

 . 

The OR is useful in that it compares a group against a background. Non-
smokers get lung cancer as well, so to say that smoking is the reason for lung 
cancer is not accurate. The OR can explain just how much the likelihood of 
lung cancer increases for smokers compared to non-smokers. In terms of 
cervical cancer, there is a population-wide incidence rate that varies depend-
ing on for instance which country the comparison is made in. To clearly see 
what effect certain measures can have, the comparison must therefore be 
made against the baseline odds of the population in question.  

To properly describe the OR, it is also useful to get the confidence inter-
val (CI) of the OR. The standard 95% CI gives a range for the OR which 
describes how the randomness of the data used to compute the OR might 
have affected the number. This is similar to how a single temperature read-
ing in a city does not necessarily give the correct temperature, but the more 
readings taken at different locations in the city the more certain it is that the 
temperature is somewhere in the given range. The size of the CI range indi-
cates how certain the OR value is; a large range means that the value is less 
precise, probably due to a limited sample size. A 95% CI means that repeat-
ing the procedure on new data from the same population an unlimited num-
ber of times will result in 95% of the confidence intervals including the real 
OR40. 
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The CI is calculated after the OR. It is given by the formula 95%	ܫܥ ൌ
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 . OR is frequently used in medical settings to 

estimate population-wide risk for disease.  

Risk Ratios 
The Risk Ratio (RR) is similar in nature to the OR, but somewhat simpler. 
Instead of comparing an exposure to a background, the entirety of the popu-

lation is used. The formula is ܴܴ ൌ
஽೐ሺு೐஽೐ሻ

஽೙ሺு೙஽೙ሻ
. In scenarios where a disease is 

rare, the OR approximates the RR.  

ROC 
The Receiver Operating Characteristics (ROC) describe the performance of 
classification given two characteristics: sensitivity and specificity. Sensitivi-
ty is the fraction of how many ”positive” cases were predicted correctly, and 
specificity is the fraction of how many “negative” cases were predicted cor-
rectly. These are sometimes called True Positive Rate (TPR) and True Nega-
tive Rate (TNR). Sensitivity is the measure of how many sick individuals are 
correctly identified as sick, while specificity is the measure of how many 
healthy individuals are correctly identified as healthy. A high sensitivity in 
medicine means that many individuals with a disease are discovered. In the 
case of cancer, discovering it in time is crucial for successful treatment and 
rehabilitation. A high specificity is less important in many cases. Incorrectly 
predicting disease in an individual can be unpleasant, but is far less danger-
ous to the healthy individual than missing the presence of disease in a sick 
individual. This does not always hold as it can also be important with a high 
specificity as well. For example, the confirmation test for prostate cancer can 
lead to considerable complications, causing erectile dysfunction and difficul-
ty urinating. Prostate cancer predictions therefor need a high specificity.  

The ROC curve gives the total accuracy, number of correct predictions as 
a fraction of all predictions, as a function of both sensitivity and specificity, 
giving a picture of how these two perform. In almost all cases of prediction, 
sensitivity and specificity are contrary, and choosing a high sensitivity re-
sults in a lowered specificity and vice versa (Figure 5).  
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Figure 5 A ROC curve. The blue line is the performance of the classification, and 
the green line is the baseline, given by random guessing. The y-axis gives the sensi-
tivity, and the x-axis gives 1 – specificity. The best prediction is in the upper left 
corner. The parable of the curve demonstrates that a higher sensitivity leads to a 
lower specificity. 

The overall performance of the ROC curve is called Area Under Curve 
(AUC). It is the total area under the parable. The baseline for the comparison 
is an accuracy of 50%, which corresponds to just guessing what the outcome 
is and being correct half the time. 

ROSETTA  
ROSETTA is a program for building and running computational pipelines41. 
The ROSETTA pipeline takes a set of algorithms and a dataset, such as a set 
of patient medical parameters, and runs the algorithms on the dataset.  

Usually the purpose of a ROSETTA pipeline is to train and test a classifi-
er on the data in the form of a cross-validation (CV). This is done in several 
steps. First the dataset is divided into a number of pieces. These pieces are 
then grouped into a training set, for training the classifier on, and a testing 
set, for estimating the performance of the classifier. This is similar to divid-
ing a deck of cards into two half-decks and using the first half-deck to prac-
tice the card game and then the second half-deck to play the card game for 
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real. The cards will not be the same in the two half-decks but the principles 
will be the same. Some cards will have a different value from the training 
cards but the same suite, and other cards will have the same value as the 
training cards but a different suite. The practice half deck is very useful in 
learning the game, but it is not perfect.  

The outputs from a pipeline like this are the rules used in the classifier 
and the statistics for the classifier: accuracy, ROC, OR and RR of each clas-
sifier rule. The pipeline that ROSETTA runs is highly customizable and can 
be designed to account for any type of data of any size as long as sufficient 
computational resources are available. 

The pipeline consists of two parts: a training and a testing phase. The 
training phase revolves around preparing the data for processing and extract-
ing the informative patterns, while the testing phase is used to evaluate the 
performance of the classifier created in the training phase.  

Completion 
When working with incomplete datasets such as patient data sets from dif-
ferent hospitals, the first step of the training phase is usually completing the 
data, which means filling in the blanks where information is missing. Clini-
cal data will often have missing values, and completion is a way to handle 
that. For example, the missing values in a patient visit record can be assigned 
as the mean value of those features (Table 2). If the blood pressure value is 
missing, then that value can be assigned as the average blood pressure from 
the data that is available. This is useful when the value is expected to follow 
rigid patterns; if the patient did not receive a blood pressure test it is unlikely 
that the blood pressure would deviate significantly from previously meas-
ured values.   

The value can also be assigned as a zero or other unused value, to indicate 
simply that it is missing. This is useful when the omission of the value itself 
is an indicator of the outcome. If the blood pressure is missing from a patient 
visit record, that can be used to indicate that the patient showed no overt 
symptoms of any disease that would have given rise to blood pressure relat-
ed anomalies. 

A missing value can also be approximated from correlation with other 
features. A simple correlation test, such as Spearman or Fisher, can show 
that features have a linear, or direct, relation in values. In essence, this can 
be described as if feature fa has value x then most likely feature fb has value 
y. For blood pressure, if the patient has a kidney disease then it is likely that 
the blood pressure will be high.  

There are many other ways of assigning missing values, and the method 
adopted should be chosen according to the purpose. The more information 
that is available regarding the relationship between the parameter with the 
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missing value and other parameters, the better the estimation of the missing 
value will be. 

Table 2 An example parameter before and after mean completion. The missing val-
ues in the parameter list are replaced with the mean value for that parameter. 

Height Height 

1.56 1.56 
1.88 1.88 
1.71 mean completer 1.71 

 

1.67 
1.55 1.55 
1.68 1.68 

 

The next step of the pipeline is discretization. This is the process of convert-
ing specific numerical values into intervals. For example, when predicting 
payment default on loans it is unnecessary to know the exact sum. Instead, 
consolidating the values into larger groups gives a much better overview of 
the situation. The three loan values $1,224, $1,335, and $1,687 can all be 
described as the same interval, [$1,000, $2,000], without impacting the accu-
racy of the predictions. This discretization is needed for non-linear relation-
ships in the data, such as multimodal distributions, where a fitted regression 
model doesn’t necessarily work well (Figure 6).  
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Figure 6 Anscombe's Quartet42. Four very different datasets all produce the same 
linear regression. Fitting a regression to the data requires a suitable model, but not 
all datasets have a suitable model available. Using discretization would instead cre-
ate distinct clusters useful for classification. 

Discretization   
Discretization will sort, or “bin” the values of a feature into different inter-
vals, changing a value x into an interval [a, b] where x ϵ [a, b]. Doing this 
will avoid the need for mathematical understanding of the data, as the nu-
merical data has been categorized instead (Table 3). Discretization thus elim-
inates the need to find an analytical mathematical equation that can be fitted 
to the data, which is most often neither possible nor desirable. Discretization 
will simplify a context into only the relevant parts. For instance, there is no 
absolute value for a healthy blood pressure. It varies from person to person, 
resulting in a wide interval of values to be considered. There is also no med-
ical difference between a blood pressure of 50 and 51. No matter how you 
interpret this data on its own, there is no way to make a useful prediction 
from it. Discretization can be used to cluster the values into the categories 
that matter for doctors, such as low, normal, and high. This does not in itself 
increase the prediction value of the feature, but it does make the feature 
much more powerful when used in conjunction with other features. The 
combination of blood pressure: low and weight: obese is more predictive 
than blood pressure 51 and weight 139.  
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There are many algorithms for discretizing data. Equal frequency binning, 
one of the simplest forms, sorts all the values of a feature and then divides 
them into a number of intervals. Applying equal frequency binning with 3 
intervals to a feature of integers {1, 1, 2, 3, 4, 5, 6, 6, 21} would produce 
three intervals [1, 2], [3, 5], and [6, 21]. This type of algorithm is useful 
mostly when it is the relative changes in the data that are of interest and the 
purpose is to create a number of states corresponding simply to low, medium, 
or high values of the desired granularity, or in the case of differential expres-
sion analysis, values that are unchanged, down-, or up- regulated compared 
to previous or following data points. Treating values as relative assumes that 
all changes are significant, as small changes can end up in the same bin as 
large changes. Using the example of blood pressure, patients with increasing 
blood pressure would end up in the same group regardless of whether the 
blood pressure was low or high from the beginning, as would patients with 
unchanged or decreasing blood pressure. This is a very useful measure in for 
example evaluating the effects of new medications. 

Table 3 Discretization using Equal Frequency Binning at two bins. The values are 
ordered from lowest to highest, and the cuts are placed to create an equal number of 
values into each bin. 

Height Height 

1.56 
 

[1.55, 1.67] 
1.88 [1.67, 1.88] 
1.71 Equal Frequency Binning [1.67, 1.88] 
1.67 [1.55, 1.67] 
1.55 [1.55, 1.67] 
1.68 [1.68, 1.88] 

Manual discretization is also an option. Data-driven algorithms generate 
intervals from what is available in the dataset, but sometimes it is more effi-
cient to create intervals based on knowledge from other sources. Looking at 
the distributions of a feature in the data by decision class, e.g. the distribu-
tion for the amount of money borrowed when looking at payment default, 
can yield effective cut-points for intervals and also create smaller high-
impact intervals with great accuracy if desired. Relying on existing literature 
or expertise for relevant intervals can also be of great help, especially in 
interdisciplinary studies where standards may differ between fields (Figure 
7).  
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Figure 7 The distributions by class of a sample feature. There are many ways to 
define intervals of a feature depending on purpose. A single cut at around 10 would 
create two intervals within which one class would be dominant, creating a binary-
value feature that can easily be combined with other features for classification. The 
greatest separation would yield cuts at approximately -5, 0, 5, and 45, leading to a 
feature with less likelihood of combination with others, smaller impact per rule, but 
better accuracy.  

Reducts 
A reduct can be described as a minimal set of features which together hold 
meaningful information regarding the decision value of objects. For exam-
ple, when predicting if a man speaks English it is not important to know his 
hair color, shoe size, or mother’s name, it is enough to know his nationality 
and educational grade in school. A likely reduct, or minimal set of informa-
tive features, from this dataset would thus be the pair nationality and educa-
tional grade. These two features are not necessarily enough on their own, 
but together provide enough information for a mostly accurate prediction.  

Reducts in the simplest form are computed by observing which features 
can separate between objects in a sequential process. This is similar to look-
ing for all the features that have different values between a man and a wom-
an, such as height or weight. Usually multiple features are needed for this.  

In the post-discretization decision system presented in Table 4 there is no 
singular feature that can be used to determine whether an object o belongs to 
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the decision class Sex(F) or Sex(M). By using combinations of features, the 
decision class can be predicted.  

Table 4 An example decision system after discretization. 

This process is handled in two steps. First, all features are evaluated between 
every pair of objects in what is called a discernibility matrix, and for each 
pairing the features that have different values for the two objects are added 
to a list. For complete discernibility between objects, this is the list that will 
be used (Table 5). In a practical setting this list will be too long and too spe-
cific to create strong feature sets that can be used on a diverse population. 
  

 Height Weight Hair color Age Sex 
O1 [1.55, 1.67]  [49,64] Brown [17, 39] M 
O2 [1.68, 1.88] [67, 90] Brown [40, 56] F 
O3 [1.68, 1.88] [67, 90] Black [17, 39] M 
O4 [1.55, 1.67] [49,64] Black [40, 56] F 
O5 [1.55, 1.67] [49,64] Black [17, 39] F 
O6 [1.68, 1.88] [67, 90] Black [40, 56] M 
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Table 5 A discernibility matrix for the objects in Table 4. The set of features that can 
be used to separate between objects is written in disjunctive form. 

 O1 O2 O3 O4 O5 
O1 X     
O2 Height ˅ 

Weight ˅ 
Age 

X    

O3 Height ˅ 
Age ˅ 
Hair 

Hair ˅ 
Age 

X   

O4 Hair ˅ 
Age 

Height ˅ 
Weight ˅ 
Hair 

Height ˅ 
Weight ˅ 
Age 

X  

O5 

Hair 

Height ˅ 
Weight ˅ 
Hair ˅ 
Age 

Height ˅ 
Weight 

Age X 

O6 Height ˅ 
Weight ˅ 
Hair ˅ 
Age 

Hair Age Height ˅ 
Weight 

Height ˅ 
Weight ˅ 
Age 

When all the features that can discern between each object pair have been 
noted, the feature sets that separate objects with the same decision class are 
removed. This simplifies the list and removes features that are not necessary 
for the classification, as there is no benefit to classification from retaining 
information that separates between objects with the same decision class. In 
the example given earlier about looking for features that have different val-
ues between a man and a woman, there is no benefit to classification from 
retaining features that can separate between two different men. The decision-
relative discernibility matrix is used for computing the reduct (Table 6). 
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Table 6 The decision-relative discernibility matrix. All feature sets that discern be-
tween objects with the same decision class are removed. 

 O1 O2 O3 O4 O5 
O1 X     
O2 Height 

Weight
 ˅ 

Age 

X    

O3 X 
Hair ˅ 
Age 

X   

O4 Hair ˅ 
Age 

X Height ˅ 
Weight ˅ 
Age 

X  

O5 Hair 
X Height ˅ 

Weight 
X X 

O6 
X 

Hair X Height ˅ 
Weight 

Height ˅ 
Weight ˅ 
Age 

After the decision-relative matrix has been computed, the feature sets are 
simplified from disjunctive form to conjunctive form. This is the logical 
reduction that produces the smallest possible set of features. The complete 
form (Height ˅ Weight ˅ Age) ˄ (Hair ˅ Age) ˄ (Hair) ˄ (Hair ˅ Age) ˄ 
(Hair) ˄ (Height ˅ Weight ˅ Age) ˄ (Height ˅ Weight) ˄ (Height ˅ Weight) 
˄ (Height ˅ Weight) ˄ (Height ˅ Weight ˅ Age) can be reduced to Height ˄ 
Hair. This minimal set of features is called a reduct, and can be used to de-
termine, for each object in the dataset, whether it belongs to decision class 
Sex(M) or Sex(F). 

The reducts are used to build the rules which form the “knowledge” of the 
classifier. 

Reduct computations in practice are more complicated as there is rarely 
such a clear separation between decision classes and often it is necessary to 
allow for some error rate.  

Rules 
The basis for the classification with ROSETTA consists of two parts: the 
classification schema or voter, which determines how to count votes, and the 
rules. Rules are patterns in the data that predict a decision combined with the 
statistical relevance of that pattern (Table 7). The rule can be seen as an ID 
card. Like the pattern, the name and the picture on the ID are the most im-
portant parts, and they matter to everyone that views the ID. The other notes 
on the card are more specialized, and matter more or less depending on the 
situation. A bouncer at a night club would care only about the age statistic on 

 ˅ 
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the card, a registrar might care only about the region of origin statistic of the 
card, and airport security might care only about the verification code of the 
card. When using the rules, the purpose and assumptions about the data de-
termine which statistics are important.  

Each rule has eight components. The first is the pattern. This is a conjunc-
tion of features in the form of an “if” statement: “IF Fa = X AND Fb = Y 
THEN Decision = 1”. This pattern determines which objects the rule applies 
to. All objects o where Fa(o) = X and Fb(o) = Y will be voted on according to 
the rule. The second component of a rule is the left-hand side (LHS) support. 
LHS support is a number indicating how many objects in the data follow the 
pattern of the rule. LHS support is often used as a measure for how general 
the rule is, and a high support is a strong indicator that the rule is applicable 
beyond the data onto the population that the data represents. Moreover, a 
high support often gives the rule more importance in voting. The third com-
ponent is the right-hand side support (RHS) support. This is a set of numbers 
of how the LHS support is split amongst the decision values. It is rare that a 
rule with high support only applies to objects with the same decision value, 
and the RHS support shows how the objects are divided. The fourth compo-
nent is the accuracy. It shows, for each decision value represented by the 
objects of the rule, what the prediction accuracy is for that particular deci-
sion value. The further apart the prediction is between the decision values, 
the better the accuracy of the rule. Rules with only a single possible decision 
value always have an accuracy of 100%. The fifth component is LHS cover-
age. This value is equal to the LHS support divided by the number of objects 
in the dataset and represents how big a fraction of the entire dataset matches 
the pattern of the rule. It can be used in lieu of LHS support to determine 
how general a rule is, provided that the dataset is a reasonable representation 
of the population it is intended to emulate. The sixth component is the RHS 
coverage. This is a set of numbers that shows how big a fraction of each 
decision value is covered by the pattern of the rule. Each number is equal to 
RHS support for that decision value divided by the total number of objects in 
the dataset with that decision value. The seventh and eighth components of 
the rule are the Odds Ratios (ORs) and Risk Ratios (RRs) for the rule. These 
give the likelihood of the decision values given the pattern, with the compar-
ison base being every object that does not fit the pattern.  
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Table 7 A sample rule taken from the cervical screening classifier. 

IF Abnormal diagnoses < 2 
AND HPV tests = 0 AND Last 
diagnosis = Benign AND In-
conclusive tests = 0 THEN 

 CASE  CONTROL) 

Support (LHS)  13,480 object(s) 
Support (RHS)  5,026 object(s) 8,454 object(s) 
Accuracy (RHS)  0.37 0.63 
Coverage (LHS)  0.35 
Coverage (RHS)  0.26 0.44 
Odds Ratio   0.45 (0.43 - 0.47) 2.2 (2.1 - 2.3) 
Risk Ratio   0.66 (0.64 - 0.67) 1.45 (1.42 - 1.48) 
The IF => THEN pattern at the top indicates which objects are covered by the rule. The deci-
sion value has two possible values with the pattern, CASE and CONTROL. The left-hand side 
(LHS) support shows the number of objects covered by the pattern, and the right-hand side 
(RHS) support how those objects are split between the decision values. The accuracy indi-
cates how often an object is correctly predicted using the pattern. The LHS coverage is the 
fraction of the dataset that can be predicted using the pattern, and the RHS coverage shows 
the fraction of the dataset covered when only looking at the same decision value. The OR and 
RR shows the likelihood of an object having the decision value when covered by the pattern 
compared to not being covered by the pattern. 

The classification process usually generates a large number of rules. These 
can be similar or not, and it is common for an object to be covered by multi-
ple rules. These rules can have differing predictions, and to resolve the clas-
sification of the object it is necessary to develop a voting system whereby 
each rule that fires for an object can be evaluated and given voting power 
commensurate to the relevance of the rule. This voting system is called a 
schema or voter. 

Classification Schemas 
Classification schemas, or voters, are a type of meta-algorithms that classify 
objects given a ruleset for those objects. The classification schema deter-
mines how to evaluate the relevance of each rule, how to deal with objects 
that have no qualified prediction, and how to assess the classification. The 
voting process will take each object to be classified, tally the votes from 
each rule that fires for the given object, and give a prediction for that object, 
much like a courtroom judge will do after hearing all the evidence for and 
against. If the object was correctly classified, the accuracy of the classifica-
tion increases. The schema will look at the rules that fire. Each rule casts its 
vote for its most likely decision value, and the classification given is which-
ever decision value has the highest amount of voting power after all rules 
have voted.  

The most common schema is that a rule is given voting power equal to its 
LHS support, hence general rules are valued higher than more specific rules. 
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This assures that the rules most likely to be applicable to the population rep-
resented by the data are the ones that dominate the voting process. This is 
useful for data where there is no specific pattern discernable or where there 
is only a single pathway for the decision outcome, such as behavioral studies 
on a wide demographic of humans or the pathogenicity of specific strains of 
avian influenza43. In scenarios where there are multiple pathways using only 
LHS support can instead obfuscate the outcome, such as rules for carcino-
genesis patterns losing voting power to rules for general inflammation pat-
terns because there are several pathways to cancer44 but only a single general 
inflammation pattern. Using accuracy as the quality of a rule results in simi-
lar problems. The accuracy of a rule is always inversely proportional to the 
support of a rule in a relational sense. Relaxing the pattern of the rule will 
result in a greater support value, but also reduce the accuracy of that rule. If 
a single object matches a rule, the accuracy will be 100%, but it is likely that 
this pattern arose by chance and does not represent any pattern in the actual 
population. Hence, some level of support is required for the rule to have 
statistical significance before the accuracy can be used as a measurement of 
quality. 

In order to classify an object, some level of certainty might be required 
for one or more of the decision values. For instance, predicting a potential 
cancer case as non-cancer should only be done with certainty, as incorrectly 
predicting non-cancer is far more dangerous than incorrectly predicting can-
cer. The schema determines what level of certainty is required for classifica-
tion. Classifying an object as non-cancer might require that at least 75% of 
the voting power predicts non-cancer with the object being otherwise classi-
fied as cancer. The schema can also refuse to classify an object, or classify it 
as a separate decision entirely if the rules do not provide a strong enough 
vote for any decision value. 
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Results 

Paper I 

Aim 
The first paper aimed to create a proof of concept stratification model for 
cervical cancer screening attendants such that the frequency of visits for 
medical tests could be modified based on the perceived risk of developing 
cancer. This model would be used to increase the number of tests of high-
risk individuals but reduce the number of visits to the laboratory for low-risk 
individuals. 

Methods 
An updated version of an audit set45 of all 4,137 cervical cancer cases in 
Sweden 2002 – 2010 with 121,339 age-matched controls was used as the 
study population. The data contained the entire history of SNOMED-
defined37 screening results and biopsies for the included women as well as 
the ICD-1038 cancer status outcomes. The data was filtered to remove those 
with non-standardized diagnosis codes, those related to non-cervical cancer, 
those obtained too close in time to the cancer diagnosis, data collected too 
close in time to another, all data obtained after a cancer diagnosis had been 
given, data for individuals that appeared in both the case and the control 
populations, and finally any data in the control population that no longer had 
a match in the case population. The filtered data were gathered into complete 
histories, and these histories were then fitted with metadata such as number 
of missed screening opportunities and worst biopsy result. Further, each 
SNOMED diagnosis was assigned a value in terms of how likely it was to 
indicate a possible cancer diagnosis in the future by a medical expert, and 
these values were then used to compute a total risk score, the Cumulative 
Risk Score (CRS) for each history. The CRS was weighted by time, ensuring 
that results obtained long ago did not contribute as much in estimating the 
risk for cancer as more recent events.  

After the histories had been processed this way, the relevant cases were 
selected for testing and combined in a dataset. All cases with at least four 
datapoints, where a datapoint represents a medical examination, and at most 
ten datapoints, were selected and matched with one control of equal history 
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size drawn randomly from the matched control group of that case. This da-
taset was then used to train a rule-based classifier46. The accuracy and ROC 
of the classifier was used as an indicator of the overall performance of the 
protocol while the rules generated were used as predictors of the perfor-
mance of individual features such as the computed risk score. Accurate rules 
were tested on the entire study population to get Odds Ratios and Risk Rati-
os that reflected the total population of the dataset.  

Results 
The accuracy of the classifier was low (64%), mainly due to the large con-
tingent of asymptomatic histories (62% of the study population). Accuracy 
for high-risk subgroups in the population was significantly better, with ORs 
ranging from 8 to 36 for various patterns, meaning that these subgroups were 
up to 36 times more likely to develop cervical cancer than normal. Approxi-
mately 98% of the controls had a risk score below 10, while 11% of cases 
had a risk score of 10 or higher. The risk score identified groups with in-
creasingly high risk: at CRS 15+ the OR was 20.3 (16.0–25.8), at CRS 20+ 
the OR was 24.4 (19.0–31.2) and at CRS 25+ the OR was 36.6 (27.3–49.2). 
Also, low-risk groups were identified: at CRS -3 the OR was 0.77 (0.62–
0.95), at CRS -5 the OR was 0.65 (0.48 – 0.88). Testing the CRS time 
weights by removing all events which occurred a certain number of years 
ago showed a high level of consistency in the data, with most intervals 
showing similar predicted risk (Figure 8). 

 
Figure 8 Log OR from CRS based on time constraints. The histories were censored 
at different time points and clustered in intervals. Censoring the oldest diagnoses 
still yielded consistent scores. 
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The results suggest that the model described here is a functional tool for 
separating low-risk from high-risk groups in the screening population for 
cervical cancer. The different cutoffs used to test robustness of the time-
based weighting indicate that the model is stable, though the sparse amount 
of data available in the 10-year cutoff makes for uncertain intervals, as ex-
pected. The patterns discovered include both well known risk factors for 
cervical cancer such as non-attendance and pre-cancer diagnoses, and previ-
ously unknown factors not necessarily related to diagnoses, such as an over-
diligence in screening attendance. The risk score performs as intended, 
providing a semi-linear score indicating the current risk of cancer develop-
ment. 

Overall, the study has successfully shown that a bioinformatical approach 
to risk stratification within the cervical cancer screening programme is pos-
sible and practical. 

Paper II 
For definitions and descriptions of terms, see Some Biology Concepts. 

Aim 
The aim of the paper was to create a pipeline to identify allele-specific single 
nucleotide polymorphisms (AS-SNPs) with possible functional significance 
in complex diseases with the intent that sorting through vast amounts of 
genomic data for relevant biological targets should be automated and acces-
sible. This process could either serve as a tool to search large genome panels 
for inherited risk factors and the likelihood of cancer development or for 
further genetic inquests into disease progression and development. 

Methods 
We used ChIP-seq data from seven lymphoblastoid cell lines for three his-
tone modifications and two architectural proteins. This data was downloaded 
from the Gene Expression Omnibus47. From each of the seven cell lines we 
generated two in silico genomes using the diploid genome reconstruction 
model from the ALEA toolbox48. These genomes were analyzed for AS-
SNPs which were further filtered for significance and relevance by removing 
all SNPs within the signal artifact blacklisted ENCODE regions49, centro-
meric and telomeric regions. The remainder were assessed for their frequen-
cies in the population from 1000 Genomes SNP collection4 and DHSs. 

The remaining set of AS-SNPs was intersected with 1,545 unique GWAS 
SNPs for B-cell related traits50 as well as 26,300 SNPs in linkage disequilib-
rium (LD) with them, and with 5,565 eQTL SNPs associated with gene ex-
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pression in lymphoblastoid cell lines51 as well as 66,935 in LD with them. 
AS-SNPs found to coincide with those in the databases were selected. AS-
SNPs were also assessed with RegulomeDB scores52 for quality and filtered 
by region associations with ChromHMM 53and tfNet54. SNPs within the fol-
lowing categories were selected for further analysis: enhancer, heterochro-
matin, insulator, mixed, promoter, repressed, and transcribed.  

The SNPs were also intersected with 130,915 anchor loci from Hi-C data 
of GM12878 and with TADs of GM1287855 for a more comprehensive pic-
ture of the likely topological domain the SNPs might affect.  

To assess the possible types of effect SNPs might have, we gathered all 
putative motifs from the HOCOMOCO database56 as well as PMMs predict-
ed by the de novo module of InMoDe57 for a total of 404 PMMs. We then 
scanned the AS-SNP positions ± 300bp on both strands for sequences match-
ing these PMMs. 

Results 
We identified 17,293 unique AS-SNPs in total, of which 1,199 were rare. 
2,050 of these AS-SNPs were discovered only when pooling all ChIP-reads 
together. The number of AS-SNPs discovered from each cell line correlated 
well with the number of reads available for that cell line. To identify which 
AS-SNPs were likely to play a role in disease and gene expression we inter-
sected the AS-SNPs with GWAS and eQTL top hits and those in LD with 
top hits. We identified 237 AS-SNPs related to traits, 18 of which showed 
allele-specific signals. A total number of 216 were in LD with GWAS SNPs, 
and 714 AS-SNPs were related to gene expression, of which 98 were allele-
specific and 603 in LD with eQTL SNPs. Of the AS-SNPs in LD with eQTL 
SNPs, 3 were rare.  

Many of the SNPs were found in the Human Leukocyte Antigen (HLA) 
region on chromosome 6, a highly polymorphic region difficult to explore. 
For example, the Type 1 Diabetes-associated GWAS SNP rs9272346 is lo-
cated in the HLA region, which is confounding given its regulatory effect. 
We identified 26 AS-SNPs in LD with rs9272346, located in at least 10 dif-
ferent regulatory elements. These AS-SNPs were located in untranslated 
regions (UTRs) and intronic regions of the HLA alleles DQA1 and DQB1, 
reported as coding for HLA epitopes and most strongly associated to type 1 
diabetes (T1D) susceptibility, suggesting that expression varies between 
alleles and may contribute to the risk of T1D. Similarly, we identified AS-
SNPs with loci for several auto-inflammatory diseases including 8 alleles for 
celiac disease and inflammatory bowel disease and 11 for ulcerative colitis. 
We found AS-SNPs clustered around loci associated with multiple sclerosis 
(10 loci), systemic lupus erythematosus (4 loci), rheumatoid arthritis (3 loci), 
amyotrophic lateral sclerosis (4 loci), vitiligo (3 loci) and celiac disease (4 
loci). We also identified 61 AS-SNPs associated with multiple traits, sug-
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gesting that some functional regulatory elements and genes are shared be-
tween multiple immune diseases.  

Using PMMs, putatively altered binding sites were predicted for 98 and 
325 AS-SNPs from the SNPs associated with GWAS and eQTL, respective-
ly. Loss of predicted binding affinity was more prominent than gain and the 
average loss of predicted binding affinity was approximately 54%.  

The discovery of regulatory AS-SNPs in LD with known GWAS SNPs 
shows the complementary power of our approach to GWAS and helps refine 
the candidate list for further exploration of autoimmune diseases. Predicting 
the level of alteration in affinity for the binding sites using PMMs provides 
an extra layer of filtering for candidates based on which transcription factors 
are involved in the gene expression and further emphasizes what effect a 
candidate may have on the region. 

Given the results, the model described herein has proven to be an efficient 
filter for candidate AS-SNPs in immune diseases, complementary to existing 
databases such as GWAS and eQTL.  

Paper III 
For a list of clinical abbreviations, see Some Clinical Abbreviations. 

Aim 
The cervical cancer screening programmes in Sweden and Norway have 
successfully reduced the frequency of cervical cancer incidence but have no 
evaluation of or prediction for future screening needs. This means that the 
screening frequency for individuals can be suboptimal, increasing either the 
cost of the programmes or the risk of missing early stage cancer develop-
ment. 

The aim of this paper was to validate the proof-of-concept model based 
on Swedish data and further develop the framework for assessing an individ-
ual’s risk of cervical cancer based on the available screening history. The 
earlier creation of a risk assessment score, called the Cumulative Risk Score 
(CRS), was to be further developed as a data-driven separation model to-
gether with multiple derived attributes.  

Methods 
A selection of 10,817,130 screening diagnoses was collected from the Nor-
wegian Cancer Registry (NCR). These data contained cytology, HPV status, 
and histology diagnoses, accounting for 5,055 cancer case histories and 
1,726,789 non-cancer histories, labelled as controls. The data were cleaned 
to remove any inconsistencies or unrelated discoveries such as non-cervical 
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cancer, resulting in the removal of approximately 1% of the diagnoses. After 
cleaning, HPV tests were appended as a status marker to all diagnoses taken 
within a year of the HPV test, and the HPV test itself was subsequently re-
moved. Any diagnosis less than one year before the actual cancer diagnosis 
and all diagnoses following it were removed. If diagnoses in a history were 
clustered together with others given within a time-span of less than a year, 
all but the last one were removed. Any control histories that exhibited a pat-
tern signifying a medical intervention at a pre-cancerous stage such as 
CIN2/3 or ACIS followed by a recidivistic diagnosis such as Normal, NILM, 
ASCUS, Inconclusive, or CIN1, were relabeled as interventions instead of 
controls. This was to indicate that the history up to that point was more like-
ly to be indicative of carcinogenesis than any form of benign pattern. After 
filtering, the study population contained 2,928 cases, 1,372,071 controls, and 
53,120 interventions. These histories were fitted with derived data, such as 
non-attendance, total number of HPV tests etc. 

The previous model for computing the perceived risk of cancer given a 
diagnosis history58 was replaced with a data-driven separation model using 
C++ with Gecode59 libraries. In this separation schema, all diagnoses were 
given a range of possible weights, a value for each history was calculated 
given these weights, and then the overlap of these history values between 
case and control histories was measured as a fitness function. The weights 
for the diagnoses were continuously adjusted until the overlap of history 
values between controls and cases was as low as possible. These weights 
were then used to calculate the CRS.  

Excerpts from the study population, all the cancer cases and interventions 
matched with controls, were then evaluated in ||-ROSETTA for predictive 
patterns. The patterns discovered were further evaluated on the whole study 
population to see how well the predictors performed on a representative 
sample of the screening population. 

Results 
The best classification had an accuracy of 80.7%. CRS was the predominant 
predictor in the rules, creating a risk stratum containing 31.2% of the cancer 
cases and 1.9% of the controls. A CRS of 10 or above had an OR of 45.8 
(43.4 - 48.3) and covered 11.3% of cancer cases, and no CRS value at 2 or 
above had an OR below 10, indicating a risk of developing cervical cancer at 
least 10 times the normal for all individuals in that range. The lowest risk 
defined by CRS was found in CRS -1 with an OR of 0.51 (0.49 - 0.54), half 
as likely to develop cervical cancer as the normal, and CRS -2 with an OR of 
0.80 (0.75 - 0.85), covering 18.2% and 2.9% of cancer cases, respectively. In 
the study population, 61.2% of the controls and 43.9% of the cancer cases 
had only benign diagnoses in their screening histories. The distribution of 
CRS values peaked around 0 for both cases and controls (Figure 9). 
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Figure 9 The distribution of the Cumulative Risk Score (CRS) by cancer case and 
control history. There is a distinct peak around 0, which is the starting point for new 
screening programme attendants as well as what individuals tend towards if their 
attendance is drastically lower than the recommended screening schedule. 

There was no discernable difference in CRS between squamous cell carci-
noma and adenocarcinoma. Intervention histories had the highest mean CRS 
at 2.96, cases were lower at 0.24, and controls the lowest at -1.33. Interven-
tion histories were also far more likely to contain diagnoses warranting fur-
ther testing or recall, with CIN1 and LSIL having incidence rates 4.5 and 2.3 
times higher than the cancer cases.  

The patterns discovered were consistent with the previous model devel-
oped based on Swedish screening data, suggesting that trends and behavioral 
markers are consistent in the two countries for cervical cancer development 
and avoidance. The pervasiveness of attendance markers in the classifier 
rules for both Norwegian and Swedish data show the same patterns as well, 
indicating that perfect attendance in the screening schedule is a signifier of 
higher cancer risk. The data-driven modelling for CRS calculations has in-
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creased the accuracy of the predictions considerably over the previous model 
that relied on expert assumptions, creating a greater separation between cas-
es and controls. The new approach to screening recall based on this predic-
tion model is likely to improve the use of resources in the screening pro-
gramme and detect additional cancer developments at an earlier stage. 

Paper IV 
For definitions and descriptions of terms, see Some Biology Concepts. 

Aim 
Using our pipeline for identifying putative candidates of gene regulation, we 
wanted to identify AS-SNPs in the liver likely to affect the development of 
Type 2 Diabetes (T2D) and other metabolic diseases. 

Methods 
We acquired liver tissue and sequenced it using 10X Genomics tech at a 
mean depth coverage of 36x. We used the ALEA toolbox48 to generate two 
in silico personal genomes of the liver sample. The two genomes were then 
processed with the pipeline from Paper II17 using ChIP-seq data from three 
different transcription factors. The resulting AS-SNPs were tested for possi-
ble effects on transcription factor motifs using the funMotifs framework60.  

Results 
We discovered 2,329 heterozygous AS-SNPs in putative regulatory elements 
using our established pipeline. Of these, 25 were associated with liver and 
metabolic related traits at 17 different genomic loci. Four of the AS-SNPs 
were found in loci associated with T2D on chromosomes 6 and 17. In both 
cases two AS-SNPs were found in a regulatory region and in LD with a 
GWAS SNP that is not in a regulatory region, suggesting a likely functional 
relationship that can explain why there is an SNP in an exon that is identified 
in GWAS as associated with T2D. 

Overlapping the AS-SNPs with the motif map of the funMotifs frame-
work resulted in 595 motifs altered by the AS-SNPs in the liver tissue. We 
identified 134 variants in 166 functional motifs, the majority being in tran-
scription start site (TSS) regions. The most recurrent motifs altered were for 
factors EGR1, CTCF, KLF5, and ZNF263.  

The systematic strategy presented in our previous work and demonstrated 
here with the addition of funMotifs has found several functional gene regula-
tory variants and possible target genes in human liver tissue. The AS-SNPs 
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discovered offer a set of candidate regulatory variants supported by several 
layers of evidence ready for experimental validation for understanding the 
molecular mechanisms of many metabolic and liver diseases. 

Paper V 
Aim 
The two aims of the paper were to create a practical approach to classifica-
tion of large datasets and to promote the application of interpretable classifi-
cation via Rough Set theory. Given the needs of accountability and explana-
tion in medical applications, any classification used as the basis for a medi-
cal decision should be traceable throughout the decision process. The use of 
Rough Sets as the basis for classification provides a set of rules that can be 
analyzed and assessed individually for relevance and relation to other factors 
in the disease progression.  Increasing the computation speed of this process 
is of considerable interest as it might take more than six months to construct 
a classifier with large datasets. 

Methods 
The ROSETTA C++ source code was updated with multi-threading capabili-
ties using OpenMP. The update focused on computational speed and frame-
work modularity, as it was important to retain the simplicity of implement-
ing new algorithms and modules into the framework. This was managed 
through a separation of computational resources within the program that 
increased the memory requirements of execution.  

The resulting program was evaluated for efficacy and speed using four 
datasets with different dimensions; a balanced dataset on histone modifica-
tions, an object-focused dataset on the likelihood of credit card payment 
defaults, a feature-focused dataset on Systemic Lupus Erythematosus (SLE), 
and a large synthetic balanced dataset with simplistic data. All tests were 
repeated with multiple thread numbers. Memory peaks and computational 
speeds were measured for all tests. The evaluation consisted of a ten-fold 
cross-validation (10CV) using one, two, three, four, five, six, and ten 
threads. The 10CV test had to be run ten times to reach completion, resulting 
in expected speed gains at two, three, four, five, and ten threads when com-
pared to the previous recorded speed. 

Results 
The threading was successful in increasing the speed of the computational 
process. With ten threads, the time required to run the pipeline was reduced 
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to 15.8% of the single-threaded time for the Histone Modifications dataset, 
to 29.6% of the single-threaded time for the SLE dataset, to 16.4% of the 
single-threaded time for the Credit Card Default dataset, and to 10.9% of the 
single-threaded time for the Synthetic dataset, with the theoretical optima 
being 10% of the single-threaded time. The reduction in time was observed 
at the expected thread numbers, with no significant reduction when increas-
ing the thread number from five to six (Figure 10). 

 

 
Figure 10 The time needed to complete a tenfold cross-validation (10CV) based on 
the number of threads. The reference is the time needed to run the test using only 
one thread (100%). The lowest line is the theoretical minimum time needed given 
the reference point. 

Memory peaks increased by a factor of 6.9 for the Histone Modifications 
dataset, 6.1 for the credit card default dataset, 1.2 for the SLE dataset, and 
4.0 for the Synthetic dataset as one thread was increased to ten. The increase 
was linear from one to five threads and from five to ten threads for two da-
tasets, with the latter progression considerably lower than the first (Figure 
11). The systemic erythematosus dataset led to almost no increase in 
memory peak usage while the Synthetic dataset had a consistent increase. 
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Figure 11 Memory peak usage in megabytes based on the number of threads when 
executing a ten-fold cross-validation (10CV) on different datasets. 

Overall, the results show a significant gain in program speed, with lower 
than expected memory peak usage due to memory lane congestion. The Syn-
thetic dataset approached the theoretical optimum with a linear memory in-
crease, showing that the performance of the threaded classification was close 
to optimal when memory access was not a limiting factor. The end result is 
that ||-ROSETTA represents a useful tool in efficiently classifying modern 
quantities of data in a transparent fashion. 
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Conclusions 

The creation of a screening model developed as a proof of concept on Swe-
dish screening data and further refined on a Norwegian screening cohort was 
successful in stratifying individuals by risk. The final model had an accuracy 
of around 80% using primarily cytology tests, a type of test known for lack-
ing predictive power61. The model identified 32.1% of cancer cases and 2% 
of control cases as high-risk histories. The identified control cases would 
likely benefit from an increased screening density. The data-driven scoring 
schema used was a functional approach to an unbiased screening model as-
sessing purely on statistical merit, and its inclusion made the screening mod-
el internationally applicable by computing the score from local screening 
data instead of relying on established practices or experts.  

The AS-SNP pipeline is not only suitable for discovering candidates for 
further analysis; it can be used to find likely biomarkers in screening-related 
predictions as well. The reduction of 17,293 AS-SNPs to 58 provided a 
sharp focus on the most relevant SNPs, a useful function given the vast 
amounts of genetic data produced even from a single sample. The AS-SNPs 
selected for further annotation were all associated on multiple levels with the 
traits from GWAS and eQTL SNPs they were linked to, identifying putative 
regulatory elements involved in the process as well.  

The creation of ||-ROSETTA added efficiency needed for classification of 
the screening data, both Swedish and Norwegian. With more than 200 classi-
fications to date on the screening data, the time per classification was re-
duced from around 3.5 hours per test to around 30 minutes per test.  

The conclusions from these studies point to a considerable contribution 
towards predictive healthcare needs in the field of cervical cancer screening, 
ready to adopt new data from screening registries. Further, the models can 
filter through genetic data to find the markers that may indicate the likeli-
hood of developing cancer, and extend to incorporate those into the predic-
tive algorithms. These models are adjustable to any form of disease with a 
continuous development given that the relevant data is available. 
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Summary in Swedish 

Användningen av maskininlärning (ML) inom vetenskap har ökat kraftigt 
det senaste decenniet och denna ökning har setts inte bara i de traditionella 
områdena som datavetenskap och matematik, utan även inom områden som 
biologi, kemi, och medicin. ML baseras på statistik och ger därmed bättre 
resultat ju mer data som finns tillgängligt. Det medicinska fältet har sedan 
länge samlat data från patienter via sjukhus, biobanker, och register, och 
mycket av denna data har aldrig tidigare analyserats med de metoder som 
ML erbjuder. Inom biologi har genetiken avancerat i takt med den datave-
tenskapliga utvecklingen, och idag finns enorma databaser med gendata till-
gängliga för analys och vidareutveckling av metoder. I samma takt som ge-
netiken har utvecklats har även kostnaderna för sekvensering minskat till den 
grad att genomdata nu används inom sjukvård och i mindre utsträckning 
inom personlig hälsovård. Inom sjukvården så används genomdata för att 
identifiera cancertyper, möjliga behandlingar, prognos, riskfaktorer, ärftliga 
sjukdomar, samt genterapi.  

Denna avhandling adresserar tre olika aspekter av prediktiv sjukvård som 
kan förutspå risk för livmoderhalscancer och behandla patienter innan de 
utvecklar sjukdomen. Den första delen är en analys och klassifikation av 
diagnostiska data från nordiska screeningprogram i syfte att upptäcka de 
grupper som har en hög risk att utveckla livmoderhalscancer så att dessa kan 
få ett mer intensivt screeningschema och testas oftare för att bromsa eller 
förhindra en negativ utveckling. Den andra delen är en filtreringsmodell för 
genetiska varianter (SNPs) som har en stark koppling till reglerande protei-
ner som är involverade i olika sjukdomar. Dessa markörer kan användas 
antingen som riskmarkörer för klassifikation och prediktion eller som kandi-
dater för att vidare undersöka de genetiska mekanismerna som ligger bakom 
många ärftliga sjukdomar. Den tredje delen är utvecklingen av ett program 
som heter ||-ROSETTA som snabbt kan klassificera stora mängder data och 
möjliggöra användningen av många olika algoritmer inom ML på ett förståe-
ligt och transparent sätt. 

||-ROSETTA är ett program som har lett till kraftigt ökad hastighet i be-
räkningarna för klassifikationen av screening data. Med över 200 klassifikat-
ioner gjorda så har tiden per klassifikation minskat från runt 3.5 timmar till 
ca 30 minuter. Denna ökning har möjliggjort en väsentligt större analys av 
data än vad som tidigare var möjligt. 
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Konceptmodellen för stratifiering av screeningbefolkningen på svenska 
data var lyckad och visade potentialen med att individualisera screeningpro-
grammet baserat på risk. Riskbedömningen inkluderade faktorer som inte 
fanns med i kliniska data såsom en individs oro för cancer eller en individs 
egen riskbedömning. Vidareutveckling och validering som gjordes med hjälp 
av data från det norska cancerregistret ledde till en markant förbättring av 
klassifikation och riskbedömningen tack vare utvecklingen av en data-driven 
modell för riskberäkningar. Denna modell gjorde även projektet oberoende 
av lokala experter, dvs läkare på lokala sjukhus, då cancerrisken från varje 
diagnos inte längre behöver specificeras utan kan beräknas utifrån de data 
som finns. Likheten i mönster mellan svenska och norska data indikerar att 
de kliniska och sociala faktorerna som påverkar risk för livmoderhalscancer 
är desamma i Norge och Sverige. De liknande resultaten visar att detta är en 
fungerande modell för att bygga ett individuellt screeningschema baserat på 
riskbedömningen av individen. Vidare betyder detta att om likheterna mellan 
Sverige och Norge beror på närheten så kan även länder utan ett etablerat 
screeningregister använda en riskbedömning från grannlandet om detta 
skulle ha ett screeningregister. 

Filtrering av gendata i avsikt att identifiera mutationer som ger ökad risk 
för vissa sjukdomar har visat sig ha stor potential både utifrån allmäntill-
gängliga data och levervävnadsprover. De varianter som valts ut var alla 
associerade med de sjukdomar som pekats ut från GWAS och eQTL, två 
databaser varav den första listar genetiska varianter kopplade till sjukdomar 
och den andra listar varianter associerade till förändrad uttrycksnivå av pro-
teiner. Användningen av s.k. ChIP teknologi visade inte bara aktiviteten hos 
inbindningsregionerna utan även mer specifikt den filtrerade aktiviteten i de 
regioner av DNA där inbindningen av proteiner var signifikant viktad och 
indikerade en funktionell förändring hos den genetiska varianten. Denna 
systematiska strategi för att hitta funktionella kandidater inom ärvda sjuk-
domar gjorde det möjligt att hitta varianter som påverkar sjukdomsproces-
sen, möjliga associationer mellan olika sjukdomar, den troliga effekten av en 
variants störning, och kandidatvarianter för att vidare utforska mekanismerna 
bakom dessa sjukdomar. 

Tillsammans så skapar dessa resultat en funktionell modell att användas 
inom prediktiv hälsovård som effektivt kan förutspå riskerna för utveckling-
en av sjukdom, i detta fall livmoderhalscancer, i ett tidigt stadium så att be-
handling och vård kan sättas in på ett sätt som minimerar både kortsiktiga 
och långsiktiga hälsorisker till en lägre kostnad. Framtida tillägg av ytterli-
gare genetiska data kan bara förbättra resultaten. 
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