MATLAB EXPO 2018

Predictive Maintenance

Using MATLAB and Simulink

Amit Doshi, Senior Application Engineer – Data Analytics MathWorks India

Why do well-designed engineering systems fail?

- Example: faulty braking system leads to windmill disaster
 - <u>https://youtu.be/-YJuFvjtM0s?t=39s</u>
- Systems like these cost millions of dollars
- Failures can be dangerous
- Maintenance also very expensive and dangerous

Types of Maintenance

- Reactive Do maintenance once there's a problem
 - Example: replace car battery when it has a problem
 - **Problem**: unexpected failures can be expensive and potentially dangerous
- Scheduled Do maintenance at a regular rate
 - Example: change car's oil every 5,000 miles
 - Problem: unnecessary maintenance can be wasteful; may not eliminate all failures
- Predictive Forecast when problems will arise
 - Example: certain GM car models forecast problems with the battery, fuel pump, and starter motor
 - Problem: difficult to make accurate forecasts for complex equipment

📣 MathWorks

Predictive Maintenance: Example

ALARM:

Pump-15, location-Rocky Mountain Site, needs Urgent maintenance. Details: One of it's cylinders is blocked. It will shut down your line in 15 hours.

Site Engineer

Benefits of Predictive Maintenance

Cost of rig: >\$1M Repair cost: \$100,000

Cost of valve: \$200

-

Baker Hughes Develops Predictive Maintenance Software for Gas and Oil Extraction Equipment Using Data Analytics and Machine Learning

Challenge

Develop a predictive maintenance system to reduce pump equipment costs and downtime

Solution

Use MATLAB to **analyze nearly one terabyte** of data and create a **neural network** that can predict machine failures before they occur

Results

- Savings of more than \$10 million projected
- Development time reduced tenfold
- Multiple types of data easily accessed

Truck with positive displacement pump.

"MATLAB gave us the ability to convert previously unreadable data into a usable format; automate filtering, spectral analysis, and transform steps for multiple trucks and regions; and ultimately, apply machine learning techniques in real time to predict the ideal time to perform maintenance."

- Gulshan Singh, Baker Hughes

Predictive Maintenance Solution Framework - IIoT

Workflow for developing a predictive maintenance algorithm

Sensor data from machine on which algorithm is deployed

Access Data

Datastore

Read large collections of data

The datastore function creates a datastore, which is a repository for collections of data that are too large to fit in memory. A datastore allows you to read and process data stored in multiple files on a disk, a remote location, or a database as a single entity. If the data is too large to fit in memory, you can manage the incremental import of data, create a tall array to work with the data, or use the datastore as an input to mapreduce for further processing. For more information, see Getting Started with Datastore.

Session at 4:30

pm

Functions

✓ Create Datastore						
datastore	Create datastore for large collections of data					
TabularTextDatastore	Datastore for tabular text files					
SpreadsheetDatastore	Datastore for spreadsheet files					
ImageDatastore	Datastore for image data					
FileDatastore	Datastore with custom file reader					

Preprocess Extract Deploy & Integrate 🖒 Train Model ø Data Features Sensor data from machine on which algorithm is deployed amazon тхт MySQI CS۱ =10/0/00 datastore

Access and Explore Data

Generated

Data

Sensor Data

expand all

MathWorks^{*}

Deploy & Integrate

Access and Explore Data

Data

Sensor Data

Preprocess

Data

ø

Extract

Features

Train Model

Sensor data from machine on which algorithm is deployed

Preprocess Data & Extract Features

Failure Data (Sensors/Simulation)

Preprocessed Data

Health Indicators

17

Search Help

Documentation

Identify Condition Indicators

Explore data to identify features that can indicate system state or predict future states

A condition indicator is a feature of system data whose behavior changes in a predictable way as the system degrades or operates in different operational modes. A condition indicator can be any feature that is useful for distinguishing normal from faulty operation or for predicting remaining useful life. A useful condition indicator clusters similar system status together, and sets different status apart.

You can derive condition indicators from signal analysis, by extracting time-domain or frequency-domain features of system data. You can also derive condition indicators by fitting static or dynamic models to your data, and examining model parameters or model behavior to distinguish fault states or predict system degradation. For more information, see Condition Indicators for Monitoring, Fault Detection, and Prediction.

Functions

Signal-Based Features

> Model-Based Features and Residuals

> Feature Selection

expand all

MATLAB R2018a

D.

 \times

Feature Selection

Learn Further: Techniques for Preprocessing Data & Extracting Features

Time Domain

- Data smoothing, outlier removal, resampling
- Signal statistics (e.g. mean, moving average, etc.)
- Rain flow counting
- Time series models (linear & nonlinear)
- Non-linear time series
 features
- Recursive and batch based models
- Kalman filters (linear, unscented, & extended)

Frequency Domain

- Filtering
- Time synchronous averaging
- Spectral analysis and statistics (e.g. FFT, peak-topeak values, bandwidth, etc.)
- Modal analysis using models/frequency data
- Envelope analysis
- Order analysis

Time – Frequency Domain

- Wavelet transforms
- Short-time Fourier transform
- Empirical mode decomposition, Hilbert-Huang transform
- Spectral Kurtosis
- Spectral Entropy
- Time-frequency moments

Train Models to Predict Failures & Isolate Faults

Health Indicators

Regression Model

Demo video

					- 0
DME PLOTS APPS	LIVE EDITOR INSERT	VIEW	🜔 🖏 CleanUp 🔚 🏑 🖣	📲 🕤 🥃 🔁 🕐 👻 Search Documentatio	n P
New New Open Compare	Import Save Open Variable Vorkspace	Analyze Code	Simulink Layout Parallel +	s S Community Add-Ons Help • Learn MATLAB	
FILE	VARIABLE	CODE	SIMULINK ENVIRONMEN	RESOURCES	
Editor - RULModel Estimation.mlx	Desktop • Expo 2018 • FinalDemo • De		es - data 55 pca tt		
JLModel_Estimation.mlx × +					
Predictive Modeling a	and Deployment			I	
<pre>md1 = exponentialDegradat tt = table({data_40_pca_t fit(mdl,tt,"Time","PCA1") md1 healthIndicator = data_55 threshold = -9; timeUnit = 'hours';</pre>	ionModel('LifelimeUnit', hours" t;data_45_pca_tt;data_50_pca_tt	, SlopeDetectionLevel',0.5;	.);		
Keep records at each iteration					
<pre>totalDay = length(healthI estRULFused = zeros(total trueRULFused = zeros(tota</pre>	ndicator) - 1; Day, 1); iDay, 1); ay, 2);				

RUL Methods and when to use them

Requirement: Need to know what constitutes failure data

Learn Further: Techniques for Training Diagnostic & Prognostic Models

Diagnostic Models

- Classification models
 - Support vector machines
 - Ensembles
 - Naïve Bayes, etc.
- Neural networks
- Change point detection
- Hypothesis testing
- Probability distributions

SUPPORT VEC	TOR MACHIN	IES			
	*	Ś	2		<u> </u>
Linear SVM	Quadratic SVM	Cubic SVM	Fine Gaussian	Medium Gaussian	Coarse Gaussian
All SVMs					
NEAREST NEI	GHBOR CLASS	IFIERS			
0.		\odot	<i>i</i>	6	
Fine KNN	Medium KNN	Coarse KNN	Cosine KNN	Cubic KNN	Weighted KNN
0					
All KNNs					
ENSEMBLE CL	ASSIFIERS				
스	Ø			Ø	
Boosted Trees	Bagged Trees	Subspace Discriminant	Subspace KNN	RUSBoost	All Ensembles

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	¢,	Ŕ	<u></u>	
Complex Tree	Medium Tree	Simple Tree	All Trees	
DISCRIMINAI	NT ANALYSIS			
X				
Linear	Quadratic	All Discrimina		
Discriminant	Discriminant			
Discriminant	GRESSION CL4	ASSIFIERS		
LOGISTIC RE	Discriminant	ASSIFIERS		
	GRESSION CLA	ASSIFIERS		

📣 MathWorks

Learn Further: Techniques for Training Diagnostic & Prognostic Models

Prognostic Models for RUL

- Static regression models (e.g. linear, logistic, nonlinear, etc.)
- Dynamic regression models (e.g. ARMAX, ARMA, etc.)
- Linear and nonlinear time series
 models
- Kalman filter prediction
- Similarity based methods
- Hidden Markov Models

*Focus and functionality in the Predictive Maintenance Toolbox

Learn Further: Classification Learner App

App to apply advanced classification methods to your data

- Added to Statistics and Machine Learning Toolbox in R2015a
- Point and click interface no coding required
- Quickly evaluate, compare and select classification models
- Export and share MATLAB code or trained models

Dataset: Dataset_train Observations: 21668 Size: 10 MB Predictors: 60 Response: Activities Response Classes: 5

Validation: 5-fold Cross-Validation

28

and Many More MATLAB Apps for Data Analytics

Regression Learner

Distribution Fitting

System Identification

Signal Analysis

Wavelet Design and Analysis

Neural Net Fitting

Neural Net Pattern Recognition

Training Image Labeler

and many more ...

leural Network			
Input 9	Hidden	Output	Output 2
Algorithms Data Division: Ra	andom (divid	• lerand)	
Training: So	aled Conjugat	te Gradient (trainscg)	
in a second s			
Performance: Ci Derivative: Di	ross-Entropy efault (defaul	(crossentropy) Itderiv)	
Performance: Ci Derivative: Di	ross-Entropy efault (defau	(crossentropy) Itderiv)	
Performance: Ci Derivative: Di Progress	ross-Entropy efault (defau	(crossentropy) Itderiv)	1000
Performance: Ci Derivative: Di Progress Epoch:	ross-Entropy efault (defau 0	(crossentropy) Itderiv) 23 iterations	1000
Performance: Ci Derivative: Di Progress Epoch: Time:	o 0	(crossentropy) Itderiv) 23 iterations 0:00:00	1000
Performance: Ci Derivative: De Progress Epoch: Time: Performance:	0 1.29	(crossentropy) Itderiv) 23 iterations 0:00:00 0.0677	
Performance: Ci Derivative: De Progress Epoch: Time: Performance: Gradient:	0 1.29 1.11	(crossentropy) Itderiv) 23 iterations 0:00:00 0.0677 0.0126	1000 0.00 1.00e-06

Workflow for developing a predictive maintenance algorithm

Sensor data from machine on which algorithm is deployed

Why Generating failure data?

- Sensor data isn't always available
 - Failure conditions difficult to reproduce
 - Time consuming or costly to generate
- Multiple failure modes and failure combinations possible
- Different machines can show different behavior for the same failure

Generating failure data from Simulink models

Different Approaches for Modeling Dynamic Systems

Modeling Approaches							
First Princip	les Modeling	Data-Driven Modeling					
Programming (MATLAB, C) Block Diagram (Simulink)	Physical Networks (Simscape and other Physical Modeling products)	Statistical Methods (Model Based Calibration Toolbox)					
Modeling Langua (Simscape languag Symbolic Methor (Symbolic Math Toolbox)	age le) ds Parame (Simulink Des	Neural Networks (Neural Network Toolbox)					

Simulink

Simscape

Simscape Model

1. Build

Model:

Challenge: Simulation results do not match behavior of real system

Solution: Use Simulink Design Optimization to automatically tune model parameters

3. Incorporate failure modes Model Component Failure

- Generic faults in many components
 - Short circuit, open circuit, friction, fade, etc.
 - Trigger based on time or conditions
- Adjust parameter values
 - Worn bearing adds friction
 - Blocked inlet has reduced passage area
- Adjust network
 - Seal leakage adds flow path
- Custom effects in Simulink
 - Broken winding applies no torque for 1/3 of every revolution

4. Run simulations Generate Synthetic Data for ct = 1:length(final_block) time_WKSP = ct; simInput(ct) = Simulink.SimulationInput(mdl); Running simulations in parallel simInput(ct) = setVariable(simInput(ct), 'leak cyl_area WKSP', final_leak(1)); simInput(ct) = setVariable(simInput(ct), 'block_in_factor_WKSP', final_block(ct)); speeds up your testing process. simInput(ct) = setVariable(simInput(ct), 'bearing fault frict WKSP', final bearing(1)); simInput(ct) = setVariable(simInput(ct), 'noise_seed_offset_WKSP',ct-1); "A set suits bloks " - Genains simInput(ct) = setVariable(simInput(ct), 'time_WKSP', time_WKSP); end **Command Window** Out1 PumpData1.csv fx >> simOut = parsim(simInput) FOO Out2 PumpData2.csv PumpData3.csv PumpData4.csv BO DB PumpData5.csv PumpData6.csv lotor Pump Model Computer Cluster -**Desktop System** RumpDa simulationEnsembleDatastore PumpD PumpD. Manage ensemble data generated by Workers Workers generateSimulationEnsemble or by logging simulation RumpD: Simulation 1 data in Simulink PumpData11.csv **Simulation 2** PumpData12.csv PumpData13.csv PumpData14.csv PumpData15.csv PumpData16.csv PumpData17.csv Dump Data 10 cou

Workflow for developing a predictive maintenance algorithm

Sensor data from machine on which algorithm is deployed

Feature Extraction Algorithm at the Edge

Pump flow sensor 1 sec ~ 1000 samples ~16kB

Challenge:

Data transmission cost is pretty high

Solution:

Extract only relevant information and send it to predictive model

📣 MATLAB R2018a				—	o ×
HOME PLOTS APPS	EDITOR PUBLISH	VIEW	🔰 🖳 CleanUp 🔚 👘 👘 🗇	🔄 🕐 🔹 Search Documentation	🔎 Log In
👍 🐂 🧱 🛱 Find Files 🔄 🙅	Insert 🛃 fx 🖓 🔸				
🛄 🛄 🛄 Compare 👻 🖒 Go Ti	o 🗸 Comment % 🐄 🎘	Run Section	0.		
New Open Save	▼ Indent SI SE EA	eakpoints Run Run and Advance	Run and Time		
FILE NAVIGAT	TE EDIT BRE	AKPOINTS RUN			-
💠 🔶 🛅 💭 📕 🕨 C: 🕨 Users 🕨 abaru 🕨	Desktop + Expo 2018 + FinalDemo	Demo_Files Data_Reduction			- <u>0</u>
Current Folder	🔊 📝 Editor - C:\Users\abaru\Deskto	p\Expo 2018\FinalDemo\Demo_Files\Data_Redu	ction\featureExtractionBuffer.m		⊙ ×
🗋 Name 🔺	Expo_Data_Preprocessing_Co	deGen.mlx 🗙 featureExtractionBuffer.m 🗙	+		
E Folder	1 [function [featu	are_list] = featureExtractionBuff	er(data,timestamp)		_
🖽 📕 codegen	2				
	3 - persistent flow	_array			
🗉 📃 Data	4 - persistent time	_array		т	
Function	5 - Np = 1000;			T	
MeasureExtraction.m					
featureExtractionBuffer.m	/- II isempty(IIOw	(array)			
leiperSortedBarPlot.m	0 - IIUW_allay	- nan(Np,1);			
🚵 monotonicity.m	10				
B MEX-file	11 - if isempty(time	arrav)			
featureExtraction_mex.mexw64	12 - Lime array	= nan(Np. 1):			
featureExtractionBuffer_mex.mexw64	13 - end				
Live Script	14				
Expo_Data_Preprocessing_CodeGe	- 15 - flow array = [d	<pre>lata; flow array(1:Np-1)];</pre>			
MATLAB Coder Project	16 - data = flow arr	ay;			
featureExtraction.prj	17 -				
featureExtractionBuffer.prj	18 - time array = [t	imestamp; time array(l:Np-l)];			
	19 - timestamp = tim	e_array;			
	20				
	21				
	22 - if isempty(find	l(isnan(data),1))			
	23				
	24 - flow = data	42			
	25				
featureExtractionBuffer m (Exection)	26 § Ensure th	e flow is sampled at a uniform s	ample rate		
reacureextractionburrerant (Function)	127 - t flow = ti	mestamp:			~

What do your end users want?

Flexible Deployment

- Maintenance needs simple, quick information
 - Hand held devices, Alarms
- Operations needs a birds-eye view
 Integration with IT & OT systems
- Customers expect easy to digest information
 - Automated reports

Data Sources Analytics Platforms Fleet & Inventory Analysis Hand neid Devices

🚮 Figure 1

File Edit View Insert Tools Desktop Window Help

1) 🗃 🛃 🌭 | 🔍 🥄 🙄 🕲 堤 🖌 - | 🛃 | 🗉 🛄 💷 🔲

Summary: Workflow For Developing a Predictive Maintenance Algorithm

Key Takeaway: Predictive Maintenance using MATLAB and Simulink platform

		Build Digital Twin	A G C F Out
Build Digital twin of the plant to generate sensor data and Simulate fault scenarios	Use Simulink + Simscape	Obtain and Explore Data	TA Sweep Test of Faults (Individual and 9 72 9 7 6.6 0.22.04.06.08.1.12 Run Freq_1 Peak_1 Freq_2 Peak_2
Access data in BIG DATA - large text files, databases, or other file formats	Use datastore + tall	Preprocess Training Data	1 0.0021 0.0062 0.3152 0.0006 Les 2 0.0021 0.0062 0.3361 0.0006 Les 3 0.0021 0.0063 0.3319 0.0006 Les i 31 0.0021 0.0104 0.3319 0.0073 Bic 32 0.0021 0.0107 0.3319 0.0075 Bic 33 0.0021 0.0109 0.3319 0.0077 Bic i
Apply MACHINE LEARNING for developing predictive models	Use Apps + Documentation	Develop Predictive Model	Mark 1 10 Sea 71 Sec
INTEGRATE machine learning models to work in CLOUD/BUSINESS/Embedded system	Use Compiler / Coder	Deploy Algorithm	PArray En fault faultClassifier crind hmi Simulation

How can you get started?

R2018a

- How do I get started with developing algorithms?
 - Reference examples Predictive Maintenance Toolbox
 - Documentation based on the workflow
- How do I manage my data?
 - ensembleDatastores to manage and label data
 - Examples for Simulink models generating failure data
- How do I choose which feature extraction and predictive modeling techniques to use?
 - Functions provided for estimating RUL
 - Functions for computing condition indicators

Doo	cumentatio	n				۵		
≡ 0	ONTENTS							
Non	linear State	e Estima	tion of a D	egrading E	attery Syste	m R2017	ь	
This er ur sy al 1 C	<pre>X Run the s mkdir('.\Da m</pre>	inulation ta') % Co ue; eateSimu d '\Data reateSimu	estates of a non ns and crea reate direc lationEnser], 'UsePari ulationEnse	<pre>inearsystem ate an ense ctory to st nble([grid5 allel', tru emble(grid5</pre>	mble to mana ore results imulationInp e); imulationInp	oge the simu out, randomS out(1:10), [ulation resu simulationIn	lts nput],]);
Ti (S & de Volter	21-Mov-2017 Starting par- connected to 21-Mov-2017	09:06:31] 10 pol 6 workers 09:06:56] 09:07:12] 09:07:13] 09:07:13] 09:07:38] 09:07:38] 09:07:39] 09:07:39] 09:07:39] 09:07:46] 09:07:47] 09:07:47]	Checking fo (parpool) u Loading Sim Configuring toading mod Running sim ring files t Completed 3 Completed 3 Completed 3 Completed 5 Completed 5 Completed 4 Completed 4	or availabili ising the 'lo wilink on par i simulation wilations of the worker of 208 simu of 208 simu	ty of parallel cal' profile . allel workers. cache folder o el workers sdone. lation runs lation runs	pool n parallel wo	orkers	
then	0	20	40	60	80	100	120	140
The S					Cycle			
	4	Deploy Pr mplement a Application Examples of	edictive Ma nd deploy cond ms predictive-mai	intenance A Sition-monitorin ntenance algor	Igorithms a and predictive-n	naintenance alg	prithms	

Learn Further

Predictive Maintenance Toolbox NEW PRODUCT Q Search MathWorks.com Overview Features Videos Contact sales Trial software

Capabilities

Remaining Useful Life (RUL) Estimation

Use time-series data and lifetime data to forecast RUL and compute confidence intervals.

Learn more >>

Condition Indicator Design

Extract features from sensor data that can be used as inputs to diagnostic and machine learning algorithms.

» Learn more

ilecocation = fullf ilefatencion = '.u niembleCata = filef niembleCata = initi niembleCataTable =	ile(t'; nsemble(alizeEnn tall(enn	(atarto atarto amble(s	re(file etimeli sta)	ucation, Data):	filento	msžon);	ta's tra
essettisbetaTable =							
Hold tall takks							
Vibration_Data	10	rate	lost	erro.	8973	877	894
(146409-1 muble)	+0520	25		81.125	118.88	14.000	40.01
[146484+3 dmib1s]	405.28	- 28	- 50	#1.125	116.89	14.838	88.82
[344484+1-mmb34]	46626	. 28	100	81-125	126.88	14.000	11.10
Constants doublet	400.00	1.1	100	41.115	110.00	14,818	11.02
Participal post a	67674		1.00	41.125	114.48	14.434	85.85
1488836×1 dmid1e	6.7mila	21	279	81.224	114.88	14.816	83.85
[144444-1 mmm1e1	48828	26	21	81.175	115 88	14.838	83.81

Data Organization and Labeling

Access and manage data from files stored locally, on the cloud, or in HDFS.

Learn more >>

[status,E] ensemble = ensembleDat	<pre>= generateSimulationEnsemble(simin,location simulationEnsembleDatastore(location); a = tall(ensemble)</pre>
ensembleData	*
5x4 tall t	able

SimulationInput	Tacho
[1×1 Simulink.SimulationInput]	[20202×1 timetable]
1+1 Simulink.SimulationInput] 1+1 Simulink.SimulationInput]	[20215×1 timetable] [20204×1 timetable]
[1×1 Simulink.SimulationInput]	[20213=1 timetable]

Failure Data Generation from Simulink

Create simulation data that is representative of failures and store it automatically in MAT files.

Learn more >>

Predictive Maintenance Toolbox uses Signal Processing Toolbox, System Identification Toolbox, Statistics and Machine Learning Toolbox

Learn Further: Predictive Maintenance Success Stories

Pump Health Monitoring System

- Spectral analysis and filtering on binary sensor data and neural network model prediction
- More than \$10 million projected savings

Online engine health monitoring

- Real-time analytics integrated with enterprise service systems
- Predict sub-system performance (oil, fuel, liftoff, mechanical health, controls

Production machinery failure warning

- Reduce waste and machine downtime
- MATLAB based HMI warns operators of potential failures
- > 200,000 € savings per year

mathworks.com/big-data

Big Data with MATLAB Teach Stationautor # Test refuses . & Cornerantes Predictive Analytics with MAT AB Use most as learning with highlats for any senting-driven analytics. > Downhood white paper Denc: MATLAS Tol Arrow Action WATLAB[®] provides a ningle, high-performance environment for working with big data. WAT UKB is: Easy - Use firmline 14871.45 functions and syntax to work with big datasets, even if they don't if its memory. Advanced Crosh Detection: The Road from Deployment to Production Conversion) — Work with the big data alongs systems you already use, including tracit and the systems, SQL and NoSQL databases, and Harloop/HDFS C Watch Adap (4.46) Scalable — Over he proceeding partners that using you needs, from your local designs muchine to Hadoog. which text any your agentime.

mathworks.com/machine-learning

MathWorks Services

- Consulting
 - Integration
 - Data analysis/visualization
 - Unify workflows, models, data

www.mathworks.com/services/consulting/

- Training
 - Classroom, online, on-site
 - Data Processing, Visualization, Deployment, Parallel Computing

www.mathworks.com/services/training/

 Freedom second Freedom second<!--</th--><th>i ser Lor</th><th>p.durs On p</th><th>servera servera de la constante de la constante</th><th>0</th><th></th>	i ser Lor	p.durs On p	servera servera de la constante	0	
Fleet Data Ar This weaks signly interp technicides for the visual waters which their parts	nalysi www.wn www.co	S AB arts timbots anacteri	yalas wen werk n and analysis al dea		
Welcome back!	Ve	hicle 5	natistics Forensics		
MathWorks			Non fanctional separations in Francisco International Transformers International Inter	0.00	Reviews
			Software Design Application Architecture Unability		Symme Acceptance Ex.
	- 1	owned	Utgrates / Loguey / Integration with other task Style galdetees Feel Practices Resultably / Netratuskity Competibility Documentation	Contracted	Application Deployment (f) (f) (f) (f) (f) (f) (f) (f) (f) (f)
	1		Development Process Coofiguration Management Project Prensing, Management and Management Support and Mainteeance		

Speaker Details

Email: Amit.Doshi@mathworks.in

LinkedIn: https://www.linkedin.com/in/amit-doshi/

Contact MathWorks India

Products/Training Enquiry Booth

Call: 080-6632-6000

Email: info@mathworks.in

- Share your experience with MATLAB & Simulink on Social Media
 - Use #MATLABEXPO on LinkedIn / Twitter

• Share your session feedback:

Please fill in your feedback for this session in the feedback form