Prefix-reversal Gray codes

Alexey Medvedev

Central European University, Budapest, Hungary, Sobolev Institute of Mathematics, Novosibirsk, Russia
joint work with
Elena Konstantinova, Sobolev Institute of Mathematics

Department of Mathematics and its Applications CEU, 25.02.2015

Binary Reflected Gray code

Hamming cube H_{n} [F. Gray, (1953), U.S. Patent 2,632,058]

The first Gray code was introduced relative to binary strings

$$
\begin{aligned}
& n=2: \\
& n=3:
\end{aligned}
$$

$$
0001 \mid 1110
$$

$000001011010 \mid 110111101100$

H_{2}

H_{3}

Gray codes are useful

The Gray codes are used in many applications in

- mathematics;
- computer science;
- electrical engineering;
- data communications;
- etc.

Example: HDD

Example: spinning wheel

Example: spinning wheel

Example: spinning wheel

Example: spinning wheel

Gray codes

Combinatorial Gray codes [J. Joichi et al., (1980)]

A combinatorial Gray code is now referred as a method of generating combinatorial objects so that successive objects differ in some pre-specified, usually small, way.

[D.E. Knuth, The Art of Computer Programming, Vol. 4 (2010)]

Knuth recently surveyed combinatorial generation:
Gray codes are related to efficient algorithms for exhaustively generating combinatorial objects.
(tuples, permutations, combinations, partitions, trees)

Example: generating permutations

Steinhaus-Johnson-Trotter algorithm, (1964)

List all the n ! permutations, such that the successive permutations differ by transposition of two adjacent elements.

$[1234]$	$[3124]$	$[2314]$
$[1243]$	$[3142]$	$[2341]$
$[1423]$	$[3412]$	$[2431]$
$[4123]$	$[4312]$	$[4231]$
$[4132]$	$[4321]$	$[4213]$
$[1432]$	$[3421]$	$[2413]$
$[1342]$	$[3241]$	$[2143]$
$[1324]$	$[3214]$	$[2134]$

Generating permutations in Sym_{4}

Example: generating permutations

Steinhaus-Johnson-Trotter algorithm, (1964)

Figure: Hamilton cycle in $\operatorname{Cay}\left(\operatorname{Sym}_{4},\{(12),(23),(34)\}\right.$

Relation between codes and graphs

Define the graph $\Gamma=(V, E)$, where V - the set of combinatorial objects and $(u, v) \in E$ iff u and v differ in "pre-specified small way". Then

- the Hamilton path in $\Gamma \sim$ Gray code on V;
- the Hamilton cycle in $\Gamma \sim$ cyclic Gray code on V.

AntiExample: generating permutations

Symmetric group Sym [R. Eggleton, W. Wallis, (1985); D. Rall, P. Slater, (1987)]

The group of permutations:
Q: Is it possible to list all permutations in a list so that each one differs from its predecessor in every position?
A: YES!

$[1234]$	$[3124]$	$[2314]$
$[4123]$	$[4312]$	$[4231]$
$[2341]$	$[1243]$	$[3142]$
$[3412]$	$[2431]$	$[1423]$
$[1324]$	$[3214]$	$[2134]$
$[4132]$	$[4321]$	$[4213]$
$[3241]$	$[2143]$	$[1342]$
$[2413]$	$[1432]$	$[3421]$

Generating permutations in $S y m_{4}$

Gray codes: generating permutations

[S. Zaks, (1984)]

Zaks' algorithm:
each successive permutation is generated by reversing a suffix of the preceding permutation.

Describe in terms of prefixes:

- Start with $I_{n}=[12 \ldots n]$;
- Let ζ_{n} be the sequence of sizes of these prefixes defined by recursively as follows:

$$
\begin{aligned}
& \zeta_{2}=2 \\
& \zeta_{n}=\left(\zeta_{n-1} n\right)^{n-1} \zeta_{n-1}, n>2,
\end{aligned}
$$

where a sequence is written as a concatenation of its elements;

- Flip prefixes according to the sequence.

Zaks' algorithm: examples

If $n=2$ then $\zeta_{2}=2$ and we have:

$$
[\underline{12}] \quad[21]
$$

If $n=3$ then $\zeta_{3}=23232$ and we have:

$$
\begin{array}{lll}
{[\underline{123}]} & {[\underline{312}]} & {[\underline{231}]} \\
{[\underline{213}]} & {[\underline{132}]} & {[321]}
\end{array}
$$

If $n=4$ then $\zeta_{4}=23232423232423232423232$ and we have:

$$
\begin{array}{llll}
\underline{1234}] & {[\underline{4123}]} & {[\underline{3412}]} & {[\underline{2341}]} \\
{[\underline{213} 4]} & {[\underline{142} 3]} & {[\underline{4312}]} & {[\underline{3241}]} \\
{[\underline{3124}]} & {[\underline{2413}]} & {[\underline{1342}]} & {[\underline{4231]}]} \\
{[\underline{1324}]} & {[\underline{4213} 3]} & {[\underline{314} 2]} & {[\underline{2431}]} \\
{[\underline{2314}]} & {[\underline{12} 43]} & {[\underline{41} 32]} & {[\underline{34} 21]} \\
{[\underline{3214}]} & {[\underline{2143}]} & {[\underline{1432}]} & {[4321]}
\end{array}
$$

Greedy Gray code: generating permutations

[A. Williams, J. Sawada, (2013)]

Describe in terms of prefixes:

- Start with $I_{n}=[12 \ldots n]$;
- Take the largest size prefix we can flip not repeating a created permutation;
- Flip this prefix.

Example: for $n=4$ then we have

$$
\begin{aligned}
& {[\overline{1234}][\overline{432} 1][\overline{2341}][\overline{143} 2][\overline{3412}][\overline{214} 3][\overline{4123}][\overline{32} 14]} \\
& {[\overline{2314}][\overline{413} 2][\overline{3142}][\overline{241} 3][\overline{1423}][\overline{324} 1][\overline{4231}][\overline{13} 24]} \\
& [\overline{3124}][\overline{421}]][\overline{1243}][\overline{342} 1][\overline{2431}][\overline{134} 2][\overline{4312}][\overline{21} 34]
\end{aligned}
$$

Prefix-reversal Gray codes: generating permutations

Each 'flip' is formally known as prefix-reversal.

The Pancake graph P_{n}

is the Cayley graph on the symmetric group $S_{n} m_{n}$ with generating set $\left\{r_{i} \in\right.$ Sym $\left._{n}, 2 \leqslant i \leqslant n\right\}$, where r_{i} is the operation of reversing the order of any substring $[1, i], 1<i \leqslant n$, of a permutation π when multiplied on the right, i.e., $\left[\pi_{1} \ldots \pi_{i} \pi_{i+1} \ldots \pi_{n}\right] r_{i}=\left[\pi_{i} \ldots \pi_{1} \pi_{i+1} \ldots \pi_{n}\right]$.

Cycles in $P_{n}[A . K a n e v s k y, ~ C . ~ F e n g, ~(1995) ; ~ J . J . ~ S h e u, ~ J . J . M . ~ T a n, ~$ K.T. Chu, (2006)]

All cycles of length ℓ, where $6 \leqslant \ell \leqslant n$!, can be embedded in the Pancake graph $P_{n}, n \geqslant 3$, but there are no cycles of length 3,4 or 5 .

Pancake graphs: hierarchical structure

P_{n} consists of n copies of $P_{n-1}(i)=\left(V^{i}, E^{i}\right), 1 \leqslant i \leqslant n$, where the vertex set V^{i} is presented by permutations with the fixed last element.

Two scenarios of generating permutations: Zaks | Williams

Both algorithms are based on independent cycles in P_{n}.

Zaks' prefix-reversal Gray code:
$\left(r_{2} r_{3}\right)^{3}$ - flip the minimum number of topmost pancakes that gives a new stack.

(a) Zaks' code in P_{4}

Williams' prefix-reversal Gray code:
$\left(r_{n} r_{n-1}\right)^{n}$ - flip the maximum number of topmost pancakes that gives a new stack.

(b) Williams' code in P_{4}

Independent cycles in P_{n}

Theorem 1. (K., M.)

The Pancake graph $P_{n}, n \geqslant 4$, contains the maximal set of $\frac{n!}{\ell}$ independent ℓ-cycles of the canonical form

$$
\begin{equation*}
C_{\ell}=\left(r_{n} r_{m}\right)^{k}, \tag{1}
\end{equation*}
$$

where $\ell=2 k, 2 \leqslant m \leqslant n-1$ and

$$
k= \begin{cases}O(1) & \text { if } m \leqslant\left\lfloor\frac{n}{2}\right\rfloor \tag{2}\\ O(n) & \text { if } m>\left\lfloor\frac{n}{2}\right\rfloor \quad \text { and } n \equiv 0 \quad(\bmod n-m) \\ O\left(n^{2}\right) & \text { else. }\end{cases}
$$

Corollary

The cycles presented in Theorem 1 have no chords.

Hamilton cycles based on small independent even cycles

Hamilton cycle or path in $P_{n} \Rightarrow P R G C$

Definition

The Hamilton cycle H_{n} based on independent ℓ-cycles is called a Hamilton cycle in P_{n}, consisting of paths of lengths $l=\ell-1$ of independent cycles, connected together with external to these cycles edges.

Hamilton cycles based on small independent even cycles

Definition

The fastening cycle H_{n}^{\prime} to the Hamilton cycle H_{n} based on independent cycles is defined on unused edges of H_{n} and the same external edges.

(c) Hamilton cycle H_{4} in P_{4}

(d) Fastening cycle H_{4}^{\prime} in P_{4}

Hamilton cycles based on the independent cycles in P_{4}

Theorem

In the Pancake graph P_{4} there are only four Hamilton cycles based on the maximal set independent cycles.

Proof. The collection of all possible maximal sets of independent cycles of the same form in P_{4} is presented below by the following table:

6-cycles	8 -cycles	12 -cycles
$C_{6}=\left(r_{3} r_{2}\right)^{3}$	$C_{8}^{1}=\left(r_{4} r_{2}\right)^{4}$	$C_{12}^{1}=\left(r_{2} r_{3} r_{4} r_{3} r_{2} r_{4}\right)^{2}$
	$C_{8}^{2}=\left(r_{4} r_{3}\right)^{4}$	$C_{12}^{2}=\left(r_{3} r_{2} r_{4} r_{2} r_{3} r_{4}\right)^{2}$

Hamilton cycles based on the independent cycles in P_{4}

Theorem

In the Pancake graph P_{4} there are only four Hamilton cycles based on the maximal set independent cycles.

Proof. All possible cases of Hamilton cycles based on the independent cycles in P_{4} are presented in the table below:

H_{4}^{i}	$\overline{H_{4}^{i}}$	Description
$H_{4}^{1}=\left(\left(r_{2} r_{3}\right)^{2} r_{2} r_{4}\right)^{4}$	$\overline{H_{4}^{1}}=\left(r_{4} r_{3}\right)^{4}$	Zaks' Hamiltonian cycle;
$H_{4}^{2}=\left(\left(r_{3} r_{2}\right)^{2} r_{3} r_{4}\right)^{4}$	$\overline{H_{4}^{2}}=\left(r_{4} r_{2}\right)^{4}$	based on independent cycles $C_{6} ;$
$H_{4}^{3}=\left(\left(r_{4} r_{3}\right)^{3} r_{4} r_{2}\right)^{3}$	$\overline{H_{4}^{3}}=\left(r_{3} r_{2}\right)^{3}$	Williams' Hamiltonian cycle;
$H_{4}^{4}=\left(\left(r_{4} r_{2}\right)^{3} r_{4} r_{3}\right)^{3}$	$\overline{H_{4}^{4}}=\left(r_{2} r_{3}\right)^{3}$	based on independent cycles C_{8}.

Hamilton cycles based on the independent cycles in P_{4}

Theorem

In the Pancake graph P_{4} there are only four Hamilton cycles based on the maximal set independent cycles.

(e) Hamiltonian cycle $\left(H_{4}^{2}, \overline{H_{4}^{2}}\right)$ in P_{4}

(f) Hamiltonian cycle $\left(H_{4}^{4}, \overline{H_{4}^{4}}\right)$ in P_{4}

Non-existence of Hamilton cycles

Suppose the fastening cycle H_{n}^{\prime} has form $\left(r_{m} r_{j}\right)^{t}$, where $m \in\{2, \ldots, n\}$, $r_{j} \in P R \backslash\left\{r_{m}\right\}$.

Theorem 2. (K., M.)

The only Hamilton cycles H_{n} based on independent cycles from Theorem 1 with the fastening cycle H_{n}^{\prime} of form $\left(r_{m} r_{j}\right)^{t}$, where $m \in\{2, \ldots, n\}$, are Zaks', Greedy and Hamilton cycle based on $\left(r_{4} r_{2}\right)^{4}$ in P_{4}.

Proof. $H_{n}^{\prime}=\left(r_{m} r_{j}\right)^{t} \Rightarrow H_{n}^{\prime}$ has form from Theorem 1. Thus, the following inequality should hold

$$
\begin{equation*}
2 \frac{n!}{L_{\max }} \leqslant L_{\max } \tag{3}
\end{equation*}
$$

where $L_{\text {max }}$ is the maximal length of cycles from Theorem 1.

Non-existence of Hamilton cycles

The length $L_{\text {max }}$ can be estimated as

$$
L_{\max } \leqslant n(n+2)
$$

and therefore

$$
\begin{gathered}
2 n!\leqslant L_{\max }^{2} \\
n!\leqslant \frac{1}{2} n^{2}(n+2)^{2}
\end{gathered}
$$

The inequality does not hold starting from $n=7$. For n from 4 to 6 it is easy to verify using the exact lengths that inequality holds only for $n=4$.

Non-existence of Hamilton cycles

Suppose the fastening cycle H_{n}^{\prime} has form $H_{n}^{\prime}=\left(r_{m} r_{\xi}\right)^{t}$, where by r_{ξ} we mean that every second reversal may be different from previous.
Another way of thinking of it is to treat r_{ξ} as a random variable taking values in $P R \backslash\left\{r_{n}, r_{m}\right\}$ with some distribution.

Theorem 3. (K., M.)

The only Hamilton cycles H_{n} based on independent cycles from Theorem 1 with the fastening cycle H_{n}^{\prime} of form $\left(r_{m} r_{\xi}\right)^{t}$, where $m \neq\{n, n-2\}$ and $r_{\xi} \in P R \backslash\left\{r_{n}, r_{m}\right\}$ is Greedy Hamilton cycle in P_{n}.

Proof is based on structural properties of the graph, hierarchical structure and length's argument above.

Remark. Existence in the case $m=n-2$ is only unresolved when $\ell=O(n)$.

Hamilton cycles based on small independent even cycles

Open problem

Suppose the fastening cycle H_{n}^{\prime} has form $H_{n}^{\prime}=\left(r_{\eta} r_{\xi}\right)^{t}$, where $r_{\eta} \in\left\{r_{n}, r_{m}\right\}$ and $r_{\xi} \in P R \backslash\left\{r_{n}, r_{m}\right\}$.

PRGC: hierarchical construction

Hierarchical construction

Suppose we know a bunch of Hamilton cycle constructions in graph P_{n-1}. Then the PRGC can be constructed using the fastening $2 n$-path passing through all copies of P_{n-1} in P_{n} exactly once.

Example:

Zaks' construction:

$$
H_{n}^{\prime 1}=\left(r_{n} r_{n-1}\right)^{n}
$$

Thank you for your attention!

