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Binary Reflected Gray code

Hamming cube Hn [F. Gray, (1953), U.S. Patent 2,632,058]

The first Gray code was introduced relative to binary strings
n = 2: 00 01 | 11 10

n = 3: 000 001 011 010 | 110 111 101 100
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Gray codes are useful

The Gray codes are used in many applications in

mathematics;

computer science;

electrical engineering;

data communications;

etc.
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Example: HDD

Alexey Medvedev (CEU, IM SBRAS) Prefix-reversal Gray codes CEU–2015 4 / 31



Example: spinning wheel
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Example: spinning wheel

10111
11111
10110
10100
11001
...

?
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Example: spinning wheel
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Example: spinning wheel

10011
11001?
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Gray codes

Combinatorial Gray codes [J. Joichi et al., (1980)]

A combinatorial Gray code is now referred as a method of generating
combinatorial objects so that successive objects differ in some
pre-specified, usually small, way.

[D.E. Knuth, The Art of Computer Programming, Vol.4 (2010)]

Knuth recently surveyed combinatorial generation:

Gray codes are related to
efficient algorithms for exhaustively generating combinatorial objects.

(tuples, permutations, combinations, partitions, trees)
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Example: generating permutations

Steinhaus-Johnson-Trotter algorithm, (1964)

List all the n! permutations, such that the successive permutations differ
by transposition of two adjacent elements.

[1234] [3124] [2314]
[1243] [3142] [2341]
[1423] [3412] [2431]
[4123] [4312] [4231]

[4132] [4321] [4213]
[1432] [3421] [2413]
[1342] [3241] [2143]
[1324] [3214] [2134]

Generating permutations in Sym4
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Example: generating permutations

Steinhaus-Johnson-Trotter algorithm, (1964)
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Figure: Hamilton cycle in Cay(Sym4, {(1 2), (2 3), (3 4)}
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Relation between codes and graphs

Define the graph Γ = (V,E), where V – the set of combinatorial objects
and (u, v) ∈ E iff u and v differ in ”pre-specified small way”. Then

the Hamilton path in Γ ∼ Gray code on V ;

the Hamilton cycle in Γ ∼ cyclic Gray code on V .
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AntiExample: generating permutations

Symmetric group Symn [R. Eggleton, W. Wallis, (1985); D. Rall,
P. Slater, (1987)]

The group of permutations:

Q: Is it possible to list all permutations in a list so that each one differs
from its predecessor in every position?

A: YES!

[1234] [3124] [2314]
[4123] [4312] [4231]
[2341] [1243] [3142]
[3412] [2431] [1423]
[1324] [3214] [2134]
[4132] [4321] [4213]
[3241] [2143] [1342]
[2413] [1432] [3421]

Generating permutations in Sym4
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Gray codes: generating permutations

[S. Zaks, (1984)]

Zaks’ algorithm:

each successive permutation is generated by reversing a suffix of the
preceding permutation.

Describe in terms of prefixes:

Start with In = [12 . . . n];

Let ζn be the sequence of sizes of these prefixes defined by recursively
as follows:

ζ2 = 2
ζn = (ζn−1 n)n−1 ζn−1, n > 2,

where a sequence is written as a concatenation of its elements;

Flip prefixes according to the sequence.
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Zaks’ algorithm: examples

If n = 2 then ζ2 = 2 and we have:

[12] [21]

If n = 3 then ζ3 = 23232 and we have:

[123] [312] [231]

[213] [132] [321]

If n = 4 then ζ4 = 23232423232423232423232 and we have:

[1234] [4123] [3412] [2341]

[2134] [1423] [4312] [3241]

[3124] [2413] [1342] [4231]

[1324] [4213] [3142] [2431]

[2314] [1243] [4132] [3421]

[3214] [2143] [1432] [4321]
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Greedy Gray code: generating permutations

[A. Williams, J. Sawada, (2013)]

Describe in terms of prefixes:

Start with In = [12 . . . n];

Take the largest size prefix we can flip not repeating a created
permutation;

Flip this prefix.

Example: for n = 4 then we have

[1234] [4321] [2341] [1432] [3412] [2143] [4123] [3214]

[2314] [4132] [3142] [2413] [1423] [3241] [4231] [1324]

[3124] [4213] [1243] [3421] [2431] [1342] [4312] [2134]
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Prefix–reversal Gray codes: generating permutations

Each ’flip’ is formally known as prefix–reversal.

The Pancake graph Pn
is the Cayley graph on the symmetric group Symn with generating set
{ri ∈ Symn, 2 6 i 6 n}, where ri is the operation of reversing the order
of any substring [1, i], 1 < i 6 n, of a permutation π when multiplied on
the right, i.e., [π1 . . . πiπi+1 . . . πn]ri = [πi . . . π1πi+1 . . . πn].

Cycles in Pn [A. Kanevsky, C. Feng, (1995); J.J. Sheu, J.J.M. Tan,
K.T. Chu, (2006)]

All cycles of length `, where 6 6 ` 6 n!, can be embedded in the Pancake
graph Pn, n > 3, but there are no cycles of length 3, 4 or 5.
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Pancake graphs: hierarchical structure

Pn consists of n copies of Pn−1(i) = (V i, Ei), 1 6 i 6 n, where the vertex
set V i is presented by permutations with the fixed last element.
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Cycles in Pn [A. Kanevsky, C. Feng, (1995); J.J. Sheu, J.J.M. Tan,
K.T. Chu, (2006)]

All cycles of length `, where 6 6 ` 6 n!, can be embedded in the Pancake
graph Pn, n > 3, but there are no cycles of length 3, 4 or 5.
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Two scenarios of generating permutations: Zaks | Williams

Both algorithms are based on independent cycles in Pn.

Zaks’ prefix–reversal Gray code:
(r2 r3)

3 – flip the minimum number
of topmost pancakes that gives a

new stack.
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(a) Zaks’ code in P4

Williams’ prefix–reversal Gray code:
(rn rn−1)n – flip the maximum

number of topmost pancakes that
gives a new stack.
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(b) Williams’ code in P4
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Independent cycles in Pn

Theorem 1. (K., M.)

The Pancake graph Pn, n > 4, contains the maximal set of n!
` independent

`–cycles of the canonical form

C` = (rn rm)k, (1)

where ` = 2 k, 2 6 m 6 n− 1 and

k =


O(1) if m 6 bn2 c;
O(n) if m > bn2 c and n ≡ 0 (mod n−m);
O(n2) else.

(2)

Corollary

The cycles presented in Theorem 1 have no chords.
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Hamilton cycles based on small independent even cycles

Hamilton cycle or path in Pn ⇒ PRGC

Definition

The Hamilton cycle Hn based on independent `–cycles is called a
Hamilton cycle in Pn, consisting of paths of lengths l = `− 1 of
independent cycles, connected together with external to these cycles edges.
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Hamilton cycles based on small independent even cycles

Definition

The fastening cycle H ′n to the Hamilton cycle Hn based on independent
cycles is defined on unused edges of Hn and the same external edges.
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(c) Hamilton cycle H4 in P4
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(d) Fastening cycle H ′
4 in P4
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Hamilton cycles based on the independent cycles in P4

Theorem

In the Pancake graph P4 there are only four Hamilton cycles based on the
maximal set independent cycles.

Proof. The collection of all possible maximal sets of independent cycles of
the same form in P4 is presented below by the following table:

6–cycles 8–cycles 12–cycles

C6 = (r3 r2)
3 C1

8 = (r4 r2)
4 C1

12 = (r2r3r4r3r2r4)
2

C2
8 = (r4 r3)

4 C2
12 = (r3r2r4r2r3r4)

2
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Hamilton cycles based on the independent cycles in P4

Theorem

In the Pancake graph P4 there are only four Hamilton cycles based on the
maximal set independent cycles.

Proof. All possible cases of Hamilton cycles based on the independent
cycles in P4 are presented in the table below:

Hi
4 Hi

4 Description

H1
4 = ((r2 r3)

2r2 r4)
4 H1

4 = (r4r3)
4 Zaks’ Hamiltonian cycle;

H2
4 = ((r3 r2)

2r3 r4)
4 H2

4 = (r4r2)
4 based on independent cycles C6;

H3
4 = ((r4 r3)

3r4 r2)
3 H3

4 = (r3r2)
3 Williams’ Hamiltonian cycle;

H4
4 = ((r4 r2)

3r4 r3)
3 H4

4 = (r2r3)
3 based on independent cycles C8.
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Hamilton cycles based on the independent cycles in P4

Theorem

In the Pancake graph P4 there are only four Hamilton cycles based on the
maximal set independent cycles.
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Non-existence of Hamilton cycles

Suppose the fastening cycle H ′n has form (rm rj)
t, where m ∈ {2, . . . , n},

rj ∈ PR\{rm}.

Theorem 2. (K., M.)

The only Hamilton cycles Hn based on independent cycles from Theorem 1
with the fastening cycle H ′n of form (rm rj)

t, where m ∈ {2, . . . , n}, are
Zaks’, Greedy and Hamilton cycle based on (r4 r2)

4 in P4.

Proof. H ′n = (rm rj)
t ⇒ H ′n has form from Theorem 1. Thus, the

following inequality should hold

2
n!

Lmax
6 Lmax, (3)

where Lmax is the maximal length of cycles from Theorem 1.
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Non-existence of Hamilton cycles

The length Lmax can be estimated as

Lmax 6 n(n+ 2),

and therefore
2n! 6 L2

max,

n! 6
1

2
n2(n+ 2)2.

The inequality does not hold starting from n = 7. For n from 4 to 6 it is
easy to verify using the exact lengths that inequality holds only for n = 4.
2
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Non-existence of Hamilton cycles

Suppose the fastening cycle H ′n has form H ′n = (rm rξ)
t, where by rξ we

mean that every second reversal may be different from previous.
Another way of thinking of it is to treat rξ as a random variable taking
values in PR\{rn, rm} with some distribution.

Theorem 3. (K., M.)

The only Hamilton cycles Hn based on independent cycles from
Theorem 1 with the fastening cycle H ′n of form (rm rξ)

t, where
m 6= {n, n− 2} and rξ ∈ PR\{rn, rm} is Greedy Hamilton cycle in Pn.

Proof is based on structural properties of the graph, hierarchical structure
and length’s argument above.

Remark. Existence in the case m = n− 2 is only unresolved when
` = O(n).
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Hamilton cycles based on small independent even cycles

Open problem

Suppose the fastening cycle H ′n has form H ′n = (rη rξ)
t, where

rη ∈ {rn, rm} and rξ ∈ PR\{rn, rm}.
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PRGC: hierarchical construction

Hierarchical construction

Suppose we know a bunch of Hamilton cycle constructions in graph Pn−1.
Then the PRGC can be constructed using the fastening 2n–path passing
through all copies of Pn−1 in Pn exactly once.

Example:

Zaks’ construction:

H ′1n = (rn rn−1)n rn

rn

rn

rn

rn
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π2n
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Ln−1
n−1

Ln
n−1

L1
n−1

π5

Ln−2
n−1
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Thank you for your attention!
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