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CONVERSION FACTORS 
NON-SI TO SI (METRIC) UNITS OF MEASUREMENT 

Non-SI units of measurement can be converted to SI (metric) units as follows: 

Multiply By To Obtain 
inches 25.4 millimeters 
feet 0.3048 meters 
pound 4.44822 Newton 
pounds per square inch 6.8948 kiloPascal 
square inches 645.16 square millimeters 



Chapter 1 INTRODUCTION 

This report documents the first step in development of a preliminary analytical model for 
flexible pavement analysis for the Airfields and Pavements Division (APD) of the 
Geotechnical Laboratory at the US Army Engineer Waterways Experiment Station. This first 
step may be generally described as development of a linear elastic finite element model that 
reasonably compares with the empirical and/or layered elastic solutions in current use. This 
report does not attempt to document a literature survey related to pavement analysis nor does 
it discuss the background of previous pavement analysis methods or finite element methods 
beyond that necessary for understanding of the problem at hand. Further, this study attempts 
to determine the optimal usage of the specific tools at hand, i.e., PATRAN (1993) and 
ABAQUS (1992), in development of the improved analytical model. It does not attempt to 
generalize to other finite element modeling tools or the broad finite element method. This 
report includes and builds upon previous work done by the author in this area (Bryant, 1996). 

The rationale and impetus for development of a detailed analytical model rests in the 
limitations of current pavement design and evaluation procedures. Current design procedures 
are very much empirical and are based on a limited number of tests conducted decades ago. 
Current and future wheel loadings and configurations and potential pavement systems differ 
considerably from the empirical basis in many cases and thus may not be easily handled by 
these procedures. Further, the most common current analytical tools based on the Layered 
Elastic Method are limited by the assumptions of this method which include (1) linear elastic 
material, (2) circular, static, constant pressure wheel loads, and (3) fully bonded interfaces 
between pavement layers. A more detailed analytical model is required to overcome these 
limitations. 

The goal of this study is to provide a baseline, or starting point, for development of a 
detailed analytical model for flexible pavements. As such, the present development identifies 
the current methods of analysis, constructs reasonable baseline cases for analysis, and 
compares key results of these baseline cases as predicted by the current methods and the 
finite element method. The finite element models are constructed to mimic the basis and 
assumptions of the current methods of analysis to provide the most reasonable comparison of 
the results possible, i.e., to compare apples to apples. 

In this report we describe the approach, baseline models, two- and three-dimensional 
finite element models, and compare the key results of the current and finite element analyses. 
Further, the effect of several variables or options in the finite element analysis models are 
investigated via a limited parameter study using the two-dimensional (axisymmetric) finite 
element model. This parameter study provides some insight as to future development of 
rational finite element models for general application. Finally, this report draws conclusions 
as to what this study has accomplished and presents recommendations as to what is 
appropriate for the next steps in the development of the detailed analytical model. 
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Chapter 2 BASELINE MODELS 

Three baseline cases, each involving a different type aircraft, were selected for 
comparing the results of the different analytical methods. The general parameters relating to 
number of pavement layers; surface course, base course, and subgrade materials; as well as 
loadings, were taken to be representative of at least some of the wide (some would say 
infinite) range of values in the real world. These general parameters were used to determine 
the actual pavement layer thicknesses for the analyses. In addition, several key response 
parameters were identified as figures of merit for comparing the results of the different 
analyses. The various parameters of the baseline cases are described in the following 
paragraphs. 

2.1      LAYERS AND MATERIALS 

Each of the three baseline cases considers a three-layer system consisting of an asphaltic 
concrete (AC) surface course and an unbound base course (BC) overlying the subgrade. For 
purposes of the analyses, the layers are considered fully bonded, i.e., there is 100 percent 
friction at the layer interfaces. The surface layer was taken with an elastic modulus, E, and 
Poisson's ratio, v, of 250,000 psi and 0.3, respectively, to represent a typical asphaltic 
concrete. The second layer utilized a modulus and ratio of 90,000 psi and 0.33, respectively, 
to represent a typical unbound base course. Finally, the modulus and ratio for the subgrade 
was taken as 6,000 psi and 0.45. Typical mechanical properties and specific values used in 
the analyses for these three layers are summarized in Table 2.1. 

Table 2.1. Materials for baseline cases. 

Layer EminCpsi) Emax (Psi) Etyp (psi)§ v§ 

1 Asphaltic concrete 105 106 250,000 0.3 
2 Base 40,000 150,000 90,000 0.33 
j subgrade - - 6,000 0.45 
s typical properties used for baseline cases 

2.2  WHEEL LOADS AND LAYER THICKNESSES 

Each baseline case considered a single wheel load from a different aircraft. The three 
aircraft were selected to represent a wide range of contact areas, standard loads, and design 
tire pressures. Specifically, the three aircraft considered in these cases were the C-141 
transport, the Boeing B-727, and the F-15 fighter. The C-141 is very heavy, having twin 
tandem gear with moderate wheel spacing. The B-727 is somewhat lighter with more closely 
spaced twin gear. The F-15, though relatively light, has single wheel gear with very high tire 
pressure. 
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The aircraft specifications were determined from the Pavement Computer Aided 
Structural Engineering (PCASE) computer program (NEWFILE, 1994). The C-141 
transport, with a standard load of 345,000 lb., two main gear with four tires per gear, and a 
tire contact area of 208 sq. in., results in a design tire pressure of 186.6 psi. The B-727, with 
a standard load of 210,000 lb., two main gear with two tires per gear, and a tire contact area 
of 237 sq. in., has a design tire pressure of 199.4 psi. The much lighter F-15, with a standard 
load of 68,000 lb., has only one tire with a relatively small contact area of 87 sq. in. for each 
of the two main gear, resulting in a high tire pressure of 340 psi. Thus, the three aircraft 
considered encompass a wide range of wheel loads and tire pressures. 

The required thicknesses of the surface course and base course were determined from the 
Aircraft Specification Data (computer program FAD, 1994) based on 50,000 passes, non- 
frost design, CBR 100 base material and CBR 4 subgrade material for Traffic Area A. The 
computed layer thicknesses for each aircraft for the given conditions are summarized in Table 
2.2. The FAD calculations indicated a required surface layer thickness of 4 inches and a base 
course thickness of 49 inches for the heavy, but low tire pressure, C-141 aircraft. The surface 
and base course thicknesses required for the somewhat lighter B-727 were 3 inches and 43 
inches, respectively. The F-15, with a much lower load but high tire pressure required a 4- 
inch surface layer with only 24-inch base course. 

Table 2.2. Computed layer thicknesses for baseline cases. 

(50,000 passes, no frost, CBR 100 base, CBR 4 subgrade, Traffic Area A) 

Aircraft Design Load 
(lb.) 

tire pressure 
(psi) 

Surface 
(in) 

Base 
(in) 

Total 
(in) 

C-141 345,000 186.6 4 49 53 
B-727 210,000 199.4 3 43 46 
F-15C/D 68,000 340.0 4 24 28 

2.3       FIGURES OF MERIT 

Six computed results of the analyses (response parameters) of the baseline cases were 
selected to provide figures of merit for comparison of the methods. These selected results are 
summarized in Table 2.3 as primary (most important) and secondary (less critical). The 
primary comparative results include the vertical deflection at the surface under the wheel 
load, the tensile horizontal strain at the bottom of the surface layer (AC), and the vertical 
strain at the top of the subgrade. These three parameters are the most commonly used 
parameters for evaluation of pavement design. The three secondary results (principal 
stresses) are less commonly used in design but are of interest here due to their 
characterization of the stresses existing in each layer. These outputs and their locations are 
depicted in Figure 2.1. These six parameters are compared (as available) for each of the 
analysis methods. 
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Table 2.3. Outputs for comparison. 

Primary 
vertical deflection under load 
tensile horizontal strain at bottom of AC 
vertical strain @ top of subgrade 

Secondary 
principal stresses at center of AC 
principal stresses at center of base course 
principal stresses at top of subgrade 

J{4 

AC layer 

BC layer 

subgrade 

Legend 

O    vertical displacement 

jj    principal stresses 

I 1   horizontal strain 

vertical strain D 

Figure 2.1. Location of comparative analysis results. 
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Chapter 3 COMPARATIVE STUDY OF ANALYTICAL MODELS 

3.1       GENERAL APPROACH 

This study considered four methods of analysis for the baseline cases, described 
previously. These methods include a closed form solution (Boussinesq), elastic flexible plate 
on subgrade, the most commonly accepted current approach (Layered Elastic Method or 
LEM), and the Finite Element Method (FEM). The results of the LEM analyses provide the 
basis of comparison for the FEM. Each of the three former solution methods and the results 
of the analyses are briefly described in the following sections. Subsequent sections describe 
the finite element analyses and compare FEM results with the previous solutions. 

For comparison with the two-dimensional finite element solution, the analyses consider 
a single wheel loading acting at the surface of the pavements described in Tables 2.1 and 2.2, 
reporting the key results described in Table 2.3 (as available). The three-dimensional finite 
element model results include comparisons for single and dual wheel loadings with 
equivalent Layered Elastic Method solutions. 

3.2      BOUSSINESQ SOLUTION (CLOSED FORM) 

This closed-form solution considers a point load on a semi-infinite elastic half-space and 
predicts the vertical stress in the half-space at a depth z, and radial distance r, from the load P. 
This stress prediction is independent of elastic modulus E. Obviously there are two 
assumptions in this prediction that violate even the simplified assumptions inherent in the 
Layered Elastic Method solutions, specifically, (1) the load is concentrated at a point instead 
of over a circular area, and (2) only a single homogeneous elastic layer is considered instead 
of the multiple elastic layers used in the LEM analyses. 

The general equation for the Boussinesq solution is (Yoder and Witczak, 1975) 

<y. = k— 
z (3.1a) 

where: 

*-£ 1 

V      Vz/ J 

(3.1b) 



r    = radial distance from point load 
z   = depth 
P   = total load at surface 

For r = 0 (beneath point load) 

271 

<T, = 
3P 

2TCZ2 
= 0.4775^ (3.2) 

thus the vertical stress is an inverse quadratic function of depth z, proportional to load P. The 
vertical stress under the load (r = 0) is plotted versus depth in Figure 3.1 for the three subject 
aircraft loadings. 

Boussinesq Solution 

350 

30 
depth z, inch 

40 50 60 

Figure 3.1. Boussinesq solution for vertical stress. 

Note that the Boussinesq solution predicts extremely high stresses near the surface, due 
to the assumption of a point load. In fact, Equation 3.2 shows that the stress approaches 
infinity as depth, z, approaches zero (at the surface). Obviously, this is a serious limitation to 
application of the method or use of the predictions for tire pressures that vary from 187 psi 

j-z 



for the C-141 to 340 psi for the F-15. Further, this closed form solution is not dependent on 
the presence of different layers or the absolute or relative stiffnesses of the layers. 

3.3      FLEXIBLE PLATE SOLUTION 

A solution for a single, circular flexible plate loaded over an elastic half-space is 
presented by Huang (1993). The relatively straightforward equations are easily solved in a 
spreadsheet for vertical and radial stresses and strains. Vertical deflection under the load can 
be computed if constants are presumed for Young's modulus and Poisson's ratio (single 
elastic layer). The equations for vertical (z) and radial (r) stress are: 

<sz = q 

-=f 

1-      ' 
W+*T 

2(l+v)z z3 

1 + 2V--r- ^r + 
(*2

+z2)05    (*2+z2f 

(3.3a) 

(3.3b) 

where: 

a    = radius of loaded circular area 
q   = vertical pressure at surface 
v   = Poisson's ratio 

and other terms are as previously defined. 

The vertical stress predictions for the three aircraft cases are presented in Figure 3.2. 
Note that the stress predictions are much more reasonable than those of the Boussinesq 
solution, which presumed a single point load. 

3.4      LAYERED ELASTIC METHOD 

The three baseline cases for a single wheel load were analyzed using BISAR to 
determine the output parameters of interest in Table 2.3 for comparison with subsequent two- 
and three-dimensional finite element analyses using ABAQUS. Each case was analyzed 
using the parameters in Table 2.1 for the materials in each layer and the design pavement and 
base course thicknesses in Table 2.2. These analyses presumed fully bonded interfaces 
between the layers, and a circular loaded area equal to the total single wheel load divided by 
the tire pressure. Outputs were requested at the locations directly beneath the wheel (x=y=0) 
for the depths corresponding to the locations in Table 2.3. The vertical stresses determined 
from these analyses, shown in Figure 3.3, are generally similar to those from the previous 
flexible plate solution. 
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Flexible Plate Solution 
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Figure 3.2. Flexible plate solution for vertical stress. 

Layered Elastic Solution 
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Figure 3.3. Layered elastic solution for vertical stress. 



The comparison set of results described in Table 2.3 and Figure 2.1 for the single wheel 
loading are summarized in Table 3.1 below for the three cases. 

Table 3.1. Layered elastic results for comparison. 

Selected Results C-141 B-727 F-15C/D 
Description point unit 
vertical displacement at top 1 0.0479 0.0628 0.0582 in 
horiz. strain at bottom of AC 3 263 148 557 micro-strain 
vertical strain at subgrade 5 -241 -386 -627 micro-strain 
max. prin. stress - AC center 2 -109 -150 -144 psi 
min. prin. stress - AC center 2 -178 -197 -300 psi 
max. prin. stress - BC center 4 26.2 3.75 8.25 psi 
min. prin. stress - BC center 4 -16.4 -25.9 -34.6 psi 
max. prin. stress - subgrade 5 -0.178 -0.299 -0.434 psi 
min. prin. stress - subgrade 5 -1.6          -2.59 -4.16 psi 

Note that the minimum principal stresses in the asphaltic concrete, which correspond to 
the vertical stresses, are appropriate to (slightly less than) the vertical tire pressures for the 
subject aircraft. Thus, the predicted stresses at any depth are less than those from the 
Boussinesq solution, as were those from the flexible plate solution. These results form the 
basis for comparison with the subsequent two-dimensional finite element analyses. 

3.5       FINITE ELEMENT ANALYSIS 

Finite element analyses for the three baseline cases were developed using procedures and 
methods typical to most general finite element analysis programs. The goal of the initial set 
of finite element analyses was to model the procedures and assumptions inherent in the 
Layered Elastic Method and thus to validate the ability of the FEM to match the results from 
the LEM. From this validation, the considerable power and versatility of the FEM can be 
exploited by expansion to consider more realistic modeling of the materials and loadings. 
The finite element models for the three baseline cases are based on the following assumptions 
consistent with the LEM analyses: 

1. The material is linear elastic. 
2. Interfaces between the layers are fully bonded (no slip). 
3. Loading is a constant pressure over a circular area and is static. 

The finite element analysis was carried out using the PATRAN software for pre- and 
post-processing and the ABAQUS finite element software for the analysis. The PATRAN 
software, running on the SGI and Sun workstations in the APD, provides a reasonably simple 
and rapid method for developing the input for ABAQUS and for inspecting and visualizing 
the output results. Specifically, the output deflections, strains, and stresses desired for 
comparison, described in Table 2.3, were extracted using the cursor tool option in the 
INSIGHT application in PATRAN. These selected results were tabulated for comparison 
with the baseline results of the Layered Elastic Analyses described previously. 



3.5.1    Two-Dimensional (Axisymmetric) Model 

3.5.1.1 General formulation. 

The axial symmetry of the single-wheel loading and model (pavement, base course, and 
subgrade) permits a simplified analytical model, specifically using axisymmetric two- 
dimensional solid elements with no loss in accuracy. By taking the axis of symmetry 
vertically through the loaded area, the finite element model need model only one sector of a 
"cylindrical" volume of the pavement layers and subgrade, as indicated in Figure 3.4. 

axis of symmetry 

restraint normal 
to boundary 

Figure 3.4. Axisymmetric model. 

3.5.1.2 Materials and loading. 

This model uses the material constants defined in Table 2.1 and the thicknesses of AC 
and BC defined in Table 2.2. Note that Young's modulus and Poisson's ratio are the only 
required material properties for a linear elastic material model. The loadings are taken as 
single wheel tire pressures for the subject aircraft, acting over a circular area derived from the 
ratio of the single wheel load to the tire pressure. 

3.5.1.3 Boundary conditions. 

The finite element analysis, as the name implies, generally models only a finite portion 
of the pavement and soil continuum. Thus, the extent of the model in the horizontal (in this 
case radial) and vertical directions must be specified a priori. The distance to these side and 
bottom boundaries has a direct effect on the "accuracy" of the results and the computational 
effort required for the solution. Specifically, the wider and deeper the finite element model is 
constructed, the more the solution results will approach those of an unbounded continuum. 
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This increase in solution fidelity comes at the cost of additional computational effort 
(computer time). Typical geomechanical analyses try to achieve reasonable balance between 
accuracy and computational effort. 

For the purposes of the initial validation analyses, the location of the side and bottom 
boundaries of the model were selected based on the geometry of the assumed loading (radius, 
r) and the depth to subgrade (AC + BC thicknesses). Specifically, for each case considered,' 
the radial distance to the side boundary was taken as the larger of 10 times the load radius or 
2 times the depth to subgrade. Similarly, the "bottom" of the finite element model was taken 
at twice the depth to subgrade, i.e., a thickness of subgrade equal to that of both pavement 
layers was considered in the model. These boundary locations, though rather arbitrary, are 
not inconsistent with typical finite element analyses and extend the model in each direction 
well away from regions of high stress. At these boundaries, the displacement normal to the 
boundary was assumed zero (fixed). In other words, the horizontal displacements along the 
side boundaries and the vertical displacements along the bottom boundary were fixed. By 
symmetry, the horizontal displacements along the axial line of symmetry are identically zero. 
Displacements parallel to the boundaries were left free to permit motions in that direction. 

3.5.1.4 Finite element mesh. 

The other key decision required for finite element analysis of a continuum is the 
selection of the mesh fineness, i.e., how many elements are to be used to subdivide the 
model. In general, a more refined mesh (more smaller elements) yields more accurate results 
at the expense of higher computational effort than a coarser mesh. Similarly, the use of 
higher order elements generally increases accuracy but requires more effort than using lower 
order elements. For the baseline validation models, a generally fine mesh of lower order 
elements (4 node 2-D solids) was utilized. The mesh was subdivided into six regions, or 
surfaces, corresponding to the geometry of the load and the layer thicknesses (3 layers, 
loaded and unloaded surface). The baseline meshes are shown for the C-141, B-727, and F- 
15 analyses in Figures 3.5, 3.6, and 3.7, respectively. In each case, the mesh consists'of very 
small elements, each with an aspect ratio close to unity (square). 



I 

TD ±t 

Figure 3.5. Baseline finite element mesh for C-141 analysis. 

Hie orientation of these meshes is similar to that shown previously in Figure 3.4, i.e., the 
axis of symmetry is the left boundary of the mesh and the upper edge is the free surface. The 
right and lower boundaries are restrained normal to the boundary. In each mesh, the extent of 
the wheel load is indicated on the pavement surface extending from the axis of symmetry to 
the equivalent radius of the contact area. 
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Figure 3.6. Baseline finite element mesh for B-727 analysis. 

" " 

z x 

Figure 3.7. Baseline finite element mesh for F-15 analysis. 
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3.5.1.5 Two-dimensional finite element analysis results. 

Although it is quite straightforward to extract and view the finite element results for a 
particular analysis in PATRAN, it does not lend itself to direct comparison of results between 
analyses or with the results of the Layered Elastic Method analyses. Thus, the particular 
finite element results to be compared were extracted using the cursor tool in the INSIGHT 
application in PATRAN and tabulated externally. The first method of comparison employed 
was to consider the ratio of the results of the finite element method (FEM) to the Layered 
Elastic Method (LEM). This ratio (FEM/LEM) for each figure of merit described previously 
in Table 2.3 is presented in tabular form in Table 3.2 for the baseline analyses of the three 
aircraft. 

Table 3.2. Ratios of selected baseline FEM and LEM results. 

Layer top/ Description FEM FEM/LEM 
center/ definition baseline cases 
bottom C-141 B-727 F-15 

1  j top vertical displacement dy 0.59 0.56 0.52 
1-3 relative relative displacement d-dy 1.02 1.02 1.01 

1 bottom horizontal strain ex 1.13 1.39 1.10 
3 top vertical strain ey 0.85 0.84 0.85 
1 center horizontal stress sig-x 0.96 0.95 0.91 
1 center vertical stress sig-y 1.02 1.02 1.00 
2 center horizontal stress sig-x 0.75 0.75 0.68 
2 center vertical stress sig-y 1.01 1.01 1.02 
3 top horizontal stress sig-x 5.17 4.83 5.14 
3          top vertical stress sig-y 1.28 1.26 1.25 

The initial four columns in Table 3.2 describe the location (layer number and whether 
top, center, or bottom of layer) and the type of result (displacement, strain, or stress). With 
the exception of an additional parameter (relative displacement), these output parameters are 
ranked in order of interest as previously described in Table 2.3. The three columns to the 
right are the FEM/LEM ratios of the results for the different baseline cases. Obviously, the 
closer these ratios are to unity is an indication that the FEM results are approaching the LEM 
results. 

Several observations become obvious from these results. First, results are generally 
consistent between the different aircraft loadings, i.e., the ratio is about the same for each of 
the three analyses for any particular output. Second, many of the ratios are reasonably close 
to unity, indicating a fair level of agreement between the FEM and LEM analyses. These two 
general observations provide some level of confidence in the results of the finite element 
analyses, at least in comparison to the LEM results. 

Looking at particular FEM/LEM comparisons provides insight as to the accuracy with 
which this particular finite element model predicts that result. For example, the prediction of 
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vertical displacement at the surface appears very poor in the FEM, with FEM/LEM ratios of 
only 0.52 to 0.59. In other words, the surface deflection predicted by the finite element 
analysis (for these models) is only about 50 to 60 percent ofthat predicted by the LEM. The 
FEM prediction of vertical displacement very much depends on the location of the lower 
boundary, since elastic deformation below this level is not included in the finite element 
model. This observation is confirmed by the second comparison in the table which compares 
the relative vertical displacement between the surface and the top of the subgrade (layer 3). 
As seen in the table, the relative displacement predicted by the FEM is essentially identical to 
that predicted by the LEM. 

The prediction of horizontal strain (tension) at the bottom of the AC layer is quite 
reasonable for two of the three cases with a larger difference for the B-727 analysis. This 
larger difference may be due to the 25 percent thinner AC layer in the B-727 pavement 
system. The prediction of vertical strain at the top of the subgrade is extremely consistent 
and is about 85 percent of the LEM prediction. 

The prediction of principal stresses (identically horizontal and vertical) is fairly good to 
excellent in the upper two layers, especially for the vertical stresses. While the prediction of 
vertical stress at the top of the subgrade (layer 3) is reasonable, the horizontal stress at this 
location is predicted poorly. Note that this horizontal stress is predicted as tension in both 
analysis methods (e.g., see Table 3.1), a result that does not reflect reality in the base and 
subgrade layers. Since the prediction of horizontal stress becomes consistently poorer with 
depth, it is suspected that this result reflects an influence of the bottom boundary on the 
horizontal stress (which is identically zero at the bottom boundary in the FEM). We expect 
that the difference in results is also at least partially attributable to the location of the side 
boundary. It should also be pointed out that the predicted stress levels in the subgrade are 
about 2 orders of magnitude less than in the AC layer. 

Due to the significant difference in order of magnitude of results at different locations, a 
more meaningful comparative measure was developed and employed for subsequent 
comparisons. Specifically, the difference between the results of the finite element method 
(FEM) and Layered Elastic Method (LEM) was normalized as : 

where: 

xl00% (3.4) 
r^UEM max 

X        = normalized percent difference 
1 = result variable being compared 
XFEM    

= finite element method result 
XLEM    = layered elastic method result (baseline) 
XLEMmax 

= maximum or characteristic magnitude of the result variable 
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This normalized comparator essentially applies a scale factor to the comparison that 
accounts for the significant magnitude of the variable under consideration. For example, the 
more simplified ratio (FEM/LEM) used in Table 3.2 to compare the results sometimes 
appears to indicate large discrepancies between the solutions where the magnitude of the 
result is relatively small. In the normalized comparator, a small difference in a relatively 
small value is compared with reference to a relevant magnitude of some significance. The 
results presented in Table 3.2 are shown in Table 3.3 using this normalized comparator. 

Table 3.3. Normalized comparison of selected baseline results. 

Layer 

T" 
1-3 
T~ 

3 
~T~ 

1 
~T~ 

2 

top/ 
center/ 
bottom 
lop 

bottom 
top 

Description 

vertical displacement 
relative displacement 

l-fcM 
definition 

center 

center 

top 

nonzontal strain 
vertical strain 
nonzontal stress 
vertical stress 
nonzontal stress 
vertical stress 
nonzontal stress 
vertical stress 

d-dy 
ex 
ey 

baseline cases 
C-1411 

sig-x 
sig-y 
sig-x 
sig-y 
sig-x 
sig-y 

0.7 
~TC3 
-15.4 
~I3 

-1.6 

-0.1 
"TJ3 

-0.2 

~B^Z7 

0.6 
~~353 

-15.5 
~~au 

-2.0 
"TO 

-0.2 

-0.3 

~R5 

0.2 
~gr 
-15.3 

-0.4 

-0.2 
—H5 

-0.3J 

These results confirm that the predicted vertical displacement at the surface is 40 to 50 % 
lower than the LEM prediction but the relative displacement in the top two layers is less than 
1% different. The horizontal and vertical strains are somewhat over-predicted and under- 
predicted, respectively, and the relative stress predictions are quite good. 

In a somewhat reverse comparison of results between the Layered Elastic Method and 
the Finite Element Method, a modified BISAR analysis was conducted that more closely 
modeled the bottom boundary condition of the baseline finite element model for the B-727 
wheel load and pavement system. In this case, an extremely stiff layer (E = 108 psi) was 
added at a depth of 92 inches (bottom of finite element model). The results from this BISAR 
analysis are compared to the baseline B-727 finite element results in Table 3.4, showing both 
the ratio (LEM/FEM) and the relative normalized difference, X. This comparison clearly 
shows the effect of the stiff lower layer (boundary) in the BISAR results. When this 
constraint is placed in the LEM model, the results compare very favorably with those from 
the finite element model. In particular, the predictions of vertical displacement agree within 
a few percent for these models which are more comparable as to vertical constraint. Note 
that the LEM model still assumes an elastic continuum in the horizontal direction, whereas 
the FEM model is restrained at a distance of 88 inches. 
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Table 3.4. Comparison of FEM and modified LEM results for B-727. 

Layer 

1^ 
1-3 
T 
3 

1 
T 
2 

~3~ 

top/ 
center/ 
bottom 

föp 
relative 

uescnption 

bottom 
top 

center 
center 
center 
center 

vertical displacement 
relative displacement 
nonzontal strain 
vertical strain 
nonzontal stress 
vertical stress 

FEM 
definition 

—dy~ 
d-dy 
ex 
ey 

top 
top 

nonzontal stress 
vertical stress 
nonzontal stress 
vertical stress 

sig-x 
sig-y 
sig-x 
sig-y 
sig-x 
sig-y 

FEM 
Value 

TTDSJS 
0.0246 
 2Ü5" 

-326 
~~^42 

-201 
 TS 

-26.2 
-1.45 
-3.26 

BISAR 
modified 

Ö.Ö371 
0.0244 
 T73" 

-400 

F727— 
LEW 

~^f4T 
-197 

"376" 
-26.5 
^TÄ2 
-3.68 

FEM 
"TOT 

0.99 
"1TS4 

1.23 
~UM 
0.98 

1.01 
~um 
1.13 

"O 
-0.8 

~1B3 
22.7 

~03 
2.0 

~D3] 
-0.2 

~THJ 
-0.2 

In general, the finite element models predicted most of the results of interest with 
reasonable agreement with the LEM. The vertical displacement at the surface is quite under- 
predicted when compared with a semi-infinite elastic continuum, but this is due to the 
location of the lower boundary (where the displacement is constrained). This effect was 
confirmed by review of the relative displacement in the upper two layers and by the LEM 
analysis with a very stiff (nearly fixed) layer. The other result with the largest relative 
discrepancy in prediction is the horizontal stress at the top of the subgrade. This prediction is 
probably affected by the location of both the bottom boundary and the side boundary in the 
finite element model. By St. Venant's theorem we would expect the effect of these 
boundaries to be more noticeable as they are approached. These suppositions and the effect 
of the boundaries are investigated in the parameter studies described in the following section 
of this report. 

3.5.1.6 Two-dimensional parameter study. 

Prior to, and during the course of the two-dimensional finite element analyses, we 
recognized several parameters relevant to the finite element modeling technique that would 
be good candidates for at least a brief review of their effect on the results. First, the fineness 
and type of mesh utilized for a given model dimension likely has some effect on the 
"accuracy" of the predicted results. Second, the modeling of the bottom and side boundaries 
(location and boundary condition) also has some effect on the predicted results. An 
additional parameter not considered in the baseline LEM analyses but available to the finite 
element model is the difference in compressive and tensile response of the different materials 
in the structure. A brief parameter study and excursions from the baseline case were 
considered and are described in the following paragraphs. 

Mesh type and density. Finite element meshes are typically more refined (smaller 
elements) in the regions of higher stress gradients and coarser away from these locations. 
Two additional mesh types and density using this principle were investigated for each 
baseline case to evaluate this effect on the predicted results.  These two variations on mesh 
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discretization are generally referred to herein as uniform bias and paver-type, using the 
notation of the PATRAN pre-processor used to generate the meshes. These mesh types are 
best understood by viewing the generated meshes for the three baseline cases. 

The uniform bias mesh discretizations for the three cases are illustrated in Figures 3.8, 
3.9, and 3.10, respectively. In these cases the mesh is finer in the region of load application 
where the stress gradients are higher, and becomes progressively coarser as the distance from 
this region increases. In fact, the distance between nodes in the vertical and horizontal 
directions increase generally proportionally with distance from the surface and axis of 
symmetry (thus the description as uniform bias). All of the elements are still rectangular but 
the aspect ratio varies considerably from the preferred unity away from the region of most 
interest. This mesh utilizes far fewer elements than the baseline cases described previously. 

The paver-type meshes, shown in Figures 3.11, 3.12, and 3.13, have some similarities to 
the uniform bias types in that the mesh becomes coarser with distance from the loaded 
region. In fact, the regions along the surface in the AC layer and adjacent to the axis of 
symmetry under the loaded area are the same as the uniform bias mesh. The mesh in the 
remaining region is somewhat coarser than the uniform bias mesh with a decreasing number 
of nodes (and elements) at a given level or horizontal distance from the axis of symmetry. 
This type of mesh, sometimes resembling a spider web, results in quadrilateral elements that 
are no longer rectangular but that still have reasonable aspect ratios and skew ratios. The 
paver-type mesh has somewhat fewer nodes and elements than the uniform bias mesh. 

v     v   

  

Figure 3.8. Uniform bias finite element mesh for C-141 analysis. 

3-14 



Z X 

'     u   

  

Figure 3.9. Uniform bias finite element mesh for B-727 analysis. 
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Figure 3.10. Uniform bias finite element mesh for F-15 analysis. 
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L 
Figure 3.11. Paver-type finite element mesh for C-141 analysis. 

Z X 

Figure 3.12. Paver-type finite element mesh for B-727 analysis. 
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-IllfrHH"/ 
Figure 3.13. Paver-type finite element mesh for F-15 analysis. 

In general, the effect of mesh discretization shown in Table 3.5 for the C-141 analyses is 
small, i.e., the FEM results are little changed by the different mesh discretizations, with the 
exception of the horizontal and vertical strains, where the prediction is somewhat worse for 
the two coarser meshes. This difference is probably directly attributable to the coarsening of 
the mesh directly beneath the loaded surface, i.e., the baseline mesh used four elements 
across the loaded area and the coarser meshes only used two elements for the C-141 analyses. 
The other results do not change significantly with the different meshes. 

Table 3.5. Comparison of different mesh types for C-141 analysis. 

Layer 

1^ 
1-3 
T 
3 
T 

2 
"3~ 

top/ 
center/ 
bottom 

top 

Description 

bottom 
top 

center 

center 

top 

vertical displacement 
relative displacement 
nonzontal strain 
vertical strain 
horizontal stress 
vertical stress 
nonzontal stress 
vertical stress 
nonzontal stress 
vertical stress 

definition 

d-dy 
ex 
ey 

sig-x 
sig-y 
sig-x 
sig-y 
sig-x 
sig-y 

base 

0.7 
T33 
-15.4 

-1.6 
=03 
-0.1 
=DT4" 
-0.2 

X 
C-141 

unit, bias 
-^U7 

1.1 
393 
-27.0 
~=43 

0.0 
=03 
-0.9 
=034 
-0.2 

paver 

0.9 
39.2 

-32.4 
"=431 

0.0 
=03 
-0.8 
=0^ 
-0.1 
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A review of the results for the B-727 analyses shown in Table 3.6 also indicate little 
change in the results due to the different mesh discretizations. The only result that shows a 
significant change between mesh types is the predicted vertical strain at the top of the third 
layer (subgrade), where the prediction appears to worsen. This result is probably due to (1) 
the larger elements with poorer aspect ratios in this region, and (2) the fact that results are 
presented at the centroid of elements which, for the larger elements, occurs at a lower depth 
than in the baseline model. 

Table 3.6. Comparison of different mesh types for B-727 analysis. 

Layer 

1^ 
1-3 
T 
3 
T 

topy 
center/ 
bottom 

top 

uescnption 

2 

3 

bottom 
top 

center 

center 

vertical displacement 
relative displacement 

l-bM 
definition 

honzontal strain 
vertical strain 
horizontal stress 
vertical stress 

top 

honzontal stress 
vertical stress 
horizontal stress 
vertical stress 

d-dy 

A 

B-727 

ex 
ey 

sig-x 
sig-y 
sig-x 
sig-y 
sig-x 
sig-y 

base 
-44.4 

0.6 
"~3875~ 
-15.5 

~"4U 
-2.0 

"TO 
-0.2 

unit, bias 
—"3PT5 

0.3 
—mj5 

-28.5 

-0.3 

4X> 
-2.0 

"TO 
-2.8 

"TO 
-0.2 

paver 
"34"S 

0.3 

-30.6 
~4TJ 

-2.0 

-3.4 
TO 
-0.2 

The results shown in Table 3.7 for the F-15 analyses generally agree with the 
observations from the previous comparison. 

Table 3.7. Comparison of different mesh types for F-15 analysis. 

Layer top/ 
center/ 
bottom 

uescnption l-fcM 
definition 

A 

F-15 
base unit, bias paver 

1 
1-3 

top vertical displacement 
relative displacement 

ay 
d-dy 

-48.3 
0.2 

-4B.B 
-1.9 

-48.6 
0.0 

1 
3 

bottom 
top 

honzontal strain 
vertical strain 

ex 
ey 

9.7 
-15.3 

8.4 
-38.8 

3.2 
-27.6 

1 
1 

center honzontal stress 
vertical stress 

sig-x 
sig-y 

3.8 
-0.4 

3.8 
-0.3 

4.1 
-0.6 

2 
2 

center horizontal stress 
vertical stress 

sig-x 
sig-y 

-0.8 
-0.2 

-0.9 
-1.0 

-0.8 
-1.0 

3 

top honzontal stress 
vertical stress 

sig-x 
sig-y 

-0.5 
-0.3 

3.1 
-0.9 

-0.5 
-0.2 

Overall, the coarser meshes predicted most of the results of interest about the same as 
the more refined baseline meshes. The differences between meshes was generally smaller 
than the differences between the FEM and LEM, and generally were only significant in the 
subgrade layer. Thus, biased or paver-type meshes should be relatively useful for analysis if 
properly applied in regions of most interest. 
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Boundary effects. It was recognized a priori that the finite element modeling technique 
imposes constraints on the model through fixed bottom and side boundaries to the continuum 
of pavement and soil. In fact, the comparison of results of the baseline FEM and LEM 
analyses indicated some differences that were suspected to be due, at least partly, to the 
boundary effects. This supposition was investigated by selected revised analyses of the 
baseline case for the B-727 model. We expect that the results obtained from the B-727 
analyses would be similarly reflected in analyses of other wheel load cases. 

The three variations of boundary conditions for the B-727 model considered (1) moving 
the bottom boundary to a depth of 20 feet (compared to the base model depth of 92 inches) 
(2)i extending the side boundary to 432 inches (from 88 inches) and the bottom boundary to 
600 mches, and (3) application of infinite elements along both bottom and side boundaries of 
the baselme model. The mesh utilized for moving the bottom boundary to a depth of 20 feet 
is depicted in Figure 3.14, in which the fine mesh of the baseline case is quickly transformed 
to a relatively coarse mesh between the 92-inch depth and the 240-inch depth. Even though 
the lower portion of the mesh is relatively crude, it serves the purpose of considerably 
lowering the boundary of the model without changing other parameters. The side boundary 
in this model was maintained at a distance of 88 inches. 

Figure 3.14. Finite element mesh for 20-foot depth. 

A detailed finite element model was generated with the side boundary at a horizontal 
distance of 432 inches (36 ft.) and the bottom boundary at a depth of 600 inches (50 ft) This 
model, shown in Figure 3.15, consisted of 1195 nodes and 1132 elements.   An even more 
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detailed model with a rectangular grid having over 3000 elements was also analyzed, but is 
not shown here. This model is considered to be larger in extent and mesh size than would 
normally be applied in typical geomechanical analyses and serves as an upper bound on mesh 
size and refinement. 

Figure 3.15. Finite element mesh for 36-foot width and 50-foot depth. 

The mesh utilizing infinite elements on both bottom and side boundaries of the baseline 
B-727 model is depicted in Figure 3.16. Infinite elements are available in the ABAQUS 
finite element software specifically for modeling cases such as this where the actual structure, 
or portions thereof, are actually an elastic continuum. These elements, which have special 
rules for location, size, and nodal numbering, provide an elastic boundary that models a 
continuum with infinite reach. Specifically, these axisymmetric infinite elements are four- 
noded, with the element oriented with the first two node numbers along the boundary with 
the finite elements and nodes 2 and 3 "pointing" in the infinite direction. The "far end" of 
the infinite element must be twice as far from the "pole" of the model as the finite boundary 
nodes (the "pole" in this model is the center of the loaded radius at the surface). The infinite 
elements are added to the side and bottom boundaries of the baseline model as shown in 
Figure 3.16. The aspect ratio of these elements is controlled by the special rules for infinite 
elements. 
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Figure 3.16. Finite element mesh using infinite elements at boundaries. 

The key results of these three boundary condition variations are compared with those 
from the baseline case for the B-727 in Table 3.8. For the case where the bottom boundary 
was lowered to 20 feet, the only significant change was in the improved prediction of the 
vertical deflection at the surface. As expected, this deflection increased in the deeper model 
due to inclusion of more of the vertical continuum. 

When the finite model boundaries were extended to 432 inches horizontally and 600 
inches vertically, most results improved to generally excellent agreement with the LEM 
analysis. The refined large model (3000+ elements) showed only a slight improvement in 
fidelity compared to the model with 1132 elements, indicating that the mesh shown in 
Figure 3.15 was sufficiently fine. 

The model using infinite elements along both boundaries generally agreed very well 
with the LEM results. The revised FEM predictions were only a few percent different from 
the LEM results with the exception of the horizontal stress at the top of the third (subgrade) 
layer. However, this prediction was greatly improved over the fixed boundary model and the 
actual magnitudes of this value are quite small. 
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Table 3.8. Comparison for different boundary conditions for B-727 analysis. 

Layer |    top/    | Description 
center/ 
bottom 

1^ 
1-3 

top 

T 
3 
r 
1 

T" 
2 

"3" 

bottom 
top 

center 

center 

top 

vertical displacement 
relative displacement 
nonzontal strain     ■"" 
vertical strain 
nonzontal stress 
vertical stress 
nonzontal stress 
vertical stress 
nonzontal stress 

Ivertical stress 

l-hM 
definition 

d-dy 

"0=727" 
base 

ex 
ey 

sig-x 
sig-y 
sig-x 
sig-y 
sig-x 
sig-y 

-44.4 
0.6 

-15.5 
"TU 

-2.0 

-0.2 
~UU 

-0.3 

20 tt|36 tt wide 
depth 50 ft deep 

"=2T2 ^TZT 
0.6 0.7 

~353] T03 
-17.1 

~~4U 
-2.5 

"U3 
-0.2 

"US 
-0.3 

-14.0 
~^2U 

-2.5 
~ÖU 

-0.5 
~~03 

0.2 

intinite 
elements 

-b.ö 
0.4 

~~477l 
-12.2 

~^Z5l 
-1.5 

~TTT 
-0.1 

■^T21 
0.0 

The effect of the boundary conditions is also generally illustrated in Figure 3.17, which 
graphically depicts the FEM/LEM ratios for the B-727 baseline case and three variations of 
boundary conditions. This figure plots the FEM/LEM ratio versus depth to the lower 
boundary for each of the results of interest. Note that the side boundary location is at a 
distance of 88 inches in the first two cases, at a distance of 432 inches in the third case, and at 
infinity in the last case. For purposes of plotting, the infinite depth was arbitrarily assigned a 
depth of 2000 inches to permit some reasonable scale. (Thus the slope of each line between 
y=600 and y=2000 is arbitrary instead of undefined). This plot indicates the relative trend 
and magnitude of convergence of the selected results as the distance to the lower boundary is 
increased (assumed infinite in LEM). It is seen in the plot that the FEM/LEM ratio generally 
approaches unity (perfect agreement) as the boundary distance increases. 

A detailed look at the computed vertical displacements for different boundary conditions 
is illustrated in Figure 3.18. Vertical displacement under the center of the load is plotted 
versus depth for the different boundary conditions and compared to the LEM (BISAR) 
results. As seen in this plot, the predictions improve to extremely good as the distance to the 
boundary increases. 

The key conclusion drawn from the data in Table 3.8 and the graph in Figure 3.17 is that 
the results improve, often dramatically, as the real or apparent distance to the lower boundary 
is increased. Note that the distance to the side boundary is also changed in the second 
variation with infinite elements on both boundaries. The use of infinite elements for the 
boundaries provides excellent agreement with the LEM results. Thus, the use of these 
elements should be strongly considered in future finite element models of this nature. 
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Figure 3.17. Effect on results of distance to lower boundary. 
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Figure 3.18. Effect on displacement of distance to lower boundary. 



Material property variation.   While somewhat outside the scope of comparing the linear 
elastic solutions of the LEM and FEM, there was a brief, simple investigation of the effect of 
tension stresses in the base and subgrade materials that actually can resist little, if any, 
tension.    A small excursion was attempted for the B-727 models by specifying elastic 
material with compression only in the subgrade and base layers.   Although this material 
option is available in the PATRAN and ABAQUS software, it is only briefly discussed in the 
ABAQUS documentation and not demonstrated in any of the verification examples.  After 
several unsuccessful attempts at application of this material model, technical support for 
ABAQUS was queried as to the implementation and application of this option. In general, it 
was learned that this option is rather ill-defined and generally appeared to be little used. 
Each solution attempt resulted in immediately divergent solutions, regardless of the scheme 
or load step increment attempted.  After these attempts with different solution schemes for 
this nonlinear problem, this excursion was abandoned. At this time it is felt that this option is 
probably not useful or workable for this type of problem.   Nonlinear material properties 
should be investigated using the more common nonlinear material models in ABAQUS. 

3.5.1.7 Summary of two-dimensional results comparison. 

The results of interest from four different methods of analysis have been presented 
separately in the preceding sections. It is informative to compare these results, not only from 
an academic perspective, but also to illuminate the potential for the simpler methods of 
analysis for this type of problem. For purposes of comparison, the vertical and horizontal 
(radial) stresses computed from the different methods are plotted versus depth. The 
comparisons illustrated here are for the B-727 analyses, so that the effects of the finite 
element boundary conditions can be also compared. These comparisons are presented in 
Figures 3.19 and 3.20 for the vertical and horizontal stresses versus depth. 

The extremely conservative nature of the vertical stress prediction from the Boussinesq 
solution is evident from Figure 3.19. The other three solutions provide fairly consistent 
results throughout most of the depth with the flexible plate solution predictions somewhat 
higher than the FEM or LEM solutions below about a 6-inch depth. The FEM and LEM 
solutions are very close throughout the depth plotted. The FEM stress predictions are 
insensitive to the location of the mesh base. 

The horizontal stresses plotted in Figure 3.20 show a greater spread between the 
different solution methods, particularly in the upper 14 inches. The LEM solution is closer to 
the FEM solutions than the flexible plate solution for the horizontal stress prediction. 
Interestingly, the flexible plate solution is the only one that predicts essentially zero stresses 
below about 20-inch depth. 

A practical observation from these comparisons is that the relatively simple flexible 
plate solution is reasonably good for this type of problem. 
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Figure 3.19. Comparisons of vertical stress from various solution methods. 

B-727 Horizontal Stress 

depth z, inch 

Figure 3.20. Comparisons of horizontal stress from various solution methods. 
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3.5.2   Three-Dimensional Model 

3.5.2.1 General formulation. 

The finite element models used for three-dimensional analysis utilize three-dimensional 
solid elements. Mesh configurations vary considerably for the 3-D models. Symmetry of the 
material layers and loading was considered as appropriate to the single wheel arid dual-wheel 
loadings. For a single wheel load, a one-quarter model with symmetry about the two major 
vertical planes is efficient. For dual wheel loading, a single vertical plane of symmetry 
through the center of the two loads, or in some cases, a second vertical plane of symmetry 
midway between the two loads normal to the line between the loads was utilized. Each plane 
of symmetry was enforced by restraining the translation normal to the plane. 

Based on the observations from the two-dimensional analyses and comparisons, the 
three-dimensional analyses herein considered only one of the aircraft wheel loadings 
evaluated in the two-dimensional comparisons. In particular, it was observed in the two- 
dimensional model results that there was little difference in the comparative results for the 
three different aircraft wheel loadings. Therefore, all comparisons were conducted only for 
the B-727 wheel loading in the three-dimensional analyses. Although both single and dual 
wheel loadings were analyzed, results are reported herein only for the cases with single wheel 
loadings since the dual wheel loading cases showed the same trends and effects as the single 
wheel cases. 

3.5.2.2 Materials and loading. 

The three-dimensional models use the material constants previously defined in Table 2.1 
and the thicknesses of AC and BC defined in Table 2.2. The loadings are taken as single 
wheel tire pressures for the B-727 aircraft. Dual wheel loadings were applied similarly with 
the loadings separated by the centerline distance between wheels. 

3.5.2.3 Boundary conditions. 

The location of the side and bottom boundaries of the various three-dimensional models 
were selected similarly to those in the two-dimensional analyses. The boundary locations 
varied with the type of shape utilized in the modeling. These boundary locations extend the 
model in each direction well away from regions of high stress. For fixed boundaries, the 
displacement normal to the boundary was assumed zero (fixed) and displacements parallel to 
the boundaries were left free to permit motions in that direction. 

Several of the three-dimensional models utilized infinite elements along the boundaries 
of the finite element model. The requirements for the infinite elements are similar to those in 
the axisymmetric analyses, i.e., the infinite elements are directed "away" from the pole and 
have the far end twice the distance from the pole as the near end. These requirements are 
difficult to meet exactly for general conditions, e.g., where there is not a well-defined single 
"pole". In these cases, the requirements were simulated as closely as possible. 
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3.5.2.4 Finite element mesh. 

Quite a few different finite element meshes were utilized in the three-dimensional 
analyses. These meshes differed in overall shape, boundary conditions, and mesh fineness. 
Three general mesh configurations used are illustrated in Figure 3.21 below for reference. 

k 
k 

k 

(a) Box-type mesh (b) Cylindrical-type mesh        (c) Spherical-type mesh 

Figure 3.21. General 3-D finite element mesh types. 

The first type of mesh may be described as a box-type model and consists of a 
rectangular parallelepiped for the region of interest with additional rectangular 
parallelepipeds forming the finite or infinite boundary elements. This mesh type is fairly 
typical for finite element modeling and is usually the most simple to generate. 

A second general mesh type considered is similar to the box-type model but conforms 
the vertical boundaries to the circular shape of the loaded area creating a quasi-cylindrical 
type mesh. This mesh, though somewhat more difficult to generate than the box-type mesh, 
yields a more efficient mesh in the horizontal plane. 

The third general mesh type considered resembles a quadrant of a sphere. This 
spherical-type mesh carries the curved surface to the second dimension and permits 
application of infinite elements at the boundaries in their most appropriate orientation and 
dimension. That is, the infinite elements can more closely meet the requirements previously 
described as to their location, orientation, and length with respect to the "pole", i.e., the point 
of load application. 

Although several variations of each mesh type were analyzed during the course of this 
study, results are presented in the following section for only a few of the more important 
and/or useful variations. These variations are described as appropriate to the understanding 
of the results in each case. The results are presented in a logical progression, though not 
necessarily m the order that they were originally developed. 
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3.5.2.5 Three-dimensional finite element analysis results. 

The extraction of the finite element results and methods of comparison with the Layered 
Elastic Method results were conducted similarly to that previously described for the two- 
dimensional results. Further, for some cases, results from the third dimension were compared 
with the LEM results to verify the fidelity of the results in this dimension. 

For these models, the results are compared at a large number of locations to examine the 
ability of the three-dimensional finite element model to predict results comparable to the 
LEM. The basic locations for comparison for the box-type model are illustrated in Figure 
3.22 and generally are along the centerline of the model and under the wheel loads at layer 
interfaces and centers. In general, vertical displacements are compared at several locations at 
the surface, principal stresses are compared at the center of the AC and BC layers, horizontal 
strains are compared at the bottom of the AC layer, and vertical strains compared at the top of 
thesubgrade. 

subgrade Legend 

O    vertical displacement 

5J    principal stresses 

I 1   horizontal strain 

vertical strain D 

Figure 3.22. Locations for result comparisons. 
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The box-type model was analyzed in several configurations, both with fixed boundaries 
and with infinite elements. The first model, shown in Figure 3.23, utilized only finite 
elements with the boundaries fixed in a direction normal to the surface. The two semi- 
circular areas at the upper surface are the wheel loaded areas. The model utilizes one plane 
of symmetry through the two wheel loads. This model serves as the baseline finite element 
model for this configuration and produced results generally consistent with the axisymmetric 
models with fixed boundaries. The model depicted in Figure 3.24 is similar to the fixed 
model except that the boundaries are modeled with infinite elements. 

Selected results from both models are shown in Table 3.9 and compared with the LEM 
predictions for the single wheel loading. This table lists the results for vertical displacement, 
horizontal and vertical strains, and horizontal and vertical stresses at a number of locations in 
the model. The computed values from the two finite element models are compared with 
those from the LEM (BISAR). Note that the FEM strain results at the layer interface nodes 
are average values between layers, thus, the LEM results are similarly averaged here for 
comparison. 

kL, 
Figure 3.23. Box-type finite element mesh with fixed boundaries. 
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k 
Figure 3.24. Box-type mesh with infinite elements. 
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Table 3.9. Results for box-type models with fixed and infinite boundaries. 

result variable 

vertical displacement 
vertical displacement 
vertical displacement 
vertical displacement 
vertical displacement 
vertical displacement 
vertical displacement 

horizontal strain 
horizontal strain 
horizontal strain 
horizontal strain 
horizontal strain 
horizontal strain 

vertical strain 
vertical strain 
vertical strain 
vertical strain 
vertical strain 
vertical strain 

vertical stress, z 
vertical stress, z 
vertical stress, z 

vertical stress, z 
vertical stress, z 
vertical stress, z 

horiz. stress, x 
horiz. stress, x 
horiz. stress, x 
horiz. stress, x 
horiz. stress, x 

point 

1 
2 
3 
4 
5 
6 
7 

"0" 
8 
8 
9 
9 
9 

"TO" 
10 
10 
11 
11 
11 

1F 
13 
10 

15 
11 

12" 
13 
10 
10 
10 

TOUT 
BISAR 

"'ABAQUS 
fixed 

single wheel load 
—FEM/LEM 

0.0404 
0.0520 
0.0628 
0.0520 
0.0405 
0.0370 
0.0329 

148 
148 

-146 
-146.5 

-147 

^184] 
-286 
-388 
-144 
-226 
-308 

"=757 
-25.9 
-2.6 

"=010 
-10.3 
-2.19 

-150 
3.75 
21.2 

10.45 
-0.3 

0.0247 
0.0342 
0.0432 
0.0313 
0.0188 
0.0162 
0.0148 

118 

-97 

-310 

-230 

10031 
-28.3 
-8.39 

-0.004 
-12.86 
-7.36 

-135 
0.916 

1.85 

infinite 

0.0390 
0.0503 
0.0610 
0.0505 
0.0393 
0.0358 
0.0317 

143 

-145 

-264 

-209 

1063 
-25.4 
-3.15 

Ö.Ö25 
-10.15 
-2.53 

-148.6 
3.53 

8.92 

fixed 

0.61 
0.66 
0.69 
0.60 
0.46 
0.44 
0.45 

0.80 

0.66 

1.08 

1.02 

1.09 
3.23 

"005 
1.25 
3.36 

0.90 
0.24 

0.18 

infinite 

0.97 
0.97 
0.97 
0.97 
0.97 
0.97 
0.96 

0.97 

0.99 

0.92 

0.92 

TOO 
0.98 
1.21 

"3310 
0.99 
1.16 

0.99 
0.94 

0.85 

Normalized 
fixed 

-25.0% 
-28.3% 
-31.2% 
-33.0% 
-34.6% 
-33.1% 
-28.8% 

-20.3% 

33.4% 

8.4% 

1.8% 

-1.2% 
-2.9% 

"OTO 
-1.3% 
-2.6% 

7.5% 
-1.4% 

•4.3% 

infinite 

-2.2% 
-2.7% 
-2.9% 
-2.4% 
-1.9% 
-1.9% 
-1.9% 

-3.4% 

1.0% 

-7.7% 

-7.5% 

0.4% 
0.3% 

-0.3% 

~OTO 
0.1% 

-0.2% 

""075S 
-0.1% 

-0.8% 

The stress results from both finite element models compare very favorably with those 
predicted by the LEM. Strain results are not predicted as well, particularly in the model with 
fixed boundaries. As was seen previously in the axisymmetric models, the model with fixed 
boundaries seriously under-predicts vertical displacement. The model with infinite elements 
at the boundaries predicts all quantities very well. For example, the predictions for vertical 
displacement at the surface are compared in Figure 3.25. This comparison indicates that the 
use of infinite elements produces exceptional agreement. 
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Single wheel deflection basin 

-y-axis x-axis-> 

o 
T5 
a 
'S 
■o 

-BISAR 

-ABAQUS - fixed 

-ABAQUS - infinite 

-0.07-L 

distance, in 

Figure 3.25. Comparisons of predicted deflection basin. 

Note that the plot of deflection basin in Figure 3.25 is actually in two horizontal 
directions. The displacements are plotted at points 1 through 7, from right to left on the plot. 
Thus, the "positive" distance values are along the x-axis (points 1-5), and the "negative" 
distance values are along the y-axis (points 5-7). This plot clearly indicates the improvement 
in prediction of vertical displacement provided by the use of infinite elements to model the 
boundaries. 

The box-type mesh was also utilized to consider a slight variation in the mesh in the area 
of the pressure loading. Whereas the loaded area in the previous models conformed to the 
assumed circular shape as shown in Figure 3.26(a), the new variation of the mesh in the 
loaded area is rectilinear as shown in Figure 3.26(b). The shaded area of the mesh was 
loaded to produce the same total load. The results of this analysis are compared in 
Table 3.10 to those of the previous model to determine the effect of this slight load pattern 
variation. As seen in this comparison, the effects of the mesh variation are very small. 
Revision of the mesh to this degree does not significantly affect the predicted results, i.e., for 
this case, the simpler rectilinear mesh is adequate for the analysis. It should be noted that the 
revised mesh is actually quite fine and the boundaries of the loaded area do not diverge 
greatly from the circular area. Larger variations in the mesh arrangement or load footprint 
might induce larger differences in the results. 
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(a) Circular loaded area. (b) Rectilinear loaded elements. 

Figure 3.26. Box-type models with different meshes in loaded area. 

<, 

Figure 3.27. Box-type mesh with infinite and rectangular loaded elements. 
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Table 3.10. Results for models with circular area and rectangular loaded elements. 

single wheel loads 
ABAQUS I        rect/circ /, 

result variable point BISAR        circular    rectilinear 

vertical displacement 
vertical displacement 
vertical displacement 
vertical displacement 
vertical displacement 
vertical displacement 
vertical displacement 

1 
2 
3 
4 
5 
6 
7 

0.040-! 
0.052 

0.062£ 
0.052 

0.0405 
0.037 

0.0329 

1          0.039C 
!          0.0503 
1          0.061 C 

0.0505 
0.0393 
0.0358 
0.0317 

)          0.0392 
(          0.0505 

0.0615 
0.0507 
0.0395 
0.0360 
0.0318 

1.005 
1.004 
1.008 
1.004 
1.005 
1.006 
1.003 

0.3% 
0.3% 
0.8% 
0.3% 
0.3% 
0.3% 
0.2% 

> 

horizontal strain 
horizontal strain 
horizontal strain 
horizontal strain 
horizontal strain 
horizontal strain 

8 
8 
8 
9 
9 
9 

148 
148 
148 

-146 
-146.5 

-147 

143 

-145 

144 

-145 

1.007 

1.000 

0.7% 

0.0% 

vertical strain 
vertical strain 
vertical strain 
vertical strain 
vertical strain 
vertical strain 

10 
10 
10 
11 
11 
11 

-184 
-286 
-388 
-144 
-226 
-308 

-264 

-209 

-265 

-210.2 

1.004 

1.006 

-0.3% 

-0.4% 

vertical stress, z 
vertical stress, z 
vertical stress, z 

12 
13 
10 

-197 
-25.9 
-2.6 

-196 
-25 

-3.15 

-199 
-26 
-3 

1.012 
1.007 
1.006 

1.2% 
0.1% 
0.0% 

vertical stress, z 
vertical stress, z 
vertical stress, z 

14 
15 
11 

-0.16 
-10.3 
-2.19 

0.029 
-10.15 

-2.53 

0.08 
-10.17 
-2.539 

2.759 
1.002 
1.004 

0.0% 
0.0% 
0.0% 

horiz. stress, x 
horiz. stress, x 
horiz. stress, x 
horiz. stress, x 
horiz. stress, x 

12 
13 
10 
10 
10 

-150 
3.75 
21.2 

10.45 
-0.3 

-148.6 
3.53 

8.92 

-151.1 
3.611 

8.986 

1.017 
1.023 

1.007 

1.3% 
0.0% 

0.0% 

Several variations of the cylindrical-type mesh shown in Figure 3.28 were analyzed, 
which included fixed and infinite element boundaries, and different mesh fineness and 
orientations. The results for a single wheel loading for the mesh shown in Figure 3.28 are 
summarized in Table 3.11 for "coarse" and "refined" meshes with fixed boundary conditions. 
These comparisons are made at a number of the general locations previously depicted in 
Figure 3.22. 
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< 

Figure 3.28. Cylindrical-type finite element mesh. 

The first two columns in Table 3.11 describe the type of result (displacement, strain or 
stress) and the location. The third column lists the LEM results from BISAR. Columns four 
and five list the comparable results determined from the FEM (ABAQUS) analyses for the 
coarse and refined meshes. The absolute ratios (FEM/LEM) and the normalized differences 
mdicate the fidelity of the FEM results for the two meshes. The comparison of results for the 
two different mesh densities with the results from BISAR are quite consistent with previous 
results for other mesh configurations. Specifically, stresses are predicted fairly well, strains 
predicted less well, and vertical displacements under-predicted. In addition, the refined mesh 
shows a slight improvement in predictions (convergence). The boundary conditions and 
boundary locations appear to be the cause for most of the discrepancy in results. 
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Table 3.11. Results for cylindrical model, fixed boundaries, single wheel load. 

result variable 

vertical displacement 
vertical displacement 
vertical displacement 
vertical displacement 
vertical displacement 
vertical displacement 
vertical displacement 
vertical displacement 
vertical displacement 

horizontal strain 
horizontal strain 

vertical strain 
vertical strain 

vertical stress, z 
vertical stress, z 

vertical stress, z 
vertical stress, z 

horiz. stress, x 
horiz. stress, x 

horiz. stress, x 
horiz. stress, x 

point 

16 
17 
18 
5 
4 
3 
2 
6 
7 

20 
8 

22 
10 

19 
12 

21 
13 

19 
12 

21 
13 

BISAR 

0.0318 
0.0339 
0.0366 
0.0405 
0.0520 
0.0628 
0.0520 
0.0381 
0.0347 

30 
148 

-185 
-388 

0.018 
-197 

-1.37 
-23.1 

-11.8 
-150 

-1.3 
4.33 

ABACUS 
coarse I       refined 

single wheel load 
FEFMEBT 

0.0234 
0.0256 
0.0286 
0.0332 
0.0455 
0.0569 
0.0474 
0.0311 
0.0288 

21 
217 

-97 
-251 

0.152 
-192 

-3.04 
-23.7 

-8.81 
-134 

-1.98 
4.27 

0.0245 
0.0268 
0.0299 
0.0345 
0.0469 
0.0584 
0.0488 
0.0324 
0.0301 

19 
214 

-98.4 
-258 

0.01 
-192 

-2.67 
-23.8 

-7.49 
-135 

-2.15 
3.82 

coarse 

0.74 
0.76 
0.78 
0.82 
0.88 
0.91 
0.91 
0.82 
0.83 

0.70 
1.47 

0.52 
0.65 

8.44 
0.97 

2.22 
1.03 

0.75 
0.89 

refined 

1.52 
0.99 

0.77 
0.79 
0.82 
0.85 
0.90 
0.93 
0.94 
0.85 
0.87 

0.63 
1.45 

0.53 
0.66 

0.56 
0.97 

1.95 
1.03 

0.63 
0.90 

1.65 
0.88 

coarse 

-13.4% 
-13.2% 
-12.7% 
-11:6% 
-10.4% 
-9.4% 
-7.3% 

-11.1% 
-9.4% 

-6.1% 
46.6% 

-22.7% 
-35.3% 

-0.1% 
-2.5% 

0.8% 
0.3% 

-1.5% 
-8.0% 

refined 

0.3% 
0.0% 

-11.6% 
-11.3% 
-10.7% 
-9.6% 
-8.1% 
-7.0% 
-5.1% 
-9.1% 
-7.3% 

-7.4% 
44.6% 

-22.3% 
-33.5% 

0.0% 
-2.5% 

0.7% 
0.4% 

-2.2% 
-7.5% 

0.4% 
0.3% 

Three variations of this model were analyzed considering different arrangements of 
infinite elements along the boundaries. First, the basic model was augmented with horizontal 
infinite elements along the vertical boundaries as shown in Figure 3.29, with the vertical 
displacements along the bottom remaining fixed. Second, a model with fixed horizontal 
displacements along the sides and vertical infinite elements only along the bottom was 
considered. Finally, a model with horizontal and vertical elements along the sides and 
bottom, respectively, was analyzed. These three variations on the application of infinite 
elements provide some indication as to the use of infinite elements only on some of the 
boundaries. 
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k. 
Figure 3.29. Cylindrical-type mesh with horizontal infinite elements. 

The results for the model with horizontal infinite elements (Figure 3.29) only are 
compared with the LEM results in Table 3.12.  As shown in these results, the addition of 
infinite elements along the sides actually makes little difference in the stress and strain 
results.   Some predictions are slightly improved but most are little changed.   The largest 
difference in results is the considerable under-prediction of vertical displacements in the 
model with horizontal infinite elements, as compared to the fixed boundary model. Actually, 
this result is not too surprising if one considers the actual boundary conditions modeled in 
each case.  In the "fixed" boundary model, whereas the horizontal displacement along the 
side boundary is fixed, the vertical displacement is unrestrained.   Although the horizontal 
infinite elements relax the restraint in the horizontal direction, they add a measure of restraint 
in the vertical direction. Thus, for prediction of vertical displacements, the bottom boundary 
remains fixed and the side boundaries offer more vertical restraint than the "fixed" model. 
The effectiveness of the infinite elements in this model is also reduced by the totally 
horizontal orientation of the elements.  Although this orientation is reasonable in the upper 
portion, the element lengths and orientation in the lower portion of the model violate the 
requirements that infinite elements generally radiate away from the "pole" with a length 
equal to their distance from the pole. 

>-o7 



Table 3.12. Results for cylindrical model, horizontal infinite elements. 

single wheel load 

BISAF 
ABAQUS FEWLEM /. 

result variable point !          fixed        infinite fixed       infinite fixec I         infinite 

vertical displacement 16 0.0318 0.024* 0.0110 0.77 0.35 -11.6°/ -33.1% 
vertical displacement 17 0.0339 0.0268 0.0129 0.7S 0.38 -11.3°/c -33.4% 
vertical displacement 18 0.0366 0.029S 0.0153 0.82 0.42 -10.7% -33.9% 
vertical displacement 5 0.0405 0.0345 0.0192 0.85 0.47 -9.6% -33.9% 
vertical displacement 4 0.0520 0.0469 0.0305 0.90 0.59 -8.1% -34.2% 
vertical displacement 3 0.0628 0.0584 0.0408 0.93 0.65 -7.0% -35.0% 
vertical displacement 2 0.0520 0.0488 0.0300 0.94 0.58 -5.1% -35.0% 
vertical displacement 6 0.0381 0.0324 0.0167 0.85 0.44 -9.1% -34.1% 
vertical displacement 7 0.0347 0.0301 0.0135 0.87 0.39 -7.3% -33.8% 

horizontal strain 20 30 19 20 0.63 0.67 -7.4% -6.8% 
horizontal strain 8 148 214 197 1.45 1.33 44.6% 33.1% 

vertical strain 22 -185 -98.4 -114 0.53 0.62 -22.3% -18.3% 
vertical strain 10 -388 -258 -252 0.66 0.65 -33.5% -35.1% 

vertical stress, z 19 0.018 0.01 0.015 0.56 0.83 0.0% 0.0% 
vertical stress, z 12 -197 -192 -192 0.97 0.97 -2.5% -2.5% 

vertical stress, z 21 -1.37 -2.67 -1.15 1.95 0.84 0.7% -0.1% 
vertical stress, z 13 -23.1 -23.8 -22.1 1.03 0.96 0.4% -0.5% 

horiz. stress, x 19 -11.8 -7.49 -8.21 0.63 0.70 -2.2% -1.8% 
horiz. stress, x 12 -150 -135 -145 0.90 0.97 -7.5% -2.5% 

horiz. stress, x 21 -1.3 -2.15 -1.08 1.65 0.83 0.4% -0.1% 
horiz. stress, x 13    | 4.33 3.82 4.41 0.88 1.02 0.3% I 0.0% 

The results for the model with vertical infinite elements only are compared with the 
LEM results in Table 3.13. As shown in these results, the addition of infinite elements at the 
base makes little difference in the stress and strain results. The prediction of vertical 
displacements in the model with vertical-only infinite elements is quite poor and is quite a bit 
higher than the LEM results. The model with infinite elements at the base is more flexible 
than the "fixed" boundary model at the base and adds no vertical restraint along the vertical 
sides. Thus, for prediction of vertical displacements, the free side boundary combined with 
the vertical infinite elements leads to higher displacements than the LEM model which has 
some vertical restraint along the sides. Note that the vertical infinite elements also do not 
meet the requirements regarding length and orientation as described previously. 
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Table 3.13. Results for cylindrical model, vertical infinite elements. 

,  single wheel load 
ABAÜUS                       I-HM/LEM k  ■ 

vertical displacement 

point 

16 

BiöAK           fixed        infinite 

0.0318         0.0245        0.0497 

fixed        infinite 

0.77           156 

fixem       infinite 

.11 R»/.              Ofi CO/ 
vertical displacement 
vertical displacement 

17 
18 

0.033S 
0.0366 

0.0268 
0.029S 

0.0520 
0.0551 

0.7$ 
0.82 

I           1.53 
1.51 

-11.3% 
-10 7% 

28.8% 
29.5% 
30.6% 
32.0% 
33.1% 
35.0% 
31.1% 
32.8% 

vertical displacement 5 0.0405 0.0345 0.0597 0.85 1.47 -9 6% vertical displacement 4 0.0520 0.0469 0.0721 0.90 1.39 -8 1% vertical displacement 3 0.0628 0.0584 0.0836 0.93 1.33 -7 0% vertical displacement 2 0.0520 0.0488 0.0740 0.94 1.42 -5 1% vertical displacement 6 0.0381 0.0324 0.0576 0.85 1.51 -9 1% vertical displacement 7 0.0347 0.0301 0.0553 0.87 1.59 -7.3% 

horizontal strain 
horizontal strain 

20 
8 

30 
148 

19 
214 

19 
214 

0.63 
1.45 

0.63 
1.45 

-7.4% 
44.6% 

-7.4% 
44.6% 

vertical strain 
vertical strain 

22 
10 

-185 
-388 

-98.4 
-258 

-98 
-258 

0.53 
0.66 

0.53 
0.66 

-22.3% 
-33.5% 

-22.4% 
-33.5% 

vertical stress, z 
vertical stress, z 

19 
12 

0.018 
-197 

0.01 
-192 

0.01 
-192 

0.56 
0.97 

0.56 
0.97 

0.0% 
-2.5% 

0.0% 
-2.5% 

vertical stress, z 
vertical stress, z 

21 
13 

-1.37 
-23.1 

-2.67 
-23.8 

-2.67 
-23.8 

1.95 
1.03 

1.95 
1.03 

0.7% 
0.4% 

0.7% 
0.4% 

1 
loriz. stress, x 
loriz. stress, x 

19 
12 

-11.8 
-150 

-7.49 
-135 

-7.49 
-135.4 

0.63 
0.90 

0.63 
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Finally, a cylindrical model that incorporated horizontal infinite elements along the sides 
and vertical infinite elements along the base, as depicted in Figure 3.30, was analyzed Note 
that this model contained only horizontal and vertical infinite elements and thus does not 
satisfy the requirement that infinite elements be generally oriented radially away from the 
pole" (pout of load application). While this model is generally simpler to generate than 

model with radial infinite elements, the effect of the "improper" modeling on results was not 
known a priori. 
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Figure 3.30. Cylindrical-type mesh with vertical and horizontal infinite elements. 

The results of this analysis for a single wheel loading are compared with the LEM results 
and the results of the "fixed" boundary model in Table 3.14. In general, the fidelity of the 
results for stress and strain are fairly comparable to the fixed boundary model. The major 
exception is the considerable over-prediction of vertical displacement in the model with 
infinite elements. It is unclear at this time what is the source of this discrepancy. A review 
of the displacement basin indicates that the over-prediction is essentially constant, i.e., the 
FEM prediction is 0.023 inch greater than the LEM prediction at all points. This constant, 
almost rigid-body vertical motion, may indicate that the displacements may be very sensitive 
to the orientation of the vertical infinite elements, and/or to the lack of radial infinite 
elements other than near the surface and directly below the load. 

In general, this cylindrical-type model is not recommended for further application to the 
problem at hand due to the relative difficulties in modeling and the poor results obtained 
from the models investigated. The general fixed-boundary model is somewhat more difficult 
to generate than the previous box-type model due to the curved sides. More importantly, the 
model is not amenable to proper modeling with infinite elements due to a basic geometry that 
inhibits use of radially-oriented elements of proper length. Finally, the previously described 
attempts at using infinite element models that do not meet the requirements for infinite 
elements lead to inconsistent, unsatisfactory results that are difficult to understand or explain 
For the additional difficulty in modeling incurred by this mesh type, it is more beneficial to 
carry the curved shapes to the vertical plane as well as the horizontal plane and produce the 
"spherical-type" model described in the following paragraphs. 
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Table 3.14. Results for cylindrical model, horizontal and vertical infinite elements. 

single wheel load 

BISAR 
ABAQUS FEM/LEM X 

result variable point fixed infinite fixed infinite fixed infinite 

vertical displacement 16 0.0318 0.0245 0.0547 0.77 1.72 -11.6% 36.5% 
vertical displacement 17 0.0339 0.0268 0.0572 0.79 1.69 -11.3% 37.1% 
vertical displacement 18 0.0366 0.0299 0.0601 0.82 1.64 -10.7% 37.4% 
vertical displacement 5 0.0405 0.0345 0.0642 0.85 1.59 -9.6% 37.7% 
vertical displacement 4 0.0520 0.0469 0.0758 0.90 1.46 -8.1% 37.9% 
vertical displacement 3 0.0628 0.0584 0.0861 0.93 1.37 -7.0% 37.1% 
vertical displacement 2 0.0520 0.0488 0.0751 0.94 1.44 -5.1% 36.8% 
vertical displacement 6 0.0381 0.0324 0.0616 0.85 1.62 -9.1% 37.4% 
vertical displacement 7 0.0347 0.0301 0.0574 0.87 1.65 -7.3% 36.1% 

horizontal strain 20 30 19 -63 0.63 -2.10 -7.4% -62.8% 
horizontal strain 8 148 214 151 1.45 1.02 44.6% 2.0% 

vertical strain 22 -185 -98.4 -238 0.53 1.29 -22.3% 13.7% 
vertical strain 10 -388 -258 -382 0.66 0.98 -33.5% -1.5% 

vertical stress, z 19 0.018 0.01 0.003 0.56 0.17 0.0% 0.0% 
vertical stress, z 12 -197 -192 -192 0.97 0.97 -2.5% -2.5% 

vertical stress, z 21 -1.37 -2.67 -1.59 1.95 1.16 0.7% 0.1% 
vertical stress, z 13 -23.1 -23.8 -22.4 1.03 0.97 0.4% -0.4% 

horiz. stress, x 19 -11.8 -7.49 -26 0.63 2.20 -2.2% 7.1% 
horiz. stress, x 12 -150 -135 -164 0.90 1.09 -7.5% 7.0% 

horiz. stress, x 21 -1.3 -2.15 -0.31 1.65 0.24 0.4% -0.5% 
horiz. stress, x 13 4.33 3.82 5.23 0.88 1.21 0.3% -0.5% 

A very simple spherical-type model was investigated to evaluate the possibility of using 
this shape and to compare the simplest 3-D application to the LEM results. This model, 
shown in Figure 3.31, consists of one-fourth of a half-sphere of a single material (one layer) 
and includes infinite elements at the boundaries. The two vertical surfaces are planes of 
symmetry. The central area of the mesh is the "finite" portion of the model, with the outer 
area being infinite elements representing the elastic boundaries. A single wheel loading is 
applied over the central circular area and the solid elements generally radiate out from this 
area The infinite elements thus meet the specified requirements as closely as can be 
accomplished for a three-dimensional model. 
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Figure 3.31. Single-layer spherical-type finite element mesh. 

Results of this analysis were compared with a comparable BISAR analysis at three 
depths and at two radial distances, specifically under the center of the load and at the edge of 
the load. The results are compared in Table 3.15, which is a different layout than the 
previous tables in this report. At each of the six comparison locations, which are defined by 
the depth and radial distance on the second and third rows of the table, the results are 
compared for seven components of displacement, strain, and stress as indicated in the 
leftmost column. Each comparison includes the LEM (BISAR) prediction, the FEM 
prediction, the direct ratio of the FEM and LEM result, and the normalized percent 
difference. 

The results indicate excellent agreement between the FEM and LEM except for stresses 
and strains at the surface (depth=0). This apparent difference is actually a by-product of the 
method of strain and stress reporting at a free surface in the finite element model. In the 
finite element model, the stresses and strains are actually calculated and stored at the element 
integration points and averaged at the element nodes. At interior nodes, the average of the 
element quantities at integration points in adjacent elements is a good measure of the nodal 
quantity. However, at free surface nodes there are no adjacent element integration points 
with which to average and the nodal quantity more generally reflects the integration point 
value, in this case usually under-predicting the nodal quantities which tend to be maximum at 
the free surface. Note that native nodal quantities, such as displacement are directly 
computed at the nodes and do not suffer from this nodal averaging discrepancy. 
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Table 3.15. Results for simple, single layer spherical-shaped model. 
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The effect of nodal averaging of element quantities is simply illustrated in Figure 3.32, which 
plots the FEM predictions of vertical and horizontal nodal stress quantities versus' depth 
Perhaps the most obvious discrepancy in this method of nodal averaging prediction is evident 
m the vertical stress at the center of the loaded area, which, by statics, must approach the 
applied tire pressure of 199.4 psi at the surface. We can see in the plot of Figure 3.32 that the 
stress gradient with depth would more appropriately fit the surface pressure of 199 4 psi than 
the nodal averaged prediction of 174 psi. This same anomaly is present, though less 
conspicuous in the other predicted stresses. This anomaly in element quantities predicted by 
typical fimte element procedures should be kept in mind in interpretation of any present and 
future results predicted using this method. 
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Stress Variation with Depth (FEM) 

% depth 

Figure 3.32. Predicted nodal stress versus depth (spherical model). 

A refined mesh was also analyzed for the simple, single-layer spherical model to verify 
the previously described assertion regarding the anomaly in stresses and strains at the free 
surface. Though not included here, the results of this analysis indeed confirmed that the 
element quantities (stress, strain) did converge toward the expected values predicted by the 
Layered Elastic Method. 

The spherical-type model was applied in three additional different configurations to the 
problem at hand, i.e., the baseline pavement layer thicknesses, materials, and wheel loading 
for the B-727. Each of these models was for a single wheel loading and had the overall shape 
of the previous simple one-layer model, but consisted of the three layers of asphaltic 
concrete, base course, and subgrade utilized in the baseline cases. The three models included 
variations in modeling of the infinite element orientations and the mesh density. 

The first of these models, shown in Figure 3.33, consists of an inner "core" of the 
pavement system with the three layers modeled similarly to that of previous 3-D models. 
The quarter-hemispherical core includes all three layers with a radial mesh in a plan view. 
The boundaries are modeled with infinite elements that radiate from the "pole" (loaded area) 
to produce the rather unusual configuration shown. This boundary configuration obviously 
does not reflect the reality of the horizontal pavement layers extending from the inner model 
but was analyzed to determine what effect this modeling "error" would have on the predicted 
results. 
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kL 

Figure 3.33. Three-layer spherical-type mesh with radial infinite elements. 

Though not presented here for brevity, the results of the above model indicated an overly 
stiff system, with predicted vertical displacements well below that predicted by the LEM and 
previous 2-D and 3-D finite element models. This result was certainly expected since the 
boundary infinite elements extend radially outward, creating an unrealistically stiff boundary 
especially for the base course. The predicted stresses underneath the load were less affected 
by this unrealistic boundary, yielding results comparable to previous FEM analyses. 

The second spherical-type model analyzed with three layers utilized more realistic 
boundary modeling, with the mesh shown in Figure 3.34. The infinite elements properly 
maintain the layer thicknesses to provide a plausible boundary stiffness. This configuration 
does, however, partially violate the preferred orientation of infinite elements in the top two 
layers that are presumed to radiate from the pole. The results of the analysis permit an 
examination of the effect of this minor variance in the application of infinite elements 
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k. 
Figure 3.34. Three-layer spherical-type mesh with layered infinite elements. 

Selected results from this analysis are presented in Table 3.16 for five depths under the 
center of the load, and five depths along element boundaries radiating downward from the 
edge of the load. The finite element results are compared with BISAR results computed at 
the same coordinate locations. The results indicate good agreement with the LEM results, 
with the expected exception of surface stresses and strains. This exception was described and 
explained in the previous, single layer spherical-type model and appears reasonable in this 
case. Basin displacements are about 7-9 percent lower than the LEM prediction and most 
stress and strain predictions not at the free surface are within a few percent of the LEM 
prediction. Overall, this model predicts interior stresses and strains very well. 
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Table 3.16. Results for three-layer spherical-type model. 
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Based on the favorable results of the previous FEM model, a refined model, shown in Figure 
3.35, was analyzed for the same conditions. Results were similarly compared with an 
equivalent BIS AR analysis, resulting in the comparisons shown in Table 3.17. As expected, 
the result comparison improved somewhat for practically all quantities. The refined mesh 
produces a very acceptable level of prediction, compared to the LEM (BISAR) prediction. 
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Figure 3.35. Refined three-layer spherical-type mesh with layered infinite elements. 

Table 3.17. Results for refined three-layer spherical-type model. 
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3.5.2.6 Summary of three-dimensional results comparison. 

The results of interest for several three-dimensional finite element models have been 
presented in the preceding sections. The box-type finite element models are reasonably 
simple to generate and predicted stresses and strains very well in each configuration. Vertical 
displacements were predicted well only in the models with infinite elements at the 
boundaries. 

The cylindrical-type model predicted stresses quite well, vertical displacements fairly 
well, and was inconsistent in strain predictions. The cylindrical-type models with infinite 
elements predicted some results better than the fixed boundary model but surprisingly over- 
predicted vertical displacements. This model type is not recommended for further 
development due to difficulty in generating acceptable configurations of infinite elements at 
the boundaries. 

A simple application of the spherical-type mesh for a single layer system provided 
excellent agreement with the Layered Elastic Method. This analysis also provided a 
straightforward example to demonstrate the effect of nodal-averaged element quantities such 
as stress and strain at a free surface. In this case, the predicted nodal-averaged values were 
less than the actual values. 

The spherical-type mesh was applied to the baseline three-layer pavement system using 
three mesh and boundary configurations. The mesh with perfectly radial infinite elements 
produced an overly stiff system, as expected. The two meshes with consistent infinite 
element configurations (horizontal layers) produced very acceptable predictions, considering 
the caveat regarding free-surface stress and strain predictions. 

Overall, the three-dimensional finite element models predicted displacement, stress, and 
strain in the pavement system with a fidelity comparable to the two-dimensional models and 
generally acceptable when compared to the Layered Elastic Method. The box-type model 
and spherical-type models are reasonable candidates for further investigation and application. 
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Chapter 4 CONCLUSIONS AND RECOMMENDATIONS 

4.1      CONCLUSIONS 

Although the analytical models considered in this study were rather simple, several 
conclusions may be drawn from the effort. Firstly, the primary conclusion must be that the 
finite element method, properly applied, can model the flexible pavement system to produce 
excellent agreement with the more prevalent modeling technique of the Layered Elastic 
Method. In addition, several considerations as to proper modeling were illustrated via the 
parameter studies conducted using the two- and three-dimensional models. For example, the 
importance of the boundary locations and conditions was demonstrated by evaluating the 
convergence of the key results as the boundary conditions were changed. This investigation 
indicated that the boundaries should be modeled with infinite elements to produce the best 
agreement with the LEM results. The effect of mesh refinement and mesh type was generally 
shown to be small, thus reasonable meshes can be utilized. A brief investigation of the "no 
tension" option for the linear elastic material model indicated that this was not a useful option 
for this type of analysis. 

The three-dimensional finite element models predicted results to a similar level of 
accuracy as the two-dimensional models. Several mesh and boundary configurations were 
investigated and also indicated that infinite element boundaries, properly applied, can 
improve the predictions. 

4.2      RECOMMENDATIONS 

At this stage, it is recommended that the development of the analytical model proceed 
methodically toward inclusion of nonlinear interface behavior, nonlinear material properties, 
and more general three-dimensional loading. It is further recommended that these 
enhancements be implemented and investigated in relatively small steps, i.e., not changing 
more than one parameter at any particular stage. For example, non-bonded interface behavior 
or complex nonlinear material models can be investigated separately using two-dimensional 
models before proceeding to inclusion in three-dimensional models. 

It is also recommended that finite element modeling be applied to one or more typical 
pavement material laboratory tests to calibrate the material model. 

Finally, it is recommended that a detailed long-range plan for investigation and model 
development be determined with a goal of developing a detailed analytical model for flexible 
pavement design and analysis. 
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