
Preliminary Results on $h_c(1S)$ and $h_c(2S)$ from BaBar

Stefania Ricciardi for the BaBar Collaboration

2nd International Workshop on Quarkonium Fermilab, Batavia, IL, September 20-22, 2003

Overview

 h_c (2¹S₀), or h_c , radial excitation of firmly established h_c (1¹S₀) First observed by CrystalBall in M1 radiative decay of ψ (2S) Observed only recently by B-factories (Belle/BaBar/Cleo)

BaBar measurements in e^+e^- collisions at U(4S):

■ B Decays: $B B h_c X$ $B B h_c K$, "golden mode"

for CP-violation studies

□ *gg* production:

 $e^+e^- \otimes e^+e^-\boldsymbol{g^*g^*} \otimes e^+e^-\boldsymbol{h}_{c}^{(\prime)}$

>sin2β measurement
>Branching fractions products
>Search for new h_c decay modes

> h_c mass and width > h_c observation, mass and width

Fermilab, 20-22 September 2003

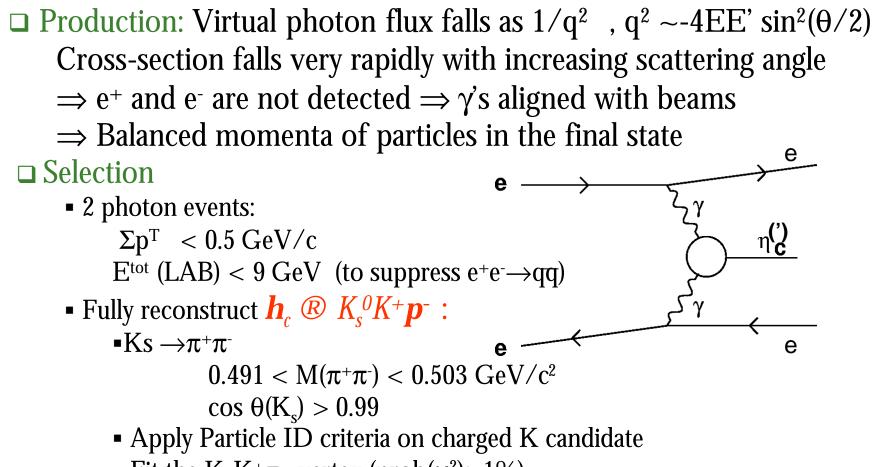
 $h_{c}^{(\prime)}$ Spetroscopy in $\gamma\gamma$ Fusion

Resonance Parameters of $h_c(1^1S_0)$

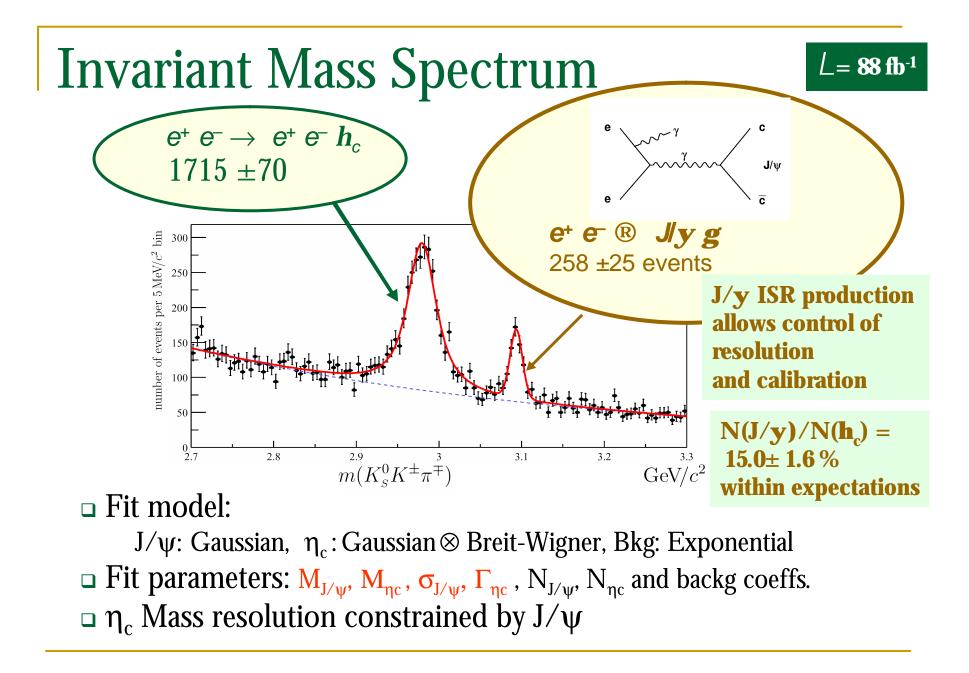
Still large spread of experimental results on mass and <u>width</u>
 Total width dominated by two-gluon component
 PQCD predicts quite accurately:

$$\frac{\Gamma_{\text{tot}}}{\Gamma_{gg}} \approx \frac{9a_{s}^{2}}{8a^{2}} \times \frac{1+4.8a_{s}/p}{1-3.4a_{s}/p}$$

Kwong et al. Phys Rev D37,3210(1988)


Precise measurements of Γ_{tot} and $\Gamma_{\gamma\gamma}$ allow test of these calculations

PDG(2003) : $G_{tot} = 16.1^{+3.1}_{-2.8}$ MeV, average over range 7–27MeV Recent results from Belle, E835 non included in this average


Fermilab, 20-22 September 2003

Stefania Ricciardi

γγ Fusion Production and Selection

• Fit the $K_S K^+ \pi^-$ vertex (prob(χ^2)>1%)

Preliminary Results

$$m (\mathbf{h}_{c})^{*} = 2983.3 \pm 1.2 \text{ (stat)} \pm 1.8 \text{ (syst) MeV}/c^{2}$$

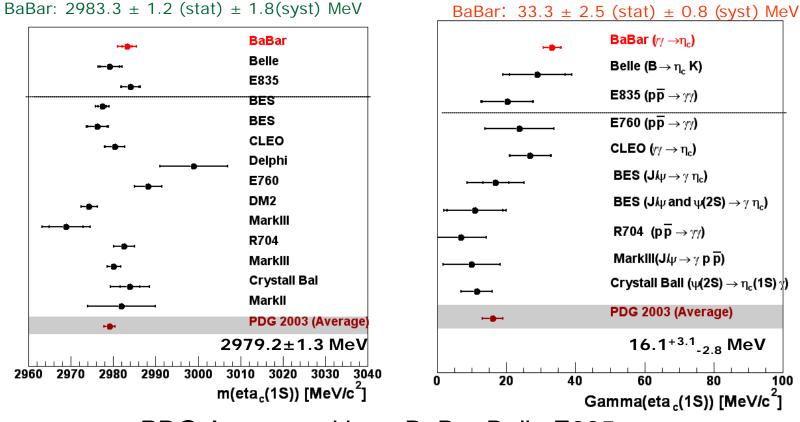
$$\Gamma_{\text{tot}} (\mathbf{h}_{c}) = 33.3 \pm 2.5 \text{ (stat)} \pm 0.8 \text{ (syst) MeV}/c^{2}$$

Other results from the same fit allow to control systematics:

 $\begin{array}{ll} \mathrm{m}(J/\mathbf{y})^{\star} &= 3095.1 \pm 0.8 \ \mathrm{MeV} & (\mathrm{i.e.,} \ \sim -1.8 \ \mathrm{MeV} \ \mathrm{from} \ \mathrm{PDG} \) \\ \sigma \ (J/\mathbf{y}) &= 7.5 \pm 0.8 \ \mathrm{MeV} & (\mathrm{MC:} \ \sigma(J/\mathbf{y}) = 8.1 \pm 0.2 \ \mathrm{MeV} \\ \mathbf{s}(\mathbf{h}_{\mathrm{c}}) = 7.3 \pm 0.1 \ \mathrm{MeV} \) \end{array}$

*Mass central values include -1.1 MeV correction due to shift observed in MC for both J/ψ and η_c mass peaks

Systematic uncertainty on *m*:

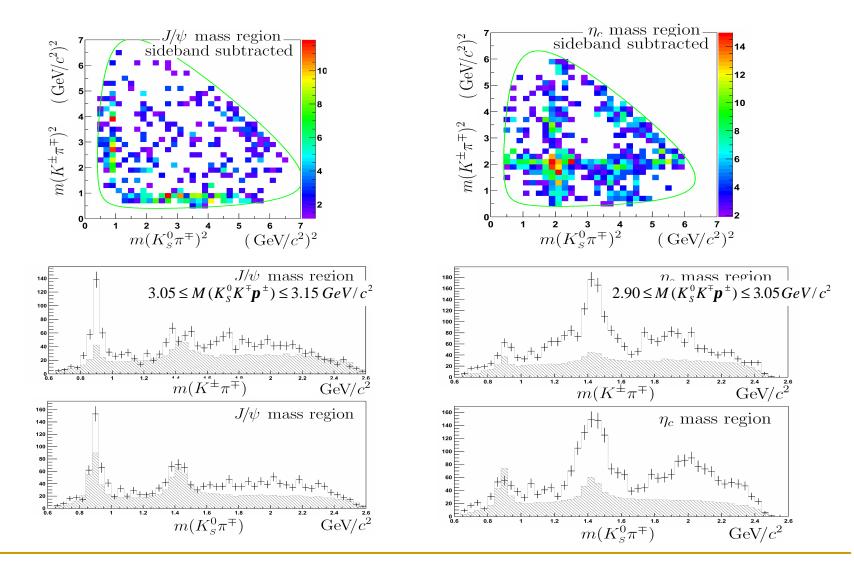

mass scale (from J/ψ mass peak shift) 1.8 MeV

Systematic uncertainty on Γ :

- background subtraction (fit on different mass ranges) 0.7 MeV
- mass resolution(fit using MC width)0.4 MeV

\boldsymbol{h}_c Mass and Width

$m(h_c)$



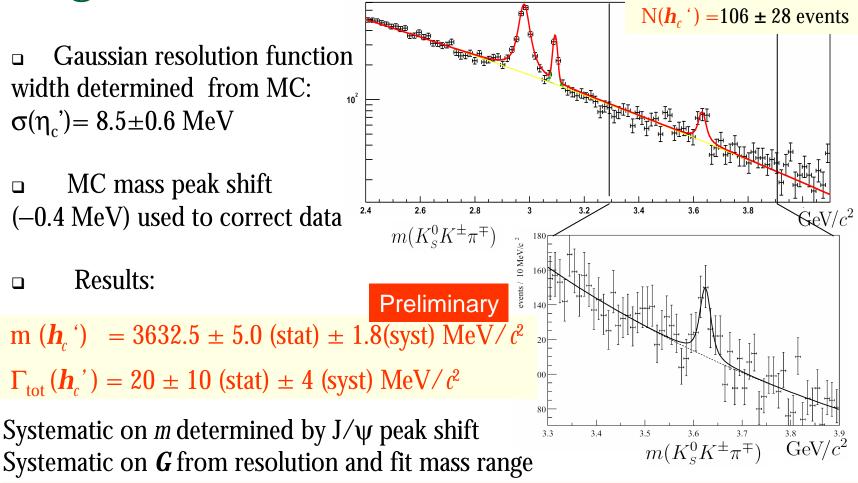
 $\Gamma(\boldsymbol{h}_{c})$

PDG Average without BaBar, Belle, E835

Dalitz Plots

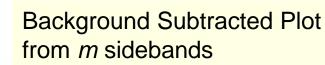
• J/ ψ and η_c decays to K_sK π show pattern of K π resonances

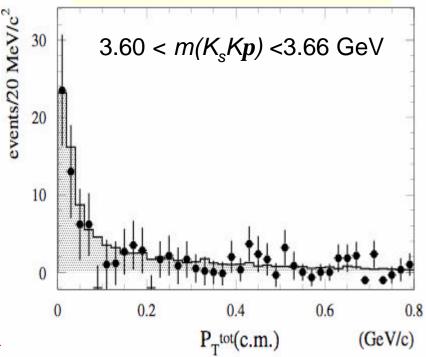
Fermilab, 20-22 September 2003


The $h_c(2S)$ State

■Hyperfine splitting predicted by heavy quark potential models: $m(y(2S)) - m(h_c(2S)) \in (42, 103) \text{ MeV/c}^2$

First claim: Crystal Ball (PRL 48:70, 1982) $m(\mathbf{h}_{c}(2S)) = (3595 \pm 5) \text{ MeV/c}^{2}, \Gamma(\mathbf{h}_{c}(2S)) < 8 \text{ MeV/c}^{2}$


■Recent evidences (at higher masses): $\square B \rightarrow \mathbf{h}_{c}(2S) \ K \text{ decays (Belle,PRL89:102001,2002)}$ $\square e^{+}e^{-} \rightarrow J/\mathbf{y} \ \mathbf{h}_{c}(2S) \ (Belle, PRL 89:142001, 2002)$ $\square e^{+}e^{-} \rightarrow e^{+}e^{-} \ \mathbf{h}_{c}(2S) \ (CLEO, \text{ hep-ex/0306060})$


Invariant Mass Spectrum in the η_c ' Region

Is it $h_c(2^1S_0)$?

- Quantum numbers not measured rigorously but:
- J^P =0⁺ excluded by final state
- ISR excluded: decay products concentrated in forward hemisphere like η_c and in contrast to J/ψ (e⁺e⁻ asymmetric collider \Rightarrow larger acceptance for J/ψ decay products in backward hemisphere)
- P_T^{tot} peaked at zero, characteristics of quasi-real photons fusion
 ⇒ rules out J=1 state
- J>2 disfavored for low mass charmonium states
 - \Rightarrow Supporting evidence for $J^{PC} = 0^{-+}$ sta

$h_c(2S)$ Mass: Summary of Results

Production in $B \otimes h_c K$: CP Violation and h_c Branching Fractions

η_c Decay Channels

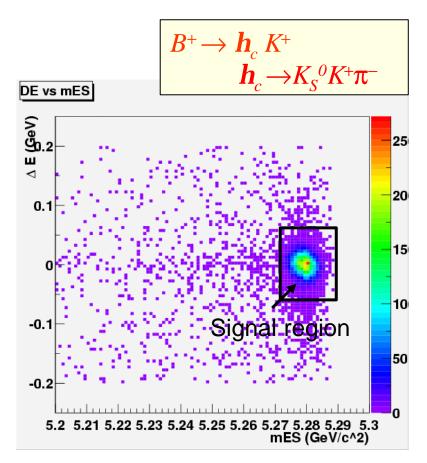
□ Few known η_c decay modes (~25% fraction of total width) □ Modes with high B.F. and low combinatorial background analyzed for BaBar measurement of $B(B@h_cK)$

$$\begin{split} \eta_{c} &\rightarrow K_{s}K^{+}\pi^{-} + \text{c.c.} \\ \eta_{c} &\rightarrow K^{+}K^{-}\pi^{0} \\ \eta_{c} &\rightarrow 2(K^{+}K^{-}) \end{split}$$

□ Current effort in BaBar to reconstruct more decay channels and to search for new ones, like:

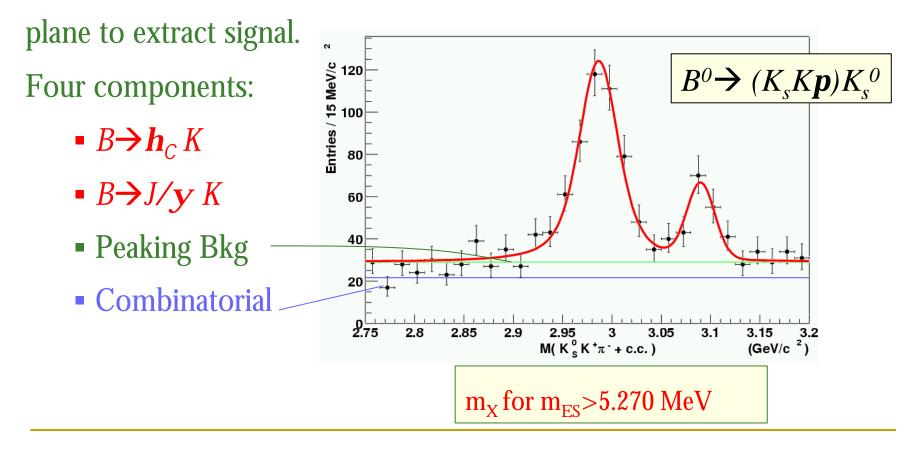
 $\eta_c \rightarrow p \ \overline{p} \ \pi \pi$ CP violation studies would also benefit of additional statistics.

B Reconstruction and Event Selection

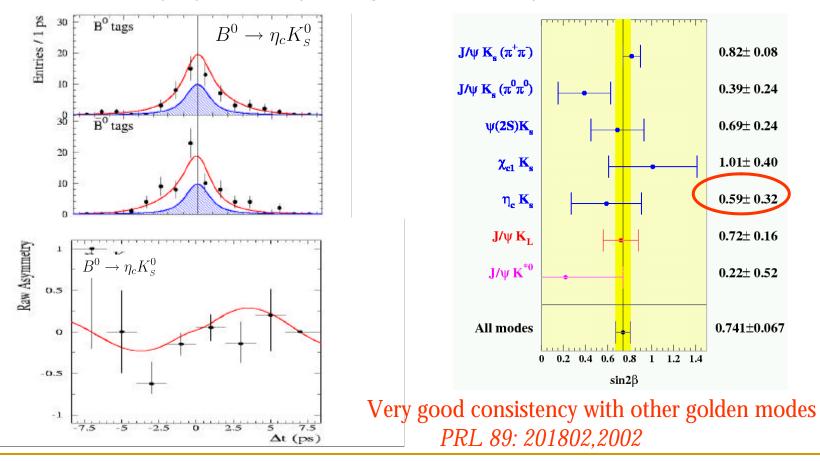

Common to all $B \otimes h_c K$ analyses:

- Full reconstruction of the B candidate through its decay products
- B signal identification based on 2 quasi-independent kinematical variables:

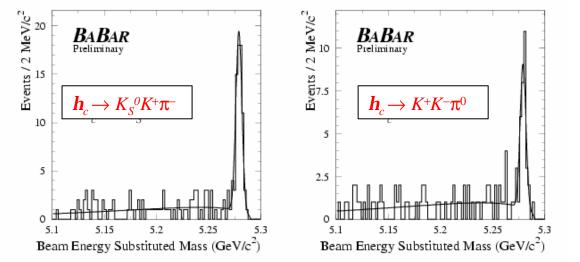
$$m_{\rm ES} = \sqrt{E_{\rm beam}^{*2} - p_{\rm B}^{*2}}$$


$$\Delta E = E_{B}^{*} - E_{beam}^{*}$$

- Continuum background suppression based on shape variables and energy flow into cones *a la CLEO* combined in a Fisher
- Peaking background in $(m_{ES}, \Delta E)$ signal region discriminated through invariant mass of the charmonium system (m_X)


m_X: Invariant Mass of Charmonium System

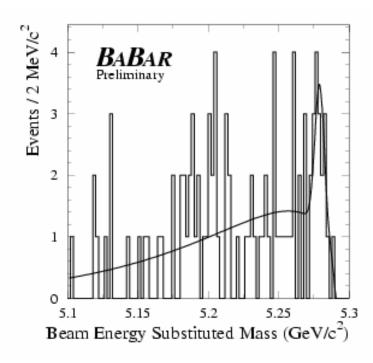
2D unbinned maximum likelihood fit in {m_X, m_{ES}}


Time-Dependent Analysis (L=80.8 fb⁻¹)

Using neutral B decays where signal is significant $B^0 \rightarrow \mathbf{h}_c \ K_s^0$ with $\mathbf{h}_c \ \mathcal{B} \ K_s^0 K^+ \mathbf{p}^-$ and $\mathbf{h}_c \ \mathcal{B} \ K^+ K^- \mathbf{p}^0$

Branching Fraction of $B \rightarrow \mathbf{h}_{c} K$

Preliminary measurements on L=20.7 fb⁻¹ (hep-ex/0203040)


Using only well-established modes: $\mathbf{h}_c \otimes K^0 K^+ \mathbf{p}^$ and $\mathbf{h}_c \otimes K^+ K^- \mathbf{p}^0$ Amplitudes related by isospin.

 $\begin{array}{lll} B(B^+ \to {\pmb h}_c \ K^+) &= & (1.50 \pm 0.19 \pm 0.15 \pm 0.46 \ ^{(*)} \) \times 10^{-3} \\ B(B^0 \to {\pmb h}_c \ K^0) &= & (1.06 \pm 0.28 \pm 0.11 \pm 0.33 \ ^{(*)} \) \times 10^{-3} \end{array}$

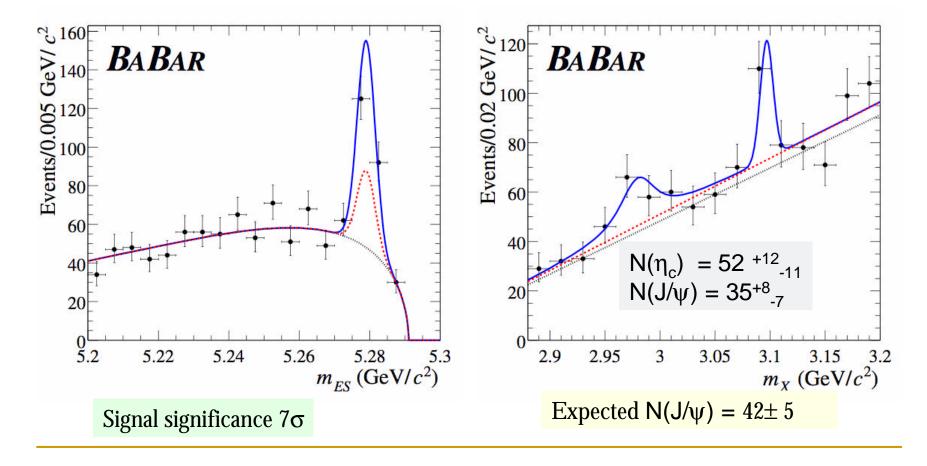
(*) error due to $B(h_c \otimes KKp) = 5.5 \pm 1.7 \%$ (PDG2002)

Systematic error mostly from Kaon ID, tracking, K_S reconstruction

$B ightarrow h_{ m c} \ K$ with $h_{ m c} ightarrow K^+ K^- K^+ K^-$

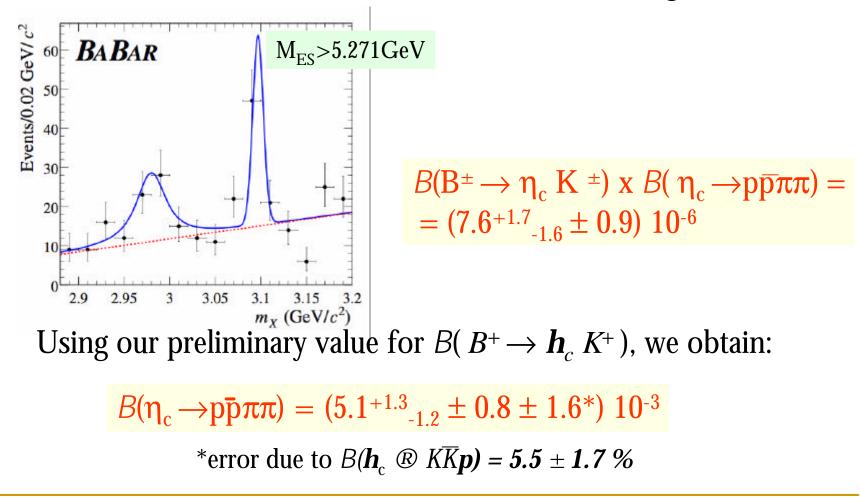
(hep-ex/0203040)

Kaons identified with tight criteria to suppress huge combinatorial Includes $\eta_c \rightarrow \phi \phi$ (~5 events expected)


Yield (m _{ES} >5.27 GeV)	17
Combinatorial	7.4 ± 1.8
Peaking Background	1.7 ± 2.7

Note: About 80 events expected using PDG $B(2.2\% \pm 1.2\%)$ for $\eta_c \rightarrow 2(K^+K^-)$ our efficiency (12%) and our preliminary measurement of $B(B^+ \rightarrow \eta_c K^+)$

Fermilab, 20-22 September 2003


$B \rightarrow \mathbf{h}_{c} K \text{ with } \mathbf{h}_{c} \rightarrow p \overline{p} \pi^{+} \pi^{-} (L=81.9 \text{ fb}^{-1})$

Only upper limits on *B* reported so far (<1.2 % @ 90 %CL, Mark-II) $h_c \rightarrow \lambda \overline{\lambda}$ vetoed

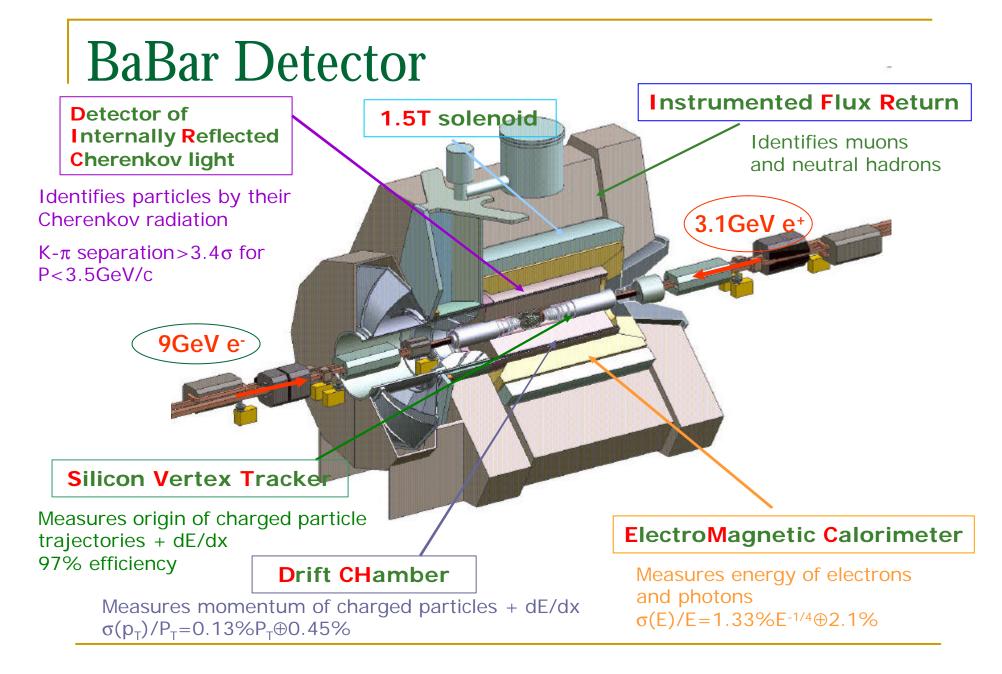
Branching Fractions Results Preliminary

Yield extraction cross-checked with alternative fitting method

Summary

 $\gamma\gamma$ fusion at BaBar provides high statistics for charmonium spectroscopy Preliminary precise measurements of η_c mass and width

 $m(\mathbf{h}_{c}) = 2983.3 \pm 1.2 \text{ (stat)} \pm 1.8 \text{ (syst) MeV}/c^{2}$ $\Gamma_{\text{tot}}(\mathbf{h}_{c}) = 33.3 \pm 2.5 \text{ (stat)} \pm 0.8 \text{ (syst) MeV}/c^{2}$


Observation of η_c '. Preliminary results:

 $m(\mathbf{h}_{c}) = 3632.5 \pm 5.0 \text{ (stat)} \pm 1.8 \text{ (syst) MeV}/c^{2}$ $\Gamma_{\text{tot}}(\mathbf{h}_{c}) = 20 \pm 10 \text{ (stat)} \pm 4 \text{ (syst) MeV}/c^{2}$

- η_c production in B decays successfully used for CP violation studies and decay rates measurements
- Observation of $\eta_c \rightarrow p\overline{p}\pi\pi$. Preliminary Branching Fraction:

 $B(\eta_{c} \rightarrow p\bar{p}\pi\pi) = (5.1^{+1.3}_{-1.2} \pm 0.8 \pm 1.6) \ 10^{-3}$

Additional slides

