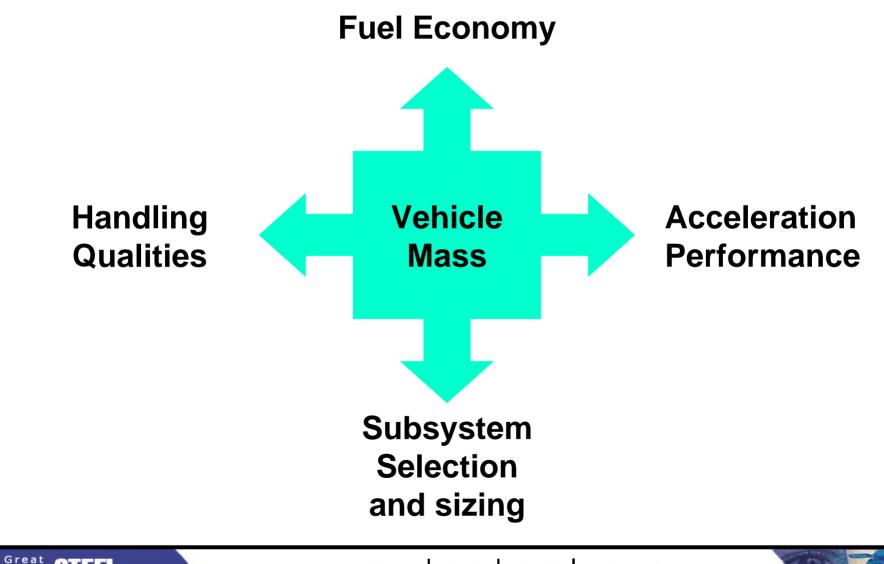

Seminar

Preliminary Vehicle Mass Estimation Using Empirical Subsystem Influence Coefficients

Donald E. Malen

University of Michigan

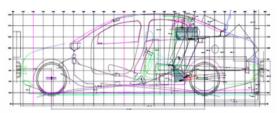
A project supported by the **Auto/Steel Partnership**

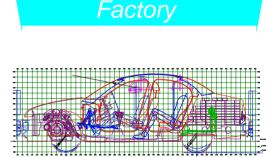


Designs

Seminar

Mass Estimation in Vehicle Design


Vehicle Development Stage


Decide if vehicle concept is consistent with mission

Configuration

Advance Vehicle Development

Decide which configuration is best in meeting vehicle goals

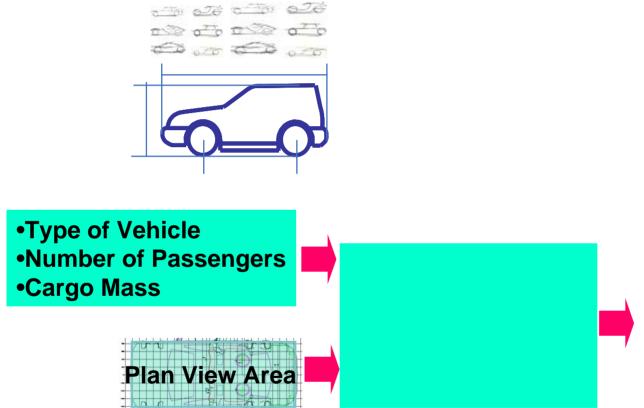
Detail

Engineering

Control mass growth to targets

What is mass if designed as a typical vehicle for this size and class?

Seminar


Designs

What is mass if configuration is changed from typical vehicle?

Mass Estimation In The PreConfiguration Stage

Mass of *Nominal* Vehicle for Size and Vehicle Category

Great Designs STEEL Seminar WWV

Vehicle Sample

2004 VW Touareg 2004 Nissan Murado 2004 Toyota Sienna 2004 Toyota Prius 2003 Toyota Camry (US) 2003 BMW 330i 2003 Infiniti G35 2003 Honda Accord 2003 Toyota Corolla Sedan 2002 Audi A4

Seminar

Great

Designs

2007 Cadillac SRX Chevrolet HHR Saturn Outlook GMC Sierra Crew Cab Chevrolet Colorado Chevrolet Impala Pontiac G6 SE1 Cadillac STS GMC Yukon Saturn Vue

Sedans:	14
SUV:	12
Pick Up:	5
Van:	2
	33

2002 Honda Civic LX 2003 Honda Accord EX 2003 PT Cruiser 2003 Toyota Matrix XRS 2003 Toyota Tacoma 4x2 2004 Dodge Ram 4x4 2004 Nissan Titan LE 2004 Toyota Highlander Premium 2004 Toyota Sienna 2005 Honda Odyssey Touring 2005 Jeep Liberty 2005 Jeep Wrangler

Data for Each Vehicle

Functional Subsystem

Brakes

Steering

- Powertrain
- Fuel and Exhaust

Wheels and tires

Air Conditioning

Body Non-Structure

Body Structure

Front Suspension

Rear Suspension

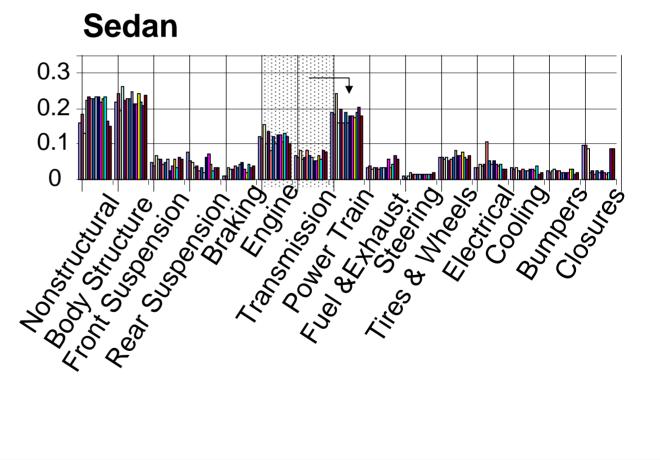
Seminar

Great

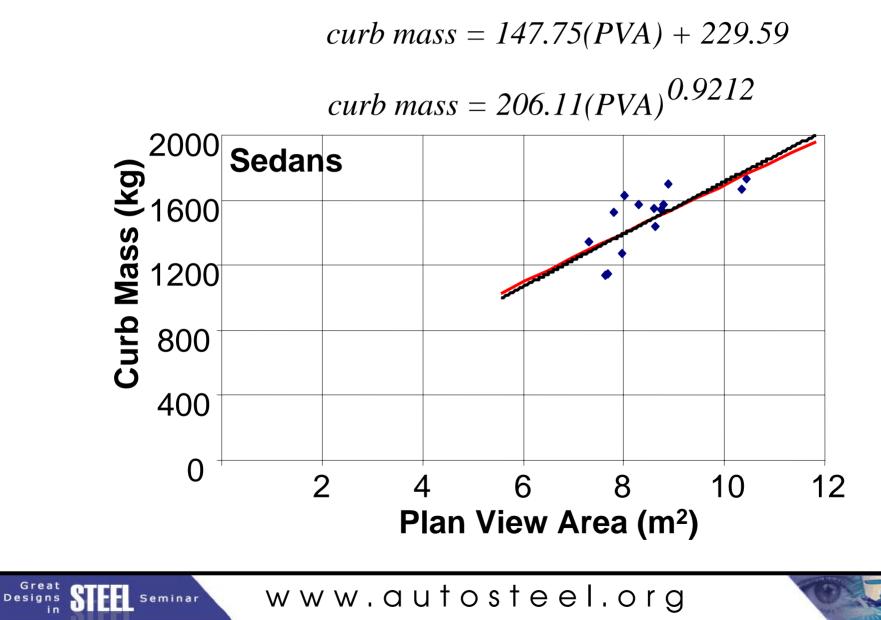
Designs

Electrical

Bumpers


- Vehicle Category
- Vehicle overall dimensions
- •Curb Mass
- •Number of Passengers
- •Cargo Mass
- •Gross Vehicle Mass
- Subsystem Mass

Subsystem Mass as a Fraction of Curb Mass


Body Non-structura	al0.204
Body Structure	0.227
Front Suspension	0.049
Rear Suspension	0.044
Braking	0.032
Engine	0.118
Transmission	0.067
Power Train	0.185
Fuel and Exhaust	0.040
Steering	0.014
Tires & Wheels	0.065
Electrical	0.046
Cooling	0.027
Bumpers	0.022
Closures	0.046

Great Designs in

Curb Mass vs. Plan View Area

Great

Designs

An Example

Seminar

A new vehicle is in the planning stage (*pre-configuration*).

Target Specifications

- 5 passengers
- **120 kg** cargo capacity.
 - **1815 mm** Vehicle width
- 4732 mm length
- 2250 Lb test weight class for fuel economy
 - (~885kg curb mass)

Step 1: Pre Configuration Mass Estimation

For Sedans

Vehicle Curb Mass

curb mass $(kg) = 147.75 A(m^2) + 229.59$

$$A = (1.815 m)(4.732 m) = 8.59m^2$$

curb mass =~1500kg Target: 885kg

Subsystem Mass

(*Body Non-structure mass*) = 0.204 (*Curb Mass*)

 $(Body Non-structure mass) = \sim 306 kg$

Great Designs in

A/S Auto/Steel P Partnership

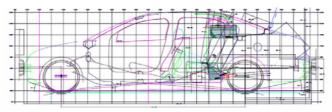
Great

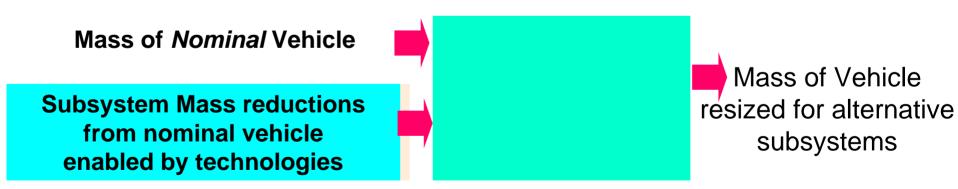
Seminar

Designs

Michigan Engineering

Software Tool: Pre Configuration Mass Estimation




Designs

Seminar

Mass Estimation In The Configuration Stage

What is mass if configuration is changed from **typical** vehicle (mass saving materials or technology)?

Great Designs

SIEEL

Seminar

Step 2: Mass Reduction Technologies

Michigan **Engineering**

Step 3: Sort Technologies by Cost

For a vehicle with curb mass=1500kg, what are mass reduction technologies?

subsystem	mass reduction technology	mass savings
		kg
Tire& wheel	Min. cap. wheels and tires	20.00
non structure	sound treatment opt	19.45
Braking	optimized pedal bracket	3.00
rear susp	shape optimization	6.59
body struct	joint improvements	15.00
closures	hardware: bar stock	10.00
front susp	shape optimization	7.34
body struct	AHSS optimization	70.00
non structure	reduce glass thickness	5.00
non structure	IP substrate optimization	21.43
Braking	tubular pedals	4.00
non structure	seat frame shape optimization	
closures	AHSS optimization	tech
Fuel&Exhaust	lower gage of exhaust	marg

Primary Mass Reduction

Subsystem	Mass reduction
Non Structure Body Structure Front Suspension Rear Suspension Braking Powertrain Fuel and exhaust Steering Tire & Wheels Bumper Closures	100.88kg 85.00 7.34 6.59 7.00 27.72 5.99 2.00 20.00 4.95 22.46
	289.93kg

This configuration of technologies provides a primary mass reduction total of ~290kg.

Curb Mass from Pre-Configuration= 1500 Primary Mass Savings from alternative configurations -290 1210

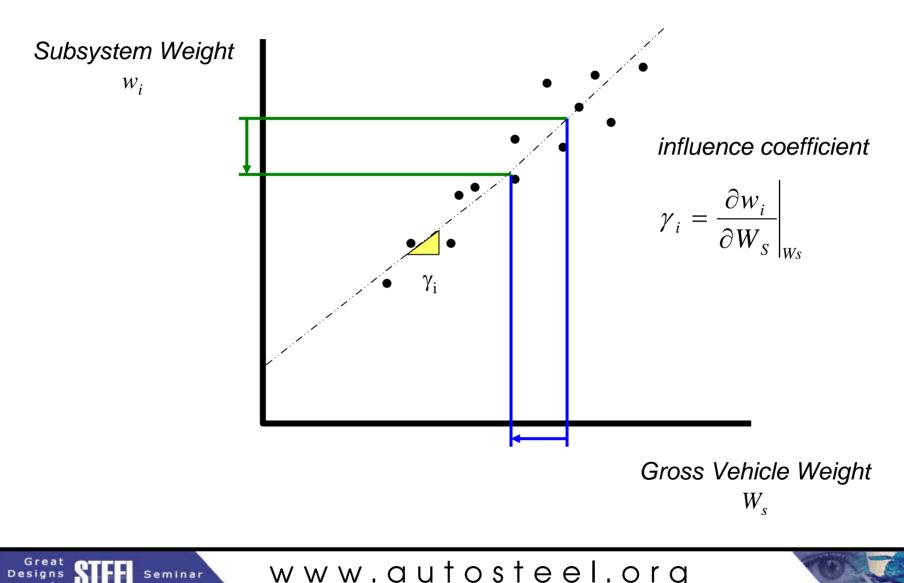
Target: 885

Mass Compounding

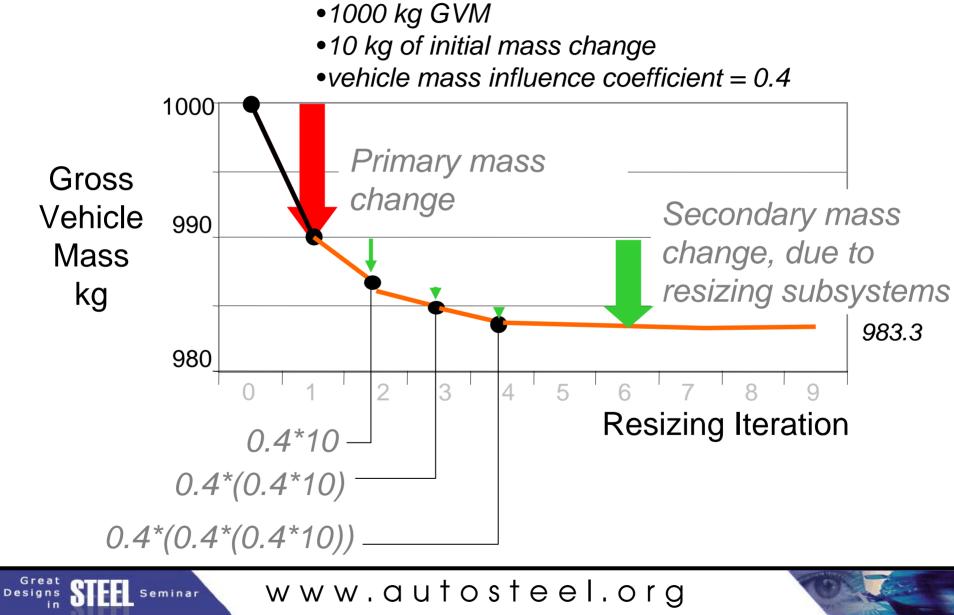
An unplanned mass increase in a component during vehicle design has a ripple effect throughout the vehicle;

other components need to be resized increasing vehicle mass even more.

mass begets mass



SILL


Seminar

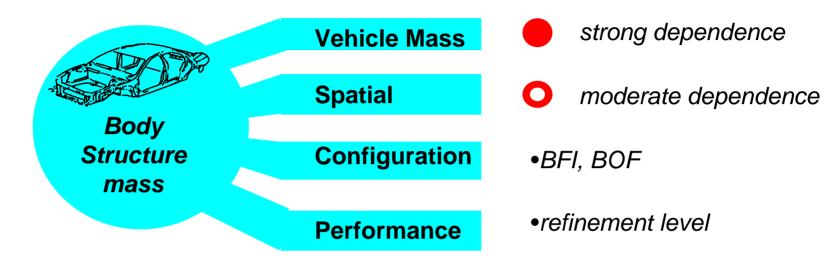
Subsystem Mass Influence Coefficient

Example of Mass Compounding

Compounded Vehicle Mass

Seminar

Designs


Initial Vehicle Mass Mass Change (primary) Mass Change from resizing (secondary) $W_{V\infty} = W_0 + \Delta + \Delta \Gamma_V$ $\Gamma_V = \left[\frac{\gamma_V}{(1 - \gamma_V)}\right]$ $\gamma_V = \sum_{i=1}^n \gamma_i$ Vehicle influence coefficient is sum of subsystem influence coefficients

Modeling Subsystem Mass Dependency

subsystem mass = f (gross vehicle mass, vehicle area, configuration, performance)

Reduced linear model subsystem mass = $C_0 + C_1$ (gross vehicle mass)+ ε

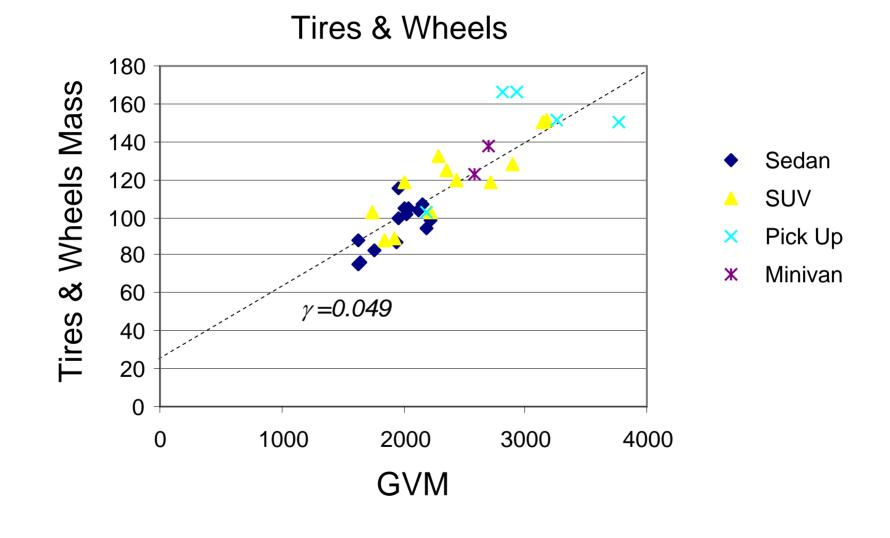
Seminar

Great Designs in

Seminar

Subsystem Mass Dependency

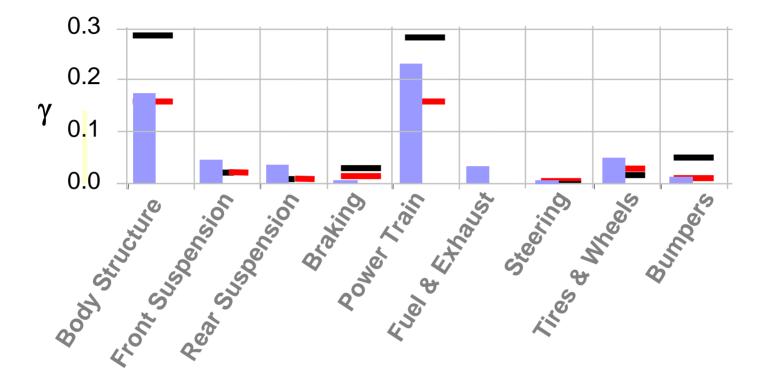
Function	al Subsystem	Vehicle Mass	Spatial (veh.vol, area)	Config.	Performance Level
<u>j</u>	Body Non-Structure	\bigcirc			•refinement level
	Body Structure		0	•BFI, BOF	 safety star rating
K I	Front Suspension		\bigcirc	•Strut, SLA	 handling / isolation level
~	Rear Suspension		\bigcirc	•Ind, etc.	 handling / isolation level
	Steering	0	\bigcirc	•Mech, Rack	
	Brakes	0	\bigcirc		
	Powertrain		\bigcirc	•FW, RW, AW •Long, Trans.	•fuel economy level
	Fuel and Exhaust	0	\bigcirc	0.	 range noise level
0	Wheels and tires		\bigcirc		•styling level
	Air Conditioning	\bigcirc			•time-to-cool
A A	Electrical	\bigcirc	0		 option loading level
	Bumpers		0		 low speed impact level
4	Closures	\bigcirc			


Great Designs

in

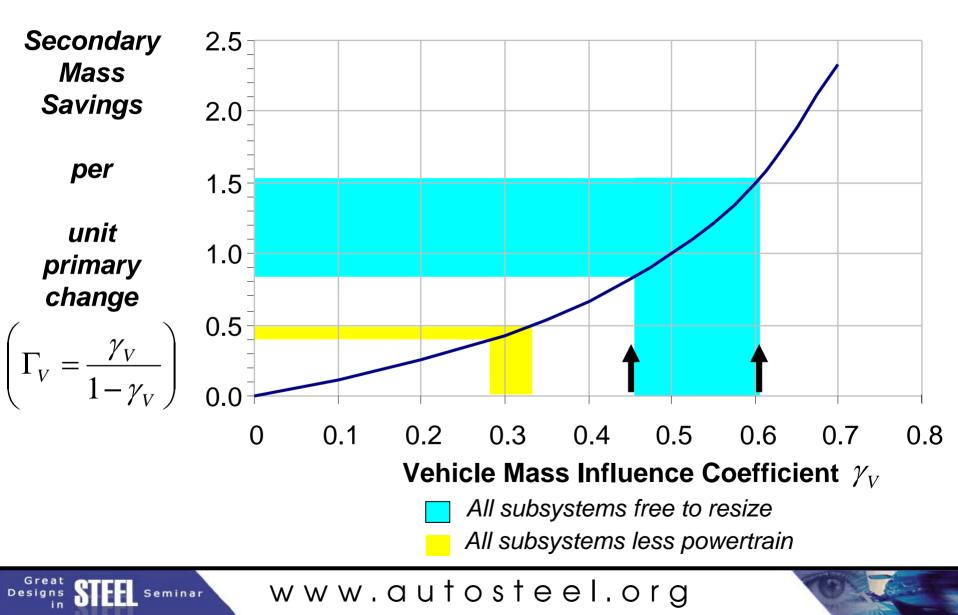
SILE

Seminar


Subsystem Mass vs. GVM

Great Designs in

Influence Coefficient Summary


All Vehicles category

— 1975 Study

- 1981 Study

Secondary Mass Savings

Auto/Steel Step 4: Estimate Vehicle Partnership MichiganEngineering Mass Using Mass Compounding

Great Designs

Seminar

Primary mass savings
$$\Delta = 290 \text{kg}$$

Secondary mass savings = $\Delta \left[\frac{\gamma_V}{(1 - \gamma_V)} \right]$

Taking a nominal value for the vehicle influence coefficient; $\gamma_V = 0.53$

 $\left[\frac{\gamma_V}{(1-\gamma_V)}\right] = 1.128$

for a secondary mass savings = (1.128) 290kg = 327kg

Curb Mass from Pre-Configuration=1500Primary Mass Savings from alternative configurations-290Secondary Mass Savings from resizing to new GVM-327883

Target: 885kg

Great

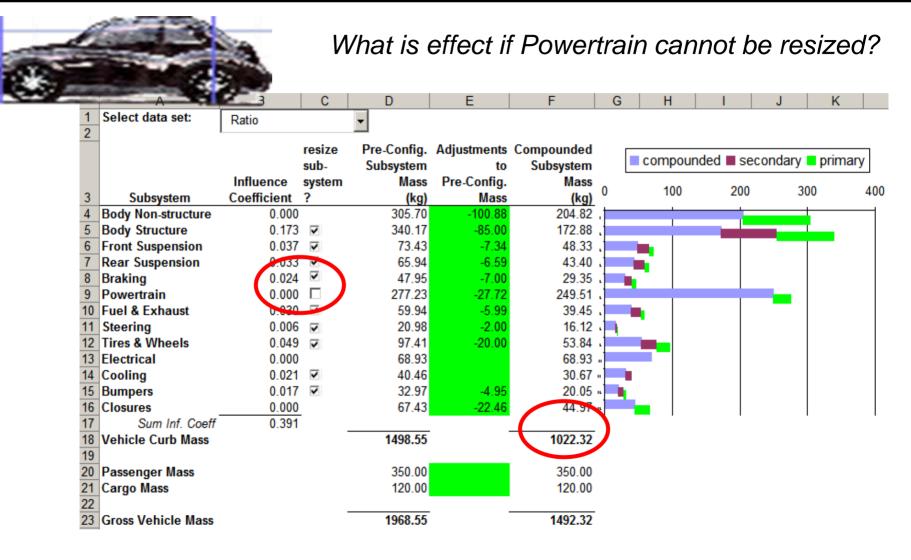
in

SIFF

Seminar

Designs

Software Tool: Mass Compounding

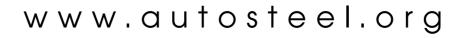

Great

i n

Seminar

Designs

Software Tool: Mass Compounding



Mass Estimation In Preliminary Vehicle Design

- •Rational approach to preliminary mass allocation
- •Effects of mass reduction technologies taken into account
- •Based on contemporary vehicles
- •Estimation requires only sparse data available
- •Adequate precision for decision making
- •Fast

Seminar

CD available from AISI with Spreadsheet and technical report

•Work sponsored by

Auto/Steel Partnership Future Generation Passenger Compartment Group Jody Shaw Chair

Contributions

Seminar

Kundan Reddy, UM Masters Candidate

Contact

Jody Shaw, US Steel

jrshaw@uss.com

Donald E. Malen, UM

dmalen @umich.edu

