

funkwerk))

E LEONARDO

Preparing Infra-structure transition toward FRMCS (Next Generation)

Head of Strategy Railway Solutions

NOKIA

SIEMENS

ETSI headquarters, **Sophia-Antipolis** 2nd November 2016

Michael Klöcker

Nokia Networks

GSM-R Industry Group becomes Railway Operational Communication Industry Group

- GSM-R Industry Group was established in 2001, since then supporting the railway sector by the active global promotion of the GSM-R technology:
 - The supply of interoperable end-to-end systems
 - The minimization of integration efforts and railway migration costs
 - The continued development of the EIRENE standards in line with railway requirements
 - Supporting UIC, European Union Agency for Railways and the ERTMS users group
- 30th of August, the GSM-R Industry Group changed the name in the "Railway Operational Communications Industry Group".
- The ROC Industry Group maintains the role and commitments as in the former name for GSM-R, but the mission and vision are technology enhanced and future oriented, including the Evolution of the Radio Communication System.
- The ROC Industry Group is committed to support GSM-R until at least 2030 including supporting the controlled migration of the entire system towards a Next Generation as part of the ERTMS program.

- 1. Main Cornerstones
- 2. The System Architecture
- 3. Radio and Spectrum
- 4. Migration aspects

Next Generation: main cornerstones

Key success factors (I)

3GPP	 Benefit from 3GPP architecture and eco system for smooth migration, interworking, roaming Flexible 3GPP IMS Architecture : supporting 3GPP, fixed and non 3GPP bearer
IP	 IP evolution enables future path to an IP based railway communication system Core network elements are already IP capable, Radio transmission becomes IP IP already introduced and used for ETCS message transport
Spectrum	 Reuse of existing ER GSM band -> reuse of existing assets Dedicated network for Critical Communication Applications Non 3GPP access/WiFi: integrated in core or aggregation in radio Sharing options with PPDR

WENZEL

Next Generation: main cornerstones

Key success factors (II)

PPDR and Mass Transit / Urban Rail	 Commonality with PPDR market to increase the economy of scale (standardization, products) Trend in Mass Transit to deploy LTE based systems Worldwide demand for next generation networks for rail
Products	 Currently deployed products support future migration: Packet Core typically supports all 3GPP as non 3GPP (WiFi) access Rel. 4 Core supports PSTN interworking and SIP interfacing Flexible BTS architectures to ease multi technology introduction

- Subscriber databases (HLR) to be seamlessly evolve to HSS
- Dispatcher becomes all IP

Smooth migration from GSM-R to Next Generation supported by the Industry: From studies, standardization, trials, products and deployments

WENZEL

3GPP releases: Driven by public safety market, relevant for railways as well....

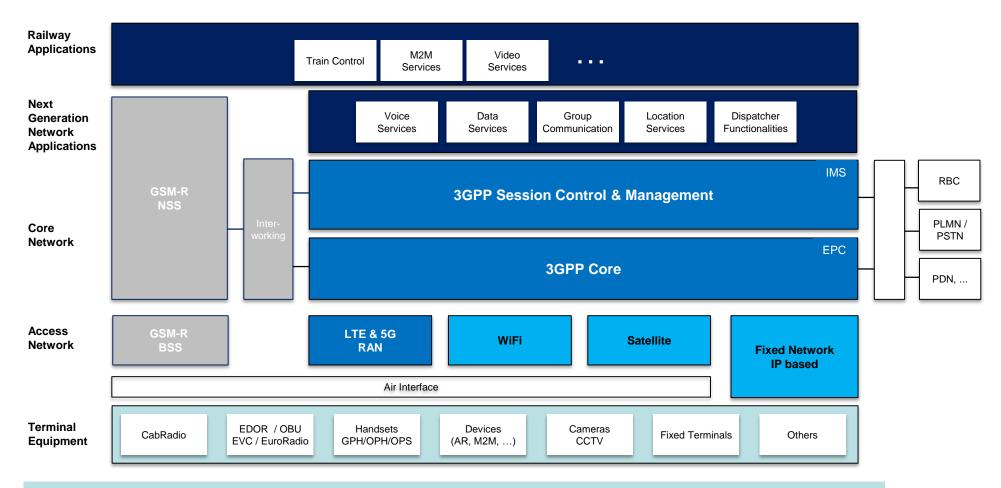
Common base network technology and functionality for public safety and railways to benefit from economy of scale

Release 8-10	Release 11	Release 12	3/2016 Release 13	2017 Release 14	2018 Release 15
 VoLTE QoS Ciphering eMBMS HighSpeed (velocity) support 	• High power UEs for Band 14	 Group Communication Service Enablers (GCSE) Proximity Services (ProSe) Mission Critical QoS Classes (QCI) 	 Enhanced Proximity Services Mission Critical Push To Talk (MCPTT) Isolated E-UTRAN operation 	 Mission Critical Video Mission Critical Data MCPTT improve. (roaming, preemption, service continuity) High Speed train support (>> 350km/h) Spectrum (Europe) 	 FS_FRMCS Study on Future Mobile Communicati on System (URS Input), Spectrum (Europe)

3GPP SA1 Work Item FS-FRMCS:

Analyses how railway requirements from Next Generation can be fulfilled

ALSTOM FREQUENTIS funkwerk) Kapsch >>>


- 1. Main Cornerstones
- 2. The System Architecture
- 3. Radio and Spectrum
- 4. Migration aspects

GSM-R and Next Generation End to End System Architecture

Design target: Railway specific function on application layer.

ALSTOM FREQUENTIS funkwerk)) kapsch >>> (< LEC

WENZEL

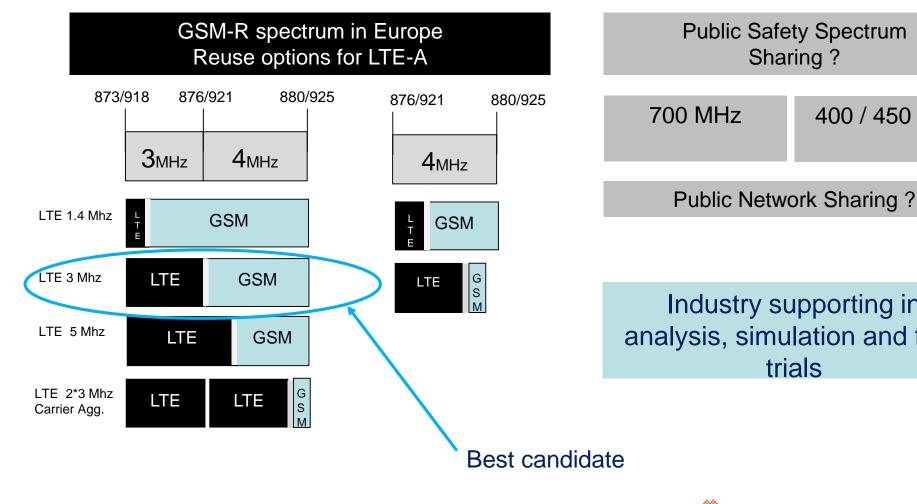
Principles on migration to Next Generation

Dispatcher evolution

- Dispatcher system ("Fixed Terminal System") as of today will be deeper integrated in Next Generation
- Applications and Services specified in UIC URS will not be spread among FTS and NSS ... but be unified in Next Generation
 - Location and presence
 - Role management
 - Call handling
- Console specific application and service integration will remain in tailored dispatcher system
 - Information services, such as telephone books
 - Information management, such as incidents
 - HMI backend
- Integration and connection of legacy systems yet to be analysed
 - Train position
 - Analogue radio
 - Line-side telephony

ALSTOM FREQUENTIS funkwerk) kapsch >>>

ndustry Group


Agenda

- 1. Main Cornerstones
- 2. The System Architecture
- 3. Radio and Spectrum
- 4. Migration aspects

IKallWaV////// **Principles on migration to Next Generation**

Spectrum options for Next Generation

ALSTOM FREQUENTIS funkwerk)) Kapsch

% LEONARDO

NOKIA SIEMENS SIERRA

Sharing? 400 / 450 MHz

Operationa

Industry Group

Industry supporting in analysis, simulation and field trials

WENZEL

Agenda

- Main Cornerstones 1.
- The System Architecture 2.
- 3. Radio and Spectrum
- Migration aspects 4.

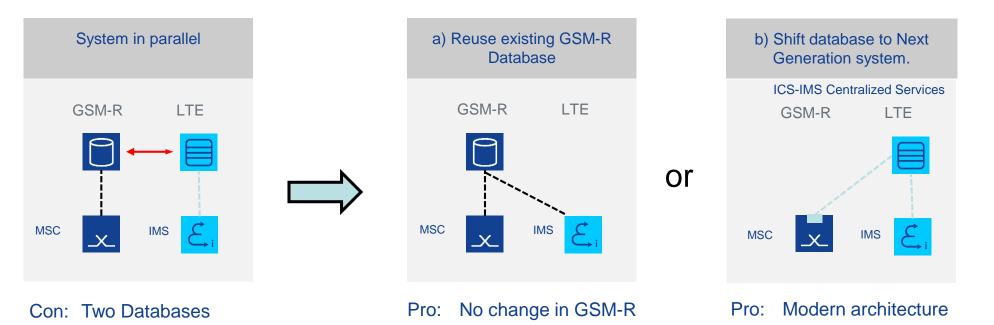
ALSTOM FREQUENTIS funkwerk) kapsch >>>

Migration to Next Generation - Timeline

- Deployment and Migration requires Interoperability/Multivendor Testing
- TSI certification to be considered for realization and deployment phase
- Proof of concepts could be possible for base functionality before 2020

Principles on migration Next Generation

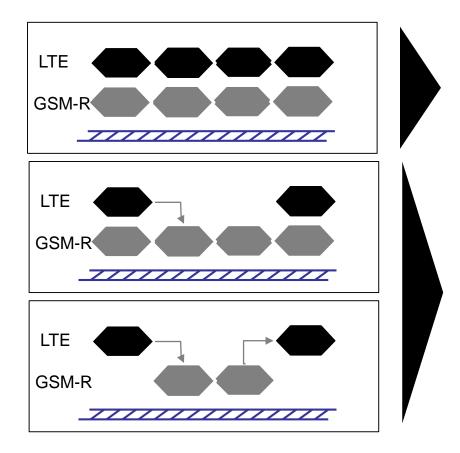
- UIC URS defines flexible subscriber identification/addressing
- SIP based addressing allows for any alphanumerical addressing


SIP URI:

- Sip:John.Smith@operator.net
- Sip:ICE841@DB.net
- During migration subscriber from each system must be capable to address subscriber in other system
- Mapping from/to EIRENE MS-ISDN to SIP URL scheme needed
 - Translation Database
 - "Static policy: build TEL URL for MS-ISDN to be used in Next Generation
 - tel:+1-201-555-0123
 - Current EIRENE numbering scheme possible in Next Generation as well.
 - Common numbering scheme of Next Generation and GSM-R

Where to have the database ...

like Functional Numbering, Access Matrix, Location Data,...


- Railway application databases needs to be accessible by both technologies
- Data to be kept synchronized (Registration Data,...)
- Use of one common database preferred
- 3GPP provides means to transparently access from each system (IM-SSF, IMS centralized Services)
- Target to provide application in Next Generation, migration scenarios could benefit from scenario a)

Deployment strategies

Big impact on complexity

Full Overlap of LTE

- Group Calls established in both technologies
- Device remains on selected layer
- Avoid complex interworking loose coupling
- Required for European corridors

LTE islands / no overlay

- Handover from LTE to GSM-R (other direction rarely used in todays networks)
- Inter System NACC available
- Islands need to have sufficient size
- High complexity for group call
- Handover from GSM-R to LTE with high complexity, not used today in public operator markets

WENZEL

- The architecture of the future communication system for railways is aligned with 3GPP and embraces a high level of reuse of already specified building blocks and functionality
- Benefit from evolutions in PPDR market with respect to standards and products
- Sufficient radio spectrum for the future communication system is required
- Industry work closely together and support the introduction of a next generation with studies, proof of concepts, trials and products capable for a smooth migration

FREQUENTIS

funkwerk)

E LEONARDO

NOKIA

SIEMENS

