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Abstract

Introduction

New financial incentives, such as reduced Medicare reimbursements, have led hospitals to

closely monitor their readmission rates and initiate efforts aimed at reducing them. In this

context, many surgical departments participate in the American College of Surgeons

National Surgical Quality Improvement Program (NSQIP), which collects detailed demo-

graphic, laboratory, clinical, procedure and perioperative occurrence data. The availability

of such data enables the development of data science methods which predict readmissions

and, as done in this paper, offer specific recommendations aimed at preventing

readmissions.

Materials and methods

This study leverages NSQIP data for 722,101 surgeries to develop predictive and prescrip-

tive models, predicting readmissions and offering real-time, personalized treatment recom-

mendations for surgical patients during their hospital stay, aimed at reducing the risk of a

30-day readmission. We applied a variety of classification methods to predict 30-day read-

missions and developed two prescriptive methods to recommend pre-operative blood trans-

fusions to increase the patient’s hematocrit with the objective of preventing readmissions.

The effect of these interventions was evaluated using several predictive models.

Results

Predictions of 30-day readmissions based on the entire collection of NSQIP variables

achieve an out-of-sample accuracy of 87% (Area Under the Curve—AUC). Predictions

based only on pre-operative variables have an accuracy of 74% AUC, out-of-sample. Per-

sonalized interventions, in the form of pre-operative blood transfusions identified by the pre-

scriptive methods, reduce readmissions by 12%, on average, for patients considered as

candidates for pre-operative transfusion (pre-operative hematoctic <30). The prediction

accuracy of the proposed models exceeds results in the literature.
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Conclusions

This study is among the first to develop a methodology for making specific, data-driven, per-

sonalized treatment recommendations to reduce the 30-day readmission rate. The reported

predicted reduction in readmissions can lead to more than $20 million in savings in the U.S.

annually.

1. Introduction

The United States spends $3 trillion annually on healthcare, corresponding to more than 17%

of the U.S. GDP and far exceeding the next-highest spender among high-income countries [1].

While many factors contribute to higher spending, hospital readmissions, defined as an addi-

tional admission to address the same issue within 30 days after discharge, are an important –

and potentially preventable –source of excessive resource utilization [2, 3].

In an effort to reduce unnecessary costs, the Affordable Care Act of 2012 introduced finan-

cial penalties for hospitals with readmission rates above the national average. While these mea-

sures have so far concentrated on medical conditions (e.g., acute myocardial infarction,

congestive heart failure, pneumonia) and common orthopedic procedures (e.g., hip and knee

arthroplasty), the list could expand to include common general surgical procedures.

In anticipation of these changes, Surgical Departments have started to closely monitor their

readmission rates, and establishing processes aimed at reducing them. Several authors have

sought to determine common causes of readmission after general surgical procedures, and

most appear to relate to pre-existing conditions [4–7] and complications after surgery [8].

In 2005, the American College of Surgeons (ACS) established the National Surgical Quality

Improvement Program (NSQIP), which collects detailed demographic, laboratory, clinical,

procedure and perioperative occurrence data, currently for General Surgery, and eventually in

several subspecialties. The availability of such data, enables the development of data analytics
methods relevant to the readmission reduction efforts.

While earlier work has primarily focused on readmission predictive methods, there has only

been limited attention given to specific interventions with the potential to reduce readmis-

sions; and that has focused mostly on post-discharge care [9–11]. Earlier work on predictive

methods for hospitalizations have been successful but focused on specific diseases [12–14].

The objective of this work is to develop more direct prescriptive methods that offer specific

treatment recommendations during the patients’ hospital stay with the potential to reduce

readmission risk. Our recommended interventions are driven by data; essentially, for each

patient, we learn from data what has been effective in preventing a readmission for other “sim-

ilar” patients. While the methodologies we develop are general and can be applicable to any

sort of interventions, we focus on in-hospital treatment because the NSQIP data we leverage

contain only such variables. We further focus on the patients’ pre-operative hematocrit

because it is commonly measured, important for assessing readmission risk, and easily modu-

lated through blood transfusion.

2. Materials and methods

2.1 Data and pre-processing

The ACS-NSQIP dataset we use in our analysis contains over 300 variables on comorbidities,

intra-operative events, and 30-day outcomes using prospective random sampling [15],
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including: (i) baseline demographic and health care status characteristics (e.g., age, gender,

race, BMI, smoking, diabetes, hypertension, admittance from the ER); (ii) procedure informa-

tion (e.g., CPT codes, ICD9 codes, ASA classification, wound classification); (iii) pre-operative,

intra-operative, and post-operative variables, such as hospital stay information, Surgical Site

Infections (SSI, superficial/deep/organ space) and complications (e.g., pneumonia, infections,

bleeding, thromboembolic events), and (iv) laboratories, including pre-operative and post-

operative values.

The NSQIP dataset at our disposal included more than 2.2 million surgeries during

2011–2014. While the NSQIP program provided high-quality manually curated data

obtained from trained data abstractors, the variable definitions change over time. Specifi-

cally, the definitions of the occurrences listed in Table 2 (e.g., sepsis, pneumonia, SSIs) have

Table 1. Assumed baseline treatment.

Assumed Transfusion Factuals Condition in Data

No blood transfusion TRANSFUS = 0

1 bag of blood HCT>30 and TRANSFUS = 1

2 bags of blood 27<HCT<30 and TRANSFUS = 1

3 bags of blood HCT<27 and TRANSFUS = 1

https://doi.org/10.1371/journal.pone.0238118.t001

Table 2. Most statistically significant differences in readmitted and non-readmitted patients.

Variable All patients Readmitted Non-Readmitted p-value

Estimated Probability of Morbidity 0.06 0.11 0.06 <0.000001

Pre-operative hematocrit 39.67 37.85 39.78 <0.000001

The American Society of Anesthesiology (ASA) Physical Status Classification 2.43 2.78 2.4 <0.000001

Estimated Probability of Mortality 0.01 0.02 0.01 <0.000001

Total operation time in minutes 111.31 148.79 109.14 <0.000001

Return to OR (binary) 0.03 0.24 0.02 <0.000001

Number of Superficial Wound Occurrences 0.02 0.08 0.01 <0.000001

Number of Deep Incisional SSI Occurrences 0.01 0.06 0 <0.000001

Number of Organ/Space SSI Occurrences 0.01 0.11 0.01 <0.000001

Number of Urinary Tract infection Occurrences 0.01 0.06 0.01 <0.000001

Number of Bleeding Transfusions Occurrences 0.06 0.13 0.05 <0.000001

Number of Sepsis Occurrences 0.02 0.1 0.01 <0.000001

Days from Operation to Discharge 2.77 4.51 2.67 <0.000001

OUTPATIENT (if surgical procedure was performed in an outpatient setting) 0.4 0.18 0.42 <0.000001

CPT_Muscl_29x: Casts and endoscopy/arthroscopy 0.03 0.01 0.03 <0.000001

Indicator for any morbidity/complications 0.12 0.49 0.1 <0.000001

no diagnosis of diabetes or 0.85 0.77 0.85 <0.000001

diabetes controlled by diet alone.

Discharge Destination: Home 0.9 0.82 0.91 <0.000001

Pre-operative alkaline phosphatase 69.37 82.75 68.59 <0.000001

Pre-operative serum albumin 3.95 3.78 3.96 <0.000001

ICD9 550: Inguinal hernia 0.04 0.01 0.04 <0.000001

Work Relative Value Unit (a metric of surgical complexity) 16.35 19.75 16.16 <0.000001

Age 56.41 60.42 56.17 <0.000001

Hypertension requiring medication 0.45 0.57 0.44 <0.000001

Elective Surgery (binary) 0.8 0.69 0.81 <0.000001

(Continued)
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changed multiple times. To avoid comparisons among variables with a different meaning,

we selected only surgeries that took place during 2014. We included only variables that were

continuously monitored and used throughout this period; resulting in a total of 231/187

patient variables for post-operative/pre-operative analysis. Patients who died within 30 days

of surgery without readmission were excluded. There were a total of 722,101 remaining

patients, 39,641 of whom were readmitted within 30 days of discharge, resulting in a read-

mission rate of 5.49%.

For certain pre-operative lab variables, more than 80% of the entries were missing, and they

were excluded from the study. For other variables which had missing data, we used a statistical

Table 2. (Continued)

Variable All patients Readmitted Non-Readmitted p-value

Number of Pneumonia Occurrences 0.01 0.05 0.01 <0.000001

Bleeding disorders 0.04 0.09 0.04 <0.000001

Open wound/wound infection 0.03 0.07 0.03 <0.000001

Number of DVT/Thrombophlebitis Occurrences 0.01 0.04 0 <0.000001

CPT_Muscl_23x-25x: Shoulder arm wrist hand 0.03 0.01 0.03 <0.000001

CPT_CAT_2x: Musculoskeletal system 0.22 0.16 0.23 <0.000001

Discharge Destination: Skilled Care Not Home 0.06 0.11 0.05 <0.000001

Pre-operative serum creatinine 0.99 1.18 0.97 <0.000001

Pre-operative BUN 16.32 18.2 16.21 <0.000001

CPT_CAT_33x-37x: Cardiovascular system 0.07 0.12 0.06 <0.000001

Number of Pulmonary Embolism Occurrences 0 0.03 0 <0.000001

History of severe COPD 0.04 0.09 0.04 <0.000001

Disseminated cancer 0.02 0.06 0.02 <0.000001

Number of Wound Disruption Occurrences 0 0.03 0 <0.000001

Functional health status Prior to Surgery 0.03 0.07 0.03 <0.000001

Pre-operative serum sodium 138.82 138.46 138.87 <0.000001

Steroid use for chronic condition 0.04 0.07 0.03 <0.000001

Currently on dialysis (pre-op) 0.01 0.04 0.01 <0.000001

TRANST_Not transferred (admitted from home) 0.96 0.93 0.96 <0.000001

CPT_Digestive_441x: Intestines—excision 0.02 0.05 0.02 <0.000001

Number of Septic Shock Occurrences 0.01 0.03 0 <0.000001

Wound classification 4: Dirty/Infected 0.05 0.08 0.05 <0.000001

Surgical Specialty: Gynecology 0.07 0.05 0.08 <0.000001

CPT_Cardio_35x: Repairs bypasses etc. 0.04 0.07 0.03 <0.000001

Organ/Space SSI PATOS (Present at the Time of Surgery) 0 0.02 0 <0.000001

CPT_Digestive_48x: Pancreas 0.01 0.03 0.01 <0.000001

CPT_Digestive_49x: Abdomen Peritoneum and Omentum 0.11 0.08 0.12 <0.000001

No dyspnea 0.05 0.08 0.05 <0.000001

Pre-operative International Normalized 1.07 1.1 1.07 <0.000001

Ratio (INR) of PT (Prothrombin Time) values

CPT_CAT_60x: Endocrine system 0.03 0.02 0.03 <0.000001

Number of Progressive Renal Insufficiency Occurrences 0 0.02 0 <0.000001

Number of Myocardial Infarction Occurrences 0 0.02 0 <0.000001

CPT_CAT_4x: Digestive system 0.41 0.46 0.4 <0.000001

Number of Unplanned Intubation Occurrences 0.01 0.02 0.01 <0.000001

Discharge Destination: Rehab 0.03 0.05 0.03 <0.000001

https://doi.org/10.1371/journal.pone.0238118.t002

PLOS ONE Prescriptive analytics for reducing 30-day hospital readmissions after general surgery

PLOS ONE | https://doi.org/10.1371/journal.pone.0238118 September 9, 2020 4 / 12

https://doi.org/10.1371/journal.pone.0238118.t002
https://doi.org/10.1371/journal.pone.0238118


method that uses k-nearest neighbors and clustering to find the most likely value for a missing

value [16]. The variables were then further separated into two classes: pre-operative variables

and post-operative variables. Pre-operative variables are those that can be reliably known

before the main surgical procedure starts, whereas post-operative variables (including compli-

cations) can only be known after the surgery has occurred. Variable scaling was used for all

models, except for Optimal Classification Trees, to bring all values into the range [0,1]; specifi-

cally, all variables were normalized by subtracting the minimum and dividing by the range.

2.2 Predictive methods

Two different classes of machine learning methods were used. The first class consists of predic-
tive methods used to accurately predict the readmission outcome of a patient. Two different

scenarios were evaluated: (i) predicting readmissions using pre-operative variables, and (ii)

predicting readmissions using both pre-operative and post-operative variables.

We tested a variety of machine learning methods, including: Random Forests (RF) [17],

Logistic Regression (LR), Support Vector Machines (SVM), Gradient Boosted Machines

(GBM) [18], and Neural Networks (NN) [19]. Logistic Regression aims to fit a regression

between the features and the binary outcomes in the logit space. In this study, we fit the logistic

regression with a L2-norm regularization term to induce robustness and help guard against

data corruption [20]. Both RF and GBM assemble a large collection of classification trees that

classifies by taking a majority vote of the individual trees. Linear SVM aims to find a separating

hyperplane in the feature space to best separate the patients which were readmitted and those

who were not. We implemented a variant of this algorithm, Sparse Linear SVM (SLSVM, see

S1 Appendix for details), that chooses a sparse number of variables in the separating hyper-

plane. By only allowing the hyperplane to depend on a small number of features, we can

understand what are the most important variables that separate those that are readmitted and

those that are not, which improves interpretability.

To evaluate prediction quality, one typically considers two distinct performance metrics

computed out-of-sample: the false positive rate (or one minus the specificity of the test) and the

true positive rate, or sensitivity of the test. A Receiver Operating Characteristic (ROC) curve

evaluates the performance of a binary classifier as the decision threshold is varied, and is

formed by plotting the true positive rate against the false positive rate at different threshold set-

tings. To have a single metric to compare different ROC curves, we will consider the Area

Under the ROC Curve (AUC). An ideal prediction model has an AUC close to 1, whereas a

random prediction would yield an AUC of 0.5.

2.3 Prescriptive methods

The second class of methods we employ consists of prescriptive methods. We focus on the pre-

operative hematocrit (HCT) and seek to modulate it in order to minimize the readmission

rate. Operationally, this is achieved through blood transfusion before the surgery. Consistent

with medical practice, the maximum change in the hematocrit level is limited to 9%, corre-

sponding, roughly, to 3 standard (300cc) bags of blood, which can be considered as a safe

upper limit for blood transfusion. Since any such intervention has to be applied before the sur-

gery, the methods we develop will only use pre-operative variables (a total of 88 such variables

in the dataset).

We introduce two methods we developed for this study: Prescriptive Support Vector

Machines (P-SVM), and Optimal Prescriptive Trees (OPT). They seek to minimize a certain

loss function over a set of “actionable” variables that can be controlled through treatments. In

this study, the actionable variable is hematocrit, and there are only 4 treatments available: 0%,
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3%, 6% and 9% increase in hematocrit, corresponding to 0 to 3 bags of blood transfused. The

loss we aim to minimize is the readmission rate.

Before we present our prescriptive methods, we need to establish a baseline for the action-

able variable under all treatments. This information would be used by one of our methods

(OPT) to learn an effective treatment. In the NSQIP data, we utilize the TRANSFUS variable

which indicates whether a pre-operative blood transfusion took place. However, there is no

information on the amount of blood transfused. We formed our baseline treatment with the

assumption that everyone who has a hematocrit value over 30 had at most 1 bag of blood trans-

fused, as the common operative transfusion threshold is 30 [21]. Then, we add additional bags

of blood with decreasing hematocrit levels to bring the patient’s hematocrit level above 30. The

full table of assumed baseline treatment is shown in Table 1.

The effect of the treatment suggested by our methods will be evaluated using several predic-

tive methods discussed earlier. We rely on four different methods in order to ensure the stabil-

ity of the result. Specifically, we will use: Random Forests (RF), Logistic Regression (LR),

Gradient Boosted Trees (GBM), and Neural Networks (NN). There is evidence in the literature

to suggest that pre-operative transfusion could potentially lead to adverse outcomes [22–24].

To ensure such effect is properly accounted for, we additionally consider second order effects

of blood transfusion on other pre-operative variables other than hematocrit. Specifically, we fit

a regression model of other variables on HCT, and then, calculate how they are affected by the

transfusion. We use the modified variables to predict the final readmission outcome.

Prescriptive Support Vector Machines (P-SVM) [25] is an interpretable prescriptive

method based on the interpretable SLSVM predictive method we discussed earlier. The

method first trains a SLSVM to obtain a hyperplane in a sparse variable subspace that separates

readmitted from non-readmitted patients. Fixing this hyperplane, a second optimization prob-

lem is formulated, seeking to select the value of the actionable variable (HCT) in order to mini-

mize over the training set a linear combination of the readmission rate and a penalty for

changes in the actionable variable. Essentially, this optimization problem sets a value of HCT

for each readmitted patient in a way that balances the number of prevented readmissions with

the percentage of HCT increase required to prevent them. A detailed mathematical formula-

tion of the method is provided in S1 Appendix.

Optimal Prescriptive Trees (OPT) is an interpretable prescriptive method based on Optimal

Classification Trees (OCT). OCTs [26], use integer programming to build a decision tree that

optimizes the accuracy of predictions over the training set. A decision tree is interpretable

because at each node we are only making a binary decision based on one feature, so the final

decision is based upon a series of simple binary decisions. Such a tree, assigns each patient to a

leaf node of the tree and makes a prediction for the patient by a majority vote of other patients

assigned to the same leaf. OPTs similarly builds an optimal decision tree but with a modified

objective, a linear combination of prediction accuracy and the readmission rate. A more

detailed mathematical formulation of OPT is in S2 Appendix.

Methods were evaluated in Python, Matlab, and Julia. For random forests, the number of

trees grown was 500. Cross-validation was used to tune parameters of the methods.

3. Results

3.1 Sample characteristics

For each patient, a total of 231 variables were extracted. Table 2 summarizes the baseline

demographic and clinical characteristics of the 722,101 patients included in the study. We

report the (unnormalized) mean values of the variables over all patients, readmitted patients,

and non-readmitted patients, respectively, and only list 60 variables for which the difference
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between readmitted and non-readmitted patients was the most statistically significant. Specifi-

cally, for each variable we computed a two-tailed p-value using Welch’s t-test, where the null

hypothesis was that the two cohorts (readmitted and non-readmitted patients) have equal

means. Hence, the smaller the p-value, the less likely it becomes that the variable means listed

in Table 2 occurred by chance under the null hypothesis. We note that for indicator variables,

the means reported correspond to the fraction of patients satisfying the condition.

3.2 Accuracy of predictions

For the predictive task, we evaluated the methods across three distinct splits of the data into a

training and a test dataset. Each split, randomly selects 80% of the data to form the training set

and keeps the remaining 20% as the test set, on which model performance is evaluated. The

mean (Avg.) and standard deviation (Std.) of AUC for each predictive method is reported in

Table 3; the top table considers predictions using only pre-operative (PRE-op) variables, while

the bottom table evaluates models using pre-operative and post-operative variables (POST-

op).

Table 3 suggests that readmission predictions are less accurate when using only pre-opera-

tive variables. Using all variables, predictions are very strong, achieving an average AUC above

87% (using GBM). Low standard deviations across different splits for all methods, imply that

the predictive power is not greatly impacted by the choice of the training data subset. A sub-

group analysis using only the general surgery class is contained in S3 Appendix. The results

show that models trained on only the subgroup achieved a lower AUC, which suggests that the

models trained on the general dataset exhibits favorable cross-learning behavior.

3.3 Effectiveness of prescriptions

Predicting readmission is only one step toward preventing readmissions. For the prescriptive

task as well, we evaluated the P-SVM and OPT methods across the 3 distinct splits of the data.

For each split, we train P-SVM and OPT in the training set and then apply the method to

obtain a recommended number of bags of blood to be transfused for each patient whose HCT

is less than 30 (HCT<30) in the test set. We evaluate the outcome for each test patient using

four different predictive methods: L2LR, RF, GBM, and NN. For each predictive model, we

chose a threshold so that the predicted readmission rate equals the ground truth readmission

Table 3. Performance of predictive models.

PRE-op

Methods Split I Split II Split III Avg. Std.

L2LR 72.55% 72.61% 72.97% 72.71% 0.23%

SLSVM 72.51% 72.58% 72.91% 72.67% 0.21%

RF 73.39% 73.24% 73.59% 73.41% 0.18%

GBM 73.49% 73.51% 73.78% 73.59% 0.16%

NN 72.50% 72.74% 73.18% 72.81% 0.34%

POST-op

Methods Split I Split II Split III Avg. Std.

L2LR 84.20% 84.36% 84.64% 84.40% 0.22%

SLSVM 84.25% 84.38% 84.68% 84.44% 0.22%

RF 85.24% 85.34% 85.67% 85.41% 0.22%

GBM 87.06% 87.32% 87.80% 87.39% 0.38%

NN 83.03% 83.06% 84.00% 83.36% 0.55%

https://doi.org/10.1371/journal.pone.0238118.t003
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rate in the training dataset. Such a threshold gives a specificity >96% for all of our models as

shown in S4 Appendix. To account for the effects of transfusion on other variables, we modify

variables highly correlated with HCT (absolute value>0.1) for each test patient under transfu-

sion using the regression model constructed against HCT. Such variables are: pre-op creati-

nine, international normalized ratio, prothrombin time, albumin, mortality probability

(MORTPROB), and morbidity probability (MORBPROB). We used generalized linear regres-

sion models to predict the effect on MORTPROB and MORBPROB since they have bounded

values (in [0,1]).

We report in Table 4 the percentage of readmissions prevented in the test set, defined as the

ratio (in %) of (i) the number of patients with HCT<30 originally predicted to be readmitted

(assuming no treatment) and now predicted not to be readmitted (after treatment), over (ii) the

number of patients with HCT<30 predicted to be readmitted (assuming no treatment). We

also report the average number of bags of blood per patient under the recommended treatment.

The first column of Table 4 lists the predictive models used to evaluate the effect of treatment,

the 2nd and 4rd columns show the percentage of readmissions prevented using the OPT and

P-SVM prescriptions, the 3th and 5th columns show the average number of bags per patient when

using OPT and P-SVM prescriptions, and the last column reports a baseline percentage of read-

missions prevented, assuming any patient (with HCT<30) in the test set gets 1 bag of blood.

We observe that across the different ground truths and splits of the data, the two methods

significantly decrease the readmitted patients, on average. For OPT, the average decrease

across all splits is 12.15%, while it is 11.45% for P-SVM. Moreover, the average needed bags is

about 1 bag, which roughly corresponds to 300cc of blood.

4. Discussion

An analysis of the most statistically significant differences in readmitted vs. non-readmitted

patients, reveals (cf. Table 2) that the former tend to be patients who underwent vascular sur-

gery, or surgeries involving the pancreas. In contrast, surgeries involving the endocrine system,

or Abdomen, Peritoneum, and Omentum are less likely to lead to a readmission. Furthermore,

readmitted patients tend to have more complications (e.g., septic shock, bleeding, pneumonia,

organ/space/deep incisional SSIs, renal insufficiency) and show higher incidence of return to

OR and unplanned intubation.

Table 4. Percentage reduction of readmissions due to increase in pre-operative hematocrit.

Split I OPT Averagebags for patients (HCT<30) PSVM AverageBags for patients (HCT<30) decrease_1bag

LR 9.27% 0.97 9.49% 1.06 6.78%

RF 14.50% 0.97 14.03% 1.06 9.03%

GBM 4.81% 0.97 3.78% 1.06 3.19%

NN 16.37% 0.97 16.50% 1.06 8.03%

Split II OPT Averagebags for patients (HCT<30) PSVM Averagebags for patients (HCT<30) decrease_1bag

LR 9.27% 0.95 9.63% 1.08 5.97%

RF 13.08% 0.95 11.30% 1.08 8.24%

GBM 5.34% 0.95 4.20% 1.08 2.84%

NN 18.96% 0.95 19.08% 1.08 9.22%

Split III OPT Averagebags for patients (HCT<30) PSVM Averagebags for patients (HCT<30) decrease_1bag

LR 10.25% 0.98 10.65% 1.07 6.94%

RF 15.84% 0.98 14.60% 1.07 8.89%

GBM 8.66% 0.98 5.72% 1.07 4.41%

NN 19.51% 0.98 18.37% 1.07 8.46%

https://doi.org/10.1371/journal.pone.0238118.t004
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The predictive models we tested lead to very accurate predictions of 30-day readmissions,

exceeding 87% AUC with GBM when using all (pre-op and post-op) variables. Using only pre-

operative variables, AUC is 74%, on average (with GBM). These results outperform earlier

models, such as the LACE index [27], which has an AUC of 68.4%, and more recent models

[28], which yield a 72% AUC in 2 days after admission, and 78–81% at discharge.

In terms of specific actionable interventions, we developed prescriptive methods based on

the pre-operative predictive models and examined the potential of reducing readmissions by

increasing pre-operative HCT levels. We have shown that across a wide variety of different

ground truths, two separate prescriptive methods (OPT and P-SVM) are able to prescribe

blood transfusion treatments that reduce predicted readmissions for patients with HCT<30,

with the decrease ranging from 4.81% to 19.51% for OPT and 3.78% to 19.08% for P-SVM,

and with transfusions in the range of 300cc of blood per patient on average. To put the achiev-

able readmission reductions into context, if one could reduce by the mean percentage we

achieved (12%) all 30-day readmissions of patients with HCT<30 across the U.S. (over 10,000

per year), the cost savings would amount to $20.3 million on an annual basis [29].

A further potential use of our model is to decrease the length of hospital stay for patients

with low-risk of readmission. We can choose a threshold for our models to have high specific-

ity and thus able to accurately identify those that are at low risk of readmission (e.g., the

threshold so that the predicted readmission rate equals the ground truth readmission rate in

the training dataset as in S4 Appendix).

Moreover, the machine learning methods employed are interpretable. Due to its sparse

nature, P-SVM produces a small number of predictive variables which provide an explanation

as to why a specific patient has been predicted as having a high readmission risk. For this par-

ticular study, P-SVM chose inpatient status, ASA Classification, and mortality probability as

some of the variables with most explanatory power on readmission, corresponding to an intui-

tive understanding that patients that have more critical conditions going into the surgery are

more likely to be readmitted. OPTs, additionally, offer the ability to examine every prediction

or prescription and identify the specific path through the decision tree that led to the decision.

Fig 1 depicts a part of a prescriptive tree. At every branching step, a binary decision is made.

Fig 1. An instance of an Optimal Prescriptive Tree.

https://doi.org/10.1371/journal.pone.0238118.g001
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For example, at the top node, the patients are split into two classes, smoking or non-smoking.

Several splits lead to the leaves of the tree (colored red and blue in this case) in which all

patients corresponding to a leaf are prescribed a certain treatment. Prescription 1 corresponds

to no transfusion and Prescription 2 corresponds to transfusing one bag of blood. Interpret-

able decision trees enable doctors and experts to understand the proposed decisions and,

potentially, further improve the model based on the binary decisions it makes.

A limitation of our study is the lack of the full ground truth for the impact of the proposed

interventions, namely, whether they prevent readmissions. That is impossible to ascertain

without performing a randomized clinical trial. Instead, we use a number of strong predictive

models to evaluate the impact of the derived prescriptions and observe consistent readmission

rate reduction across these models. We hope that this work motivates clinical trials that could

confirm our findings. Furthermore, beyond the short-term readmission outcome, it would be

beneficial to understand how these measures can impact the long-term oncologic outcome,

which is equally if not more important. However, the NSQIP database unfortunately does not

track patients long term, and thus we do not have the required data to conduct such an analysis

in the paper.

5. Conclusions

We leveraged a large national dataset of surgical patients with the goal of reducing 30-day

readmissions. We developed both predictive and prescriptive machine learning models. The

former predict 30-day readmissions and identify the most discriminative variables. The latter,

build on the predictive models and can offer specific recommendations on actionable deci-

sions to reduce readmissions. We focused on pre-operative hematocrit and showed how to

make personalized recommendations to increase its value, when needed, through blood

transfusion.

Prediction accuracy with our methods exceeds 87% using the entire collection of NSQIP

variables and 74% using only variables known pre-operatively. The proposed prescriptions/

interventions can reduce the predicted readmissions by 11.45%-12.15% for patients with

HCT<30, on average. Beyond improving patient outcomes, this reduction can lead to more

than $20 million in annual savings in the U.S.
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