Presentation on Energy Efficiency Opportunities in Indian Dairy Industry

Presenter Date : Sandeep Bhalla : 09-03-2018

Umang Dairies Ltd. - One of the Leading Companies of JK Organisation

Agri Genetics

Dairy Products

JK PAPER LTD. Creating lasting impressions

Paper

J.K. ORCANISATION USD 4 Billion

23 manufacturing plants

Present in 100 countries

More than 30,000 employees

Education

Defence Electronics

Hospital & Health services

Tyre

V-Belts- Oil Seals & Power Transmission Systems

> Clinical Research

Plant with State of the Art Technology & Minimal Environmental impact

Capacity : 4.5 Lakh Liter / Day

Drying Plant

Umang Dairies Ltd. - Certifications

* ISO 9001:2008

*****OHSAS 18001:2007

Umang Dairies Ltd. - Brands

Own Brands

Pvt Labels

Job Work – Mother Dairy

Umang Dairies Ltd. – Proud to be Associated with...

Umang Dairies Ltd. – Distribution Network

Milk Production in India

Projected Production in 2020 = 190 Million tons @ CAGR = 4.5%

Source : USDA Economic Research Service using USDA, Foreign Agriculture Service PSDonline Dataset & FAO Food Outlook Nov, 17

Milk Availability in India – Per Capita

Year 2016 (grams/day)

Avg. per Capita (US, Europe, Australia, Argentina) > 410

India Avg. per Capita = 344

Source : Dairy India (Seventh Edition)

Milk Processing in India

Source : Dairy India (Seventh Edition)

Indian Dairy Consumption – by Product Type

Source : Report by CII & Shakti Sustainable Energy Foundation on Indian Dairy Industry, Dec-2013

Typical Energy Consumption in Milk Processing Plants

Major Energy Consuming Equipments :

- 1. Refrigeration System
- 2. Evaporators & Spray Dryers
- 3. Homogenizers
- 4. Separators & Clarifiers
- 5. Pasteurizers
- 6. Air Compressors
- 7. ETP
- 8. CIP Boilers

Source : Report by CII & Shakti Sustainable Energy Foundation on Indian Dairy Industry, Dec-2013

Energy Consumption & Savings Potential in Indian Dairy Industry

Specific Energy Consumption	Range	Weighted Average	
Electrical (kWh/MT)	25-60	40	
Thermal (kCal/MT)	20,000-90,000	60,000	
Dairy Companies in India (2015) Dairy Plants in India (2015) Installed Processing Capacity - Dairy Industry (2015) Actual Processing of Dairy Industry (2015) MTOE in 2015		<pre>= Around 925 = >1150 = 130,000 Tons/Day (TPD) = 85,479 TPD (66% Cap Utilization) = 31.2 Million tons = 0.30 Million MTOE</pre>	
Projected Processing of Dairy Indu	ıstry (2020) = 5	2.6 Million tons	
MTOE in 2020		= 0.50 Million MTOE	

Estimated Savings Potential in Indian Dairy Industry

1. Energy Efficiency

= 15-20% (0.075 – 0.1 Million MTOE)

2. Reduction in Cost of Energy = 15-20%

Source : Report by CII & Shakti Sustainable Energy Foundation on Indian Dairy Industry, Dec-2013 & Dairy India (Seventh Edition)

Ways to Reduce Energy Bill in Indian Dairy Industry

Source : Experience of Umang Dairies Ltd & Dairy India Yearbook 2007

Indian Dairy Industry – Less Focus on Energy

- 1. Lack of awareness on the Energy efficiency
- 2. Lack of organizational commitment
- 3. Narrow focus on Energy
- 4. Not clear about existing level of operations and efficiency, due to lack of instrumentation & non availability of Energy consumption data
- 5. Limited manpower
- 6. Lack of trained manpower
- 7. Limited information on new technologies
- 8. Cost of Energy conservation options

Typical Cost Sheet of Various Dairy Products

All Values in %

Sr No	Particulars	Milk Powder	Fluid Milk (PPM)	Curd / Chhachh	Butter / Ghee
1	Variable Cost				
1.1	Material	88.55	97.38	84.62	96.21
1.2	Energy	7.00	0.96	7.58	1.09
1.3	Casual Labour	0.60	0.55	2.47	0.55
1.4	Stores	1.09	0.28	1.23	0.32
1.5	Repairs	0.50	0.09	0.12	0.18
1.6	Sub Total	97.74	99.25	96.02	98.35
2	Fixed Cost	2.26	0.75	3.98	1.65
3	TOTAL COST	100	100	100	100

Approaches Towards Energy Efficiency for Indian Dairy Industry

Sr No	Approach	Adoption by Umang Dairies
1	Cogeneration / CHP – reduces cost of energy by 15-30%. Useful for Dairy plants with electric load>1MW and high demand for steam. Cheaper fuels further add to reduce cost.	Yes
2	Trigeneration – Energy system efficiency can further increase by 5%	
3	Desuperheater – Waste heat recovery	
4	Vapour Absorption Refrigeration	Yes
5	Variable Frequency Drives – Huge scope in Refrigeration / Air compressors, boiler fans, homogenizers, various pumps	Yes
6	Lighting – LEDs can reduce Dairy plant electric load by 1-2%	Yes
7	Flash Steam Recovery	Yes
8	Evaporative Condensers in place of Air/Water Condensors – Potential to save 10-20% of energy of refrigeration compressor	Yes
9	O2 Analyzer / Automatic O2 Sensor for Boiler / HAG	Yes
	Source : Report by Cll & Shakti Sustainable Energy Foundation on Indian Dairy Industry, Dec-2013 & Umana Dairies Itd	

Approaches Towards Energy Efficiency for Indian Dairy Industry

Sr No	Approach	Adoption by Umang Dairies
10	Use of Methane out of Anaerobic Digester – 0.34 m ³ can be generated out of 1MT effluent treatment. Around 2645 kCal/MT of milk can be produced. Potential to save 1-3% of overall energy.	Under Progress
11	Replacement of old Motors by Energy Efficient Motors	Yes
12	Use of Screw Compressors (Air/Refrigeration) in place of Reciprocating	Yes
13	Increase Condensate Recovery to 80%	Under Progress
14	Optimize Transformer loading (70-80%)	
15	Maintain Power Factor of (0.98-1.00)	Yes
16	Auto blow down in Boilers	

Source : Report by CII & Shakti Sustainable Energy Foundation on Indian Dairy Industry, Dec-2013 & Umang Dairies Ltd.

Approaches Towards Energy Efficiency for Indian Dairy Industry

Use of Renewable Energy

Sr No	Approach	Adoption by Umang Dairies
1	Use of Biomass / Agro based Fuels	Yes
2	Use of Solar Energy – Power/ Heating	

Source : Report by CII & Shakti Sustainable Energy Foundation on Indian Dairy Industry, Dec-2013 & Umang Dairies Ltd.

Process Related Energy Efficiency Measures for Indian Dairy Industry

1. Automation

2. Insulation

3. Pasteurization

- i. Use Pasteurizers with higher regeneration efficiency (>92%)
- ii. Reduce Pasteurization temperature by controlling microbial count in raw milk
- iii. Explore new technologies like photo purification using lamp emitting UVC band light (a micro biocidal wavelength)

4. Homogenization

- i. While addition of fat, only high fat phase should be homogenized
- ii. Achieve same creaming index with less pressure using technologies like NanoVALVE
- iii. Optimize CIP fluid volumes

5. Cleaning in Place (CIP) Optimization

- i. Increase process cycle time
- ii. Explore alternate chemicals
- iii. Optimize volume & temperature
- 6. Optimize Equipment Sizing
- 7. Reduce Reprocessing
- 8. Cold Sanitation

Results of Energy Efficiency Initiatives at Umang Dairies Ltd

Reduction in Energy Cost by 15.6% in last 3 years (Year 2014-15 to 2017-18)

Comparison of Specific Energy Consumption – European Dairy Plants & Umang Dairies

Sr No	Product	Energy Consumption (Million kCal/ton of Product) *	Energy Consumption (Million kCal/ton of Product) at Umang Dairies
1	Milk Powder	2.41	2.58
2	Fluid Milk	0.24	0.14
3	Butter	0.47	0.50

* Typical Energy Consumption Correspond to European Dairy Plants

*Source : Report by CII & Shakti Sustainable Energy Foundation on Indian Dairy Industry, Dec-2013

Suggestions to Improve Energy Efficiency in Indian Dairy Industry

- 1. Creation of Awareness
- 2. Formulation of favourable policies by Govt. of India to encourage energy efficiency in Dairy Industry
- 3. Benchmarking Indian / International
- Creation of Technology Upgradation Fund low cost funding for new energy efficient technologies and automation
- 5. Subsidies for Cogeneration
- 6. Inclusion of Dairy Industry in Schemes like REC / PAT

Thank You.....

