
Wednesday, November 3, 1999
10:30 AM

P R E S E N T A T I O N

WG2

WHY SOFTWARE FAILS

(AND HOW TESTERS CAN EXPLOIT IT)

James Whittaker
Florida Institute of Technology

INTERNATIONAL CONFERENCE ON

SOFTWARE TESTING, ANALYSIS & REVIEW
NOVEMBER 1-5, 1999

SAN JOSE, CA

Presentation Notes
Paper
Bio
Return to Main Menu

Why Software Fails
(and how testers can exploit it)

Dr. James A. Whittaker

Formal Methods

“If only you did things more formally…

Formal methods are an error-prone way

to prove toy programs correct.

They are simply no match for good testers.

…your code would be better.”

Tools

“If only you used the right tools…

CASE tools are probably the lowest quality

software ever written. Using them means

inheriting their bugs. Testers rejoice!

…your code would be better.”

Process Improvement

“If only you worked more carefully…

SPI is a management technique,

software development is a technical problem.

You cannot manage-away technical problems.

A CMM rating won’t protect you from testers.

…your code would be better.”

The Threat of Destruction

“If only you paid attention to your testers…

We’re the ones who break things.

We’re the ones who can show you the problems.

Listen to us or face our wrath!

…your code would be better.”

Exploiting Broken Input Constraints
(WordPad for Windows NT 4)

(b) The program fails when it accepts
a 17 digit number which is out of range

(a) The program correctly constrains
an input with 4 digits

(c) The rules about allowable inputs
change when a 65 digit number is entered

(d) Finally the application crashes on
a 70 digit number

Exploiting Broken Output Constraints
(Time/Date Properties for Windows NT 4)

Exploiting Broken Data Constraints
(Calculator for Windows 98)

Exploiting Broken Computation
Constraints

(Word 2000 on any OS)

Conclusion

• I believe testers understand why software
fails better than anyone

• My lab is dedicated to breaking software
until we learn enough to fundamentally
improve development practices

• Until such time, however, we are creating
new testing technology and tools to improve
finding and measuring faults and failures

Why Software Fails
James A. Whittaker and Alan Jorgensen

Software Engineering Program, Florida Tech
[jw, ajorgens]@cs.fit.edu

Abstract

This note summarizes conclusions from a three year study about
why released software fails. Our method was to obtain mature-
beta or retail versions of real software applications and stress test
them until they fail. From an analysis of the causal faults, we
have synthesized four reasons why software fails. This note pres-
ents these four classes of failures and discusses the challenges
they present to developers and testers. The implications for soft-
ware testers are emphasized.

Keywords: software development, software failure, software
testing

Introduction

For several years our university lab has performed contract soft-
ware testing for many companies large and small. In general, we
test mature-beta or retail versions of products across all genres of
software. This means that we are testing non-trivial products that
have already been thoroughly tested, and in many cases have seen
the equivalent of decades of field use. However, we routinely
break these products, sometimes seriously.

To date, we have tested fifteen major software applications from
six vendors. The applications range from large desktop applica-
tions, e.g., word processors and spreadsheets, to real-time, em-
bedded systems. The fifteen applications range from 100K to over
1M lines of code. In addition, we’ve tested dozens of small pro-
grams, mostly controls for user interfaces, abstract data types and
command-line utilities. The fact that we are finding failures out-
side the capability of the methods applied by the vendors leads us
to believe that there is something fundamentally wrong with the
way software is developed and tested.

In each case, students trained in testing theory either manually
tested or constructed test automation and identified repeatable
“unexpected results.” Actual classification of unexpected results
as failures was left to the original developers who posted failures
against each of the fifteen applications.

Our “theory” of software failure, presented below, was conceived
by studying how these software products failed and analyzing the
causal faults. Hopefully, by understanding the cause and effect of
software failure we will be able to gain insight into the reasons
why software fails.

Our research has identified four classes of failures which, it turns
out, fall completely within the realm of common sense:

• improperly constrained input,
• improperly constrained stored data,
• improperly constrained computation, and
• improperly constrained output.

Since released software routinely fails, this indicates that such
common sense is not always practiced in the craft of software de-

velopment. We begin by discussing each class of causal fault and
demonstrating their existence in published code and off-the-shelf
retail applications. Furthermore, we discuss, in general terms, the
issues involved in identifying and preventing the faults.

Improperly Constrained Input

Every software developer is told to check inputs for validity before
processing them. However, few of us do so, even those who teach
the masses how to program. Consider the following program
taken from [1, p. 62] as an example1.

/*shellsort: sort v[0]…v[n-1] in order*/
void shellsort(int v[], int n)
{
 int gap, i, j, temp;
 for (gap = n/2, gap > 0; gap /= 2)
 for (i = gap; i < n; i++)
 for (j=i-gap; j>=0 && v[j]>v[j+gap]; j-=gap){
 temp = v[j];
 v[j] = v[j+gap];
 v[j+gap] = temp;
 }
}
Given the prior discussion, the bug in this program should be
fairly obvious. To expose it, we’ll simply pass the routine a “bad”
parameter. We have at least two choices to do so. First, we can lie
about the length of the array. For example, the following driver
code will cause the shellsort to include the array length as one of
the values in the array.

int main(void)
{
 int in[] = {10, 20, 30, 40};
 int length = 5;
 shellsort(in, length);
}
Here the output is {5, 10, 20, 30, 40}. Such incorrect behavior is
tricky to detect since the program does not crash.

We can also pass the shellsort an invalid array pointer and the
program will fail due to a null pointer exception.2 The following
driver performs this task nicely.

int main(void)
{
 int *in = main;
 int length = 20;
 shellsort(in, length);
}
Of course, one can always argue that it is the task of the calling
program to avoid passing unacceptable parameters. But this ar-
gument is weak and requires redundant inclusion of check code at
each use of the routine. Writing a routine that can be so easily

1 In defense of the authors of [1], they make no claim to correctness. However, as we
show later, even when a correctness claim is made, programs can still be broken.
2 The actual error message may vary depending on the compiler used, our results are
based on the gcc compiler under IBM AIX v4.3.

broken is dangerous to any developer who might eventually in-
corporate it into their own software product.

How does one systematically cause such failures? In our lab we
have taken two approaches. From a black box perspective, we
identify the places that input is allowed in the system. At each of
these locations, we submit a large number of inputs of varying
types, lengths and values. Sometimes conventional testing theory
helps, for example, by aiding in the selection of boundary values
for certain data types. However, our experience has been that not
all failures occur at boundary locations. Thus, we are working on
generalizing the selection of input values based on the failures we
have elicited from the products we’ve tested. From a white box
perspective, the task is easier because the source gives us easy
access to inputs and data types. Automation of the identification
of input entry points and of value selection is an area we are
studying in earnest.

Consideration of the operating environment is also a crucial as-
pect of identifying inputs that cause the software to fail. Some-
times, an input that works in one environment might not work in
another. Other times, resource contentions between various users
(e.g., editing the same file) might elicit failures. Whenever we
find a failure, we try to duplicate the erroneous behavior on dif-
ferent machines, different operating systems and vary what we
call “background noise”—other applications that are running
during a test that compete for resources.

Prevention of broken input constraints doesn’t necessarily mean
riddling source code with “if” statements to check value ranges.
Often, it is simply a matter of tweaking the user interface to prop-
erly filter user input; other times calling a single routine that vali-
dates inputs can help source code remain clean.

There is nothing new about input constraint errors. Most good
programming texts tell us to avoid them. The problem is that they
fail to tell us how to do so and then proceed to show us code in
which they, themselves, do not properly constrain inputs. If cor-
rect software really is important, we must begin to take our own
advice seriously.

Improperly Constrained Stored Data

Keeping bad input out of a software product is only one aspect of
preventing bad data. Sometimes bad data is stored as a result of
internal processing, causing the software to corrupt its own stored
data. As a case-in-point, a commercial spreadsheet package can
be tricked into this situation after entering a formula that is longer
than the allowed limit.

When Microsoft Excel 97 receives a formula over 256 char-
acters in length, it displays a message indicating that the formula
is too long (see figure 1).

Figure 1. Microsoft Excel 97 Correctly Constrains Input
Thus, it successfully constrained the input and avoided the prob-
lem noted above. However, in doing so, it managed to corrupt its
internal memory. Hitting the Enter key in the cell in which the
formula was attempted causes the spreadsheet to completely crash
(see figure 2).

Figure 2. Microsoft Excel 97 Crashes Due to Corrupted Data
Input sequencing is an important aspect of breaking software by
corrupting its internally stored data. It took two inputs in se-
quence to cause the spreadsheet to crash: the formula had to be
followed by the Enter key. Some failures occur only after long,
complex input sequences. This makes them difficult to reproduce
and diagnose.

Very little testing technology exists for checking constraints on
internally stored data and finding input sequences that violate
them. To do so, models of sequences must be constructed based
on the relationship of inputs and the knowledge of how data is
stored in the system.

To model the relationship between stored data and input se-
quences, testers often create state-transition diagrams that de-
scribe how data flows through the system. The problem is that few
systematic approaches to building enumerating software states
and controlling the size of the state diagram exist.

Our experience has been that this class of problem creates very
dangerous situations for users. Either the system completely
crashes or it corrupts its internal data to the point that its results
are no longer trustworthy. The fact that testing theory covers this
subject so thinly makes this area ripe for additional research.

Improperly Constrained Computation

The design for a running sales average is presented in [2, p. 11]
and “verified” later in the same text [2, p. 117], including verifi-
cation for “improper use.” However, we can make this program
fail by forcing it to overflow it’s stored data through a simple cal-
culation (that is “verified” correct).

Their running average is computed by :

()
12

)11(...)1()(−++−+
=

iSiSiS
iR (1)

where S is an input (called a stimulus), R the output (called a re-
sponse) and i the index representing the order of arrival of the
inputs. When this program is implemented,3 we can overflow the

3 Many authors might argue that the presentation of an algorithm is exempt from the
limitations of finite computers. However, we accept this argument only from authors
who write about algorithms. If algorithms appear in a book about programming, then
it isn’t appropriate to ignore the physical machine and its limitations.

storage set aside for the running sum by submitting two or more
inputs that, when added together, are larger than the maximum
allowed integer.

Here we are exploiting the fact that this particular computation is
unconstrained. In fact, there is no check to ensure that the result
will fall within an acceptable range. To fix this problem we must
check the values by subtracting the sum from the maximum al-
lowable integer to ensure that the result is greater than or equal to
the next input.

One could argue that such circumstances are unlikely, however,
the result of overflow is almost always a system crash. For real-
time software, this is a dangerous situation no matter how rare.
Consider the aborted maiden flight of the Ariane 5 rocket (see
http://www.cs.wits.ac.za/~bob/ariane5.htm). The cause of this
failure is similar to the running average problem above. A com-
putation, in this case the conversion of a floating point number to
an integer, produced a result that fell outside the allowable range.
The rocket was destroyed in flight. Improperly constrained com-
putation had a serious consequence.

The key to finding improperly constrained computation is knowl-
edge of the problem domain. In an informal experiment at Florida
Tech, we had a group of students test a desktop calculator. In
every instance, students with substantial training in mathematics
were able to discover many more problems in significantly less
time than students with less mathematics expertise. By under-
standing the problem, one naturally has a better feel for the types
of computation the software performs and is in a better position to
diagnose possible problems.

In the absence of good domain expertise, it also helps to have the
source code available. A simple search through the source looking
for places where operators or built-in system functions are used
can at least expose what computation takes place. One then stud-
ies what possible results can be generated and tries to find situa-
tions that are possible but not supported.

Improperly Constrained Output

Sometimes software developers get all three of the above situa-
tions right and then fail to correctly display or transmit responses
to users. Such an example can be found in the calendar program
shipped with Windows. An improperly constrained output can
be identified by selecting February 29 of a leap year, then incre-
menting the year. Obviously, February 29 is no longer a valid day.
One could legitimately expect the calendar to change the day to
either February 28 or, perhaps, March 1. Figure 3 shows the
manifestation of this bug: a day that does not exist is displayed. It
turns out, however, that this is essentially a screen-refresh prob-
lem: selecting the “apply” button will not cause an incorrect date
to be stored. The developers simply failed to update the screen.

Finding broken output constraints is similar in nature to finding
broken input and data constraints. The task is difficult because it
is not always evident from looking at a display panel where the
application can trip-up. One has to drive each output to its maxi-
mum and minimum value and vary the length and character sets
as much as possible and, of course, carefully check each result.

Once again, knowledge of the problem domain is important: one
has to know, for example, that non-leap years have only 28 days

in February.

Conclusion and Future Work

This note summarizes a systematic approach for breaking soft-
ware. Using this approach, we have exposed failures in software
that has seen decades of field use and software that has been criti-
cally verified by very capable software engineers.

The actual classification of a fault as an input constraint, stored
data constraint, computation constraint or output constraint is not
particularly crucial. If one interprets a specific fault as a compu-
tation constraint instead of a stored data constraint, it makes little
difference: a fault is a fault no matter how it is located. Instead,
our classification scheme is presented as a way for testers to think
through the situations that need testing. It is a guide that testers
use to systematically check possible problem areas.

Our current work is focusing on two specific areas concerning our
“theory” of software failure: exploitation and remedy. From a
testing perspective, knowledge of improperly constrained input,
data, computation and output allows us to methodically examine a
software product to identify potential faults. From a development
perspective, the problem is to design preventative measures di-
rectly into software development practices. Our work continues in
both of these areas.

Acknowledgements

Finding bugs in published code and retail applications was the
first homework in a Software Testing Methods course taught at
Florida Tech in Spring 1999 by the authors. Students in that
course gave us many good examples from which to choose for this
paper. Special thanks to Steven Atkin, Luis Rivera and Ahmed
Stewart whose work appears above. We also gratefully acknowl-
edge the encouragement and participation we received from de-
velopers at Microsoft Corporation.

References
[1] Kernighan, B. and D. Ritchie (1988): The C Programming Language,
Prentice-Hall.

Figure 3. A Broken Output Constraint

[2] Mills, H., R. Linger and A. Hevner (1986): Principles of Information
Systems Analysis and Design, Academic Press.

JAMES WHITTAKER

Dr. James Whittaker is an associate professor of computer science
and the chair of the software engineering program at Florida Tech.
He received his Ph.D. from the University of Tennessee in 1992 and
regularly consults for major software companies in the United States
and Europe.

	Title Page
	Presentation Notes
	Paper
	Bio
	Return to Main Menu

