
PhUSE 2014

1

Paper CS02

Presenting SAS Data Sets on the Web Using SAS ODS, JavaScript,
and jQuery

Volker Harm, Bayer Pharma AG, Berlin, Germany

ABSTRACT

Inspired by the SAS ODS tableeditor tagset we look further how JavaScript and the jQuery library can be used to
dynamically present SAS data sets on the web. Emphasis will be laid in sorting, filtering and editing data.

INSPIRATION

Recently in our department Research and Clinical Sciences Statistics we got a request from Investigational
Toxicology to determine reference intervals for laboratory parameters. The result was a data set with 1314 reference
intervals for different parameters in seven laboratory test for three different blood sampling from male and female
animals with following data structure:

Name Variable type Value
type

Label

Test Group Character Test

Parameter Group Character Parameter abbreviation

Group Group Numeric Blood Sampling Technique

Sex Group Character Sex

DayOfPhase Group Numeric Day of phase

ResultValue_N Value Numeric N

ResultValue_Mean Value Numeric Mean

ResultUnit Value Character Unit

ResultValue_StdDev Value Numeric SD

ResultValue_Min Value Numeric Min

ResultValue_Max Value Numeric Max

LowerBound Value Numeric Lower bound

UpperBound Value Numeric Upper bound

Distribution Value Character Distribution

Remark Value Character

LIST REPORTS

Results from older studies were presented as list reports, which were scrolled through in a text editor to get insight
into the data. This is tedious and often requires error prone copy and paste to create reports on special aspects.

INTERACTIVE SELECTION OF PARTIAL REPORTS

We were thinking about a more flexible solution using filters for the group variables and some sorting.

The first idea was to set up a SAS Stored Process with prompts to select tests and a selection of parameters so we
could produce nicely formatted partial lists as shown in the following figures:

PhUSE 2014

2

But this seemed also not flexible enough for exploratory screening the data. Perhaps we should do something
completely based on the presentation in the web browser? Perhaps we should give the tableeditor tagset a try.

TRYING OUT THE TABLEEDITOR TAGSET

Tableeditor.tpl is a custom tagset created by the TEMPLATE procedure. It promises to present a data grid that
“dynamically sorts, filters, freezes rows and columns, creates tables and panels, hides columns, applies styles,
applies alternating row and columns barriers, and saves data to various formats” (Chevell, 2008). Tableeditor.tpl can
be downloaded from support.sas.com/rnd/base/ods/odsmarkup/tableditor and must be included in the SAS program.

For the problem at hand we used the following code:

* provide the tableeditor tagset;

ods path(prepend) work.templat(update);

%include "&ProjDir.\tableeditor.tpl";

* provide the data;

libname der "&ProjDir.";

* open the ods destination;

ods tagsets.tableeditor file = "&ProjDir.\ReferenceIntervals.html"

 options (

 autofilter="yes"

 autofilter_width = "8em"

 autofilter_endcol = "5"

 frozen_headers = "yes"

 sort = "yes"

 hide_cols = "yes"

 alert_text = "Table editor demo:

 \n - autofilters set

 \n - sort by click on column header

 \n - hide column by double click on column header

 \n - frozen header"

);

* report the data;

title1 "Reference Intervals";

proc print data = der.ReferenceIntervals label noobs;

run;

* close the ods destination;

ods tagsets.tableeditor close;

With this set of options the tableeditor tagset is used to generate HTML output with both autofilters and frozen
headers activated. The autofilters have a default width uniformly assigned and have been defined for the first five
columns. Frozen headers have also been activated enabling to scroll through the data listing whilst still being able to
view column headings. Single clicking on a column header sorts the table according to the values in this column,
double clicking on a column header hides the column. For demo purposes an alert is also set to give a hint of the
possible interactions, which shows up when page is loaded.

PhUSE 2014

3

After confirming the alert the following page is presented with all described features:

It works. Magic?!

PhUSE 2014

4

HOW DOES THIS MAGIC WORK OUT?

WEB PAGE BASICS

A web page consist of three main components: structure, presentation, and behavior.

The structure is determined by a sequence of HTML elements put together in an HTML document. Most HTML
elements are written with a start tag and an end tag with the content in-between. The general syntax of an HTML tag
is: <name attribute = “value”> content to be modified by the tag</name>. A basic working example of a web page
using HTM tags shows the typical structure:

<html>

 <head>

 <title>Simple Web Page</title>

 </head>

 <body>

 <p>Sample paragraph</p>

 </body>

</html>

Inside the <html> tag there is a head and a body section. The head is where the document a title and maybe other
parameters for the whole page are given. The body contains the actual content of the web page.

The browser renders this example as seen in the following figure:

The presentation of HTML elements (font, typeface, color, ...) is determined by a Cascading Style Sheet (CSS).
Selectors are used to declare which part of the markups a style applies to. The general syntax of a selector is:
selector {property1: value; … propertyN: value}. Selectors defining styles are usually defined by a <style> tag in the
head section. As an example we show the previous HTML document using a CSS selector for a brown background:

<html>

 <head>

 <title>Simple Web Page</title>

 <style type="text/css">

 body {

 background-color: #d2b48c;

 }

 </style>

 </head>

 <body>

 <p> Sample paragraph</p>

 </body>

</html>

PhUSE 2014

5

The browser renders this example as seen in the following figure:

Behavior is added to a web page using JavaScript. Browsers take the HTML elements and build from then a
Document Object Model (DOM). As the browser is listening to events JavaScript can react to them manipulating
elements of the DOM.

Here is an example using JavaScript:

<html>

 <head>

 <title>Simple Web Page</title>

 <style type="text/css">

 body {background-color: #d2b48c;}

 </style>

 <script>

 setTimeout(wakeUpUser, 5000);

 function wakeUpUser() {

 alert("Hey, go on!");

 }

 </script>

 </head>

 <body>

 <p>Sample paragraph</p>

 </body>

</html>

The JavaScript part is declared in a <script> tag most commonly placed in the head section of the HTML document.
It is also possible to put the code at the beginning or end of the body section. The code in the head section is
executed after the page and its DOM is fully build up. Code in the body section gets executed as the body is loaded.

The code presented here lets the user wait for five seconds and wakes up the user by bringing up an alert as seen in
the following figure:

PhUSE 2014

6

PRESENTING TABLES ON THE WEB

Having understood the basics of a web page let us now turn to tables. Here is the basic structure of a table in HTML:

<html>

 <head>

 <title>Simple Web Page</title>

 <style type="text/css">

 td, th {border: 1px solid black}

 body {background-color: #d2b48c;}

 </style>

 </head>

 <body>

 <table>

 <thead>

 <tr>

 <th>Name</th>

 <th>Sex</th>

 <th>Age</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td>Alfred</td>

 <td>M</td>

 <td>14</td>

 </tr>

 <tr>

 <td>Alice</td>

 <td>F</td>

 <td>13</td>

 </tr>

 <tbody>

 </table>

 </body>

</html>

PhUSE 2014

7

The content of a table is enclosed by a <table> and a </table> tag. Tables are written row by row. In the head section,
enclosed by <thead> and </thead> tags, the header row is defined, in the body section, enclosed by <tbody> and
</tbody> tags, the data rows. Header cells are enclosed by <th> and </th> tags, data cells by <td> and </td> tags.
The CSS selector in the style section defines the frame for the header and data cells.

All this results in following browser window:

Let us compare this to the results of using SAS ODS HTML. The statements to create the SAS data set and
rendering them in an HTML document are as follows:

* creating the table;

data SampleTable;

 set sashelp.class (obs = 2 keep = Name Sex Age);

run;

* rendering the table;

ods html body = "&ProjDir.\ODSTable.html" (title = 'Simple Web Page');

proc print data = SampleTable;

run;

ods html close;

This gives a quite similar output:

PhUSE 2014

8

As style we used the SAS default style, which is the cause for the different appearance.

Here is the general structure of the HTML document that SAS ODS creates, which resembles the HTML elements
discussed before:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

 <head>

 <meta name="Generator"

content="SAS Software Version 9.2, see www.sas.com">

 <meta http-equiv="Content-type"

content="text/html; charset=windows-1252">

 <title>SAS Output</title>

 <style type="text/css">

 <!--

 CSS style definitions

 -->

 </style>

 <script language="javascript" type="text/javascript">

 <!--

 JavaScript statements (general)

 //-->

 </script>

 </head>

 <body onload="startup()" onunload="shutdown()" class="Body">

 <!--

 HTML elements

 //-->

 <script language="javascript" type="text/javascript">

 <!--

 JavaScript statements (DOM)

 //-->

 </script>

 </body>

</html>

The <!DOCTYPE> declaration in the first line is not an HTML tag; it is an instruction to the web browser about what
version of HTML the page is written in. The declaration created by SAS ODS HTML works in all modern browsers.

The style definitions in this HTML document are quite lengthy. If we want to see only the part of the HTML document,
which builds up the table SAS provides sub-options for the ODS HTML statement:

* getting the table definition;

ods html

 body = "&ProjDir.\ODSTableDefinition.html"

 (title = 'Simple Web Page'

 no_top_matter

 no_bottom_matter);

proc print data = SampleTable;

run;

ods html close;

Running this program shows that the table definition resembles everything that was mentioned about table before
plus some structure elements:

PhUSE 2014

9

<div class="branch">

<div>

<div align="center">

<table class="Table" cellspacing="1" cellpadding="7" rules="groups"

frame="box" summary="Procedure Print: Data Set WORK.SAMPLETABLE">

<colgroup>

<col>

</colgroup>

<colgroup>

<col>

<col>

<col>

</colgroup>

<thead>

<tr>

<th class="r Header" scope="col">Obs</th>

<th class="l Header" scope="col">Name</th>

<th class="l Header" scope="col">Sex</th>

<th class="r Header" scope="col">Age</th>

</tr>

</thead>

<tbody>

<tr>

<th class="r RowHeader" scope="row">1</th>

<td class="l Data">Alfred</td>

<td class="l Data">M</td>

<td class="r Data">14</td>

</tr>

<tr>

<th class="r RowHeader" scope="row">2</th>

<td class="l Data">Alice</td>

<td class="l Data">F</td>

<td class="r Data">13</td>

</tr>

</tbody>

</table>

</div>

</div>

</div>

To add behavior in a simple form SAS provides an option HEADTEXT=, which can be used to include some
JavaScript code in the head section of the HTML document. Here is the code for the above example for an alert :

* using the headtext option;

ods html

 body = "&ProjDir.\ODSHeadtext.html" (title = 'Simple Web Page')

 headtext =

 '<script>

 setTimeout(wakeUpUser, 5000);

 function wakeUpUser() {

 alert("Hey, go on!");

 }

 </script>';

proc print data = SampleTable;

run;

ods html close;

PhUSE 2014

10

And this is the result:

UNDERSTANDING THE MAGIC OF THE SAS ODS TABLEEDITOR TAGSET

The SAS ODS Tableeditor tagset is a custom tagset that is created by the TEMPLATE procedure. A tagset is a type
of template that defines how to generate a markup language output type from SAS data. A markup language is a set
of tags and format codes that are embedded in text in order to define layout and certain content. The SAS ODS
Tableeditor tagset is inherited from the ODS HTML destination and enhances this by applying the above principles of
HTML, CSS, and JavaScript to present SAS data sets on the web.

ADDING MORE BEHAVIOR WITH JQUERY PLUG-INS

A more incremental way than using the SAS ODS Tableeditor tagset is adding behavior to SAS ODS HTML by
leveraging JavaScript libraries as jQuery and jQuery plug-ins.

STARTING WITH THE JQUERY PLUGIN TABLESORTER AND THE HEADTEXT= OPTION

A simple starting point for diving into this whole wide world of web development is to make a table sortable by
including the jQuery plugin tablesorter (tablesorter.com).

The following code

ods html

 body = "&ProjDir.\TestTablesorterODSHeadtext.html"

 (title = 'Simple Web Page with jQuery plug-in Tablesorter')

 headtext =

 '<script type="text/javascript" src="js/jquery-1.10.2.min.js"></script>

 <script type="text/javascript" src="js/jquery.tablesorter.min.js"></script>

<script> type="text/javascript">$(function(){$("table").tablesorter();});

</script>

 '

;

proc print data = SampleTable;

run;

ods html close;

PhUSE 2014

11

results in

Double-clicking the header of a column sorts the table. Here the “Name” column was double-clicked.

A SECOND ENTRY POINT: DATATABLES AND MODIFYING THE ODS STYLE DEFINITON

Unfortunately the values for the HEADTEXT= option are limited to 256 characters. Therefore for more complex
insertions into the HTML document we have use other techniques. The most convenient is to use a modified style
with changed PREHTML and POSTHTML attributes:

* modifying styles.default;

ods path (prepend) work.mystyle (update);

proc template;

 define style mystyle;

 parent = styles.default;

 style body from body/

 prehtml = "%prehtmlContent"

 posthtml = "%posthtmlContent";

 end;

run;

The above code snippet creates a new ODS style using two SAS macros as argument s for the PREHTML and
POSTHTML option. This newly defined ODS style inserts the text the macros contain into the beginning and end of
the body section of the HTML document .

The %preHTMLContent macro can be used to include CSS stylesheets and JavaScript libraries

The following example uses the jQuery, the table plug-in for jQuery Data Tables, and Data Tables extension ColVis.
CSS stylesheets and JavaScript libraries can be loaded from the internet. The necessary instructions are presented
in the following macro:

%macro prehtmlContent;

 %* Cascading stylesheets;

 <link

 rel='stylesheet' type='text/css'

 href='http://cdn.datatables.net/1.10.3/css/jquery.dataTables.min.css'

 >

 <link

 rel='stylesheet' type='text/css'

 href='http://cdn.datatables.net/colvis/1.1.1/css/dataTables.colVis.css'

 >

 %* JavaScript libraries;

 <script

 type='text/javascript' language='javascript'

 src='http://code.jquery.com/jquery-1.11.1.min.js'></script>

PhUSE 2014

12

 <script

 type='text/javascript' language='javascript'

 src='http://cdn.datatables.net/1.10.3/js/jquery.dataTables.min.js'>

 </script>

 <script

 type='text/javascript' language='javascript'

 src='http://cdn.datatables.net/colvis/1.1.1/js/dataTables.colVis.min.js'>

 </script>

%mend;

The %postHTMLContent macro can be used to initialize jQuery objects. Here the DataTable object and the ColVis
entension is initialized:

%macro posthtmlContent;

 %* initializing JavaScript code;

 %quote (

 <script type='text/javascript' class='init'>

 $(document).ready(function() {

 $('.Table').DataTable({

 dom: 'C<""clear"">lfrtip'

 });

 });

 </script>

)

%mend;

After these preparations the data set can be rendered with the following code:

* rendering the data set;

ods html body = "&ProjDir.\datatablesReferenceIntervals.html" (title ="Reference

Intervals") style = mystyle;

title "Reference Intervals";

proc print data = ReferenceIntervals noobs label;

run;

ods html close;

This results in the following web page:

PhUSE 2014

13

The boring list of reference interval has changed to an exciting web application with following features:

 pagination (with length change feature)

 intelligent multiple column searching and filtering

 sortable columns

 information about selected rows

 ability to show or hide columns

Check out datables.net to see what else is possible!

CONCLUSION

In order to understand the SAS ODS tableeditor tagset we dived into the basic principles of web page design to show
the use of JavaScript and the jQuery plug-ins in web pages as well as in SAS ODS HTML tables. In contrast to
constructing SAS ODS tagsets, where all this knowledge is prerequisite, we showed a more incremental way of
adding behavior to SAS ODS HTML tables using tools from the wide world of web design.

REFERENCES

Haworth, Lauren E., Zender, Cynthia, L., Burlew, Michele M. 2009. “Output Delivery System The Basics and
Beyond”. Cary, NC: SAS Institute Inc.

Parker, Chevell. 2008. “Creating That Perfect Data Grid Using the SAS® Output Delivery System”. Cary, NC: SAS

Institute Inc. Available at support.sas.com/rnd/base/ods/odsmarkup/tableditor

Fu, Yu, Huang, Chao. 2014. Enhance the SAS® ODS HTML Output with JavaScript. SGF 2014. Available at
http://support.sas.com/resources/papers/proceedings14/1673-2014.pdf

Ziem, Andrew. 2013 “Easy sortable HTML tables in SAS ODS”. Heuristic Andrew. Avaiable at
http://heuristically.wordpress.com/2013/01/17/sortable-html-tables-sas-ods

.

RECOMMENDED READING

Robson, Elisabeth, Freeman Eric. 2012. “Head First HTML and CSS, 2nd Edition”. Sebastopol, CA: O´Reilly Media
Inc.

Robson, Elisabeth, Freeman Eric. 2014. “Head First Java Script Programming”. Sebastopol, CA: O´Reilly Media Inc.

Benedetti, Ryan, Cranley. Ronan. 2011. “Head First jQuery”. Sebastopol, CA: O´Reilly Media Inc.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Volker Harm

Bayer Pharma AG

Müllerstraße 178

13342 Berlin

Work Phone: +49-30-468-11208

Email: volker.harm@bayer.com

Web: http://www.bayerhealthcare.com

Brand and product names are trademarks of their respective companies.

http://www.bayerhealthcare.com/

