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Pressure Vessels Stresses Under Combined Loads Yield Criteria for 
Ductile Materials and Fracture Criteria for Brittle Materials 

Pressure Vessels: 
In the previous lectures we have discussed elements subjected to plane stress where σz 
= τzx = τzy = 0.  Thin-walled pressure vessels are one of the most typical examples of 
plane stress.  When the wall thickness is thin relative to the radius of the vessel, plane 
stress equations are valid.  In addition, since no shear stresses exist, the state of stress 
can be further classified as a biaxial state of stress.  
Spherical Pressure Vessel 
Let’s begin by considering a spherical pressure vessel with radius “r” and wall thickness 
“t” subjected to an internal gage pressure “p”. 

 
For reasons of symmetry, all the normal stresses on a small stress element in the wall 
must be identical. Furthermore, there can be no shear stress.  The normal stresses σ 
can be related to the pressure p by inspecting a free body diagram of the pressure 
vessel. To simplify the analysis, we cut the vessel in half as illustrated.  

 
Since the vessel is under static equilibrium, it must satisfy Newton's first law of motion. 
In other words, the stress around the wall must have a net resultant to balance the 
internal pressure across the cross-section. Summing forces we obtain: 

2πrtσ = pπr2 
Solving for stress we obtain: 

2
pr
t

σ =  

This normal stress is known as the axial, longitudinal or meridional stress. 
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Cylindrical Pressure Vessel 

Now let’s consider a cylindrical pressure vessel with radius “r” and wall thickness “t” 
subjected to an internal gage pressure “p”. 

 
The coordinates used to describe the cylindrical vessel can take advantage of its axial 
symmetry. It is natural to align one coordinate along the axis of the vessel (i.e. in the 
longitudinal or axial direction). To analyze the stress state in the vessel wall, a second 
coordinate is then aligned along the hoop direction (i.e. tangential or circumferential 
direction).  

With this choice of axisymmetric coordinates, there is no shear stress. The hoop stress 
σh and the longitudinal stress σl are the principal stresses.  To determine the 
longitudinal stress σl, we make a cut across the cylinder similar to analyzing the 
spherical pressure vessel. The free body, shown on the next page, is in static 
equilibrium. This implies that the stress around the wall must have a resultant to 
balance the internal pressure across the cross-section. 

 
Summing forces in the longitudinal direction we obtain the same result as with the 
spherical pressure vessel. 

2l
pr
t

σ =  
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To determine the circumferential or hoop stress σh, we make a cut along the longitudinal 
axis and construct a small slice as illustrated below. 

 
Summing forces in the hoop direction we obtain: 

2σhtdx = p2rdx 

Solving for the hoop stress we obtain: 

h
pr
t

σ =  

In summary we have: 

Longitudinal Stress 

2l
pr
t

σ =  

Hoop Stress 

h
pr
t

σ =  

Note: The above formulas are good for thin-walled pressure vessels. Generally, a 
pressure vessel is considered to be "thin-walled" if its radius r is larger than 5 times its 
wall thickness t (r > 5t). 

When a pressure vessel is subjected to external pressure, the above formulas are still 
valid. However, the stresses are now negative since the wall is now in compression 
instead of tension. 
 



OPTI 222 Mechanical Design in Optical Engineering  

 116

 Stresses Under Combined Loads: 

To this point we have considered the response of members subjected to the separate 
effects of axial loads, torsion, bending and uniform pressure.  However, in many cases 
structural members are required to resist more than one type of loading.  The stress 
analysis of a member subjected to combined loadings can usually be performed by 
superimposing the stresses due to each load acting separately.  Superposition is 
permissible if the stresses are linear functions of the loads and if there is no interaction 
effect between the various loads (i.e. the stresses due to one load are not affected by 
the presence of any other loads).   

Let’s consider the following example. 

 

 

Torsion Tr
J

τ =  2,400 psi 

Bending (M1) 1M
S

σ =  14,400 psi 

Bending (M2) 2M
S

σ =  9,600 psi 

Axial P
A

σ =  200 psi 

Transverse Shear 4
3
V
A

τ =  133 psi 
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We can now combine the individual load cases to obtain the stress elements show 
below: 

Torsion Tr
J

τ =  2,400 psi 

Bending (M1) 1M
S

σ =  14,400 psi 

Bending (M2) 2M
S

σ =  9,600 psi 

Axial P
A

σ =  200 psi 

Transverse Shear 4
3
V
A

τ =  133 psi 
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Failure Criteria: 
The purpose of failure criteria is to predict or estimate the failure/yield of structural 
members subjected biaxial or triaxial states of stress.  
A considerable number of theories have been proposed. However, only the most 
common and well-tested theories applicable to isotropic materials are discussed here. 
These theories, dependent on the nature of the material in question (i.e. brittle or 
ductile), are listed in the following table: 

 
Material Type Failure Theories 

Ductile Maximum shear stress criterion, Von Mises criterion 

Brittle Maximum normal stress criterion, Mohr’s theory 

1. Whether a material is brittle or ductile could be a subjective guess, and often 
depends on temperature, strain levels, and other environmental conditions. 
However, a 5% elongation criterion at break is a reasonable dividing line. 
Materials with a larger elongation can be considered ductile and those with a 
lower value brittle. 
Another distinction is a brittle material's compression strength is usually 
significantly larger than its tensile strength. 

2. All popular failure criteria rely on only a handful of basic tests (such as uniaxial 
tensile and/or compression strength), even though most machine parts and 
structural members are typically subjected to multi-axial loading. This disparity is 
usually driven by cost, since complete multi-axial failure testing requires 
extensive, complicated, and expensive tests. 

Non Stress-Based Criteria: 
The success of all machine parts and structural members are not necessarily 
determined by their strength. Whether a part succeeds or fails may depend on other 
factors, such as stiffness, vibrational characteristics, fatigue resistance, and/or creep 
resistance.  
For example, the automobile industry has endeavored many years to increase the 
rigidity of passenger cages and install additional safety equipment. The bicycle industry 
continues to decrease the weight and increase the stiffness of bicycles to enhance their 
performance.  
In civil engineering, a patio deck only needs to be strong enough to carry the weight of 
several people. However, a design based on the "strong enough" precept will often 
result a bouncy deck that most people will find objectionable. Rather, the stiffness of the 
deck determines the success of the design.  
Many factors, in addition to stress, may contribute to the design requirements of a part. 
Together, these requirements are intended to increase the sense of security, safety, 
and quality of service of the part. 
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Maximum Shear Stress Criterion: 
The maximum shear stress criterion, also known as Tresca's or Guest's criterion, is 
often used to predict the yielding of ductile materials.  
Yield in ductile materials is usually caused by the slippage of crystal planes along the 
maximum shear stress surface. Therefore, a given point in the body is considered safe 
as long as the maximum shear stress at that point is under the yield shear stress 
obtained from a uniaxial tensile test.  
With respect to plane stress, the maximum shear stress is related to the difference in 
the two principal stresses. Therefore, the criterion requires the principal stress 
difference, along with the principal stresses themselves, to be less than the yield shear 
stress, 

σ1< σy,  σ2< σy,  σ1-σ2< σy 

As shown below, the maximum shear stress criterion requires that the two principal 
stresses be within the green zone. 

 
Where: 

σy = Yield strength of material of uniaxial tension test 
 

Maximum Distortion-Energy (Von Mises) Criterion: 
The von Mises Criterion (1913), also known as the maximum distortion energy criterion, 
octahedral shear stress theory, or Maxwell-Huber-Hencky-von Mises theory, is often 
used to estimate the yield of ductile materials.  
The von Mises criterion states that failure occurs when the energy of distortion reaches 
the same energy for yield/failure in uniaxial tension. Mathematically, this is expressed 
as:  

( ) ( ) ( )2 2 2
1 2 2 3 3 1

2 y

σ σ σ σ σ σ
σ

− + − + −
≤  
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In the cases of plane stress, σ3 = 0, the Von Mises criterion reduces to: 

2 2
1 1 2 2 yσ σ σ σ σ− + ≤  

As shown below, this equation represents a principal stress ellipse. 

 
Substituting σx, σy and τxy for σ1and σ2 we obtain: 

2 2 23x x y y yσ σ σ σ τ σ− + + ≤  

Also shown on the previous figure is the maximum shear stress criterion (dashed line). 
This theory is more conservative than the von Mises criterion since it lies inside the von 
Mises ellipse.  
In addition to bounding the principal stresses to prevent ductile failure, the von Mises 
criterion also gives a reasonable estimation of fatigue failure, especially in cases of 
repeated tensile and tensile-shear loading. 
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Failure Theory Comparison 

 
Maximum Normal Stress Criterion: 
The maximum stress criterion, also known as the normal stress, Coulomb, or Rankine 
criterion, is often used to predict the failure of brittle materials.  
The maximum stress criterion states that failure occurs when the maximum (normal) 
principal stress reaches either the uniaxial tension strength σt, or the uniaxial 
compression strength σc,  

-σc < {σ1,σ2}< σt 

where σ1 and σ2 are the principal stresses for plane stress.  
Graphically, the maximum stress criterion requires that the two principal stresses lie 
within the green zone. 
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Mohr’s Theory: 
The Mohr Theory of Failure, also known as the Coulomb-Mohr criterion or internal-
friction theory, is based on the famous Mohr’s Circle.  Mohr's theory is often used in 
predicting the failure of brittle materials, and is applied to cases of plane stress.  
Mohr's theory suggests that failure occurs when Mohr's Circle at a point in the body 
exceeds the envelope created by the two Mohr's circles for uniaxial tensile strength and 
uniaxial compression strength. This envelope is shown below,  

 
The left circle is for uniaxial compression at the limiting compression stress σc of the 
material. Likewise, the right circle is for uniaxial tension at the limiting tension stress σt.  

The middle Mohr's Circle on the figure (dash-dot-dash line) represents the maximum 
allowable stress for an intermediate stress state.  
All intermediate stress states fall into one of the four categories in the following table. 
Each case defines the maximum allowable values for the two principal stresses to avoid 
failure.  

Case Principal Stresses Criterion 
requirements 

1 Both in tension σ1 > 0, σ2 > 0 σ1 < σt, σ2 < σt 

2 Both in compression σ1 < 0, σ2 < 0 σ1 > -σc, σ2 > -σc 

3 �1 in tension, �2 in compression σ1 > 0, σ2 < 0 
 

4 �1 in compression, �2 in tension σ1 < 0, σ2 > 0 
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Graphically, Mohr's theory requires that the two principal stresses lie within the green 
zone depicted below,  

 
Also shown above is the maximum stress criterion (dashed line). This theory is less 
conservative than Mohr's theory since it lies outside Mohr's boundary. 

Failure Theory Comparison 

 


