AASHTOWare BrD/BrR 6.8

Prestressed Concrete Structure Tutorial

PS2 - Three Span Spread PS Box Beam Example

BrD and BrR Training PS2 - Three Span Spread PS Box Beam Example

Enom	tha	Dridaa	Eveloper	amanta n		hmidaa	and	anton	tha	f_{011}		decomintion	datas
гюш	me	Dridge	EXDIOPER	create a	new	pridge	and	emer	me	TOTIC	wing.	description	(lara:
		211080				011480					· · · · · · · · · · · · · · · · · · ·	accouption	

🕰 3SpanSprdBoxTrainir	ngBridge	
Bridge ID: 3SpanSprdE	BoxTrain NBI Structure ID (8): 3SpanSprdBoxTra Template Image: Completely Defined	Superstructures Culverts
Description Description	on (cont'd) Alternatives Global Reference Point Traffic Custom Agency Fields	
Name:	3Span Sprd Box Trn Bridge Year Built:	
Description:	3 span spread PS box beam bridge made continuous for live load through continuity	
	-	
Location:	Length:	
Facility Carried (7):	Route Number: ⁻¹	
Feat. Intersected (6):	Mi. Post:	
Default Units:	US Customary	
AASHTOWare Asso	pciation V BrR V BrD BrM OK Appl	y Cancel

Close the window by clicking Ok. This saves the data to memory and closes the window.

To enter the materials to be used by members of the bridge, click on the + to expand the tree for Materials.

To add a new concrete material click on Concrete in the tree and select File/New from the menu (or right mouse click on Concrete and select New). Enter the following data for the concrete to be used for the beam:

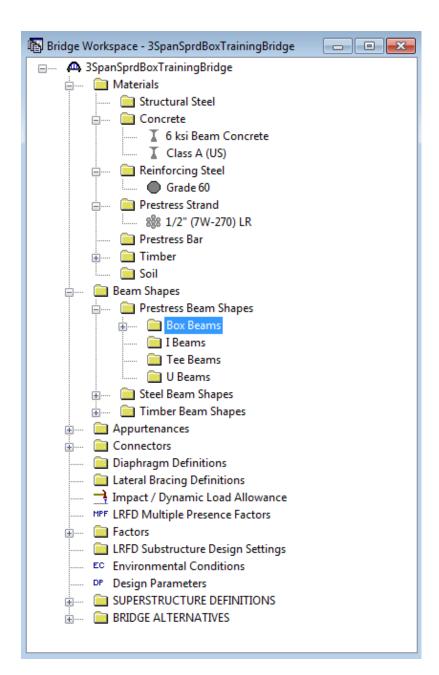
Name:	6 ksi Beam Concrete Des	cription:	
	Compressive strength at 28 days (f'c) =	6.000	ksi
	Initial compressive strength (f'ci) =	5.100	ksi
	Coefficient of thermal expansion =	0.0000060000	1/F
	Density (for dead loads) =	0.150	kcf
	Density (for modulus of elasticity) =	0.150	kcf
	Std Modulus of elasticity (Ec) =	4695.98	ksi
	LRFD Modulus of elasticity (Ec) =	4695.98	ksi
	Std Initial modulus of elasticity =	4329.48	ksi
	LRFD Initial modulus of elasticity =	4329.48	ksi
	Poisson's ratio =	0.200	_
	Composition of concrete =	Normal	•
	Modulus of rupture =	0.588	ksi
	Shear factor =	1.000	
	Splitting tensile strength (fct) =		ksi

Click Ok to save the data to memory and close the window.

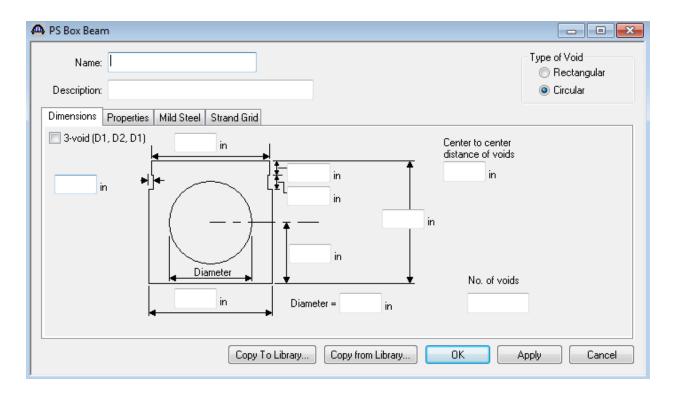
Create another new concrete material to be used for the deck concrete. Add the concrete material "Class A (US)" from the Library by clicking the Copy from Library button.

Name	Description	Library	Units	fc	fci	alpha	DL Density	Modulus Density	Std Modulus of	LRFD Modulus of	Poisson's Ratio
Class A	Class A cement concrete	Standard	SI / Metric	28.00		0.0000	2400.00	2320.00	25426.08	25426.08	0.200
Class A (US)	Class A cement concrete	Standard	US Customary	4.000		0.0000	0.150	0.145	3644.15	3644.15	0.200
Class B	Class B cement concrete	Standard	SI / Metric	17.00		0.0000	2400.00	2320.00	19811.84	19811.84	0.200
Class B (US)	Class B cement concrete	Standard	US Customary	2.400		0.0000	0.150	0.145	2822.75	2822.75	0.200
Class C	Class C cement concrete	Standard	SI / Metric	28.00		0.0000	2400.00	2320.00	25426.08	25426.08	0.200
Class C (US)	Class C cement concrete	Standard	US Customary	4.000		0.0000	0.150	0.145	3644.15	3644.15	0.200

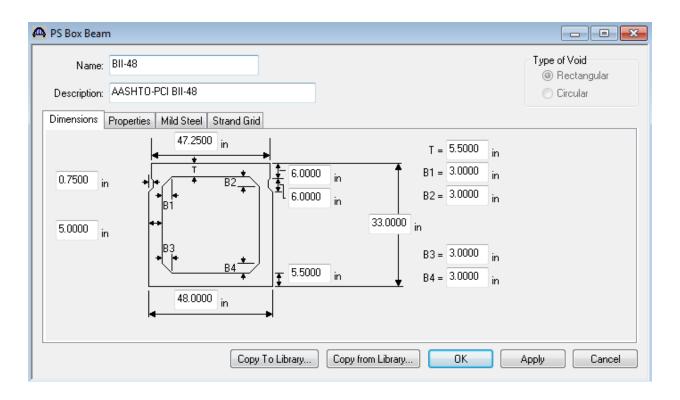
Select the Class A (US) material and click Ok. The selected material properties are copied to the Bridge Materials – Concrete window.


🗛 Bridge Ma	terials - Concrete		
Name	E Class A (US) Des	cription: Class A d	cement concrete
	Compressive strength at 28 days (f'c) =	4.000	.
		4.000	ksi
	Initial compressive strength (f'ci) =		ksi
	Coefficient of thermal expansion =	0.0000060000	1/F
	Density (for dead loads) =	0.150	kof
	Density (for modulus of elasticity) =	0.145	kof
	Std Modulus of elasticity (Ec) =	3644.15	ksi
	LRFD Modulus of elasticity (Ec) =	3644.15	ksi
	Std Initial modulus of elasticity =		ksi
	LRFD Initial modulus of elasticity =		ksi
	Poisson's ratio =	0.200	
	Composition of concrete =	Normal	-
	Modulus of rupture =	0.480	ksi
	Shear factor =	1.000	
	Splitting tensile strength (fct) =		ksi
	Copy To Library	Copy from Library	y OK Apply Cancel
		(p)	

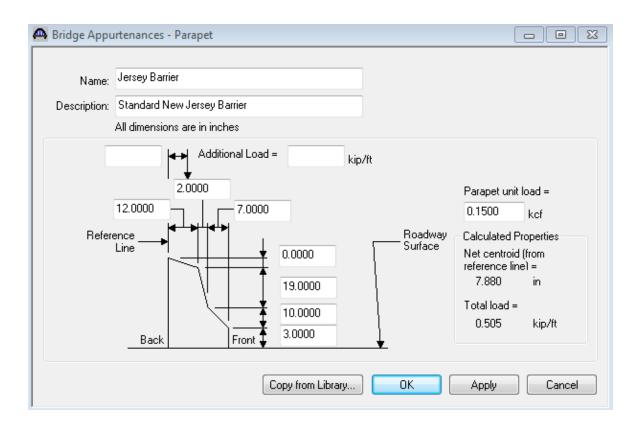
Click Ok to save the data to memory and close the window.


Add a concrete material for the reinforcement material and prestress strand using the same techniques. The windows will look like those shown below:

A Bridge Materials - Reinforcing Steel	
Name: Grade 60 D	escription: 60 ksi reinforcing steel
Material Pro	perties
Specified yield strength (Fy	= 60.000 ksi
Modulus of elasticity (Es)	= 29000.00 ksi
Ultimate strength (Fu)	= 90.000 ksi
Туре	
 Plain 	
C Epoxy C Galvania	ed
© Other	
Copy To Library Copy from L	brary OK Apply Cancel
🚇 Bridge Materials - PS Strand	
🕰 Bridge Materials - PS Strand	
	escription: Low relaxation 1/2"/Seven Wire/fpu = 270
	escription: Low relaxation 1/2"/Seven Wire/fpu = 270
Name: 1/2" (7W-270) LR D	escription: Low relaxation 1/2"/Seven Wire/fpu = 270
Name: 1/2" (7w-270) LR D	escription: Low relaxation 1/2"/Seven Wire/fpu = 270 0.5000 in 0.153 in^2
Name: 1/2" (7W-270) LR D Strand diameter = Strand area =	escription: Low relaxation 1/2"/Seven Wire/fpu = 270 0.5000 in 0.153 in^2 Low Relaxation
Name: 1/2" (7W-270) LR D Strand diameter = Strand area = Strand type =	escription: Low relaxation 1/2"/Seven Wire/fpu = 270 0.5000 in 0.153 in^2 Low Relaxation 270.000 ksi
Name: 1/2" (7W-270) LR D Strand diameter a Strand area a Strand type a Ultimate tensile strength (Fu) a	escription: Low relaxation 1/2"/Seven Wire/fpu = 270 0.5000 in 0.153 in^2 Low Relaxation • 270.000 ksi 243.000 ksi ksi
Name: 1/2" (7W-270) LR D Strand diameter = Strand area = Strand type = Ultimate tensile strength (Fu) = Yield strength (Fy) =	escription: Low relaxation 1/2"/Seven Wire/fpu = 270 0.5000 in 0.153 in^2 Low Relaxation 270.000 ksi 243.000 ksi 28500.00 ksi
Strand diameter Strand area Strand type Ultimate tensile strength (Fu) Yield strength (Fy) Modulus of elasticity (E)	escription: Low relaxation 1/2"/Seven Wire/fpu = 270 a 0.5000 a 0.153 a 0.153 a 1.000 ksi 243.000 ksi 28500.00 ksi in in
Name: 1/2" (7W-270) LR D Strand diameter = Strand area = Strand type = Ultimate tensile strength (Fu) = Yield strength (Fu) = Modulus of elasticity (E) = Transfer length (Std) =	escription: Low relaxation 1/2"/Seven Wire/fpu = 270 0.5000 in 0.153 in^2 Low Relaxation ▼ 270.000 ksi 243.000 ksi 28500.00 ksi in 30.0000 in
Name: 1/2" (7W-270) LR D Strand diameter = Strand area = Strand type = Ultimate tensile strength (Fu) = Yield strength (Fy) = Modulus of elasticity (E) = Transfer length (Std) = Transfer length (LRFD) =	escription: Low relaxation 1/2"/Seven Wire/fpu = 270
Name: 1/2" (7W-270) LR D Strand diameter = Strand area = Strand type = Ultimate tensile strength (Fu) = Yield strength (Fy) = Modulus of elasticity (E) = Transfer length (Std) = Transfer length (LRFD) =	escription: Low relaxation 1/2"/Seven Wire/fpu = 270


To enter a prestress beam shape to be used in this bridge expand the tree labeled Beam Shapes:

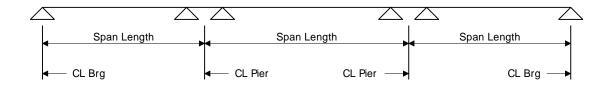
Click on Box Beams in the tree and select File/New from the menu (or double click on Box Beams in the tree). The window shown below will open.



Select the Type of Void as Rectangular and click on the copy from Library button. Select BII-48 (AASHTO-PCI BII-48) and click Ok. The beam properties are copied to the Box Beam window as shown below.

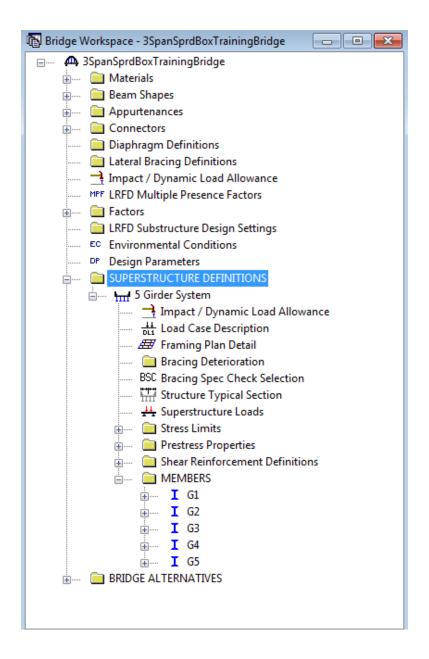
Click Ok to save the data to memory and close the window.

To enter the appurtenances to be used within the bridge expand the tree branch labeled Appurtenances. To define a parapet double click on Parapet in the tree and click the Copy from Library button. Select Jersey Barrier and click Ok. The parapet properties are copied to Parapet window as shown below. Click Ok to save the data to memory and close the window.

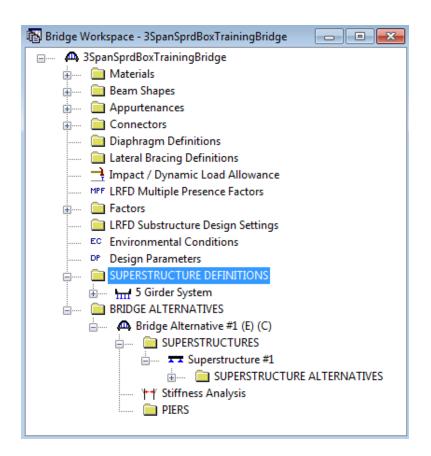

The default impact factors, standard LRFD and LFD factors will be used so we will skip to Structure Definition. Bridge Alternatives will be added after we enter the Structure Definition. Double click on SUPERSTRUCTURE DEFINITIONS (or click on SUPERSTRUCTURE DEFINITIONS and select File/New from the menu or right mouse click on SUPERSTRUCTURE DEFINITIONS and select New from the popup menu) to create a new structure definition. The window shown below will open.

New Superstructure Definition	X
Oirder System Superstructure	
🔘 Girder Line Superstructure	Superstructure Definition Wizard
Floor System Superstructure	
Floor Line Superstructure	
Truss System Superstructure	
Truss Line Superstructure	
Reinforced Concrete Slab System Superstructure	
Concrete Multi-Cell Box Superstructure	
	OK Cancel

Select Girder System and the Structure Definition window will open. Enter the appropriate data as shown below:


🕰 Girder System Superstructure Defi	inition			- • •
Definition Analysis Specs Engin	e			
Name: 5 Girder Sy	rstem		Frame Structure Simplified Definition	
Description:		۸ ۲	Deck type: Concrete	
Default Units: US Custom Number of spans: 3	Along the Reference Line: Span Length (ft) 1 75.00 2 60.00 3 60.00	1	For PS only Average humidity: 2 Member Alt. Types Steel V P/S R/C Timber	
Horizontal Curvature Along Referen	Distance from PC to first support line:	ft		
Superstructure Alignment	Start tangent length:	ft		
 Curved Tangent, curved, tangent 	Radius:	ft		
 Tangent, curved 	Direction:	Left -		
🔘 Curved, tangent	End tangent length:	ft		
	Distance from last support line to PT:	ft		
	Design speed:	mph		
	Superelevation:	%		
				Cancel

Span lengths for a prestressed beam structure made continuous for live load should be entered as follows:


Click on OK to save the data to memory and close the window.

The partially expanded Bridge Workspace tree is shown below:

We now go back to the Bridge Alternatives and create a new Bridge Alternative, a new Superstructure, and a new Superstructure Alternative as we did in previously.

The partially expanded Bridge Workspace tree is shown below:

Click Load Case Description to define the dead load cases. The completed Load Case Description window is shown below.

Load Case Descri	iption					
Load Case Name	Description	Stage	Τ	Туре		Time* (Days)
Dead Load 2		Composite (long term) (Stage 2)	•	D,DC	•	
Prestressed memb	ers only	Add Default Load Case Descriptions		New D	uplicate	Delete

Double-click on Framing Plan Detail to describe the framing plan. Enter the appropriate data as shown below.

Structure Framing Plan Detai	ls	
	Number of spans = 3 Number of girders = 5	
Layout Diaphragms		
	Girder Spacing Orientation	
	Perpendicular to girder	
Support Skew (Degrees)	Along support	
1 0.0000		
2 0.0000		
3 0.0000	Girder Spacing Girder (ft)	
4 0.0000	Girder (ft) Bay Start of End of	
	Girder Girder	
	1 7.50 7.50	
	2 7.50 7.50 3 7.50 7.50	
	3 7.50 7.50 4 7.50 7.50	
	- 1.50 1.50	
	OK Apply	Cancel

Switch to the Diaphragms tab to enter the exterior diaphragm spacing. Click the Diaphragm Wizard button to add diaphragms for the entire structure. Select the Framing Plan System and Click the Next button. Enter the following data on the dialog shown below.

Diaphra	igm Wiz	ard					— ×
				● Er ⊚ Er	agm Spacing ter number of equi ter equal spacing ter groups of equa	per span	er span
					t diaphragm load: r diaphragm load:	1.0000	kip kip
	Span	Length (ft)	Number Equal Spa	of			
	1	75.00	- Equal opt	2			
	2	60.00		2			
	3	60.00		2			
		< Ba	ick	Finis	h Canc	el	Help

Click the Finish button to add the diaphragms and loads. The Diaphragm Wizard will create diaphragms and loads for all of the girder bays in the structure. The diaphragms created for Girder Bay 1 are shown below.

yout	Dia	aphragms									
iirder			•	Copy Bay To		Diaphragm Wizard					
Supp Numb			istance ft) Right Girder	Diaphragm Spacing (ft)	Number of Spaces	Length (ft)	End Die (f Left Girder		Load (kip)	Diaphragm	Τ
1	-	0.00	0.00	0.00	1	0.00	0.00	0.00	1.0000	Not Assigned	-
1	•	0.00	0.00	37.50	1	37.50	37.50	37.50	1.0000	Not Assigned	-
2	•	0.00	0.00	0.00	1	0.00	0.00	0.00	1.0000	Not Assigned	-
2	•	0.00	0.00	30.00	1	30.00	30.00	30.00	1.0000	Not Assigned	-
3	•	0.00	0.00	0.00	1	0.00	0.00	0.00	1.0000	Not Assigned	-
3	•	0.00	0.00	30.00	1	30.00	30.00	30.00	1.0000	Not Assigned	-
3	•	60.00	60.00	0.00	1	0.00	60.00	60.00	1.0000	Not Assigned	-
									New	Duplicate C)elete

Select Ok to close the window.

While Framing Plan Detail is selected in the BWS tree, open the schematic for the framing plan by selecting the

View Schematic toolbar button or Bridge/Schematic from the menu. The following schematic will be displayed.

Noordiou Trainingtings n gani Bax Tra Brage - S Diviser System	•					
n gyna awn frin an og a' y wradd Sylstem 116						
<u>+</u>	75-01		60-01	*	60-01	•
1-1	4	2 10	S1 -4	5	14	2
50 0 reg.	22		-90.0 mg. 02 P4	2	56	2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
51	12	92 P3	00 p4	5	16	2 7
и	12	2 49	64 -4	5	14	2

Next define the structure typical section by double-clicking on Structure Typical Section in the Bridge Workspace tree. Input the data describing the typical section as shown below.

Basic deck geometry:

A Structure Typical Section	
Distance from left edge of deck to superstructure definition ref. line Deck thickness Left overhang	
Deck (Cont'd) Parapet Median Railing Generic Sidewalk Lane Position Striped Lanes Wearing Surface	
Superstructure definition reference line is within within the bridge deck.	
Distance from left edge of deck to superstructure definition reference line = Start End 18.75 ft 18.75 ft	
Distance from right edge of deck to superstructure definition reference line = 18.75 ft 18.75 ft	
Left overhang = 3.75 ft 3.75 ft	
Computed right overhang = 3.75 ft 3.75 ft	
	Cancel

The Deck (cont'd) tab is used to enter information about the deck concrete and thickness. The material to be used for the deck concrete is selected from the list of bridge materials described above.

A Structure Typical Section	- • •
Distance from left edge of deck to superstructure definition ref. line Deck thickness Left overhang	
Deck Deck (Cont'd) Parapet Median Railing Generic Sidewalk Lane Position Striped Lanes Wearing Surface	
Deck concrete: Class A (US)	
Total deck thickness: 8.0000 in	
Load case: Engine Assigned	
Deck crack control parameter:	
Sustained modular ratio factor: 2.000	
Deck exposure factor:	
OK Apply	Cancel

Parapets:

Add two parapets as shown below.

🗛 s	tructure Typi	cal Se	ction											x
				I	Back	ſ	Fr	ont						
D	eck Deck (Cont'd)	Parapet	Median	Railing Ge	eneric	Sidewa	alk	Lane Position	Striped Lanes	Wearing S	urface		
	Name		Load	Case	Measure To		e of De Measur From		Distance At Start (ft)	Distance At End (ft)	Front Fa Orientation			
	Jersey Barrie		Dead Load		Back 💌		Edge	•	0.00			-		
	Jersey Barrie	r 💌	Dead Load	2 🔻	Back -	Right	Edge	•	0.00	0.00	Left	•		
										New	Dup	licate	Delete]
										<u>— ОК</u>		Apply	Cancel	

Lane Positions:

Select the Lane Position tab and use the Compute... button to compute the lane positions. A dialog showing the results of the computation opens. Click Apply to apply the computed values. The Lane Position tab is populated as shown below.

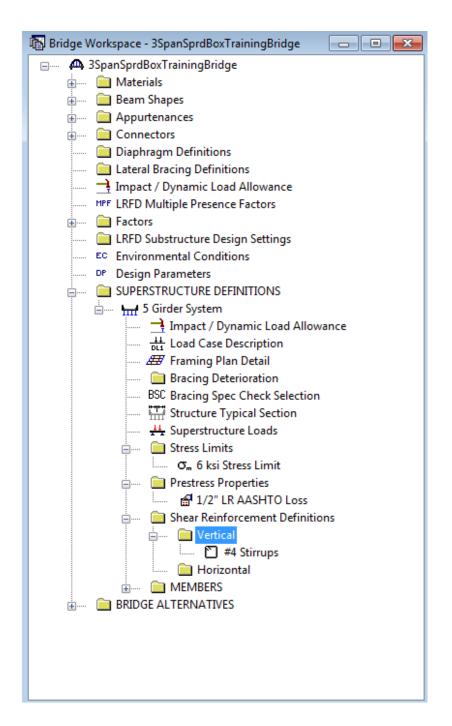
Structure Typ	ical Section (A) Travelway 1	(B) - Superstructure D	efinition Reference Line	
Deck Deck				Vearing Surface
Travelway Number	Distance From Left Edge of Travelway to Superstructure Definition Reference Line At Start (A) (ft)	Distance From Right Edge of Travelway to Superstructure Definition Reference Line At Start (B) (ft)	Distance From Left Edge of Travelway to Superstructure Definition Reference Line At End (A) (ft)	Distance From Right Edge of Travelway to Superstructure Definition Reference Line At End (B) (ft)
1	-17.00	17.00	-17.00	17.00
	ue ilable to trucks: Truck fraction:	Compute	New	Duplicate Delete
			OK	Apply Cancel

Click Ok to save the data to memory and close the window.

Now define a Stress Limit. A Stress Limit defines the allowable concrete stresses for a given concrete material. Double click on the Stress Limits tree item to open the window. Select the "6 ksi Beam Concrete" concrete material. Default values for the allowable stresses will be computed based on this concrete and the AASHTO Specifications. A default value for the final allowable slab compression is not computed since the deck concrete is typically different from the concrete used in the beam. Click Ok to save this information to memory and close the window.

🗛 Stress Limit Sets - Concrete				
Name: 6 ksi Stress Limit				
Description:				
Concrete Material: 6 ksi Beam Concr	rete	•		
	LFD		LRFD	
Initial allowable compression:	3.060	ksi	3.060	ksi
Initial allowable tension:	0.200	ksi	0.200	ksi
Final allowable compression:	3.600	ksi	3.600	ksi
Final allowable tension:	0.465	ksi	0.465	ksi
Final allowable DL compression:	2.400	ksi	2.700	ksi
Final allowable slab compression:	2.400	ksi	2.400	ksi
Final allowable compression: (LL + 1/2(Pe + DL))	2.400	ksi	2.400	ksi
			ОК	Apply Cancel

Double click on the Prestress Properties tree item to open a window in which to define the prestress properties for this structure definition. Define the Prestress Property as shown below. We are using the AASHTO approximate method to compute losses so the "General P/S Data" tab is the only tab that we have to visit. Click Ok to save to memory and close the window.


A Prestress Properties	[- • •
Name: 1/2" LR AASHTO Loss		
General P/S Data Loss Data - Lump Sum Loss Data - PCI		
P/S strand material: 1/2" (7W-270) LR Jacking stress ratio:	0.750]
Loss method: AASHTO Approximate P/S transfer stress ratio:		
Transfer time:	24.0	Hours
Age at deck placement:	30.00	Days
Loss Data - AASHTO Final age:	18250.00	Days
Percentage DL: 0.0 %		
Include elastic gains		
ОК	Apply	Cancel

PS2 - Three Span Spread PS Box Beam Example

Define the vertical shear reinforcement by double clicking on Vertical (under Shear Reinforcement Definitions in the tree). Define the reinforcement as shown. The I shape shown is for illustrative purposes only, it is not mean to display the actual beam shape. Click Ok to save to memory and close the window.

🕰 Shear F	Reinforcement Definition - Vertical	- • •
Name:	#4 Stirrups	
	Material: Grade 60	•
	Bar size: 4	_
	Number of legs: 2.00	
	Inclination (alpha): 90.0 Degrees	
	Vertical	
	Shear Reinforcement	
		Cancel

A partially expanded Bridge Workspace is shown below.

Describing a member:

The member window shows the data that was generated when the structure definition was created. No changes are required at this time. The first Member Alternative that we create will automatically be assigned as the Existing and Current Member alternative for this Member.

G2 Link with: None	
A	
-	
Evistical Current Member Alternative Name Department	
Existing Current Member Alternative Name Description	
No. Length	
1 75.00	
0.00	
OK Apply	Cancel
	Existing Current Member Alternative Name Description 3

Defining a Member Alternative:

Double-click MEMBER ALTERNATIVES in the tree to create a new alternative. The New Member Alternative dialog shown below will open. Select Prestressed (Pretensioned) Concrete for the Material Type and PS Precast Box for the Girder Type.

New Member Alternative	×
Material Type:	Girder Type:
Prestressed (Pretensioned) Concrete Reinforced Concrete Steel Timber	PS Precast Box PS Precast I PS Precast Tee PS Precast U
	OK Cancel

Click Ok to close the dialog and create a new member alternative.

The Member Alternative Description window will open. Enter the appropriate data as shown below. The Schedulebased Girder property input method is the only input method available for a prestressed concrete beam.

Member Alternative Description	n			
Member Alternative: 48" PS Box				
Description Specs Factors Er	ngine Import Control Optio	ons		
Description:		 Material Type: Girder Type: Default Units: 	Prestressed (Pretensioned PS Precast Box US Customary	
Girder property input method Schedule based Cross-section based				
Self Load Load case: Engine Assigned Additional self load = Additional self load =	LFD	rating method:		
Crack control parameter (Z)		sure factor		
			ОК	Apply Cancel

The Live Load Distribution window is not necessarily to be entered. At this point, BrR/BrD does not know if we have spread or adjacent box beams. We will select the beam shape now in the Beam Details window and then BrR will compute the LRFD live load distribution factors automatically while rating.

an Detail	Continue	ous	Support Detail S	tress Lir	nit Ranges	Slab Inter	face	Continui	ty D	iaphrag	gm	
Span Number	Beam Sha	ape	Girder Material		Prestress Properties			Use Creep		n	Beam Projection Left End Right End (in) (in)	
1	BII-48	-	6 ksi Beam Concr	ete 👻	1/2" LR A	ASHTO Los	s 🔻		-		9.0000	6.0000
2	BII-48	•	6 ksi Beam Concr	rete 👻	1/2" LR A	ASHTO Los	s 🔻	No	•		6.0000	6.0000
3	BII-48	•	6 ksi Beam Concr	rete 👻	1/2" LR A/	ASHTO Los	s 👻	No	-		6.0000	9.0000

The Continuous Support Detail tab is only shown for a multi-span structure. The following data describes the distances from the centerlines of bearing to the centerlines of the piers.

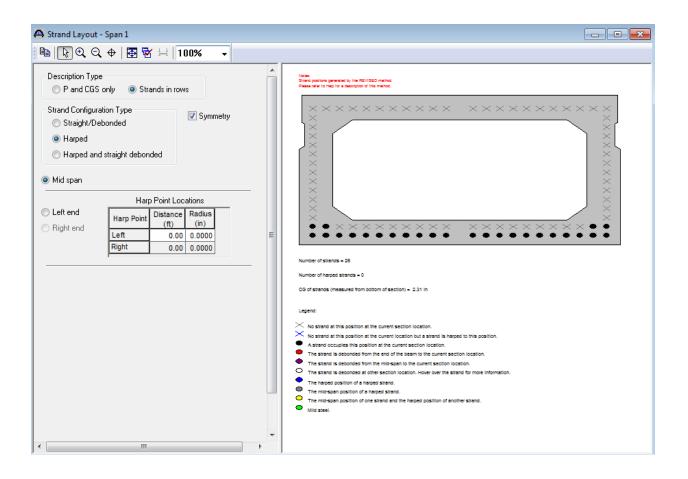
A	Beam Deta	ils			
	Span Detail	Continuous Su	pport Detail Str CL of Bea on Left	ess Limit Ranges Slab Interface Continuity Diaphragm	
	Support Number	Support Distance on Left, SL (in)	Support Distance on Right, SR (in)		
	2	9.0000	9.0000		
	3	9.0000	9.0000	ОК Арріу	Cancel

Note that Stress Limit Ranges are defined over the entire length of the precast beam, including the projections of the beam past the centerline of bearing which were entered on the Span Detail tab. The Stress Limit names appearing in the listbox in the Name column correspond to the Stress Limits associated with the concrete material specified for that span on the Span Detail tab.

an D	etail	Continuous Supp	ort E) etail Stress Lim	iit Ranges Slab	Interface Conti	inuity Diaphragm
Span Number		Name		Start Distance (ft)	Length (ft)	End Distance (ft)	
1	•	6 ksi Stress Limit	-	0.00	75.50	75.50	
2	•	6 ksi Stress Limit	•	0.00	59.50	59.50	
3 👻		6 ksi Stress Limit	-	0.00	60.50	60.50	
						New	Duplicate Delete

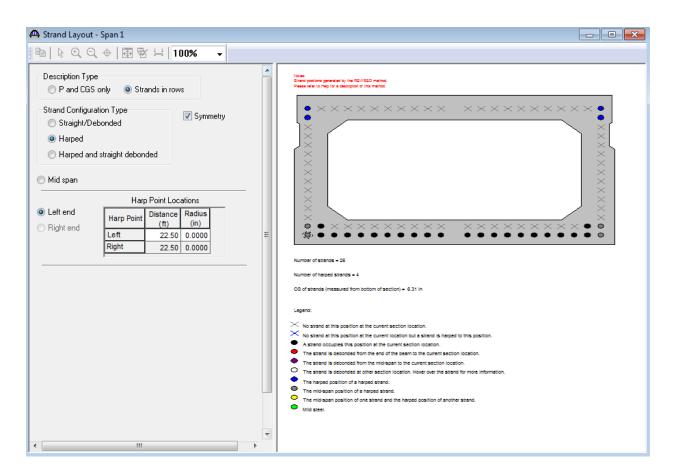
The defaults on the Slab Interface tab are shown below and are acceptable.

<u>مم</u>	Beam Detai	ls				- • ×
	Span Detail	Continuous Support Detail	Stress Limit Range	es Slab Interface	Continuity Diaphragm	
		Interface type:	Intentionally Roug			
	Default inte	rface width to beam widths	V			
		Interface width:				
		Cohesion factor:	0.100	ksi		
		Friction factor:	1.000			
		K1:	0.300			
		K2:	1.800	ksi		
					ОК Арріу	Cancel

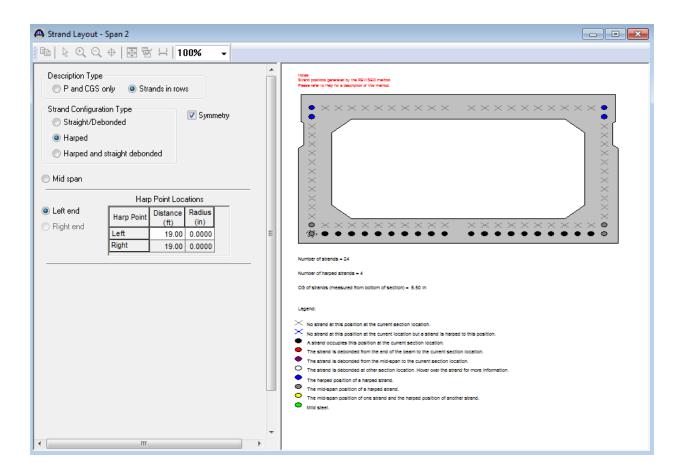

The Continuity Diaphragm tab is only displayed for multi-span structures. The data on this tab defines the cast-inplace diaphragms used to make the structure continuous for live load. Press F1 while on this tab to view the continuity diaphragm help topic describing the use of this information.

		il Continuou:			ess Limit Ranges		Slab Interfa	ce	Continuity I	bridp	_			
Span Number		Material		Left S Distance (in)	Bar Count	Bar Size		Material		Right S Distance (in)	Bar Count	Bar Size		
1	-		•					Ŧ	Grade 60	•	3.0000	6.000	5	-
2	Ŧ	Grade 60	-	3.0000	6.000	5		Ŧ	Grade 60	-	3.0000	6.000	5	-
3	-	Grade 60	•	3.0000	6.000	5		Ŧ		-				-

Click Ok to save the Beam Details data to memory and close the window.


Expand the tree under Strand Layout and open the Span 1 window. Place the cursor in the schematic view on the right side of the screen. The toolbar buttons in this window will become active. Select the Zoom button to shrink the schematic of the beam shape so that the entire beam is visible.

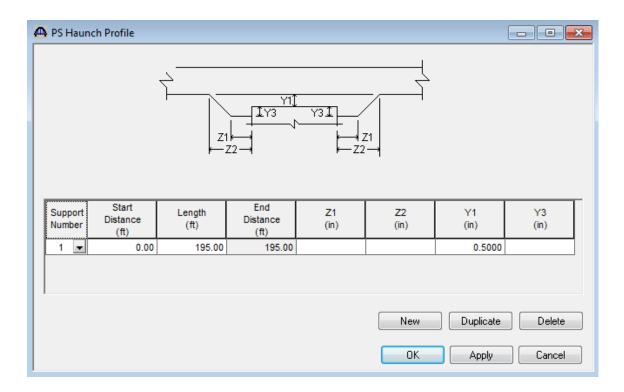
Select the Description Type as Strands in rows and the Strand Configuration Type as Harped. The Mid span radio button will now become active. You can now define the strands that are present at the middle of the span by selecting strands in the right hand schematic. Select the bottom 26 strands in the schematic so that the CG of the strands is 2.31 inches.



Now select the Left harp pt. radio button to enter data concerning the harping of the strands. The Modify button can now be used to enter the location of the harp point as a distance from the left end of the precast beam. Click Modify and enter 22.5' as the distance from the left end of the precast beam to the harp point in the dialog that appears. Click Ok to close the dialog. The strand pattern at the harp point is the same as the strand pattern at the middle of the span and cannot be modified.

Select the Left end radio button to enter the following harped strand locations at the left end of the precast beam.

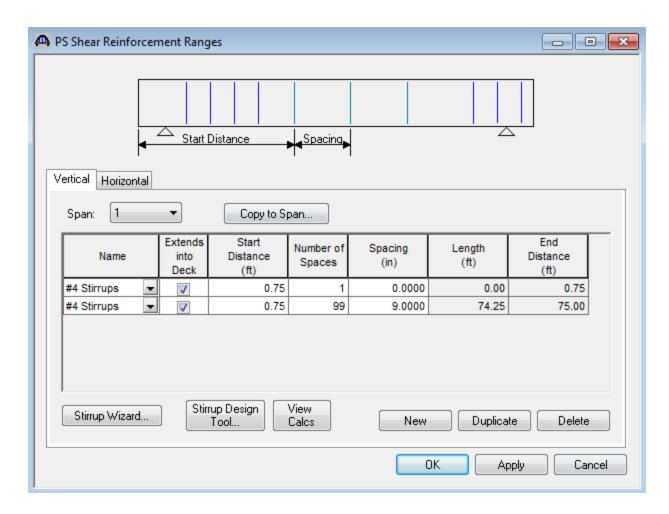
Enter the following data for Spans 2 and 3 in the same manner as described above. Span 2 is shown below, Span 3 has the same information.


Next open the Deck Profile and enter the data describing the structural properties of the deck. The window is shown below.

	PS Precast B)									
		einforceme	ent								
	Material	Support Number	Start Distance (ft)	Length (ft)	End Distance (ft)	Structural Thickness (in)	Start Effective Flange Width (Std) (in)	End Effective Flange Width (Std) (in)	Start Effective Flange Width (LRFD) (in)	End Effective Flange Width (LRFD) (in)	n
Cla	ss A (US) 🔻	1 💌	0.00	195.00	195.00	7.5000	90.0000	90.0000	90.0000	90.0000	
	Compute fror	n							New Du	plicate De	elete
1	Typical Section										

The deck reinforcement in the negative moment regions is described as follows.

Deck Concrete Reinforcement													
Material Support Number			Start Distance (ft)	Length (ft)	End Distance (ft)	Std Bar Count	LRFD Bar Count	Bar Si	ze	Distance (in)	Row	Bar Spacing (in)	
Grade 60	Ŧ	1	•	60.00	30.00	90.00	11.00	11.00	5	•	2.0000	Bottom of Slab	-
Grade 60	Ŧ	1	•	60.00	30.00	90.00	11.00	11.00	6	•	3.5000	Top of Slab	•
Grade 60	•	2	•	45.00	30.00	75.00	11.00	11.00	6	•	3.5000	Top of Slab	•
Grade 60	•	2	-	45.00	30.00	75.00	11.00	11.00	5	•	2.0000	Bottom of Slab	•


The haunch profile is defined by double clicking on Haunch Profile in the tree. The window is shown below. The I shape shown is for illustrative purposes only.

The interior diaphragms for the box beam are entered as follows.

Span lumber	Start Distance (ft)	Diaphragm Spacing (ft)	Number of Spaces	Length (ft)	End Distance (ft)	Diaphragm Thickness (in)	Diaphragm Load (kip)
1 💌	0.00	38.25	1	38.25	38.25		0.8000
1 👻	0.75	0.00	1	0.00	0.75		0.8000
1 💌	75.00	0.00	1	0.00	75.00		0.8000
2 💌	0.00	29.75	1	29.75	29.75		0.8000
2 🔻	0.50	0.00	1	0.00	0.50		0.8000
2 🔻	59.00	0.00	1	0.00	59.00		0.8000
3 👻	0.00	29.75	1	29.75	29.75		0.8000
3 👻	0.50	0.00	1	0.00	0.50		0.8000
3 👻	59.75	0.00	1	0.00	59.75		0.8000
					New	Duplicate	Delete

The Shear Reinforcement Ranges are entered as described below. The vertical shear reinforcement is defined as extending into the deck on this tab. This indicates composite action between the beam and the deck. Data does not have to be entered on the Horizontal tab to indicate composite action since we have defined that by extending the vertical bars into deck.

PS2 - Three Span Spread PS Box Beam Example

🕰 PS Shear Reinforcer	ment Rang	jes									
Vertical Horizontal	Vertical Horizontal										
Span: 2 Copy to Span											
Name	Deck		Start Distance (ft) Number of Spaces		Length (ft)	End Distance (ft)					
#4 Stirrups 💌	V	0.50	1	0.0000	0.00						
#4 Stirrups 💌	V	0.50	78	9.0000 58		59.00					
Stirrup Wizard											
					DK Af	oply Car	ncel				

PS2 - Three Span Spread PS Box Beam Example

PS Shear Reinfo	rcen	nent Rang	jes					×	
Vertical Horizontal									
Span: 3 Copy to Span									
Name		Extends into Deck	Start Distance (ft)	Number of Spaces	Spacing (in)	Length (ft)	End Distance (ft)		
#4 Stirrups	-	<	0.50	1	0.0000	0.00	0.50		
#4 Stirrups	-	V	0.50	79	9.0000	59.25	59.75		
Stirrup Wizard	1	Stin		View Calcs	New	Duplica	te Delete		
						DK At	oply Cancel		

The member alternative can now be analyzed. To perform LRFR rating, select the View Analysis Settings button on the toolbar to open the window shown below. Click Open Template button and select the LRFR Design Load Rating to be used in the rating and click Ok.

🕰 Analysis Settings	
Design Review	Rating Method: LRFR
Analysis Type:	
Line Girder 🔹	
Lane/Impact Loading Type: As Requested	Apply Preference Setting: None 💌
Vehicles Output Engine Description	
Traffic Direction: Both directions	Refresh Temporary Vehicles Advanced
Vehicle Selection: 	Add to Rating Provide Summary: Add to Rating Provide Structure Provide Structure Image: Structure Provide Structure Image:
Reset Clear Open Template	Save Template OK Apply Cancel

Next click the Analyze button on the toolbar to perform the rating. When the rating is finished you can review the results by clicking the View analysis Report on the toolbar. The window shown below will open.

ating Res	ults Summary 🔹 🔻) 💿 As	Requested	ading Type I 💿 Detai		Format rating leve	per row	•		
ive Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane
L-93 (US)		LRFR	Inventory	32.87	0.913	37.13	1 - (49.5)	SERVICE-III PS Tensil	As Requested	As Requested
L-93 (US)	Truck + Lane	LRFR	Operating	50.52	1.403	75.00	1 - (100.0)	STRENGTH-I Concre	As Requested	As Requested
L-93 (US)	Tandem + Lane	LRFR	Inventory	37.06	1.029	37.13	1 - (49.5)	SERVICE-III PS Tensil	As Requested	As Requested
L-93 (US)	Tandem + Lane	LRFR	Operating	60.97	1.694	75.00	1 - (100.0)	STRENGTH-I Concre	As Requested	As Requested
L-93 (US)	90%(Truck Pair + Lane)	LRFR	Inventory	35.38	0.983	75.00	1 - (100.0)	STRENGTH-I Concre	As Requested	As Requested
L-93 (US)	90%(Truck Pair + Lane)	LRFR	Operating	45.87	1.274	75.00	1 - (100.0)	STRENGTH-I Concre	As Requested	As Requested
SHTO LF	190% (Truck Pair + Lane) RFR Engine Version 6.8.0. ference Setting: None		Operating	45.87	1.2/4	75.00	1 - (100.0)	SIRENGIN-ICONCR	As Requested	As Requested

An LRFD design review of this girder for HL93 loading can be performed by AASHTO LRFD. To do LRFD design review, enter the Analysis Settings window as shown below:

💁 Analysis Settings	
⊚ Design Review ── Rating Analysis Type:	Design Method: LRFD
Anaiysis Type.	
Lane/Impact Loading Type: As Requested -	Apply Preference Setting: None 💌
Traffic Direction: Both directions Vehicles Standard Alternate Military Loading HL-93 (SI) HL-93 (US) HS 20 (SI) HS 20-44 LRFD Fatigue Truck (SI) LRFD Fatigue Truck (US) Agency User Defined Temporary	 Refresh Temporary Vehicles Advanced Vehicle Summary: Add to Fatigue Design Vehicles Design Loads HL-93 (US) Permit Loads Fatigue Loads LRFD Fatigue Truck (US)
Reset Clear Open Template	Save Template OK Apply Cancel

AASHTO LRFD analysis will generate a spec check results file. Click **6** on tool bar to open the following window.

A 3SpanSprdBoxTrainingBridge
SSpanSprdBoxTrainingBridge S Girder System S G 2 G 48" PS Box G 48" PS Box G 48" PS Box G AASHT0_LRFD G AASHT0_LRFD G AASHT0_LRFR G Spec Check Results G J J C Check Results J J C C Check Results G J C Check Results G J C Check Results G J C C Check Results G J C Check Results G J C Check Results J J C C Check Results J J C C Check Results G J C C Check Results J J C C C Check Results J J C C C Check Results J J C C C C C C C C C C C C C C C C

To view the spec check results, double click the Spec Check Results in this window.

\sim		
C:\Users\HANJIN\Docu 🔎 - C	NJIN\Docume ×	🕀 🛧 🛱
File Edit View Favorites Tools Help		
Bridge ID : -1002 Bridge : 3Span Sprd Box Trn Bridge Superstructure Def : 5 Girder System	NBI Structure ID : 3SpanSprdBoxTra Bridge Alt :	^
Member : G2 Analysis Preference Setting : None	Member Alt : 48" PS Box	
AASHTO LRFD Specification, Edition 7, Interim 2016		

Specification Check Summary

Article	Status
Initial Stress at Transfer (5.9.4.1.1, 5.9.4.1.2)	Pass
Final Stress due to Permanent and Transient Loads (5.9.4.2.1, 5.9.4.2.2)	Fail
Flexure (5.7.3.2, 5.7.3.3.2)	Fail
Shear (5.8.3.3, 5.8.2.5, 5.8.2.7, 5.8.3.5)	Fail
Deflection (5.7.3.6.2)	Pass

Initial Compression Stress At Transfer of Prestress

Location (ft)	Allowable Stress (ksi)	Actual Stress Top of Beam (ksi)	Actual Stress Bot of Beam (ksi)	Ratio	Code
0.000	-3.06	0.05	-0.65	4.71	Pass
1.750	-3.06	0.10	-2.11	1.45	Pass
/					