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Abstract

We numerically evaluate American call options under the Heston (1993) stochastic volatil-

ity model with asset and volatility jumps and the Hull and White (1987) short rate model.

By employing the Method of Lines (Meyer (2015)), the option price, the early exercise

boundary and the Greeks are computed as part of the solution, which makes the numerical

implementation time efficient. We conduct a numerical study to gauge the impact of jumps

and stochastic interest rates on American call option prices and on their free boundaries.

Jumps tend to increase the values of OTM and ATM options while decreasing the value of

ITM options. The option delta is affected in a similar way. The impact of jumps on the free

boundary is substantial and depends on the time to maturity. Far from expiry, including

asset jumps lowers the free boundary and the option holder is more likely to exercise the op-

tion, whilst including asset-volatility jumps elevates the free boundary and the option holder

is less likely to exercise the option. This relation reverses at the end of the options life. The

volatility, interest rates and their volatilities have a positive impact on the free boundaries

and the option holder is less likely to exercise as these parameters increase.
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1. Introduction

Numerous approaches have been proposed in the literature to relax the Black and Scholes

(1973) model assumptions for pricing European options in order to create more realistic

models which reflect the behavior of market prices, for example by including features such

as stochastic volatility, stochastic interest rates, jump diffusion and combinations thereof.

For example, stochastic volatility models capture the empirically observed leptokurtosis in

the markets, stochastic interest rates improve pricing and hedging of long-dated contracts,

jump-diffusions tend to explain better shorter maturity smiles, etc.1

Another extension of practical importance is the pricing of American options, taking into

account the fact that many options traded in the market have early exercise features. From

the seminal paper by Black (1975), many numerical applications have been considered in

the literature to value options featuring early exercise, in addition to stochastic volatility,

stochastic interest rates and jumps. There have been several papers which discuss the as-

sumption of stochastic volatility in pricing American options, including Clarke and Parrott

(1999), Ikonen and Toivanen (2009), Beliaeva and Nawalkha (2010), Haentjens and int Hout

(2015) and Agarwal et al. (2016). The early exercise premium for American options at any

time before maturity depends on the term structure of interest rates (i.e. Ho et al. (1997)),

thus interest rate volatility cannot be ignored especially for long term options. Amin and Bo-

durtha (1995), Chung (1999) and Detemple and Tian (2002) price American options under

the assumption of stochastic interest rates. Some American option pricing models combine

both stochastic volatility and stochastic interest rates, i.e. Medvedev and Scaillet (2010),

Chiarella and Kang (2011), Kang and Meyer (2014).

1Representative literature on pricing European options with stochastic volatility models include Hull and

White (1987), Stein and Stein (1991), Heston (1993), Schobel and Zhu (1999), etc. Stochastic interest rate

models have been developed by Merton (1973), Amin and Jarrow (1992), Rindell (1995), Haowen (2012),

Abudy and Izhakian (2013), etc., and combinations with stochastic volatility include the models by Kaushik

I. Amin (1993), Grzelak et al. (2012), Haentjens and int Hout (2012), Guo et al. (2013), etc. Jump-diffusion

models have been considered by Scott (1997), Bakshi et al. (1997), Doffou and Hilliard (2001), Kou (2002),

Pan (2002), Kangro et al. (2003), Pinkham and Sattayatham (2011), Makate and Sattayantham (2011), Hua

et al. (2012), Zhang and Wang (2013), Zhang and Wang (2013).
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Extensions to accommodate jump diffusions have also been considered in the American

option pricing literature. These typically help to explain the shorter maturity smiles. Bates

(1996) developed a method for pricing American options for stochastic volatility/jump diffu-

sion processes under systematic jump and volatility risk. According to Bates (1996), Bakshi

et al. (1997) and Pan (2002), models with jumps in asset dynamics only are not capable of

fully capturing the empirical features of equity index returns or option prices. They propose

including jumps in the stochastic volatility and provide empirical evidence that models with

only diffusive stochastic volatility and jumps in returns are misspecified, as they do not have

a component driving the conditional volatility of returns, which is rapidly moving. Duffie

et al. (2000) focused on an affine jump diffusion model which allows for correlated jumps

in both volatility and price. They found that the level of skewness produced by including

negative jumps does not fully reflect market data. According to Duffie et al. (2000) and

Pan (2002), jumps in volatility increase the Black-Scholes implied volatility for in the money

options and they labeled this as the “hook” or “tipping at the end” effect. A comprehensive

description on the impact of jumps in both return and volatility dynamics is given by Eraker

et al. (2003). They demonstrate that inclusion of jumps in returns helps to explain the large

movements in the option prices whilst the inclusion of jumps in volatility allow it to increase

rapidly, as jumps in returns are a rapidly moving but persistent factor driving volatility.

Further, in comparison to stochastic volatility models, models with jumps in returns steepen

the slope of the implied volatility, while adding another jump to volatility further steepens

this slope. Boyarchenko and Levendorski (2007) priced American options in Levy models

with stochastic interest rate of CIR type using an iteration method based on the Wiener-

Hopf factorization, while Lamberton and Mikou (2008) looked at the behavior of American

put option prices in the presence of asset jumps. More recent developments on models with

asset and volatility jumps include Durhama and Park (2013) and Salmi et al. (2014). Itkin

(2016) considers the pricing and hedging of exotic options whose dynamics include correlated

jumps in asset, volatility and interest rates. The literature on evaluating with jumps in asset

and volatility while assuming stochastic interest rates is rather limited. The current paper

aims to make a contribution to this stream of literature.

In the absence of closed form solutions for options featuring early exercise, a variety
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of numerical methods have been proposed to price these type of options, such as finite

difference methods, splitting methods, multi-grid methods, numerical approximations, etc.

Barone-Adesi and Whaley (1987) used an analytic approximation for pricing exchange traded

American options on commodities and the futures contracts. They found their method

to be accurate and more computationally efficient in comparison to other methods, i.e.

binomial methods and finite difference methods. Broadie and Detemple (1996) propose

price approximations with one based on the lower bound and the other based on both the

lower and upper bounds. Both these methods were based on the Black-Scholes model.

As the Black Scholes model was improved to incorporate stochastic volatility, stochastic

interest rates and jumps, other methods such as binomial methods, Monte Carlo methods,

finite difference methods have been used. Broadie and Glasserman (1997) priced American

options using a simulation algorithm that has an advantage over lattice and finite difference

methods when there are many state variables. Carriere (1996), Tsitsiklis and Roy (1999) and

Longstaff and Schwartz (2001) also use simulation based techniques for this purpose, with

the latter paper being most commonly referenced when pricing American options by Monte

Carlo. Sullivan (2000) used Gaussian Quadrature together with Chebyshev approximation

to price American put options, an alternative method to binomial models. Ikonen and

Toivanen (2009) priced American options using five finite difference based methods, namely,

the projected SOR, projected multigrid method, an operator splitting method, a penalty

method and component-wise splitting method under the Heston model in order to check the

speed and the accuracy of these methods. Agarwal et al. (2016) combined finite difference

methods and Monte Carlo to price American options with stochastic volatility.

This paper evaluates American call options with stochastic volatility and stochastic in-

terest rate models that allow for asset and volatility jumps. The proposed model assumes

Heston (1993) volatility dynamics and Hull and White (1990) type dynamics for the interest

rates. The asset jumps part is a compound Poisson process which consists of a random

variable and a Poisson process, and is independent from the continuous part. The jump

sizes are log-normally distributed, see Merton (1976), Kangro et al. (2003), Chiarella et al.

(2009). The volatility jump size is exponentially distributed in order to ensure that the

variance jumps are not negative, as normally observed after large downward jumps occur in

4



asset prices (Lutz (2010)).

For the numerical evaluations of American call options under these model assumptions,

we employ the Method of Lines (MoL hereafter) algorithm due to its accuracy and numerical

efficiency, see Meyer (1998). The MoL for pricing American options was used by Meyer and

van der Hoek (1997) with the asset price process following a diffusion process. Extensions

to jump diffusion with the MoL were discussed in Meyer (1998). Chiarella et al. (2009)

evaluate American options under the assumption that asset price dynamics are driven by

the jump diffusion process proposed by Merton (1976), and the volatility follows the square

root process by Heston (1993). They also demonstrated the computational efficiency of the

MoL compared to componentwise splitting and Crank-Nicholson methods. The MoL was also

used by Chiarella and Ziveyi (2011) to price American options with two stochastic volatility

processes, Adolfsson et al. (2013) to price American call option under Heston stochastic

volatility dynamics, Kang and Meyer (2014) to price American options whose dynamics

include stochastic interest rate of the CIR type and Chiarella et al. (2016) to price American

options under regime switching. In this paper, we apply the MoL to numerically solve the

American call option pricing problem under stochastic volatility, stochastic interest rates

and jumps in both asset prices and volatility.

The remainder of the paper is structured as follows. Section 2 describes the pricing

model for American call options, which allows for stochastic volatility, stochastic interest

rates and jumps in both the asset and the volatility and derives the corresponding PIDE

pricing equation. The implementation details of the MoL algorithm are included in Section 3.

Section 4 confirms the accuracy of the MoL implementation and presents a sensitivity analysis

to gauge the impact of stochastic volatility and stochastic interest rates on the free boundary

surfaces. Section 5 assess the impact of asset and volatility jumps on American call prices,

their free boundaries and Greeks. Section 6 concludes.

2. American Call Option Pricing: The Valuation Model

This section describes the model used to price American call options. In line with the

model of Duffie et al. (2000), which includes jumps in both the asset and volatility dynamics,

the Heston (1993) stochastic volatility model with asset and volatility jumps is considered.
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The interest rate process follows the Hull and White (1987) interest rate model. Thus, under

the risk-neutral measure Q, the dynamics of the underlying price are given by the following

equations:

dS = (r − q − λ1k)Sdt+
√
V SdZ1 + (Y − 1)SdN1,

dV = κ (θ − V ) dt+ σV
√
V dZ2 + ydN2, (1)

dr = a (b (t)− r) dt+ σrdZ3,

where S is the stock price, r is the instantaneous interest rate whose dynamics are given

by the Hull and White (1987) model, q is continuously compounded dividend rate, V is the

variance process, Zi (for i = 1, 2, 3) is a standard Wiener process under the risk-neutral

measure Q, Y − 1 is the random variable percentage change in the asset price if a jump

occurs, dNi is a Poisson increment, which is given by:

dNi =

1, with probability λidt,

0, with probability 1− λidt, for i = 1, 2

where dN1 and dN2 are jump processes with jump intensities λ1 and λ2 respectively. They

are not correlated and are also independent from the continuous part of the process (Lutz

(2010)),

k = EQ (Y − 1) =

∫ ∞
0

(Y − 1)G (Y ) dY, (2)

where G (Y ) is the probability distribution of Y under the risk-neutral measure Q, κ is the

rate of mean reversion of V , θ is the long run mean of V , σV is the instantaneous volatility

of V , y is the absolute jump size of the volatility process, a is the rate of mean reversion of

r, b (t) is the long run mean of r which is given as

b (t) = c1 − c2e
−c3t (3)

where c1, c2 and c3 are positive constants and c1 > c2, σr is the instantaneous volatility of

r. In order for the variance process to remain positive, κ, θ, and σV will have to be selected

such that the following Feller condition (Feller (1951)) is satisfied

2κθ > σ2
V .
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The correlation structure between the Wiener processes under the risk-neutral measure Q is

assumed to be given by

EQ (dZ1dZ2) = ρ12dt,E
Q (dZ1dZ3) = ρ13dt,E

Q (dZ2dZ3) = ρ23dt,

where ρi,j for i = 1, 2 and j = 2, 3 are constants.

2.1. Partial integro-differential equation (PIDE) derivation using the Martingale approach

The system of correlated Wiener processes (1) is transformed to a system of uncorrelat-

ed Wiener processes using Cholesky decomposition, as it is more convenient to work with

a system of independent Wiener processes. The resulting system of independent Wiener

processes W1, W2, and W3 is given below as:

dS = (r − q − λ1k)Sdt+
√
V SdW1 + (Y − 1)SdN1,

dV = κ (θ − V ) dt+ σV
√
V ρ12dW1 + σV

√
V
(
1− ρ2

12

) 1
2 dW2 + ydN2, (4)

dr = a (b (t)− r) dt+ σrρ13dW1 + σr
ρ32 − ρ12ρ13√

1− ρ2
12

dW2

+ σr

(
1− ρ2

12 − ρ2
13 − ρ2

23 + 2ρ12ρ13ρ23

1− ρ2
12

) 1
2

dW3.

The infinitesimal generator K of this system of equations is given as:

K = (r − q − λ1k)S
∂

∂S
+ κ (θ − V )

∂

∂V
+ a (b (t)− r) ∂

∂r
+ V S2 1

2

∂2

∂S2
+ σ2

V V
1

2

∂2

∂V 2

+ σ2
r

1

2

∂2

∂r2
+ V SσV ρ12

∂2

∂S∂V
+
√
V Sσrρ13

∂2

∂S∂r
+ σrσV

√
V ρ23

∂2

∂V ∂r
(5)

+ λ1

∫
(f (Y S, t)− f (S, t))G (Y ) dY + λ2

∫
(f (V + y, t)− f (V, t)) g (y) dy,

where g (y) is the probability distribution of y under the risk-neutral measure Q. Let

f (t, S, V, r) be the price of an option with maturity T at time t. Option pricing can be

performed under an equivalent martingale measure which is determined by its numeraire.

Under the risk-neutral probability measure Q, the current option value is computed by the

expected discounted future payoff of the option, since the option price denominated at the

money market account is a Martingale under the risk-neutral measure. Mathematically:

f (t, S, V, r) = EQ
t

[
e−

∫ T
t r(s)dsf (T, S, V, r)

]
7



The Feynman-Kac formula states that f (t, S, V, r) satisfies the integro partial differential

equation:

∂f

∂t
+ Kf − rf = 0,

subject to the initial condition

lim
t→T

f (t, S, V, r) = f (T, S, V, r) .

Hence the PIDE that need to be solved to obtain the option price is given as:

∂f

∂t
+ (r − q − λ1k)S

∂f

∂S
+ κ (θ − V )

∂f

∂V
+ a (b (t)− r) ∂f

∂r
+ V S2 1

2

∂2f

∂S2
+ σ2

V V
1

2

∂2f

∂V 2

+ σ2
r

1

2

∂2f

∂r2
+ V SσV ρ12

∂2f

∂S∂V
+
√
V Sσrρ13

∂2f

∂S∂r
+ σrσV

√
V ρ23

∂2f

∂V ∂r
− rf (6)

+ λ1

∫
(f (Y S, t)− f (S, t))G (Y ) dY + λ2

∫
(f (V + y, t)− f (V, t)) g (y) dy = 0.

Heston (1993) included the term λV (t, S, V ) in the partial differential equation to rep-

resent the price of volatility risk. In motivating the choice of λV (t, S, V ) he applies the

consumption model by Breeden (1976) and obtains a price of volatility risk, which is a linear

function of volatility, i.e. λV (t, S, V ) = λV V .

Lamoureux and Lastrapes (1993) then investigated whether volatility risk does affect the

option price. They tested whether the strong assumption of market indifference to volatility

risk is consistent with data. They concluded that further attempts to learn from the data

should explicitly model a risk premium on the variance process as given in the model by

Heston (1993). As the model also includes the stochastic interest rate, interest rate risk

λrr is priced in line with Kang and Meyer (2014). Let time to maturity, τ be defined as

τ = T − t. Hence, the PIDE is given as:

(r − q − λ1k)S
∂f

∂S
+ (κ (θ − V )− λV V )

∂f

∂V
+ ((a (b (τ)− r))− λrr)

∂f

∂r
+ V S2 1

2

∂2f

∂S2

+ σ2
V V

1

2

∂2f

∂V 2
+ σ2

r

1

2

∂2f

∂r2
+ V SσV ρ12

∂2f

∂S∂V
+
√
V Sσrρ13

∂2f

∂S∂r
+ σrσV

√
V ρ23

∂2f

∂V ∂r
(7)

+ λ1

∫
(f (Y S, τ)− f (S, τ))G (Y ) dY + λ2

∫
(f (V + y, τ)− f (V, τ)) g (y) dy − rf =

∂f

∂τ
.
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2.2. The partial-integro differential equation for a call option and boundary conditions

Let the time to maturity, τ be defined as τ = T − t. Let C, a function of τ, S, V, r be the

American call option price given by C (τ, S, V, r). Then:

C (τ, S, V, r) = EQ
τ

[
e−

∫ τ
0 r(s)dsC (τ, S, V, r)

]
.

Using the Feynman-Kac formula C (τ, S, V, r) satisfies the integro partial differential e-

quation:

KC − rC =
∂C

∂τ
,

in the region

0 ≤ τ ≤ T, 0 < S ≤ d (τ, V, r) , 0 < V <∞, −∞ < r <∞,

where d (V, r, τ) is the early exercise boundary, subject to the initial condition

lim
τ→0

C (τ, S, V, r) = C (τ, S, V, r) .

The domain for r includes negative interest rates since the Hull-White model allows for

negative rates. At the free boundary point, the value matching condition

C (τ, d (τ, V, r) , V, r) = d (τ, V, r)−K,

must be satisfied as it ensures continuity of the option value function at the free boundary.

To maximise the value of the American call option and avoid arbitrage in the model , the

following smooth pasting conditions need to be included at the free boundary:

lim
S→d(τ,V,r)

∂C

∂S
= 1, lim

S→d(τ,V,r)

∂C

∂V
= 0, lim

S→d(τ,V,r)

∂C

∂r
= 0. (8)

This condition implies that the American call option value is maximised by a strategy

that makes the value of the option and the delta of the option continuous. The computational

domain is

0 ≤ τ ≤ T, Smin < S ≤ Smax, Vmin < V < Vmax, −rmin < r < rmax. (9)
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Meyer (2015) used the MoL in pricing a call option under the Heston-Hull-White model.

On imposing conditions on the boundary with negative interest rates based on the Black-

Scholes formula, he found that they were not consistent with the behaviour of an American

call option, and, as a result, only the positive domain for interest rates was considered.

Similar considerations shall be made in this paper.

Following the results obtained previously, the PIDE that needs to be solved to obtain

the option price is

(r − q − λ1k)S
∂C

∂S
+ (κ (θ − V )− λV V )

∂C

∂V
+ ((a (b (τ)− r))− λrr)

∂C

∂r
+ V S2 1

2

∂2C

∂S2

+ σ2
V V

1

2

∂2C

∂V 2
+ σ2

r

1

2

∂2C

∂r2
+ V SσV ρ12

∂2C

∂S∂V
+
√
V Sσrρ13

∂2C

∂S∂r
+ σrσV

√
V ρ23

∂2C

∂V ∂r
− rC (10)

+ λ1

∫
(C (Y S, τ)− C (S, τ))G (Y ) dY + λ2

∫
(C (V + y, τ)− C (V, τ)) g (y) dy =

∂C

∂τ
.

The boundary conditions at the points Smin, Smax, Vmin, Vmax, rmin and rmax are discussed

below. At S = Smax, the value of the call option is

C (τ, Smax, V, r) = Smax −K.

To determine the type of boundary conditions to be used at S = 0, V = 0 and r = 0,

Meyer (2015) and Kang and Meyer (2014) use the algebraic sign of the Fichera function for

the PIDE. Applying these results, the option price at S = 0 is

C (τ, 0, V, r) = 0.

At the point V = 0, the PIDE becomes

σ2
r

1

2

∂2C

∂r2
+ (r − q − λ1k)S

∂C

∂S
+ κθ

∂C

∂V
+ ((a (b (τ)− r))− λrr)

∂C

∂r
− rC (11)

+ λ1

∫
(C (Y S, τ)− C (S, τ))G (Y ) dY + λ2

∫
(C (y, τ)− C (0, τ)) g (y) dy =

∂C

∂τ
,

and at r = 0 the PIDE reduces to
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(r − q − λ1k)S
∂C

∂S
+ (κ (θ − V )− λV V )

∂C

∂V
+ a (b (τ))

∂C

∂r

+ V S2 1

2

∂2C

∂S2
+ V SσV ρ12

∂2C

∂S∂V
+ σ2

V V
1

2

∂2C

∂V 2
(12)

+ λ1

∫
(C (Y S, τ)− C (S, τ))G (Y ) dY + λ2

∫
(C (V + y, τ)− C (V, τ)) g (y) dy =

∂C

∂τ
.

The call option price is not solved for at the boundary points V = 0 and r = 0 using (6)

and (7). Quadratic extrapolation for obtaining the option values at those points is used. At

the point r = 0, option values obtained at the points r = ∆r, r = 2∆r, and r = 3∆r by

solving the PIDE using Riccati transformation, are used. At the point V = 0 option values

obtained at the points V = ∆V, V = 2∆V, V = 3∆V are used. The general quadratic

extrapolation formula is given by:

f (0) = 3f (∆x)− 3f (2∆x) + f (3∆x) .

At V = Vmax the PIDE becomes:

(r − q − λ1k)S
∂C

∂S
+ (κ (θ − Vmax)− λV Vmax)

∂C

∂V
+ ((a (b (τ)− r))− λrr)

∂C

∂r

+ VmaxS
2 1

2

∂2C

∂S2
+ σ2

r

1

2

∂2C

∂r2
+
√
VmaxSσrρ13

∂2C

∂S∂r
− rC (13)

+ λ1

∫
(C (Y S, τ)− C (S, τ))G (Y ) dY + λ2

∫
(C (Vmax + y, τ)− C (Vmax, τ)) g (y) dy =

∂C

∂τ
.

At r = rmax the PIDE is given as:

(rmax − q − λ1k)S
∂C

∂S
+ (κ (θ − V )− λV V )

∂C

∂V
+ ((a (b (τ)− rmax))− λrrmax)

∂C

∂r

+ V S2 1

2

∂2C

∂S2
+ σ2

V V
1

2

∂2C

∂V 2
+ V SσV ρ12

∂2C

∂S∂V
− rmaxC (14)

+ λ1

∫
(C (Y S, τ)− C (S, τ))G (Y ) dY + λ2

∫
(C (V + y, τ)− C (V, τ)) g (y) dy =

∂C

∂τ
,

and for V = Vmax and r = rmax the PIDE is

(r − q − λ1k)S
∂C

∂S
+ (κ (θ − V )− λV V )

∂C

∂V
+ ((a (b (τ)− r))− λrr)

∂C

∂r
− rC (15)

+ λ1

∫
(C (Y S, τ)− C (S, τ))G (Y ) dY + λ2

∫
(C (V + y, τ)− C (V, τ)) g (y) dy =

∂C

∂τ
.

Using these boundary conditions together with the PIDE at the non-boundary points,

the call option price is obtained. In the next section the MoL is described, which is the

method used for numerically solving this problem.
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3. Method of Lines (MoL)

MoL is an approximation of one or more partial differential equations with ordinary

differential equations in just one of the independent variables, and this approach is discussed

in detail by Meyer (2015). The MoL algorithm developed in this paper is an extension of

the algorithm for stochastic volatility and stochastic interest rate model proposed by Kang

and Meyer (2014), to which jumps to asset returns and volatility are added.

The time dimension is discretised by replacing the partial derivative with respect to

time with a backward Euler approximation for the first two time steps, and then the three

level backward difference formula for the remainder of the time steps. The partial integro-

differential equation is approximated using finite differences. All the derivatives with respect

to volatility and interest rate are replaced with finite differences. Integral functions are

approximated using Gaussian quadrature, namely, Gauss-Hermite quadrature and Gauss-

Laguerre quadrature. The resulting equation is a second order ordinary differential equation,

which must be solved at each time step, variance grid point, and interest-rate point.

Within each time step, the second order ordinary differential equation is solved using

two-stage iterations. These iterations are done until the price converges to a desired level

of accuracy, at which point computations proceed to the next time step. Hence, the MoL

approximation would be given by a boundary value problem, together with its boundary

conditions. To solve this boundary value problem, it is first transformed into a system

of two first-order equations. This system is then solved using the Riccati transformation,

which consists of three steps, namely, the forward sweep, followed by the determination of

the boundary values at the free boundary, and, finally, the reverse sweep of the appropriate

equations. The resulting solution of the reverse sweep gives us the option delta, which is

then used to obtain the option values.

3.1. Partial Derivatives Approximation

Let Vm = m∆V , rn = n∆r and τl = l∆τ for m = 0, 1, 2, . . .M , and n = 0, 1, 2, . . . N and

where τL = T . The call option price along the variance line Vm, the interest rate line rn and

the time line τl is given by:

C (τl, S, Vm, rn) = C l
m,n (S) .
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The option delta at the grid point is given by:

V (τl, S, Vm, rn) =
∂C (τl, S, Vm, rn)

∂S
= V l

m,n (S) .

The partial derivative discretised with respect to time, ∂C
∂τ

. For the first two time steps,

the backward Euler approximation is used:

∂C

∂τ
=
C l
m,n − C l−1

m,n

∆τ
. (16)

For subsequent steps, a three-level backward difference formula is used:

∂C

∂τ
=

3

2

C l
m,n − C l−1

m,n

∆τ
+

1

2

C l−1
m,n − C l−2

m,n

∆τ
. (17)

Using (16) and (17) together yields a stable numerical method for the solution of the

PIDE (Meyer (2015)). The derivative terms are approximated with respect to V and r using

finite differences.

∂C

∂V
=
C l
m+1,n − C l

m−1,n

2∆V
,

∂C

∂r
=
C l
m,n+1 − C l

m,n−1

2∆r
,

∂2C

∂V 2
=
C l
m+1,n − 2C l

m,n + C l
m−1,n

(∆V )2 ,
∂2C

∂r2
=
C l
m,n+1 − 2C l

m,n + C l
m,n−1

(∆r)2 ,

∂2C

∂S∂V
=
V l
m+1,n − V l

m−1,n

2∆V
,

∂2C

∂S∂r
=
V l
m,n+1 − V l

m,n−1

2∆r
,

∂2C

∂V ∂r
=
C l
m+1,n+1 − C l

m+1,n−1 + C l
m−1,n+1 + C l

m−1,n−1

4∆V∆r
.

3.2. Integral Terms Approximation

Gaussian quadrature is used to approximate the integral terms. For an integral function

I =

∫ b

a

f (x) dx,

if W (x) and an integer N are given, weights wj and abscissas xj can be found such that

∫ b

a

W (x) f (x) dx ≈
N−1∑
j=0

wjf (xj)

13



is exact if f (x) is a polynomial (William H. Press and Flannery (2002)).

The first integral term is

∫
C (Y S, τ)− C (S, τ)G (Y ) dY =

∫
C (Y S, τ)G (Y ) dY −

∫
C (S, τ)G (Y ) dY

=

∫
C (Y S, τ)G (Y ) dY − C (S, τ) .

Following Merton (1976), Y is log-normally distributed and thus G (Y ) is given as

G (Y ) =
1

Y δ
√

2π
exp

−
[
lnY −

(
γ − δ2

2

)]2

2δ2

 , (18)

where γ is the mean and δ is the standard deviation. From equation (2), it follows that

k = EQ (Y − 1) = EQ (Y )−EQ (1) = EQ (Y )−1 = exp

((
γ − δ2

2

)
+

1

2
δ2

)
−1 = exp (γ)−1.

The remaining integral is approximated using Gauss-Hermite quadrature where

W (x) = e−x
2 −∞ < x <∞.

Changing variables in this integral, let X =
[
lnY −

(
γ − δ2

2

)]
. It is transformed to∫ ∞

−∞
C (Y S, τ)G (Y ) dY =

1√
π

∫ ∞
−∞

e−X
2

C

(
S exp

((
γ − δ2

2

)
+
√

2δX

)
, V, r, τ

)
dX.

(19)

Using the Gauss-Hermite quadrature formula, equation (19) is discretised,

1√
π

∫ ∞
−∞

e−X
2

C

(
S exp

((
γ − δ2

2

)
+
√

2δX

)
, V, r, τ

)
dX,

=
1√
π

J∑
j=0

wjCm,n

(
S exp

((
γ − δ2

2

)
+
√

2δXj

))
,

where wj and Xj are the weights and the abscissas. To obtain the value of the option at

the computed point, which might not necessarily lie on the grid, the cubic spline interpola-

tion is used to interpolate between values which lie on the grid. Summing this product gives

14



the value of the integral at the required point.

The second integral term is

∫
(C (V + y, τ)− C (V, τ)) g (y) dy.

In their “Double Jump” illustrative model, Duffie et al. (2000) assumed that the volatility

jump size is exponentially distributed. This ensures that the jumps are always positive. The

same assumption of exponential distribution with parameter λ > 0 is made, regarding the

size of the volatility jump. Thus,

y ∼ exp (λ) ,

where

g (y) = λe−λy.

This integral term is approximated using the Gauss-Laguerre quadrature where

W (x) = xαe−x, 0 < x <∞. (20)

Changing variables in this integral, let

X = λy =⇒ y =
X

λ
=⇒ dy =

dX

λ
.

Substituting back into the equation∫ ∞
0

(C (V + y, τ)− C (V, τ)) g (y) dy =

∫ ∞
0

C (V + y, τ) g (y) dy −
∫ ∞

0

C (V, τ) g (y) dy,

=

∫ ∞
0

C

(
V +

X

λ
, τ

)
λe−X

dX

λ
− C (V, τ) =

∫ ∞
0

C

(
V +

X

λ
, τ

)
e−XdX − C (V, τ) .

Using the Gauss-Laguerre quadrature formula

∫ ∞
0

C

(
V +

X

λ
, τ

)
e−XdX =

J∑
j=0

wjCm,n

(
V +

Xj

λ

)
,

where wj and Xj are the weights and the abscissas. Similarly, as in the previous integral

approximation, cubic spline interpolation is used to interpolate between values that lie on the

grid to obtain option prices for an asset price, which does not lie on a grid point. Summing

this product gives the value of the integral at the required point.
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3.3. The Riccati Transformation

From equation (10), the PIDE becomes

(r − q − λ1k)S
∂C

∂S
+ (κ (θ − V )− λV V )

∂C

∂V
+ ((a (b (τ)− r))− λrr)

∂C

∂r
+ V S2 1

2

∂2C

∂S2

+ σ2
V V

1

2

∂2C

∂V 2
+ σ2

r

1

2

∂2C

∂r2
+ V SσV ρ12

∂2C

∂S∂V
+
√
V Sσrρ13

∂2C

∂S∂r
+ σrσV

√
V ρ23

∂2C

∂V ∂r
(21)

+ λ1

∫
(C (Y S, τ)− C (S, τ))G (Y ) dY + λ2

∫
(C (V + y, τ)− C (V, τ)) g (y) dy − rC =

∂C

∂τ
.

Substituting for the partial derivatives with respect to time, V and r, together with the

mixed partial derivatives using the approximating equations above, an ODE is obtained. For

the first two time steps, this is given by:

V S2 1

2

d2C l
m,n

dS2
+ (r − q − λ1k)S

dC l
m,n

dS
− rC l

m,n −
C l
m,n − C l−1

m,n

∆τ

+ (κ (θ − V )− λV V )
C l
m+1,n − C l

m−1,n

2∆V
+ a (b (τ)− r)

C l
m,n+1 − C l

m,n−1

2∆r

+ σ2
V V

1

2

C l
m+1,n − 2C l

m,n + C l
m−1,n

(∆V )2 + σ2
r

1

2

C l
m,n+1 − 2C l

m,n + C l
m,n−1

(∆r)2

+ V SσV ρ12

V l
m+1,n − V l

m−1,n

2∆V
+
√
V Sσrρ13

V l
m,n+1 − V l

m,n−1

2∆r

+ σrσV
√
V ρ23

C l
m+1,n+1 − C l

m+1,n−1 + C l
m−1,n+1 + C l

m−1,n−1

4∆V∆r

+ λ1

∫
(C (Y S, τ)− C (S, τ))G (Y ) dY + λ2

∫
(C (V + y, τ)− C (V, τ)) g (y) dy = 0.

(22)

For subsequent time steps, this becomes:

V S2 1

2

d2C l
m,n

dS2
+ (r − q − λ1k)S

dC l
m,n

dS
− 3

2

C l
m,n − C l−1

m,n

∆τ
+

1

2

C l−1
m,n − C l−2

m,n

∆τ
− rC l

m,n

+ (κ (θ − V )− λV V )
C l
m+1,n − C l

m−1,n

2∆V
+ a (b (τ)− r)

C l
m,n+1 − C l

m,n−1

2∆r

+ σ2
V V

1

2

C l
m+1,n − 2C l

m,n + C l
m−1,n

(∆V )2 + σ2
r

1

2

C l
m,n+1 − 2C l

m,n + C l
m,n−1

(∆r)2

+ V SσV ρ12

V l
m+1,n − V l

m−1,n

2∆V
+
√
V Sσrρ13

V l
m,n+1 − V l

m,n−1

2∆r

+ σrσV
√
V ρ23

C l
m+1,n+1 − C l

m+1,n−1 + C l
m−1,n+1 + C l

m−1,n−1

4∆V∆r

+ λ1

∫
(C (Y S, τ)− C (S, τ))G (Y ) dY + λ2

∫
(C (V + y, τ)− C (V, τ)) g (y) dy = 0,

(23)
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subject to the boundary conditions:

C l
m,n (0) = 0, C l

m,n

(
dlm,n

)
= dlm,n −K,

dClm,n
dS

(
dlm,n

)
= 1.

The boundary conditions discussed in the previous section are imposed. The integrals

are approximated using the Gaussian quadrature explained above. To solve equations (22)

and (23), each equation is first transformed into two equations of first order.

dC l
m,n

dS
= V l

m,n

dV l
m,n

dS
= Am,n (S)C l

m,n +Bm,n (S)V l
m,n + P l

m,n (S) .

(24)

This is done by grouping together all the C l
m,n terms, V l

m,n terms and the rest of the

terms in C l
m+1,n, C

l
m−1,n C

l
m,n+1, C

l
m,n−1, V l

m+1,n, V
l
m−1,n V

l
m,n+1, V

l
m,n−1 and the integral

terms make up the P l
m,n (S) term. This first order system of equations is then solved using

a Riccati transformation,

C l
m,n (S) = Rm,n (S)V l

m,n (S) +W l
m,n (S) , (25)

in which Rm,n (S) and W l
m,n (S) are solutions of the initial value problems,

dRm,n

dS
= 1−Bm,n (S)Rm,n (S)− Am,n (S) (Rm,n (S))2 , Rm,n (0) = 0, (26)

dW l
m,n

dS
= −Am,n (S)Rm,n (S)W l

m,n −Rm,n (S)P l
m,n (S) , W l

m,n (0) = 0. (27)

The integration of equation (26) and equation (27) from 0 to Smax is called the forward

sweep. Smax is chosen large enough such that the free boundary point between 0 and Smax

is obtained. Using each of the Rm,n and the W l
m,n values obtained from the integration, the

value of the free boundary S• is between the two consecutive points, where the sign changes

on computing values for the following equation:

S• −K −Rm,n (S•)−W l
m,n (S•) = 0.

dlm,n along the S-grid is defined as the free boundary at the grid point (Vm, rn, τl). In

obtaining this free boundary point and the values required for computing the option price
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at the free boundary, cubic spline interpolation is used as it is most likely that the free

boundary point does not lie on the given grid points. The following equation is integrated

for the option delta from dlm,n to 0. This is known as the backward sweep.

dV l
m,n

dS
= Am,n (S)

(
R (S)V +W l

m,n (S)
)

+Bm,n (S)V + P l
m,n (S) , V l

m,n

(
dlm,n

)
= 1. (28)

At all stages of the calculation the boundary conditions discussed in the previous section

are considered. Having obtained the values for Rm,n, W l
m,n and V l

m,n, the option values from

the Riccati transformation equation (25) are obtained.

Within each time step, each ordinary differential equation is solved using iterations.

Chiarella et al. (2009) look at a similar problem, but with only one jump in the asset dy-

namics. They use a two stage iterative scheme. In the first stage, they treat the IDEs

as ODEs by using C l−1
m,n as an initial approximation for C l

m,n in the integral term. The

same procedure is followed, the only difference being that there are now two integrals and

not one. However, it is the same set of option values that will be used in both integral

terms. An initial guess is begun with. For each time period, in each iteration, equations for

m = 1, . . . ,M are solved, using the latest values available for C l
m+1,n, C

l
m−1,n C

l
m,n+1, C

l
m,n−1

and V l
m+1,n, V

l
m−1,n V

l
m,n+1, V

l
m,n−1, obtained by using the Riccati transformation. When the

difference between the option values for the (k − 1)th and the kth iteration is less than 10−6,

the iterations are terminated.

In the second stage of iterations, the integral is updated with this new option value and

the process is repeated until the price converges at this level, i.e. the difference between the

option value in the integral and new computed option value is less than 10−6. The iterations

are terminated and the computations are made at the next time step.

4. Numerical Results

In this section, a numerical study is conducted to assess the impact of jumps and the

stochastic dynamics of interest rates and volatility on American option prices, and their free

boundaries and Greeks. By using the model proposed in Section 2, the MoL is implemented
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to price an American call option with strike K = 100 maturing in six months on an asset

paying a dividend yield of 5%.

To implement the MoL, S, V , r and τ are discretised, in line with the asset dynamics

in equation (4). Along the S dimension, a non-uniform mesh is used to handle the lack

of smoothness in this problem. There are 50 time steps (L) with the maturity time being

T = 0.5. Smin = 0 and Smax = 800 with 50 grid points on [0, 50], 50 grid points on [50, 100],

200 grid points on [100, 200] and 500 grid points on [200, 800], thus totalling 800 grid points.

There are 25 variance points with Vmin = 0 and Vmax = 0.5 or 50%, and 25 interest rates

points with rmin = 0 and rmax = 25%. By including jumps, assumptions that the asset price

jumps follow a Poisson process and that the volatility jump size is exponentially distributed

are made. To approximate the jump integrals, 50 abscissa points are used for the Hermite

integration and 5 abscissa points for the Gauss-Laguerre integration. The α of equation

(20) is assumed to be 0. The correlation between S and V , ρ12 = −0.5, and between V

and r, ρ23= 0.0. Fama (1981b), Li et al. (2005), Giot (2005) and Fama (1981a) found a

significant negative relationship between expected returns and volatility. Cheng et al. (2018)

show empirically that, in their data (crude oil futures and USD Treasuries), the correlation

between asset volatility and interest rates is almost zero. A similar assumption in this

analysis is made. The correlation between S and r (ρ13) can be positive/negative, and it

is 0.5 for this analysis. Table 1 presents the parameter values used in the numerical study.

Using these parameter values, option prices are computed using the MoL when there are

both asset and volatility jumps. 2

To test the correctness of the MoL implementation, American put prices computed by MoL

are compared with prices obtained using the Monte Carlo technique commonly attributed

to Longstaff and Schwartz (2001). Several papers provide prices for American put options

using the Heston (1993) and Hull and White (1987) model, and which, in particular, use

this similar method in their implementation. Some of these results are used for comparison

purposes. Samimi et al. (2017) provides tables of values which will be used for comparison.

2The parameter values used have been taken from a paper by Chiarella et al. (2009) in which they price

American call options with asset dynamics that have stochastic volatility and asset jumps.
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Table 1: Parameter values used to compute American call option prices. The Heston (1993) stochastic

volatility model and a Hull-White stochastic interest rate model is used. Asset jumps are log-normally

distributed, and volatility jumps are exponentially distributed.

Parameters Value SV Value SI Value Jumps Value

T 0.5 θ 0.04 σr 0.1 λ1 5

q 0.05 σV 0.4 a 0.3 λ2 5

K 100 κ 2.0 λr 0.0 λ 200

λV 0.0 ρ13 0.5 γ 0.0

ρ12 -0.5 ρ23 0.0 δ 0.1

c1 0.04

c2 0.00

c3 1.0

In addition to this Python code by Hilpisch (2011)is run in order to obtain the option prices,

including the standard errors. Table 2 presents the results for these two different pricing

methods for put options.

As indicated in Table 2, the values for the American put option obtained using the MoL

are within the Monte Carlo bounds at the 99% confidence interval. The run time for the

MoL is more efficient especially when the computation of Greek letters is included, given that

MoL computes that as part of the simulations. Chiarella et al. (2009) have demonstrated

the time efficiency of the MoL in comparison to component-wise splitting (CS) method

and Crank-Nicholson with PSOR method, thus Monte Carlo is only used for comparison

purposes.

A sensitivity analysis is conducted next to first examine the impact of stochastic volatility

and stochastic interest rates on the shape of the free boundary surfaces in the presence of

jumps. Thus, by using jump-diffusion models with jumps in both asset and volatility, an

assessment on how the asset prices, stochastic volatility, and stochastic interest rates affect

the free boundaries is made. Since this model has non-constant values of volatility and

interest rates, an investigation into the effects of changing maximum volatility and maximum

interest rate used in the MoL algorithm for discretisation purposes is made, see equation (9).
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Table 2: This table presents a comparison of put option prices for two different pricing methods at

different interest rate and volatility levels when S = 100 using parameter values in Samimi et al. (2017).

The American put option prices obtained using the MoL are stated in the 4th column and Monte Carlo

prices are in the 5th and 6th columns. LSM1 are prices obtained from Samimi et al. (2017), whilst LSM2

are the prices obtained using the python LSM algorithm by Hilpisch (2011), for 1 million paths and 100

time steps. The standard error given in the 7th column is for the prices obtained using LSM2. The

resulting upper and lower price bounds at 95% confidence interval for the LSM2 prices are given in the

8th column and 9th column.

T r V MoL LSM1 LSM2 SE LB UB

0.2 0.04 0.09 4.7061 4.689 4.7066 0.0037 4.6993 4.7139

0.2 0.04 0.25 7.9274 7.907 7.9193 0.0055 7.9085 7.9301

0.2 0.09 0.09 4.3516 4.337 4.3560 0.0038 4.3486 4.3634

0.2 0.09 0.25 7.5360 7.511 7.5344 0.0058 7.5230 7.5458

0.3 0.04 0.09 5.5270 5.490 5.5268 0.0043 5.5184 5.5352

0.3 0.04 0.25 9.2832 9.245 9.2769 0.0064 9.2644 9.2894

4.1. Sensitivity analysis

The sensitivity of the free boundary is assessed in terms of asset prices, volatility levels,

and interest rate levels. Figure 1 displays the impact of interest rates on the free boundary

surfaces under two volatility scenarios; a low volatility at 4% and a high volatility environ-

ment at 30%. Figure 2 shows the impact of volatility on free boundary surfaces under two

interest rates scenarios; a low interest rate at 4% and a high interest rate at 16%. Fig-

ure 3 summarises the impact of both volatility and interest rates on the free boundary of an

American call option at its maturity date of six months.

As expected, the free boundary value for American call options holds a positive relation

with both interest rates and volatility. As interest rates increase, early exercise for a call

option is less likely (due to the consequent higher option prices)3, which drives their free

boundaries high. An increase in volatility is expected to increase the free boundary. An

increase in volatility increases the time value of the option, thus as the option becomes

3Early exercise for a call option occurs when asset value is above the free boundary. The free boundary

of a call option increase as interests rates increase, since call options become “better” investments, providing

substantially higher returns (compared to positions in the underlying asset), which increases their prices.
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more valuable, the free boundary value rises. These effects are more pronounced for longer

maturity options and for relatively high levels of volatility and interest rates. For example,

an American call option with maturity of 6 months, interest rate at 10% and a volatility of

24% implies a free boundary value of about 290, while for a volatility of 40%, the boundary

value is around 307, see Figure 3. The shapes of the free boundary surfaces are similar

to the ones produced by models without jumps, see Pantazopoulos et al. (1996) who use

front-tracking finite difference methods, Chiarella and Ziogas (2005) who use an iterative

numerical integration scheme, Hirsa (2013) who uses the ADI method, and Kang and Meyer

(2014) who also use the method of lines for a model with stochastic volatility, etc. The

free boundary surfaces are smooth, an advantage of using the MoL. This is a feature that is

not shared with other methods, for instance, the finite difference methods, which typically

require a smoother (Ikonen and Toivanen (2009)) to be used.

4.1.1. Impact of volatility of volatility

The volatility of financial products is likely to be stochastic. Heston (1993) found that

volatility of volatility increases the kurtosis of spot returns. Using a stochastic volatility

model, an investigation on the impact of volatility of volatility on the free boundary is

made. Figure 6 displays the free boundaries for American call options in the presence of

jumps in both asset and volatility dynamics for different vol of vol: 4%, 14%, and 40% when

r = 4% and V = 4%. An increase in the volatility of volatility tends to shift up the free

boundary curve, an effect that is more pronounced further from expiry, see Figure 6. Thus,

the vol of vol (or kurtosis of returns) has a positive effect on free boundary surfaces, making

it less likely for the option to be exercised early.

4.1.2. Impact of volatility of interest rate

Next, an investigation on the effect of increasing the volatility of interest rate on the

free boundary is made. Figure 7 displays the free boundaries for American call options in

the presence of jumps in both the asset and volatility dynamics for different volatility of

interest rates: 8%, 10%, and 12% when r = 4% and V = 4%. As in the previous analysis, as

the volatility of interest rates is increased, the free boundary values also increase, similarly

making it less likely for the option holder to exercise the option early. Ho et al. (1997)
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illustrate that the value of an American option increases as the volatility of interest rates

increase, a change that also depends on asset volatility. Further from expiry, the impact of

the interest rate volatility is stronger than the impact of the vol of vol.

4.1.3. Impact of rMax and VMax

As part of the analysis, an investigation on how the choice of rMax and VMax used in

the MoL impacts the free boundary values is made. Selection of this value will depend on

several factors, including the prevailing market conditions, convergence of values depending

on the pricing method being used, the purpose for which the pricing is being done, etc. For

instance, a variance that is greater than 100% is a possibility in some markets, especially for

small cap stocks or shares from troubled companies (www.macroption.com). Hirsa (2013)

discussed the importance of VMax on obtaining good estimates for approximate boundary

conditions. Some markets experience negative interest rates; hence, this might also influence

the selection of rMax as it will not be as large as when markets experience positive interest

rates.

Figure 8a plots the free boundary surfaces for three levels of rMax; rMax = 0.2, 0.25, and

0.3. In Figure 8a, as rMax increases, there is a negligible increase in the value of the free

boundaries for the same interest rate level. Thus, the selection of rMax does not have a big

impact on the resulting free boundary values. An investigation on how the choice of VMax

impacts free boundary values is performed. Figure 8b plots the free boundary surfaces for

VMax = 0.5, 0.75, 1.0.VMax again has negligible impact on the free boundary values, see also

Kang and Meyer (2014) for similar conclusions. Thus, the numerical application is robust

with regards to the discretisation limits with inconsequential impact on free boundaries.

5. Impact of jumps

To assess the impact of jumps on American call prices, their free boundary surfaces and

Greek values, three models are compared: the model with no jumps, the model with jumps

in the asset only, and a model with jumps both in asset and volatility. To maintain consistent

variance for the three models for comparison, some parameter values have been adjusted as

explained next.
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Using a spot variance of 4% (or standard deviation of 20%), for the HHWJJ model,

the global variance for lnS is computed by finding the first and second moment of the

characteristic function of the model with both jumps and the formula for finding variance

being:

S2 = E
[
X2
]
− E [X]2

The characteristic function for a 3-D model with no jumps is given by Grzelak et al. (2012), in

which asset jump (Kangro et al. (2003)) and volatility jumps (Lutz (2010)) are included. The

first and second moments are the first and second derivatives of this characteristic function.

For this analysis, the correlation between S and r ρ12 is 0.0, the correlation between V and r

ρ23 is 0.0, and the correlation between S and V ρ12 is ±0.5. There is evidence that the sign of

this correlation affects the free boundary differently, see Chiarella et al. (2009). Using these

parameter values, the value of the global variance is 24.3% when ρ12 = −0.5 and 22.1% when

ρ12 = 0.5. This global variance is used as the standard value for the remaining two models

(HHWJ and HHW) in which some of the model parameters are changed such that the same

global variance is obtained. The difference in the formulation rises from the fact that, for

the case with only asset jumps, λ2 is 0, and when there are no jumps, both λ1 and λ2 are

zero. In determining these parameter values, which match global variance, an assumption

that the spot variance V is equal to the long run mean of V , which is given by θV is made,

see Chiarella et al. (2009). The interest rate is then adjusted, rounding it off to the nearest

percentage, so that, overall, the condition is met. In Table 3, the new parameters for each

model are listed, which ensure that this global variance is the same across all models.

5.1. Free boundary surfaces

The impact of asset and volatility jumps on the free boundary is assessed by considering

three models: HHW, HHWJ and HHWJJ models. Using the values in Table 1 and Table 3,

the free boundary values for the three models are plotted, see Figure 4 for the negative asset

volatility correlation case and Figure 5 for the positive asset volatility correlation case. The

red line represents the free boundary curve for the HHWJJ model. The black line represents

the free boundary curve for the HHWJ model, whilst the blue line is the free boundary

curve for the HHW model. The free boundary values for the model with no jumps is lower
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Table 3: Parameter values for the models with no jumps and asset jumps, which ensure that the global

variance for these models is similar to that of the model with asset and volatility jumps when ρ12 is negative

(-0.5) and positive (0.5). ρ13 and ρ23 is 0 in this analysis. θV = 0.04, V = 0.04, r = 0.04 have been selected

to be 0.04, 0.04 and 0.04 respectively when there are asset and volatility jumps, giving us a global variance

(S2) of 24.3% (negative correlation) and 22.1% (positive correlation). The rest of the parameters in Table 1

remain the same.

ρ12 = −0.5 ρ12 = 0.5

Model Parameter No Jumps Asset Jumps No Jumps Asset Jump

V 0.08 0.06 0.08 0.06

θV 0.08 0.06 0.08 0.06

r 0.04 0.02 0.05 0.03

λ1 0.0 0.5 0.0 0.5

λ2 0.0 0.0 0.0 0.0

than the free boundary values for the models with jumps towards the options expiration.

However, as the time to maturity increases, the relation reverses and the free boundaries for

the model with no jumps becomes higher than the free boundary for models with jumps.

The inclusion of asset jumps and asset-volatility jumps (in comparison to the no jumps case)

has a significant impact on free boundaries, especially away from expiry, as it lowers the free

boundaries. Thus, in the presence of jumps, the investor is more likely to exercise the option

early rather than closer to maturity. This is attributed to the fact that towards expiry, asset

and volatility jumps have a direct effect on the option value. When there is sufficient time

left to maturity, jumps in asset prices can be balanced out by upcoming offsetting jumps or

by long-term mean reverting diffusion.

Further from expiry, adding asset jumps to the HHW model leads to lowering the free

boundary. Yet, when volatility jumps are further added to the asset jumps, the free boundary

curve elevates, making it less likely for the option holder to exercise the option. Indeed, the

HHWJJ model consistently shifts up the free boundary curve, and their difference widens as

time-to-maturity increases. In financial terms, this implies that the impact of volatility jumps

on the call options prices, when these are added to the asset jumps, is incremental. Note

that the global variance between the different model specifications has been held constant.

By holding the global variance constant, the variation is entirely allocated in the asset price
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dynamics in the models with asset jumps only, while the same variance is distributed in both

the asset and volatility dynamics for models with asset and volatility jumps.

The behaviour of the models is similar for positive and negative correlation. The only

difference is in the magnitude of the variation between the model with no jumps and the

models with jumps, with positive correlation having greater impact on the free boundary

surfaces. Similar results were obtained by Chiarella et al. (2009) when contrasting the

stochastic volatility model and the stochastic volatility model with jumps for negative and

positive correlation. 4 When the correlation is positive, there is a small window period near

to expiry in which the model without jumps results in a lower free boundary than the model

with asset-volatility jumps.

5.2. American option price

Next, an investigation on the impact of jumps on the American call option price is made,

under the assumption of the same global variance across all the three models. Figure 9 shows

the differences in the option prices between the three models. The parameter values similar

as those used in Figure 4 have been used, where an assumption that the correlation between

S and V is -0.5 is made. Negative (positive) differences in the graphs imply that the option

price for that particular model (asset jumps or asset-volatility jumps) is greater (lower) than

the option price for the no jumps model.

Figure 9 describes the behaviour of the options in terms of moneyness, as jumps are

included in the model. When the call option is out-the-money (OTM) or at-the-money

(ATM), the option prices for the models with asset jumps and asset volatility jumps are

greater than the option price for the no jumps model. Furthermore, the American call price

with asset jumps is consistently higher than the American call price with asset-volatility

jumps. However, for in-the-money (ITM) call options this relationship reverses and call prices

with asset-volatility jumps are worth more than the options with asset jumps. In addition, for

ITM options, the prices for models with jumps are worth less than the prices from no jumps

models. Like the findings in Section 5.1, when holding global variance constant, options

4Yet, these results depend on the quantitative relation between the interest rate and dividend yield in

addition to the sign of the mean asset price jump size, see Chiarella and Ziogas (2009).
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prices are more sensitive to asset jumps compared to the impact of adding volatility jumps

to asset jumps. This may be because, under constant global variance between models, the

variation is distributed between asset and volatility (instead of asset dynamics only). There

is also possible offsetting in the overall variation in the presence of both asset and volatility

jumps. Chiarella et al. (2009) made similar observations when comparing stochastic volatility

models with jumps and no jumps. Hence the inclusion of asset jumps and asset-volatility

jumps in the model is important when pricing options, as it can lead to the over- or under-

estimating of values.

Figure 10 depicts the impact of vol of vol on the American call option price by considering

the price differences for the models with no jumps, asset jumps, and asset-volatility jumps

for ρ12 = −0.5. As the vol of vol decreases from 0.4 to 0.1, the option prices for the models

with jumps approach the option prices for the no-jumps model.

5.3. Greeks

Another advantage of using the MoL is the fact that Greeks (Delta and Gamma) are

computed at the same time as the option values. This helps in terms of time efficiency, in

contrast to other methods, which require a separate computation of Greeks. In Figure 11,

a comparison of the American call option delta value differences is made for the different

models as jumps are included in the model without jumps when ρ12 = −0.5. The black

line represents the model with asset jumps only, and the red line represents the model with

asset and volatility jumps. Negative (positive) differences in the graphs imply that the delta

for that model (asset jumps or asset and volatility jumps) is greater (lower) than the delta

for the pure diffusion model. From Figure 11, including asset jumps increases the delta for

OTM options and decreases the delta for ATM and ITM options. For a model with asset-

volatility jumps, the delta slightly decreases, although it is still greater than the delta for the

no jumps model. When the call option is ITM, the delta for the model with asset jumps is

less than the delta for the no-jumps model. Hence, inclusion of asset jumps and inclusion of

asset-volatility jumps has a significant impact on the delta of an option, although the impact

is slightly less when volatility jumps are added.
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6. Conclusion

In this paper, the problem of pricing American call options for an asset for which dynamics

incorporate stochastic interest rates of the Hull-White type and with jump-diffusion terms

in both asset and volatility dynamics was considered. Asset jumps follow a log-normal

distribution and volatility jumps follow an exponential distribution. Using the MoL, free

boundaries, option prices, and Greeks are obtained with no extra computational effort. The

MoL has been shown to be accurate and efficient. The correctness of MoL implementation

has been confirmed through comparison with the Monte Carlo simulation (for demonstration

purposes). A sensitivity analysis is performed to gauge the impact of volatility and interest

rate parameters on the free boundaries. A further assessment on the impact of jumps on the

option prices, the free boundaries, and Greeks is made.

The key findings of the numerical investigations include: The inclusion of asset-volatility

jumps has a significant impact on free boundaries, especially away from expiry. Far from

expiry, adding asset jumps to the HHW model leads to lowering the free boundary. Yet,

when volatility jumps are further added to the asset jumps, the free boundary curve elevates,

thus making it less likely for the option to be exercised. The inclusion of an asset-volatility

jumps model was found to consistently shift up the free boundary curve, and the difference

widens as time-to-maturity increases. The impact of jumps on option prices depends on the

moneyness of the option. Option prices for models with both asset and asset volatility jumps

are greater than the option price for the no jumps model when the call option is OTM or

ATM. The American call prices with asset jumps are consistently higher than the American

call price with asset-volatility jumps, a relationship that reverses when call options are ITM.

Further, asset jumps increase the delta for OTM options and reduces the delta for ATM and

ITM options. On including the volatility jump, the delta slightly decreases, although it is

still greater than the delta for the no jumps model. Lastly, the vol of vol and vol of interest

rates have a positive effect on free boundary surfaces, whilst rMax and VMax do not have

any significant impact on free boundaries.

Possible directions for further research can be models that allow for jumps in interest rate

dynamics, given that interest rates may experience sudden fluctuations from time to time. In

addition, extensions with more industry relevance can be considered, including applications
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to financial products such as pension schemes, which is the topic of the forthcoming research

work.
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Figure 1: Free boundary surfaces for a six-month American call option obtained using the MoL for a range of interest rates.

The left panel considers a low volatility of 4% and the centre panel a high volatility of 30%. The right panel plots the difference

between these two sets of free boundary values. The parameter values used are given in Table 1.

Figure 2: Free boundary surfaces for a six-month American call option obtained using the MoL for a range of volatilities.

The left panel considers a low interest rate of 4% and the centre panel a high interest rate of 16%. The right panel plots the

difference between these two sets of free boundary values. The parameter values used are given in Table 1.
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Figure 3: Free boundary surfaces for a six-month American call option for T = 0.5 as interest rates and volatility varies,

obtained using the MoL. The parameter values used are given in Table 1.
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Figure 4: Free boundary surfaces for American call options when ρ12 = −0.5 under three model specifications: HHW, HHWJ

and HHWJJ. The global variance for the three models is 24.3%. The parameter values which ensure the same global variance

across all models are given in Table 3, whilst the rest of the parameter values are in Table 1.

Figure 5: Free boundary surfaces for American call options when ρ12 = 0.5 under three model specifications: HHW, HHWJ

and HHWJJ. The global variance for the three models is 22.25%. The parameter values, which ensure the same global variance

across all models are given in Table 3, whilst the rest of the parameter values are in Table 1.
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Figure 6: Free boundary surfaces of American call options for different levels of volatility of volatility in the presence of asset

volatility jumps when r = 0.04 and V = 0.04. The parameter values are given in Table 1.

Figure 7: Free boundary surfaces of American call options for different levels of volatility of interest rates in the presence of

asset volatility jumps when r = 0.04 and V = 0.04. The parameter values are given in Table 1.
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Figure 8: The impact of rMax on the free boundary surfaces of an American call option in the presence of asset volatility

jumps when V = 0.04 at maturity. The parameter values are given in Table 1.

Figure 9: Comparison of American call option price differences for the HHW, HHWJ, and HHWJJ model

(for ρ12 = −0.5). The global variance is 24.3%. The new parameter values, which ensure a similar global

variance across all models, are given in Table 3, whilst the rest of the parameter values are in Table 1.
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Figure 10: The impact of vol of vol on American call option price by considering the price differences for

the HHW, HHWJ, and HHWJJ model (for ρ12 = −0.5). The global variance is 22.1%. The new parameter

values, which ensure a similar global variance across all models are given in Table 3, whilst the rest of the

parameter values are in Table 1.

Figure 11: Comparison of American call option delta value differences for the HHW, HHWJ AND HHWJJ

model (for ρ12 = −0.5). The global variance is 24.3%. The new parameter values, which ensure a similar

global variance across all models are given in Table 3, whilst the rest of the parameter values are in Table 1.
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