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Abstract Modern insurance products frequently involve contingent benefits that cannot 

be analysed using traditional actuarial techniques. We formulate and illustrate a general 

financial model in which pricing and reserving may be done for quite general insurance 

products. Providing the model is complete in the sense of financial economics, the usual 

notions of prospective and retrospective reserves are easily understood in the context of 

financed cash flow streams. The reserve levels and the investment programs which 

finance them are intimately related and must be recognised as part of the same notion. 

The model provides a consistent framework in which actuaries may understand and 

analyse pricing and reserving for modern insurance products. Of practical significance, 

the reserve formula may also be used for Monte Carlo simulation. 



1. Introduction 

Increasingly, actuaries are faced with pricing and reserving for insurance contracts 

that involve payments that are contingent on financial variables such as the performance 

of the stock market and the level of interest rates. Variable annuity and variable life 

insurance products with embedded minimum death benefit guarantees are two very 

important examples of such contracts. Although reserving techniques are well 

understood in the case of the traditional actuarial model of certain cash flows and 

deterministic interest rates, as analysed in Gerber (1995), actuarial theory is less 

developed in the more general case of uncertain cash flows. Fortunately, one may draw 

on modem financial economics to formulate a standardised framework for understanding 

the pricing and reserving for a general class of insurance products. This framework is 

based on the techniques for the valuation of uncertain cash flow streams that have been 

developed in financial economics. The theoretical values for reserves which the model 

generates must be understood in the context of appropriate investment strategies for the 

company underwriting the insurance policies. Indeed, the reserve values are meaningful 

only if the insurance company follows appropriate investment practices. 

In section 2 we discuss a benchmark type of insurance policy and the financial 

economics and associated actuarial theory that can be used to define reserves. Section 3 

illustrates the model for the case of a variable annuity with guaranteed minimum death 

benefit. A more general formulation that can be used to allow for random mortality is 

briefly mentioned in section 4. Section 5 concludes the paper. 

2. Model Formulation 

It is assumed we are operating in a discrete-time environment. We shall analyse a 

general insurance policy with some similarities to the general life insurance policy of 

Gerber (1995, page 55) but differing in the important aspect that benefit and premium 

payments are permitted to depend on the state of the financial markets. We shall index 
the state of the financial market by the symbol o. The collection of possible states of the 

financial market is denoted by S2. The policy we study is assumed to have net cash flows 

at each of the times 0, 1,2, . . . , T, with the finite time T being the end of the time 

horizonl. As is traditional in actuarial discussions of reserving, we shall view the policy 

from the perspective of the policyholder so that policy benefits are recorded as positive 

cash flows. We shall assume that if the insured dies in year k of the policy and the 
financial markets are in state o then a death benefit in the amount of F(o, k) is paid at 

time k [the end of the year of death]. Furthermore, if the insured is alive at the beginning 



of year k and the financial markets are in state w then apremium in the amount of 

x(w, k - 1) is paid at time k - 1 [the beginning of the year for which the insured is alive]. 

Furthermore, the benefit payments {F(o, k) : k = 1,2 ,  . . . , T} and the premium payments 

{n(w, k) : k = 0, 1, . . . , T )  are permitted to be random variables that depend on history of 

financial market variables such as interest rate levels and stock market performance. The 

distinction we make between benefits and premiums permits us to accommodate 

mortality in as convenient a fashion as possible. The techniques we discuss are more 

general than our definition of this policy might suggest2. The benefits and premiums for 

this insurance policy may be represented as shown in Figure 1. 

Figure 1 

benefit: 

premium: x(o,  0) n(w, 1) x(w, T - 1) x(w, T) 

In order to allow maximum flexibility in the use of this policy, benefit and premium 

payments are permitted to be negative. For instance, a pure endowment policy for a unit 
amount payable at time 10 would have n lo  = - 1. Although we are using the terminology 

of life insurance, the model may be easily adapted to the case of non-life insurance 

benefits and premiums. 

We shall assume that the insurance company's mortality experience follows the 

life table. One can motivate this assumption by assuming that the insurance company 

issues a large number policies and invoke the law of large numbers. As such, we are 

assuming that mortality is deterministic. Consequently, each new insurance policy may 

be viewed as an agreement in which the insured receives the cash flow stream 

c(w, k) := k- , , q x F ( ~ ,  k), k = 1.2, . . . , T 

in return for paying to the insurance company3 the cash flow stream 

e(w, k) := kp, K(O, k), k = 0, 1, . . . , T . 

Mortality can be modelled in a fully random fashion akin to what is done in Gerber 

(1995) and this is briefly discussed in section 4 below. However, the fundamental issues 



in reserving for insurance policies with stochastic benefits relate to the behaviour of the 

underlying financial market variables and not the mortality. This is why we have chosen 

to treat mortality as deterministic. We now explain the financial economics that will 

support the notions of pricing and reserving for our class of insurance policies. 

It is assumed that a collection of primitive assets are available for trading in the 

financial market. These will consist of assets such as treasury notes and bonds, index 

funds, and common stocks. These are the assets that the insurance company may 

purchase in order to finance their liabilities. As is customary in financial modelling, we 

shall assume that among the primitive assets there exists a non-dividend paying asset, 
referred to as the money market account and denoted by So, the price of which evolves 

according to the equation 

where the process {r(o, k)) is referred to as the short-rate process. The short-rate 

process is interpreted as the treasury note rate for the time step size used in the model. 

The money market account process is interpreted as the accumulated value of one unit 

continually invested in short paper. The primitive assets, including the money market 
account, are denoted by the (N + 1)-dimensional vector process (S(o, k)). This notation 

is a compact way of summarising the vector relation 
S(o, k) = (So(w, k), S ,(o. k), . . . , SN(o. k)). The dividends paid by each of the 

primitive assets are denoted by the (N + I)-dimensional vector process (d(o, k)) . The ith 

primitive asset of may be non-dividend paying and in such a case, di(o, k) = 0. In the 

traditional actuarial model one has a single asset of the form (2.1) with 

So(o, k) = (1 + rlk for some constant value of r. 

At each point in time and state of the world the insurance company may hold a 
portfolio of the primitive assets. We shall let the vector 6(0 ,  k) denote the asset holdings 

of the insurance company at time k when the financial market is in state w. The trading 

dynamics, as are standard in all financial economics models, are that the price of a cash 

flow stream evolves as 

= C(O, k) + 6(w, k) . S(U, k), 

for each k = O,1, . . . , T and o E 0; subject to the boundary conditions 6(w, - 1) = 0 and 

6(0 ,  T) = 0. The left hand side of relation (2.2) is the market value of the investment 



portfolio at time k plus the dividends and premiums received and relation (2.2) says that 

this value must equal the benefits paid plus the market value of the investment portfolio 

at the beginning of the next period. The boundary conditions merely say that there are no 

portfolio holdings prior to time 0 and that the investment portfolio must be liquidated at 

the end of the trading horizon [time TI. If this relationship is satisfied at all points in time 
and all states of the world we say that the trading strategy 6finances the insurance policy 

defined by the cash flow streams c(o, k) and e(w, k). 

We shall assume that the investment market is arbitragelfree and complete. The 

condition that the market is arbitrage-free can be intuitively described by saying that 

investors cannot make certain profits by adopting riskless positions. The condition that 

the market is complete means that every cash flow stream may be obtained by forming an 

appropriate portfolio of the primitive assets available for trading4. In complete markets, 

each cash flow stream has a unique price. The price at time k when the financial market 
is in state o of a cash flow stream financed by a trading strategy 6 is equal to 

6(w, k) . S(w, k) ,which is the value of the investment portfolio that finances the 

remaining cash flows. It is possible to characterise this price as a discounted expectation 

of future remaining cash flows and this is most useful in financial valuation. Indeed, 

when an investment market is arbitrage-free and complete the theory of financial 

valuation guarantees the existence of a probability measure, which we shall denote by Q, 

referred to as the risk-neutral measure, such that the price at time k of each uncertain 
cash flow stream (h(w, j) : j = k + 1 ,  . . . , T} is given by the following conditional 

expectation [conditional on all financial market information at time k] under the 

probability measure Q, 

[More specifically, the assumption that the model is arbitrage-free ensures that at least 

one such valuation measure Q exists and the assumption that the model is complete 

implies that the valuation measure is unique.] As we have not specified a particular 

financial model, other than to assume that the model we are working with is arbitrage- 

free and complete, we cannot say anything more about the nature of the valuation 

measure Q. In many types of models, Q may be described or constructed from the 



primitive assets in the model5. The model employed in section 3 is an example of this. 

For the present, we shall continue to work with a general risk-neutral valuation measure. 

The reserve for an insurance policy is defined as the price of the future net cash 

flows of the policy with accumulation for survivorship. Consequently, the reserve at time 
n when the financial market is in state o is given by the following expression. 

This is a prospective reserve formula. The reserve will rarely have a closed formula 

expression which can be computed based on the formula (2.4). However, one can always 

estimate the reserve through Monte Carlo simulation since the random quantities 

appearing in equation (2.4) are specified as functions of the underlying random financial 

market variables. In practice, Monte Carlo simulation can be more complex than might 

first appear. Indeed, one must often evaluate path dependent insurance benefits such as 

the periodic premium variable annuity we examine in section 4. Unlike the retrospective 

formula to be discussed below, the prospective reserve formula (2.4) does not require 
explicit knowledge of the trading strategy 6 that finances the insurance policy. The 

reserve value is the value of the investment portfolio at that point in time and state of the 

financial market which will ensure that the insurance company will exactly meet its 

financial obligations under the policy. 
The premiums for the policy are called net if V(o, 0) = 0.  Since 

the condition that the policy premiums are net means that the price of the uncertain 

benefit cash flow stream is equal to the price of the uncertain premium cash flow stream6. 

Therefore, when premiums are net the insurance company breaks even in the absence of 
expenses. If 6 is a trading strategy that finances the insurance policy then equation (2.3) 

combined with the preceding equation shows that V(o, 0) = 0 if and only if 

6 (0 ,0 )  . S(o, 0) = e(w, 0). In other words, policy premiums are net if and only if one 

has 6 (0 ,0 )  . S(o, 0) = e(o, 0). 

We now derive the retrospective reserve formula when the premiums for the 

policy are net'. Suppose that the trading strategy 6 finances the insurance policy defined 

by the cash flow streams c(o, k) and e(w, k). The following identity is easily checked. 



We may then rewrite (2.5) as follows. 

Summing from k = 1 to k = n yields 

0 = 6(o,  n) . S(o, n) - 6(0,  0) . S(o, 0) - f, 6(w, k - 1) . AS(o, k - 1) 
k =  1  

(2.7) 

- f, 6(w, k - 1) . d(o, k) + f, [c(w, k) - e(o, k)]. 
k = l  k =  1  

We may now rearrange this expression and use the condition 6(w, 0) . S(w, 0) = e(o, 0), 

since premiums are net, to obtain the relationship, 

This formula provides the basis for the retrospective reserve formula for our model. 

From equation (2.3) we know that 

T-n So(o, n + k) T-2-  1 So(o, n + k) 
= E$[ z c(o, n + k) - e(o, n + k)]. 

k=l SO(a,n)  k = l  SO(o,n) 

Therefore, we see that the reserve V(w, n) as defined by equation (2.4) has an equivalent 

expression as 
*(a, n) . S(o, n) - e(w, n) V(o, n) = 

nPx 
(2.10) 



We may use relation (2.8) to express this as 

This is the general retrospective reserve formula. The expression (2.11) says that the 

reserve for the policy is equal to the sum of the capital gains, dividends, premium 

payments and benefit payments all accumulated for survivorship. Note that there is no 

accumulation factor applied to the premium and benefit payments. This is "picked up" by 

the capital gains on the investment holdings. This formula does simplify to the traditional 
retrospective valuation formula, such as .V,= P$x:m - .kX for whole life policies, when 

there is a single asset available as an investment vehicle. However, in general the 

formula cannot be simplified in a useful fashion since when there are multiple primitive 

assets the investment holdings [i.e. trading strategy] necessary to finance an insurance 

policy can be quite complicated. We shall illustrate this in section 4 with a simple 

example for a variable annuity with guaranteed minimum death benefits. The 

retrospective formula (2.1 1) may be used for computing and simulating reserve values if 
the trading strategy 6 that finances the insurance policy is known. However, the trading 

strategy is often unknown and can be complicated to compute. Furthermore, if the 

valuation involves path dependent securities the computation of the trading strategy is 

usually too complex to be feasible. We show how the trading strategy may be computed 

recursively for the simple variable annuity example in section 4. However, variable 

annuities have path dependent payments and these computations are not feasible in 

practical applications. In summary, the retrospective formula is generally less useful than 
the prospective formula because the trading strategy 6 may be difficult to obtain, 

especially in cases of practical interest. Nevertheless, just as in the classical case of 

Gerber (1995) the reserve values may be computed by either of the equivalent 

prospective or retrospective methods. 
If there is a single primitive asset for investing, denoted by S(w, k), then the 

retrospective formula (2.11) may be expressed in a form that is akin to the traditional 

retrospective formulas presented in Gerber (1995). Let us assume that the single asset 

pays no dividends. For instance, the asset might be a non-dividend paying stock. Since 
premiums are net, e(w, 0) = 6(0 ,0 )  S(o, 0). Applying (2.2) fork = 1 gives 

6 (0 ,0 )  S(o, 1) + e(o, 1) = c(o, 1) + +(a, 1) S(o, 1). This may be rewritten as 



We may then use the preceding relation, e(w, 0) = 6(w, 0) S(w, 0) , to express this relation 

We now repeat the same argument but one period later. Thus, we begin with the relation 

+(a, 1) S(w, 2) + e(o, 2) = c(o, 2) + 6(0 ,  2) S(w, 2). This may be rewritten as 

We may substitute for 6 (0 ,  1) S(o, 1) in expression (2.13) using the expression in (2.12). 

On simplifying this yields the relation, 

We may proceed by induction to establish that for each n, 

= 6(o ,  n) S(o, n). 

Applying the relationship for the reserve V(o, n) noted in equation (2. lo), we see that 

Relation (2.16) is the usual retrospective formula for reserves except that a more general 

stochastic factor has replaced the compound interest term. If the single investment 



vehicle were a fixed interest rate bond at rate i say then S(o, k) = (I + i)k and (2.16) 

would reduce to the type of retrospective formula appearing in Gerber (1995). Of course, 

the relation (2.16) interprets as saying that the reserve is equal to the actuarial 

accumulated value of the premium contributions less the accumulated cost of the 

insurance benefits. The instances in which the theory of this paper is most valuable 

occurs when the insurance policy involves stochastic death benefits which require trading 

in at least two assets, for example stock and money market account, to finance the death 

benefits. As such, in all of the interesting cases the retrospective formula will not have a 

representation of the form (2.16). However, as we have previously noted the 

retrospective formula (2.11) does have a natural interpretation. 

It is very important to remember that the notion of reserve that we have developed 

has a particular meaning in our complete markets setting. The reserve is the amount of 

money the insurance company needs to have available so that if invested correctly it can 

meet its future cash flow obligations. Consequently, the reserve is the value of the 

portfolio the insurance company should be holding to finance its obligations in respect of 

the insurance policy. The essential issue involves the following of the trading strategy 

that finances the outflows and inflows associated with the insurance policy in question. If 

the insurance company adopts an investment strategy that finances the insurance policy 

then they will have sufficient funds to exactly meet their obligations at all points in time 

and across all states of the world. If they do not follow such a strategy then they will 

have insufficient funds to meet their obligations at some points in time and states of the 
world. Also, as we have noted, if the trading strategy 19, finances the insurance policy in 

question then the reserve at time n is given by the quantity 
[6,(0, n) . S(o, n) - e(o, n)] l ,,p,. If the insurance company were to follow a different 

investment strategy, say fl2, that did not finance the insurance policy then the 

retrospective value of the company's investment outcome might give the correct 

numerical value for the reserve at some point in time but this trading strategy would not 

correctly hedge the insurance company's risk and thus the numerical value would not be 

an appropriate measure of the amount of money the insurance company requires to meet 

its obligations under the policy. 

3. Illustrative Example for Variable Annuities 

We now illustrate the pricing and resewing model for the practically important 

case of variable annuities. We consider both the single premium and periodic premium 

versions of this product. We shall consider a variable annuity with minimum death 



benefit guarantee equal to a 0% rate of return8 and for simplicity we will assume that we 

have a three-period model. We shall assume that mortality may be described as 

q, = 0.05, ,,q, = 0.05, and ,,q, = 0.05. For simplicity, we use the constant interest rate 

binomial model of Cox, Ross, and Rubinstein (1979). In this model there are two assets, 

the money market fund and a stock index fund. The investment market outcomes for the 

model consists of the Cartesian product space R := (0, 1 ) '. A typical market outcome 

consists of the vector o = (a , ,  w2, . . . , q) where each oi E (0, 1 1. For the case of our 

three-period model we have T = 3 and S2 = 10, 1 ) 3 .  The stock index is assumed to evolve 

according to the path independent process 

Thus, with the passage of each time unit the stock index either increases by the factor u or 
decreases by the factor d. We shall set S ,(0) = 800 as this is the approximate level of the 

S&P 500 index at present. We shall assume u = 1.1 and d = 0.9. The constant one-period 

interest rate will be taken as r = 0.07 and therefore, So(o, k) = (1 + dk. In practice, the 

fact that the investment values are path dependent for the periodic premium case will 

require some type of approximate numerical valuation procedure such as Monte Carlo 

simulation. 

We now briefly describe the details of single premium and periodic premium 

variable annuities for our example. The single premium variable annuity consists of a 

single investment contribution of $75,000 made at time 0. In return, the insured receives 

a minimum return guarantee of 0% should he die in any of the years 1 through 3. If the 

insured survives to the end of the contract period the minimum return guarantee is not 

effective and the insured gets the market value of his investment portfolio even if his 

cumulative return is below the assumed guaranteed minimum rate of return of 0% in the 

event that the insured died during the contract period. The periodic premium variable 

annuity consists of a series of periodic investment contributions of $25,000 each of which 

is made at the beginning of years 1 through 3. The insured then receives a minimum 

return guarantee of 0% should he die in any of the years 1 through 3. If the insured 

survives to the end of the contract period the minimum return guarantee is not effective 

and the insured gets the value of his investment portfolio even if the cumulative return is 

below the assumed guaranteed minimum rate of return of 0% in the event that the insured 

died during the contract period9. In practice, the insured pays for the cost of the 

minimum death benefit guarantee through an annual charge as a percentage of the market 

value of his portfolio. This charge is referred to as the mortality expense. For illustrative 



purposes, we shall assume that the insured pays for the cost of the minimum death benefit 

guarantee through level premium payments made at the time of hls regular investment 

contributions. Additional details are provided below. 

Example 1 - Single Premium Case The annuitant will make a single premium deposit 

of $75,000 at time 0. In addition to this deposit, the annuitant pays at time 0 a premium 

for the cost of the minimum death benefit guarantee. The amount of this premium is 

something which the actuary will need to compute. The payments made to the annuitant 

at times 1,2, and 3 are as indicated in the following table. 

- - 

Table 3.1 - Payments to Policyholder for Single Premium Variable Annuity 

Time I Payments to Policy holder 

The annuity and the minimum death benefit guarantee are funded by the deposit of 

$75,000 and the premium for the guaranteed minimum death benefits. In practice, the 

financing of the minimum death benefit guarantee and the associated reserving of the 

minimum death benefit guarantee are tracked separately from the financing of the 

investment return payments and the associated reserving of the investment return 

payments. We refer to these two reserves as the guarantee reserve and the inveshent 

reserve respectively. The sum of the guarantee and the investment reserve is the reserve 

for the whole policy. This decomposition is illustrated in Table 3.2. Clearly, there are 

two ways to make this decomposition, "investment value + put option" or "minimum 

payment + call option". However, the decomposition is made in terms of the investment 



value and the put option component because in practice the annuity company often 

parcels out the insurance on the value of the guarantee and manages the investment value 

as a standard brokerage arrangement without bearing any investment risk. It is then up to 

the insurance company accepting the insured values of the minimum death benefit 

guarantee to price and hedge this risk. We also compute the trading strategies which the 

insurance company must follow for each of the guarantee reserve and the investment 

reservelo. These are referred to as guarantee trading strategy and investment benefit 

trading strategy respectively. 

As one would intuitively expect, the initial investment of $75,000 is exactly 

sufficient to finance the investment cash flows without the minimum death benefit 

guarantee. This is true for an arbitrary single premium variable annuity as the following 

argument shows. Suppose we have a T-period single premium variable annuity with 
initial investment of n. Applying equation (2.3) to the non-dividend paying asset S , 
yields ~ ~ [ ( l  + r)-" S ,(a, n)] = S 1(0), for n = 1,2, . . . , T. Therefore, the price of the 

investment benefits without the minimum death benefit guarantee are 

l'n ,- ,gx + T ~ x ]  = l'n. Consequently, the single premium exactly finances the 

investment benefits without the minimum death benefit guarantee. Therefore, the 

primary emphasis of risk management is on the reserve associated with the minimum 

death benefit guarantee. 

I Table 3.2 - Decomposition of Payments to Policyholder I 
for Single Premium Variable Annuity 

Time 

1 

2 

3 

Minimum Death Benefit 

Guarantee Payment 

75,0009, ( I-- 

~ ~ ~ ~ 2 ~ ~ x ( l  -w)+ 

Investment Return Portion 

of Payment to Policyholder 

S , ( a  1) 
7 5 m o  9, S,o 

s , ( a  2) 
75mO 119, S,o 



For convenience, we report the numerical values for the reserves and trading strategies 

using the common device of tree diagrams. The state of the financial market is solely 

determined by the price history of the stock index fund and this is indicated at each node 

in the tree diagram by the number of up and down movements long each path through the 

tree. 

The premium for the cost of the minimum death benefit guarantee for this 

example is $96.87. Therefore, the total premium deposit the insured makes at time 0 is 

equal to $75,096.87. 

Figure 2 - Guarantee Reserve 



Figure 3 - Investment Reserve 

Figure 4 - Guarantee Trading Strategy 



Figure 5 - Investment Benefit Trading Strategy 

Example 2 - Periodic Premium Case We assume that there are premium depositsI1 of 

$25,000 made at each of times 0, 1, and 2. These deposits are used to fund the annuity 

but additional level premiums must be paid to finance the minimum death benefit 

guarantee. As was the case for the single premium variable annuity, from the point of 

view of risk management the reserve corresponding to the guaranteed minimum death 

benefit is of the greatest significance in reserving for the periodic premium variable 

annuity. 

As one would intuitively expect, the three periodic premium deposits of $25,000 

are exactly sufficient to finance the benefit payments without the minimum death benefit 

guarantee. This is true for an arbitrary periodic premium variable annuity as the 

following argument shows. Suppose we have a T-period periodic premium variable 
annuity with periodic premium deposit of n. Applying equation (2.3) to the non-dividend 

paying asset S yields, 

for n = 1,2,  . . . , T. Therefore, the price of the benefit payments without the minimum 

death benefit guarantee are n [ k- ,,qX in + *pX ill]. The p"ce of the premium 
k= l  

deposits are n px (I  + r)-k. Using summation by p a d 2  yields the relation, 
k = O  



Consequently, the periodic premiums exactly finance the benefit payments without the 

minimum death benefit guarantee. Therefore, the primary emphasis of risk management 

is on the reserve associated with the minimum death benefit guarantee. 

- - 

Table 3.3 - Payments to Policyholder for Periodic Premium Variable Annuity 



The level premium for the cost of the minimum death benefit guarantee for this 

example is $21.18. Therefore, the total premium deposit the insured makes at each of 

times 0, I ,  and 2 is equal to $ZS,OZ 1.18. 

Figure 6 - Guarantee Reserve 
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Figure 7 - Investment Reserve 



Figure 8 - Guarantee Trading Strategy 

(1 17.85, - 0.1356) 



Figure 9 - Investment Benefit Trading Strategy 

(0,76.9370) 

The most important information in the reserving calculations for both examples is 

the behaviour of the reserve corresponding to the minimum death benefit guarantee 

component of both types of annuity. Notice the wide relative variation in reserve levels 

as one moves through each tree diagram for the guarantee reserves. Although these 

amounts are small relative to the overall policy reserve, they can be significant if enough 

policies are written. Furthermore, the guarantee reserve levels can be large relative to the 

premium the insurance company charges to cover the cost of the minimum death benefit 

guarantee. This serves to emphasise the importance of following appropriate investment 

strategies. An important practical consideration is an insurance company may effectively 

act as a reinsurer by bearing only the liabilities from the minimum investment return 

guarantee risk. In this case the insurer's reserve levels for this line of business will 

fluctuate wildly and are directly proportional to the amount of reinsurance accepted. Of 

course, there is no risk to the insurance company if it follows an appropriate hedging 



strategy. Lastly, we remind the reader that it is the cost of this hedging strategy which the 

reserve level reflects. 

4. Model Formulation with Random Mortality 

It is possible to formulate the above model with mortality as a random 

component. One may still consider the model to be complete because of the near 

deterministic aspect to large pools of insureds but we must now index the states of the 

world by financial market outcomes and mortality outcomes. As the financial market 

outcomes and the mortality outcomes are unrelated, the space of outcomes for the model 
may be taken as the Cartesian product Q = Q(') x Q(2) where Q(') represents the space of 

financial market outcomes and Q ( ~ )  represents the space of mortality outcomes. 

A valuation measure for this model will be of the form Q = Q(') x P ( ~ ) ,  where Q(') is a 

risk-neutral valuation measure for the embedded financial market model and P is the 

measure governing mortality exposure. 

Uncertain payments in this model will depend upon both the state of the financial 

market and the mortality outcome and a typical uncertain payment will be indexed by 

both outcome variables. For example, the uncertain payments for a periodic premium 
variable annuity with level periodic payments of A and a 0% minimum guaranteed return 

might be expressed as 

The addition of random mortality does not add much to the model and has no 

practical significance. The deterministic model of section 2 may be obtained from this 

more general framework by conditioning on the mortality outcome. 

5. Concluding Remarks 

We have presented a method for pricing and resewing for insurance products 

when the financial market is complete. The method ignores insurance company expenses 

and transaction costs but is a theoretically correct procedure for resewing under the 

idealised conditions of a frictionless market. In the United States, there are legislated 

actuarial standards for reserving for insurance liabilities that bear in little relation to the 

financial economics which underlies the funding of most insurance company liabilities. 

Some of these rules for resewing, including the case of variable annuities, are described 

in Tullis and Polkinghorn (1996). A discussion of reserving for the guaranteed minimum 



death benefits in variable annuities may be found in the Record of the Society of 
Actuaries, volume 21 number 2, pages 65 through 81. It is hoped that this paper will 

assist the actuary in both recognising the importance of financial theory in reserving 

problems and in applying it to practical problems to obtain the same type of yardstick 

reserve values that one obtains from the classical actuarial theory as presented in Gerber 

(1995). 
It is understandable that there is some confusion in the actuarial profession as to 

how reserving should be approached when insurance liabilities are uncertain. The 

discussion in Corby (1977) illustrates some differing points of view on the issue of 

reserving for variable annuity products. We have shown that reserve values may be 

assigned that are unambiguous and have a definite financial rationale. The fundamental 

concept is that the reserve represents the amount of money the insurance company must 

have properly invested in order to fund the remaining liabilities. The utility of this notion 

of reserve depends on the company following appropriate investment strategies and this 

point is absolutely fundamental. Despite the idealised assumptions underlying the model 

we have developed, the reserve values we have described represent the same type of 

yardstick assessment of reserve requirements that one obtains from the traditional 

actuarial model. 

In practice, the pricing and reserving for a periodic premium variable annuity, 

such as was illustrated in section 4, will present computational difficulties since the 

benefit payments are path dependent. One approach that may be taken is for the actuary 

to utilise Monte Carlo simulation to obtain estimates of the reserve levels. In practical 

cases, the complexity of the pricing and reserving problems faced by an actuary for 

general insurance policies will require some knowledge of numerical techniques such as 

Monte Car10 simulation. 

The model that we developed in section 2 involves mortality. Although we 

presented the theory from the perspective of a life insurance policy, the theory is in no 

way restricted to this environment. Suitable modifications would permit similar formulas 

to be applied to property/casualty problems. The only restriction would be that the 

financial model is complete. This rules out the pricing and reserving for products such as 

catastrophe risk bonds in the framework of our model. Further theory must be drawn on 

to handle such products. 



References 

Corby, F. (1977). Reserves for Maturity Guarantees Under Unit-Linked Policies. Journal 

Institute of Actuaries 104,259-273. 

Cox, J., Ross, S. and M. Rubinstein (1979). Option Pricing: A Simplified Approach. 

Journal of Financial Economics 7,229-263. 

Gerber, H. (1995). Life Insurance Mathematics, second edition. Springer-Verlag, New 

York. 

Tullis, M. and P. Polkinghorn (1996). Valuation of Life Insurance Liabilities. ACTEX 

Publications, Winsted, Connecticut. 

Appendix - Binomial Option Pricing for Variable Annuity Example 

As we described in section 3, there are two assets traded in this model, the money market 
account which is denoted by So and the stock fund which is denoted by S ,  . The constant 

interest rate is denoted by r. Consider a generic uncertain cash flow stream denoted by c. 
There exists a trading strategy, denoted (60, 6 which describes the investment strategy 

that finances this cash flow stream. fiO denotes the number of units of money market 

account held and 6 denotes the number of units of the equity fund that are held. We 

may solve for the trading strategy at each node in the associated information tree. The 

basic equation is as follows. 

It is customary to write this equation as 

where cU is the contingent payment made if the economy evolves to the upstate and cd is 

the contingent payment made if the economy evolves to the downstate and S is the 
current priceAeve1 of the equity fund. The formula for the inverse of a 2 x 2 matrix is 



We may apply (A-3) to solve the system (A-2) for the investment holdings. This gives 

the expression for the local investment holdings 

Simplifying this expression yields the local formula 

If we wish to determine the local price of the cash flows we need only weight the trading 

strategy with the value of the assets as 9 (1 + dk + 6 S. Simplifying the algebra yields 

the formula 

price = [(I +r)-dl cU+[u-(1 +r)] cd 
(1 + r) [u - dl 

Now let q := --- 'I + r, - d .  Then (A-6) may be expressed as 
u - d 

price = q c U + ( l - q ) c d  
(1 +r)  ' 

This formula is the one-step or local risk neutral expectation commonly employed in 

option pricing calculations. 
The local risk-neutral probability q may be used to endow !2 with a probability 

measurebyQ(a) := qm~+...+%[l-~l~-[~l+~"+%l . Thi s is important for carrying out 

Monte Carlo simulation for path dependent cash flow streams. 

'The assumption that the time horizon is finite may be relaxed. 

l ~ e ~ e n d i n ~  on the nature of the alternative policy arrangements, it may be necessary to alter the definition 

of the reserve formula. All such modifications are a matter of convention rather than theory. 

3 ~ f  e(w, k) is negative then the insured receives the payment from the insurance company. 



4The condition of completeness is really one of spanning in the sense of linear algebra. This is illustrated 

in equation (A-2) of the model discussed in the appendix. 

51f a term structure model is used it is more typical to assume that Q, or the local probabilities under Q, is 

given and the primitive assets for the model, the bonds, are derived in terms of this assumed data. 

reference to uncertainty is with respect to uncertainty in the underlying financial variables and not 

mortality since the mortality risk has been assumed away by adopting mortality factors in this model. 

7The reader may rework our analysis in the case where the premiums are not net to obtain a "retrospective 

formula" but this formula would not agree with the prospective reserve formula. 

is the minimum death benefit guarantee offered by Fidelity Investments. The insuring of the 

minimum death benefit guarantee is not born by Fidelity though, it is parceled out to a life insurance 

company. 

9 ~ n  some cases, the pure endowment component of the contract is guaranteed as well. This is not common 

in the United States although there was a brief period in which an investor could purchase "mutual fund 

insurance". As one would expect, the cost of the guarantee is dramatically increased if the pure endowment 

component is also guaranteed. Since many investors only purchase variable annuities for the tax shelter, 

they want the mortality expense to be as minimal as possible. 

'@The reader may use these trading strategies to check that the retrospective reserve formula gives the same 

values as the prospective reserve formula. 

llThese might also be referred to as investment contributions. 

12The formula for summation by parts is based on the simple identity A(ak bk) =ak+  ,Abk + bk&. 




