
Pricing Bounds for Volatility Deriva-
tives via Duality and Least Squares
Monte Carlo
Monash CQFIS working paper

2017 – 8

Ivan Guo
School of Mathematical Sciences,

Monash University and Centre for
Quantitative Finance and Investment

Strategies
ivan.guo@monash.edu
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Abstract

Derivatives on the Chicago Board Options Exchange volatility index have gained

significant popularity over the last decade. The pricing of volatility derivatives involves

evaluating the square root of a conditional expectation which cannot be computed by di-

rect Monte Carlo methods. Least squares Monte Carlo methods can be used but the sign

of the error is difficult to determine. In this paper, we propose a new model independent

technique for computing upper and lower pricing bounds for volatility derivatives. In

particular, we first present a general stochastic duality result on payoffs involving convex

(or concave) functions. This result also allows us to interpret these contingent claims as

a type of chooser options. It is then applied to volatility derivatives along with minor

adjustments to handle issues caused by the square root function. The upper bound

involves the evaluation of a variance swap, while the lower bound involves estimating

a martingale increment corresponding to its hedging portfolio. Both can be achieved

simultaneously using a single linear least square regression. Numerical results show that

the method works very well for futures, calls and puts under a wide range of parameter

choices.
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1 Introduction

The Chicago Board Options Exchange volatility index, commonly known as VIX, measures

the volatility of the S&P500 index. Formally, the VIX is the square root of the expected

integrated variance (often called the realised variance) over a 30-day period, multiplied by

an annualisation factor. In practice, it is calculated using a weighted sum of options on the

S&P500 index and it coincides with the square root of the par variance swap rate. The VIX

itself is not a tradable asset, but VIX derivatives such as futures and options are. VIX futures

began trading in 2004 while VIX options began in 2006. Since then, VIX derivatives have

gained significant popularity as they allow traders to gain direct exposure to the volatility of

the S&P500 index without having to hold options on the index.

∗Acknowledgements The Centre for Quantitative Finance and Investment Strategies has been sup-
ported by BNP Paribas.
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In literature, there have been many theoretical approaches to the pricing of VIX deriva-

tives. In earlier works, the authors focussed on finding analytical pricing formulae for volatil-

ity derivatives under particular volatility dynamics. Some examples include Whaley [1] (ge-

ometric Brownian motion), Grünbichler and Longstaff [2] (square root process), Detemple

and Osakwe [3] (log-normal Ornstein-Ulenbeck process). By only considering volatility fu-

tures and options as opposed to VIX derivatives, these works do not explicitly deal with the

integrated variance term. This is rectified by Zhang and Zhu [4] who derived an analytical for-

mula for the price of VIX futures under the Heston model. Furthermore, they supplemented

their work with empirical analyses by calibrating the model against historical VIX data. This

pricing result was further generalised by Lian and Zhu [5] to the Heston model with jumps via

a characteristic function approach. Further progress was made for cases where the variance

process follows a square root process with jumps (Sepp [6]) and a 3/2 process with jumps

(Baldeaux and Badran [7]). Finally, some authors undertook an alternative approach which

directly models the variance swaps instead of the volatility. This allows for the consistent

modelling and the simultaneous calibration of both index options and VIX derivatives. See

Cont and Kokholm [8] for an example of this approach.

In terms of numerical methods, PDE methods work well but only if the underlying dy-

namic is Markovian and resides in a low dimensional space. Due to the non-linearity of

the square root function in the definition of the VIX, the price of VIX futures is highly

model-dependent and cannot be inferred from direct Monte Carlo simulations. Instead, the

evaluation of the conditional expectation of the realised variance can be handled by nested

simulations or least squares regressions. Nested Monte Carlo has good accuracy, but it is

computationally expensive. Least square Monte Carlo approaches, popularised by Carriere

[9] as well as Longstaff and Schwartz [10] for Bermudan options, are much faster. Although

the results are asymptotically unbiased, it is usually difficult to determine the sign of the

error, which can be a useful piece of information in risk management. Rogers [11] as well as

Haugh and Kogan [12] proposed a stochastic duality result which produces an upper bound

to Bermudan option prices, complementing the original least squares Monte Carlo method

which naturally provides a lower bound via suboptimal exercise policies. The quality of the

upper bound relies on the identification of a martingale which majorises the price process.

Andersen and Broadie [13] suggested to estimate the martingale using nested Monte Carlo.

Later on more efficient approaches were found in various works such as Schoenmakers et al.

[14]. An overview of these upper bound methods without using nested simulations can be

found in Joshi and Tang [15].

More recently, De Marco and Henry-Labordere [16] as well as Guyon et al. [17] worked

on the robust hedging of VIX derivatives. The focus is on the super and sub-replication of

VIX derivatives using vanilla options and VIX futures in a model-free setting. This problem

is a variant of the classical martingale transport problem where the marginal distributions

of the underlying are known at two different dates, while the distribution of the VIX future

satisfies a particular constraint. Analytical pricing bounds are provided for VIX derivatives

and illustrated through numerical experiments. In comparison to the pricing bounds of our

paper, the results of [16] and [17] are quite different in nature and purpose. The works of

[16] and [17] address the problem of finding analytical robust hedging pricing bounds under

model uncertainty, whereas we focus on methods for computing sharper numerical bounds

under a given model.

In this paper, we present a new application of the stochastic duality and the least squares

Monte Carlo methods to VIX derivatives, resulting in true upper and lower pricing bounds.

Our results are applicable to any pricing problem where the payoff contains a convex (or

concave) function of a conditional expectation. One bound naturally arises from convexity,

while the other can be found using convex (or concave) conjugates, which transforms the

contingent claim into a type of chooser options (see Remark 4). These results are then
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applied to VIX derivatives. Numerically, by using techniques similar to Schoenmakers et

al. [14], we perform a single least squares Monte Carlo to compute the required conditional

expectation and martingale increment, which are used to evaluate the pricing bounds. The

main results of the paper are Theorems 3 and 5. Theorem 3 presents a general stochastic

duality result on payoffs involving concave functions. Theorem 5 applies it to VIX derivatives,

with minor adjustments to handle issues caused by the square root functions. Even though

much of the paper is focussing on VIX derivatives in the local-stochastic volatility model, the

main techniques and results (as shown in Section 2) are in fact completely model independent

and directly applicable to many other valuation problems in various settings.

The paper is organised as follows. The model independent duality bounds are first pre-

sented in Section 2. Then Section 3 introduces the VIX in a general local-stochastic volatility

(LSV) framework and derives the pricing bounds for VIX derivatives, along with techniques

to handle the square root function specifically. Section 4 describes the Monte Carlo algorithm

in detail while Section 5 provides some numerical examples. Finally, Section 6 contains some

concluding remarks.

2 Duality Bounds

We begin by presenting our bounding results in a model independent framework. Let (Ω,F,P)

be a filtered probability space, where the filtration F = {Ft : t ∈ [0, T ]} represents the

information flow available to market participants, P is a pricing measure and T > 0 is a fixed

time horizon. Let H be an FT -measurable random variable and g be a concave function.

If we want to numerically evaluate E(g(E(H | Ft))) via Monte Carlo simulations, the main

challenge is the computation of the inner conditional expectation. Due to the non-linearity of

g, a standard Monte Carlo simulation is insufficient. Instead, it requires a nested simulation

or a least square Monte Carlo method. In this section, we assume that the exact value of

g(E(H | Ft)) is unavailable, and propose a new Monte Carlo approach which produces true

upper and lower bounds. This approach is similar to the well-known duality bounds for

Bermudan and American options.

We will first briefly describe the duality bounds for a Bermudan or American option. For

a more detailed exposition, the readers are referred to Rogers [11] or Haugh and Kogan [12].

Suppose that the discounted payoff process of the option is Z. If the option is alive at time

t ∈ [0, T ], the holder of the option chooses τ ∈ Tt where Tt is the set of stopping times with

values in [t, T ], corresponding to the available exercise opportunities (discrete in Bermudan,

continuous in American). For any chosen τ , the holder receives Zτ at time τ . It is well-known

that at time t the discounted price of the option is given by Vt = ess supτ∈Tt
E(Zτ | Ft), and

that the price process V is a supermartingale. It is clear that a lower bound of the option

price V0 can be found by selecting any sub-optimal stopping time τ ′ and computing EZτ ′ ,

with equality being achieved if τ ′ = τ∗ is the optimal stopping time. For an upper bound,

let M be an arbitrary martingale and consider M0 + E(supt Zt −Mt), where the supremum

inside the expectation is taken path-wise. The validity of this upper bound can be checked by

exchanging the expectation with the supremum and applying the optional sampling theorem.

Equality is reached if the martingale M is taken from the Doob-Meyer decomposition of

the price process V , which can also be interpreted as the hedging portfolio. To summarise,

bounds for the option price V0 are given by

EZτ ≤ V0 ≤M0 + E

(

sup
t∈[0,T ]

Zt −Mt

)

,

where τ is an arbitrary stopping time and M is an arbitrary martingale.
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A similar technique will be applied to obtain bounds for E(g(E(H | Ft))). First, let us

briefly recall the following well-known definition and properties of the convex (and concave)

conjugate. For more details, the readers are referred to Section 12 of Rockafellar [18], in

particular, Theorem 12.2 and the comments preceding it.

Definition 1. (i) Let f : Rd → R∪{+∞} be a function such that f 6≡ +∞. Then the convex

conjugate of f is the function f∗ : Rd → R ∪ {+∞} defined by

f∗(y) := sup
x∈Rd

(x · y − f(x)).

The convex conjugate is also often known as the Legendre-Fenchel transform.

(ii) Let g : Rd → R∪{−∞} be a function such that g 6≡ −∞. Then the concave conjugate

of g is the function g∗ : Rd → R ∪ {−∞} defined by

g∗(y) := inf
x∈Rd

(x · y − g(x)).

In particular, −g∗(y) = (−g)∗(−y).

Even though Definition 1 is formulated for functions defined on R
d, it can actually be

applied to functions defined on an arbitrary domain D ⊂ R
d. This can be done by simply

setting f(x) = +∞ in (i) or g(x) = −∞ in (ii) for x ∈ R
d \ D.

Proposition 2. Let f, f∗, g, g∗ be as defined in Definition 1. Then we have the following

properties:

(i) f∗ is convex and g∗ is concave;

(ii) f∗∗ ≡ f if and only if f is convex and lower semi-continuous; g∗∗ ≡ g if and only if g is

concave and upper semi-continuous.

Proof. In this proof, we will reference results from Rockafellar [18]. Only the convex case will

be addressed, as the concave case can be dealt with analogously. Recall that the function

f : Rd → R ∪ {+∞} satisfies f 6≡ +∞.

(i) Theorem 12.2 in [18] shows that f∗ is convex when f is convex. The comments

preceding the theorem, as well as Corollary 12.1.1 in [18], extend this fact to an arbitrary

function f .

(ii) Theorem 12.2 in [18] shows that f∗∗ = f if and only if f is a closed convex function.

Theorem 7.1 in [18] and the remarks following it show that f is a closed convex function

if and only if it is convex and lower semi-continuous. The combination of these statements

implies the required result.

Now we are in the position to state the main result of the paper. Note that Theorem

3 is formulated for concave functions since they are more readily applicable to VIX deriva-

tives. Analogous results for convex functions can be easily obtained by negating the concave

functions.

Theorem 3. Fix t ∈ [0, T ]. Let g : Rd ×Ω → R ∪ {−∞} be an Ft-measurable function such

that g(·, ω) is concave and upper semi-continuous almost surely. Let H be an FT -measurable,

R
d-valued random variable such that both H and g(E(H | Ft)) are integrable.

(i) There exists an Ft-measurable function g∗ : Rd ×Ω → R∪ {−∞} such that g∗(·, ω) is the

concave conjugate of g(·, ω) almost surely. Furthermore,

E

(

g(E(H | Ft))
)

= inf
Y ∈Yt

E

(

Y ·H − g∗(Y )
)

, (1)

where Yt is the set of Ft-measurable, Rd-valued random variables.
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(ii) We also have the equality

E

(

g(E(H | Ft))
)

= sup
M∈Mt

E

(

g(H −MT )
)

, (2)

where Mt is the set of Rd-valued martingales which vanish at time t.

Proof. (i) Since g(E(H | Ft)) is integrable, we must have g(·, ω) 6≡ −∞ almost surely, which

implies the existence of g∗. From Definition 1 and Proposition (2), we almost surely have the

equality

g(x, ω) = inf
y∈Rd

(x · y − g∗(y, ω)). (3)

Since g, g∗ and x := E(H | Ft) are all Ft-measurable, (3) implies

E

(

g(E(H | Ft))
)

= E

(

inf
y∈Rd

y · E(H | Ft)− g∗(y)
)

≤ inf
Y ∈Yt

E

(

Y ·H − g∗(Y )
)

.

To show that equality can be achieved, first note that the integrability of g(E(H | Ft)) implies

that g(E(H | Ft)) > −∞ almost surely. For each n ∈ N
∗, choose Yn so that

Yn · E(H | Ft)− g∗(Yn) ≤ g(E(H | Ft)) +
1

n
.

Again, since g, g∗ and E(H | Ft) are all Ft-measurable, Yn can also be chosen to be Ft-

measurable. Thus

inf
Y ∈Yt

E

(

Y ·H − g∗(Y )
)

≤ E

(

Yn ·H − g∗(Yn)
)

≤ E

(

g(E(H | Ft))
)

+
1

n
,

giving the required result as n→ ∞.

(ii) For any M ∈ Mt, recall that Mt = 0 by definition. Now, using Jensen’s inequality

and the Ft-measurability of g and E(H | Ft), we have

E

(

g(H −MT )
)

= E

(

E(g(H −MT ) | Ft)
)

≤ E

(

g(E(H −MT | Ft))
)

= E

(

g(E(H | Ft))
)

.

Furthermore, equality can be achieved by choosing the martingale defined by Ms := E(H −
E(H | Ft) | Fs). Thus (2) is established.

Remark 4. We may interpret E(g(E(H | Ft))) as the value of a contingent claim with a

discounted payoff of g(E(H | Ft)) at time t. Unlike Bermudan or American options, this

contingent claim does not involve any stopping strategies. Nevertheless, (1) in Theorem 3

(i) shows that the contingent claim can be interpreted as a type of chooser options in the

following way. The seller of the option may select a vector y ∈ R
d at time t, and then must

pay the holder the discounted payoff y ·H − g∗(y) at time T . If the seller chooses optimally,

i.e., minimising the expected payoff at time t, then the value of the option coincides with the

original contingent claim which pays g(E(H | Ft)) at time t.

3 Bounds for VIX Derivatives

The bounding techniques and results of this section are model independent, in the sense that

they can be applied to any model of the form

dSt = µtStdt+ σtStdWt,
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where St is the price of a stock or an index, µt and σt are F-adapted processes and Wt is

a standard Brownian motion. To simplify our notation, the interest rate is set to be zero.

Before continuing, let us again emphasise that the main results of the paper, Theorems 3

and 5, are directly applicable to large families of models, including models with stochastic

interest rates, high dimensional cases, jump processes, and so on.

Let 0 ≤ t0 ≤ T . The realised variance of St during the time period [t0, T ] is defined to be

AF

n
∑

i=1

(

log
Sti

Sti−1

)2

,

where t0 < t1 < · · · < tn = T are observation dates of St and AF is an annualisation

factor. For example, if ti corresponds to daily observations then AF = 1002 × 252/n and

the realised variance is expressed in basis points per annum. As the mesh of the partition

πn := {ti : 0 ≤ i ≤ n} tends to zero, the realised variance R = R(t0, T ) can be represented

as the quadratic variation of logSt, given by

R = R(t0, T ) := lim
n→∞

AF
∑

ti∈πn

(

log
Sti

Sti−1

)2

=
1002

T − t0

∫ T

t0

σ2
t dt. (4)

The volatility index (VIX) I = I(t0, T ) is defined to be the square root of the expected

realised variance over a time period of one month,

I = I(t0, T ) :=
√

E(R(t0, T ) | Ft0) (5)

= 100×
√

1

T − t0
E

(
∫ T

t0

σ2
t dt

∣

∣

∣

∣

Ft0

)

.

However, this quantity is not directly observable. In practice, the VIX is instead defined

using the value of the log-contract according to the following identity 1,

E

(

1

2

∫ T

t0

σ2
t dt

∣

∣

∣

∣

Ft0

)

= −E

(

log
ST

F

∣

∣

∣

∣

Ft0

)

(6)

=

∫ F

0

E((k − ST )
+ | Ft0)

k2
dk +

∫ ∞

F

E((ST − k)+ | Ft0)

k2
dk, (7)

where F = E(ST | Ft0) is the forward price (e.g., see Lian and Zhu [5]). As shown by (7),

the value of the log-contract (and hence the VIX) can actually be inferred if the market

prices of call and put options are available over a continuous spectrum of strikes. Since the

methods described in this paper are able to numerically compute E(
√

E(H | Ft0)) for any

FT -measurable random variable H, they are equally applicable to both definitions of the

VIX. For simplicity, we have chosen to work with the realised variance formulation given by

(5).

Common derivatives on the VIX include futures, swaps, call options and put options.

We will mostly focus on the pricing of VIX futures and the VIX caps, which involves the

computation of the following expectations:

uf := E(I(t0, T )) = E(
√

E(R(t0, T ) | Ft0)), (8)

uc := E(min(I(t0, T ),K)) = E(min(
√

E(R(t0, T ) | Ft0),K)). (9)

1The first equality (6) holds only when the drift µt is deterministic. In this case, the realised variance is
equivalent to the log-contract. For cases with stochastic drifts, an adjustment term is needed. The second
equality (7) always holds.
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Many other derivatives such as swaps, calls and puts can then be simply written in terms of

uf and uc:

uswap := E(I(t0, T )−K) = uf −K, (10)

ucall := E(I(t0, T )−K)+ = uf − uc, (11)

uput := E(K − I(t0, T ))
+ = K − uc. (12)

Note that if we were working in a model with stochastic interest rates, then forward prices

will be used instead of futures in (10)–(12).

Since
√
x and min(

√
x, c) are concave functions, Theorem 3 provides natural bounds for

VIX futures and caps. The quality of the bounds depends on the exact choice of Y in (1)

and M in (2). However, there is a problem with the lower bound

uf ≥ E

(

√

R−MT

)

, (13)

since for many choices ofM , MT would exceed R with non-zero probability, which then leads

to the unusable lower bound of −∞. This issue is resolved by the following theorem.

Theorem 5. Denote the realised variance over [t0, T ] by R = R(t0, T ). Let X be any positive

Ft0-measurable random variable and M be any martingale with Mt0 = 0. Then we have the

following inequalities.

(i) The VIX future price uf = E(
√

E(R | Ft0)) satisfies

E

(

R

2
√
X

+

√
X

2

)

≥ uf

≥ E

(

√

(R−MT )+
)

−
√

E

(

√

max(R,MT )−
√
R
)2

, (14)

where x+ = max(x, 0). Equalities are achieved when X = E(R | Ft0) and MT = R −
E(R | Ft0).

(ii) Fix K > 0, the VIX cap price uc = E(min(
√

E(R | Ft0),K)) satisfies

E

((

R

2
√
X

+

√
X

2

)

1(X ≤ K2) +K1(X > K2)

)

≥ uc

≥ E

(

min
(

√

(R−MT )+,K
))

−
√

E

(

√

max(R,MT )−
√
R
)2

. (15)

Equalities are again achieved when X = E(R | Ft0) and MT = R− E(R | Ft0).

Proof. (i) The concave conjugate of
√
x gives the following representation,

√
x = inf

y>0

(

xy +
1

4y

)

, (16)

where the infimum is achieved by y∗ = 1
2
√
x
. Then by Theorem 3 (i), for any positive Ft0 -

measurable random variable Y , we have

E

(

√

E(R | Ft0)
)

≤ E

(

RY +
1

4Y

)

.

The upper bound in (14) follows from the substitution Y = 1
2
√
X
.

For the lower bound, first note the identity

E(max(R,MT ) | Ft0) = E((R−MT )
+ +MT | Ft0) = E((R−MT )

+ | Ft0). (17)
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Now the required bound can be derived as follows,

E(
√

E(R | Ft0)) (18)

≥ E

(

√

E(max(R,MT ) | Ft0)−
√

E((
√

max(R,MT )−
√
R)2 | Ft0)

)

(19)

= E

(

√

E((R−MT )+ | Ft0)−
√

E((
√

max(R,MT )−
√
R)2 | Ft0)

)

(20)

≥ E

(

√

(R−MT )+
)

−
√

E

(

√

max(R,MT )−
√
R
)2

. (21)

The first inequality (18) follows from Minkowski’s inequality with conditional expectations,

while the last inequality (21) follows from Jensen’s inequality. Note that we switched from

max(R,MT ) to (R−MT )
+ in (20) since the latter typically has lower variance for desirable

choices of MT (i.e., for MT ≈ R − E(R | Ft0)), leading to a tighter Jensen’s inequality. The

equality cases can be easily checked via substitution.

(ii) The VIX cap case is similar to (i) with a few adjustments. The concave conjugate of

the function min(
√
x,K) gives the following representation,

min(
√
x,K) = inf

y≥0

(

xy + h(y)

)

(22)

where

h(y) :=











1

4y
, if y ≥ 1

2K
,

K −K2y, if y <
1

2K
.

The infimum in (22) is achieved by y∗ = 1
2
√
x
1(x ≤ K2).

Again applying Proposition 3 (i), we have the upper bound

E

(

min(
√

E(R | Ft0),K)
)

≤ E (RY + h(Y )) .

This simplifies to the required upper bound in (15) after the substitution Y = 1
2
√
X
1(X ≤

K2).

The lower bound can be established by using the same argument as (18)–(21) in (i),

combined with the inequality
√

E(max(R,MT ) | Ft0)−
√

E(R | Ft0)

≥ min(
√

E(max(R,MT ) | Ft0),K)−min(
√

E(R | Ft0),K).

Note that we have used the fact that max(R,MT ) ≥ R. Finally, the equality conditions can

be checked by substitution.

A key feature of the upper and lower bounds presented in Theorem 5 is that they can

all be computed using a standard Monte Carlo simulation. The lower bound in (14) can be

computed even if P(Mt > R) > 0. In the case where R ≥ Mt holds almost surely, it reduces

to the simpler bound in (13), E(
√
R−MT ).

Remark 6. As an immediate consequence of Jensen’s inequality, the value of the VIX fu-

ture is bounded between the volatility swap and the square root of the variance swap, both

evaluated at time 0,

E(
√
R) ≤ uf ≤

√
ER.

Both of these bounds can be seen as special cases of Theorem 5 (i), by setting X to be the

variance swap ER evaluated at time 0 and by setting MT to zero. Also, it is noteworthy that
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equality is reached in Theorem 5 when X is the variance swap evaluated at time t0 and M

is hedging portfolio of the same variance swap during [t0, T ]. In practical implementations,

if MT is poorly estimated and Mt > R occurs frequently, it may be more advantageous to

simply use E(
√
R) as a lower bound instead.

4 Least Squares Monte Carlo

In this section, we shall describe the empirical Monte Carlo algorithm used to compute

bounds for VIX derivatives. The algorithm utilises a variant of the least squares Monte

Carlo proposed by Schoenmakers et al. [14] which simultaneously estimates the conditional

expectation as well as the martingale increment. We refer the readers to Schoenmakers et al.

[14] for results regarding stability and convergence of the method, as well as Joshi and Tang

[15] for an overview of related methods.

For the least squares Monte Carlo algorithm, let us focus on the following local-stochastic

volatility (LSV) model,

dSt = µ(t, St)Stdt+ σ(t, St, Vt)StdW
S
t ,

dVt = a(t, Vt)dt+ b(t, Vt)dW
V
t ,

〈dWS
t , dW

V
t 〉 = ρ(t, St, Vt)dt,

where WS
t and WV

t are standard Brownian motions. Suppose that the time interval [t0, T ]

is partitioned into t0 < t1 < · · · < tn = T . Recall that, by Theorem 5, in order to obtain

good quality bounds on VIX derivatives, it is important to find good approximations to the

conditional expectation X = E(R | Ft0) and the martingale increment MT = R − E(R | Ft0).

We postulate that X and MT can be approximated in terms of the state variables in the

following way:

X = E(R | Ft0) ≈ Ψ(St0 , Vt0), (23)

MT = R− E(R | Ft0) =
n−1
∑

l=0

E(R | Ftl+1
)− E(R | Ftl) (24)

≈
n−1
∑

l=0

Φtl(Stl , Vtl) ·∆Wtl , (25)

where

Ψ(s, v) :=

p
∑

j=1

βjψj(s, v), (26)

Φtl(s, v) :=

q
∑

j=1

γj,lφj(s, v). (27)

Here ψj : R2 → R and φj : R2 → R
2 are basis functions chosen beforehand. Note that

∆Wtl := (WS
tl+1

−WS
tl
,WV

tl+1
−WV

tl
)′. In practice ∆Wtl can be replaced by any other suitable

martingale increment with the predictable representation property.

Remark 7. Due to the Markovian properties of the model and the predictable represen-

tation theorem, if the space spanned by the basis functions is rich enough, the conditional

expectation can be matched exactly while the martingale increment will be replicated as the

mesh of the partition goes to 0,

E(R | Ft0) = Ψ(St0 , Vt0), R− E(R | Ft0) =

∫ T

t0

Φt(St, Vt) · dWt.

9



Now we will describe the numerical algorithm. First simulate N trajectories Si and V i

for i = 1, . . . , N , and compute the corresponding realised variances Ri. Next, the coefficients

B := (βj : j = 1, . . . , p), Γ := (γj,l : j = 1, . . . , q; l = 1, . . . , n)

are estimated in the linear least squares regression problem:

(B̂, Γ̂) = argmin
B∈Rp,Γ∈Rq×n

N
∑

i=1

(

Ri −Ψ(Si
t0
, V i

t0
)−

n−1
∑

l=0

Φtl(S
i
tl
, V i

tl
) ·∆W i

tl

)2

= argmin
B∈Rp,Γ∈Rq×n

N
∑

i=1

(

Ri −
p
∑

j=1

βjψj(S
i
t0
, V i

t0
)

−
n−1
∑

l=0

q
∑

j=1

γj,lφj(S
i
tl
, V i

tl
) ·∆W i

tl

)2

.

Let us denote the estimated functions by

Ψ̂(s, v) =

p
∑

j=1

β̂jψj(s, v), Φ̂tl(s, v) =

q
∑

j=1

γ̂j,lφj(s, v).

Remark 8. Since we don’t require any additional conditional expectations aside from the one

at t0, we have chosen to perform one single global regression, instead of one regression per time

step as described in Schoenmakers et al. [14]. In test cases, the global regression performed

slightly better for our purposes, although it would be more computationally expensive if the

number of time steps and basis functions are very large.

In order to compute true upper and lower bounds, we generate a new set of Ñ trajectories

S̃i and Ṽ i for i = 1, . . . , Ñ . This is performed to avoid the foresight bias caused by reusing the

original trajectories. A detailed explanation of the foresight bias can be found in Fries [19].

Our new path-wise estimates of the conditional expectation and the martingale increment

are

X̂i = Ψ̂(S̃i
t0
, Ṽ i

t0
), M̂ i

T =

n−1
∑

l=0

Φ̂tl(S̃tl , Ṽtl) ·∆W̃ i
tl
.

At this point we apply Theorem 5 on the estimates X̂i and M̂ i
T to produce bounds for the

VIX future and cap. Specifically, for VIX futures we have

uf =
1

Ñ

Ñ
∑

i=1

(

R̃i

2
√

X̂i
+

√

X̂i

2

)

, (28)

uf =
1

Ñ

Ñ
∑

i=1

(

√

(R̃i − M̂ i
T )

+

)

−

√

√

√

√

1

Ñ

Ñ
∑

i=1

(

√

max(R̃i, M̂ i
T )−

√

R̃i

)2

, (29)

while for VIX caps we have

uc =
1

Ñ

Ñ
∑

i=1

((

R̃i

2
√

X̂i
+

√

X̂i

2

)

1(X̂i ≤ K2) +K1(X̂i > K2)

)

, (30)

uc =
1

Ñ

Ñ
∑

i=1

(

min

(

√

(R̃i − M̂ i
T )

+,K

))

(31)

−

√

√

√

√

1

Ñ

Ñ
∑

i=1

(

√

max(R̃i, M̂ i
T )−

√

R̃i

)2

. (32)
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Note that the realised variances R̃i are directly computed from S̃i and Ṽ i. Bounds for other

derivatives such as swaps, calls and puts can now be easily computed as follows:

uswap = uf −K, uswap = uf −K, (33)

ucall = uf − uc, ucall = uf − uc, (34)

uput = K − uc, uput = K − uc. (35)

Remark 9. At a first glance, the term
√

X̂i in the upper bound calculation could cause

problems since X̂i may be negative. In practical implementations, a floor is often imposed

on the instantaneous volatility. It is then natural to enforce the same floor on X̂i,

X̂i = max(Ψ̂(S̃i
t0
, Ṽ i

t0
), h).

The result will still be a true upper bound. This is in contrast to the lower bound term√
R−MT where the sign of R −MT is more difficult to control. A simple floor on R −MT

will violate the validity of the lower bound. Hence Theorem 5 was necessary to overcome this

issue. In general, these issues can also be alleviated by using more and better basis functions,

thus improving the least squares fit.

5 Numerical Results

For our numerical example, we choose the following variant of the CEV-Heston LSV model

with volatility caps and floors:

dSt = σ(St, Vt)StdW
S
t ,

dVt = κ(θ − Vt)dt+ η
√

VtdW
V
t ,

σ(St, Vt) = f(
√

Vt(St/S0)
α−1),

f(x) = max(min(x, 10), 0.01),

〈dWS
t , dW

V
t 〉 = ρdt.

This is essentially the same as the usual CEV-Heston model, but the effective volatility is

bounded between 0.01 and 10. Recall that the interest rate is assumed to be zero. Table 1

contains our chosen parameter values as well as their interpretations.

We will be employing the algorithm described in Section 4 to compute bounds for VIX

futures, caps, calls and puts. The simulation scheme used will be the standard Euler scheme

with full truncation. Although there are better numerical schemes for this model, the differ-

ences would be minimal as the time step used is very small (∆t = 1/120). Antithetic variables

are used for variance reduction. During the regression step, the following basis functions are

used:

Ψ(s, v) :=

p
∑

j=1

βjψj(log s,
√
v),

Φtl(s, v) :=

p
∑

j=1

γj,lφj(log s,
√
v)

(

σ(s, v)s
d

ds
log s, η

√
v
d

dv

√
v

)′

=

p
∑

j=1

γj,lφj(log s,
√
v)
(

σ(s, v),
η

2

)′
,

where ψj and φj are bivariate polynomials. Two cases are examined: lower degree polynomi-

als where ψj and φj have degrees 3 and 2 respectively, and higher degree polynomials where

11



Table 1: Parameter values and interpretations

Parameter Value Interpretation

S0 100 initial stock price

α 0.8 leverage between stock and volatility

σ(S0, V0) 0.3 initial volatility

V0 0.09 initial variance

κ 0.6 mean-reversion speed

θ 0.09 long term variance

η 0.4 vol of vol

ρ -0.5 correlation between stock and variance

t0 1 VIX start date

T 1+1/12 VIX end date

∆t 1/120 time increment

N 100000 paths for regression

Ñ 500000 paths for bound calculation

ψj and φj have degrees 4 and 3 respectively. During the computation of the upper bounds,

the volatility cap and floor function (i.e., f) is also applied to X̂. In the computation of the

lower bounds, the martingale increments can be interpreted as the delta and vega hedging

strategies.

As a benchmark, we will also be showing the results of a nested Monte Carlo. In this

simulation, 500000 trajectories are generated up to time t0. Then for each of these trajectories,

a sub-simulation of 5000 trajectories is carried out on the time interval [t0, T ] to compute the

conditional expectation E(R | Ft0) path-wise. The number of paths in the sub-simulation is

chosen based on a comparison of the sample variances generated during the time intervals

[0, t0] and [t0, T ]. Finally, the prices of the VIX derivatives are computed by averaging the

relevant payoffs over all trajectories. In order to check the correctness of our bounds, the

same 500000 paths on [0, t0] from the nested Monte Carlo will also be used in the second

simulation of our least squares Monte Carlo. After that, the behaviour of the paths on [t0, T ]

are generated independently for the different methods. This allows us to compare the relative

sizes of the results without the effects of variances due to simulation. In terms of computation

times, the least squares Monte Carlo method took 17 seconds, which is more than 1200 times

faster than the nested method which took 21154 seconds or 5.876 hours.

The results for lower degree polynomials are found in Tables 2 while the higher degree

polynomials results are found in Table 3. In terms of notations, for VIX futures: uf is the

value computed using the nested Monte Carlo; ûf is the result of the classic least squares

Monte Carlo by simply averaging the square root of the regression fit Ψ̂(S̃i
t0
, Ṽ i

t0
); uf and uf

are the lower and upper bounds computed as described in (28) and (29). For completeness,

we have also included estimates for the volatility swap E
√
R and the square root of the

variance swap
√
ER. Similar notations are used for calls and puts over a range of strikes K.

All confidence intervals are computed as 1.96 times the standard deviation. All values have

also been annualised accordingly.

As shown in Table 2, even with lower degree polynomials, our method produces tight

bounds across all VIX derivatives and at all strike levels. In many cases the classical least

squares Monte Carlo estimates actually fall outside of our bounds. Our bounds are also

clearly superior when compared to the bounds given by the volatility and variance swaps

(see Remark 6). In the higher degree polynomials case shown in Table 3, the convergence of

our method is verified by the fact that all four estimates are extremely close. In fact, the

difference between the estimates is much smaller than the corresponding confidence intervals.
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Table 2: Lower degree polynomials results for VIX futures, calls and puts, including nested

Monte Carlo results, least square Monte Carlo estimates, as well as lower and upper bounds

uf ûf uf uf

27.3728 ± 0.0445 27.3500 ± 0.0446 27.3582 ± 0.0445 27.4607 ± 0.0454

E
√
R = 27.1018

√
ER = 31.7342

K ucall ûcall ucall ucall

15 13.7302 ± 0.0404 13.7417 ± 0.0403 13.6269 ± 0.0676 13.8326 ± 0.0415

20 10.2909 ± 0.0367 10.2887 ± 0.0367 10.1892 ± 0.0817 10.3932 ± 0.0380

25 7.4785 ± 0.0324 7.4672 ± 0.0324 7.3775 ± 0.0939 7.5809 ± 0.0339

30 5.2738 ± 0.0280 5.2600 ± 0.0280 5.1716 ± 0.1021 5.3763 ± 0.0297

35 3.6176 ± 0.0236 3.6065 ± 0.0236 3.5156 ± 0.1052 3.7202 ± 0.0257

40 2.4230 ± 0.0196 2.4169 ± 0.0196 2.3208 ± 0.1034 2.5256 ± 0.0221

45 1.5912 ± 0.0160 1.5900 ± 0.0161 1.4887 ± 0.0978 1.6938 ± 0.0191

K uput ûput uput uput

15 1.3575 ± 0.0079 1.3916 ± 0.0083 1.2686 ± 0.0091 1.3719 ± 0.0079

20 2.9181 ± 0.0131 2.9386 ± 0.0134 2.8310 ± 0.0141 2.9326 ± 0.0131

25 5.1057 ± 0.0185 5.1172 ± 0.0187 5.0193 ± 0.0193 5.1203 ± 0.0185

30 7.9010 ± 0.0236 7.9100 ± 0.0238 7.8134 ± 0.0245 7.9157 ± 0.0236

35 11.2449 ± 0.0282 11.2565 ± 0.0284 11.1574 ± 0.0291 11.2595 ± 0.0283

40 15.0502 ± 0.0322 15.0669 ± 0.0323 14.9625 ± 0.0331 15.0650 ± 0.0322

45 19.2184 ± 0.0354 19.2400 ± 0.0355 19.1305 ± 0.0363 19.2331 ± 0.0354

Table 3: Higher degree polynomials results for VIX futures, calls and puts, including nested

Monte Carlo results, least square Monte Carlo estimates, as well as lower and upper bounds

uf ûf uf uf

27.3728 ± 0.0445 27.3739 ± 0.0445 27.3707 ± 0.0445 27.3751 ± 0.0455

E
√
R = 27.1018

√
ER = 31.7342

K ucall ûcall ucall ucall

15 13.7302 ± 0.0404 13.7313 ± 0.0404 13.7265 ± 0.0673 13.7346 ± 0.0415

20 10.2909 ± 0.0367 10.2921 ± 0.0367 10.2883 ± 0.0814 10.2952 ± 0.0380

25 7.4785 ± 0.0324 7.4793 ± 0.0324 7.4756 ± 0.0936 7.4828 ± 0.0338

30 5.2738 ± 0.0280 5.2741 ± 0.0280 5.2701 ± 0.1018 5.2781 ± 0.0296

35 3.6176 ± 0.0236 3.6173 ± 0.0236 3.6140 ± 0.1050 3.6220 ± 0.0255

40 2.4230 ± 0.0196 2.4224 ± 0.0196 2.4191 ± 0.1034 2.4274 ± 0.0218

45 1.5912 ± 0.0160 1.5904 ± 0.0160 1.5871 ± 0.0978 1.5955 ± 0.0187

K uput ûput uput uput

15 1.3575 ± 0.0079 1.3574 ± 0.0079 1.3558 ± 0.0088 1.3595 ± 0.0079

20 2.9181 ± 0.0131 2.9182 ± 0.0131 2.9176 ± 0.0140 2.9202 ± 0.0131

25 5.1057 ± 0.0185 5.1054 ± 0.0185 5.1049 ± 0.0194 5.1077 ± 0.0185

30 7.9010 ± 0.0236 7.9001 ± 0.0236 7.8994 ± 0.0246 7.9031 ± 0.0236

35 11.2449 ± 0.0282 11.2434 ± 0.0282 11.2432 ± 0.0292 11.2469 ± 0.0282

40 15.0502 ± 0.0322 15.0484 ± 0.0322 15.0484 ± 0.0332 15.0523 ± 0.0322

45 19.2184 ± 0.0354 19.2165 ± 0.0354 19.2164 ± 0.0364 19.2205 ± 0.0354
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This indicates that, in terms of the bias-variance trade-off, most of the error comes from

the variance caused by the simulation, while our method with higher degree polynomials has

very little bias due to an excellent regression fit. Figure 1 further illustrates this by plotting

the VIX future bounds as the number of simulation paths varies. As the number of paths

increases, the bounds stabilise towards their limits. The higher degree polynomials results are

noticeably better than the lower degree polynomials results, especially in the upper bounds

which benefited greatly from the degree of ψj increasing from 3 to 4.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

27.25

27.3

27.35

27.4

27.45

27.5
VIX futures

Sample paths

P
ric

e

Figure 1: Plot of VIX future bounds for different number of simulation paths. The solid black

line is the nested Monte Carlo result, with its confidence interval indicated by the dashed

black lines. The solid red and blue lines are the upper and lower bounds using higher degree

polynomials. The dashed red and blue lines are the upper and lower bounds using lower

degree polynomials.

Now we examine the effect of varying a single parameter on VIX futures. The other

parameters are kept as in Table 1 and lower degree polynomials are used. First of all, we

vary the correlation coefficient ρ. As shown in Table 4, larger values of ρ lead to lower VIX

future prices. Our method works very well in all cases, especially for higher correlations. This

is due to the fact that a negative correlation combined with a leverage coefficient satisfying

α < 1 will lead to larger variations in the realised variance.

Table 4: VIX futures for different correlation values

ρ ûf uf uf

-0.8 27.6457 ± 0.0471 27.6439 ± 0.0469 27.7969 ± 0.0478

-0.6 27.4260 ± 0.0453 27.4411 ± 0.0452 27.5687 ± 0.0461

-0.4 27.2558 ± 0.0439 27.2629 ± 0.0439 27.3397 ± 0.0448

-0.2 27.0511 ± 0.0423 27.0549 ± 0.0423 27.0924 ± 0.0432

0.0 26.8643 ± 0.0409 26.8646 ± 0.0408 26.8888 ± 0.0418

0.2 26.6778 ± 0.0395 26.6776 ± 0.0395 26.6911 ± 0.0404

0.4 26.4776 ± 0.0381 26.4784 ± 0.0381 26.4867 ± 0.0390

0.6 26.2928 ± 0.0368 26.2955 ± 0.0368 26.3014 ± 0.0377

0.8 26.1158 ± 0.0355 26.1201 ± 0.0355 26.1235 ± 0.0365
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Next, we vary the vol of vol η in Table 5. As η increases, the VIX future price decreases.

For small values of η, the upper and lower bounds are essentially the same value. For

extremely large values of η, the quality of the lower bound deteriorates substantially.

Table 5: VIX futures for different vol of vol

η ûf uf uf

0.1 30.2498 ± 0.0140 30.2497 ± 0.0140 30.2500 ± 0.0143

0.2 29.6859 ± 0.0245 29.6864 ± 0.0245 29.6864 ± 0.0250

0.3 28.6812 ± 0.0349 28.6876 ± 0.0349 28.6972 ± 0.0356

0.4 27.3309 ± 0.0445 27.3381 ± 0.0444 27.4319 ± 0.0453

0.5 25.9168 ± 0.0531 25.8331 ± 0.0530 26.2101 ± 0.0541

0.6 24.5632 ± 0.0605 24.2752 ± 0.0607 25.0365 ± 0.0621

0.7 23.5007 ± 0.0668 22.5781 ± 0.0676 24.4188 ± 0.0719

0.8 22.5599 ± 0.0726 21.2048 ± 0.0742 23.5922 ± 0.0806

Finally, Table 6 examines the effect of varying the leverage coefficient α. The bounds

deteriorate somewhat for small values of α. This is due to the negative correlation ρ, which

creates more extreme values of the realised variance for small values of α. The reverse would

be true if ρ was positive.

Table 6: VIX futures for different leverage coefficients

α ûf uf uf

0.7 27.9683 ± 0.0492 26.5554 ± 0.0492 28.5024 ± 0.0506

0.8 27.3445 ± 0.0445 27.3564 ± 0.0445 27.4246 ± 0.0453

0.9 26.8659 ± 0.0414 26.8684 ± 0.0414 26.8716 ± 0.0424

1.0 26.4738 ± 0.0392 26.4725 ± 0.0392 26.4735 ± 0.0402

1.1 26.1138 ± 0.0373 26.1141 ± 0.0373 26.1145 ± 0.0383

1.2 25.8070 ± 0.0360 25.8049 ± 0.0360 25.8162 ± 0.0370

1.3 25.5235 ± 0.0350 25.5291 ± 0.0349 25.5564 ± 0.0358

1.4 25.2905 ± 0.0342 25.2924 ± 0.0341 25.3685 ± 0.0350

1.5 25.0769 ± 0.0335 25.0721 ± 0.0335 25.1879 ± 0.0344

Even though lower degree polynomials are used in Tables 4, 5 and 6, our method generally

works very well. In fact, in many cases the bounds are even better than the direct estimates

ûf obtained from the classical least squares regression approach. Since the tightness of our

bounds depends on the quality of the regression fit, the method understandably performs

worse when there are extreme variations in the realised variance. This is particularly notice-

able for the lower bounds since a poor regression fit often leads to frequent occurrences of

MT > R. In these extreme cases, the results can be improved by using better basis functions.

Alternatively, one may also use the volatility swap E
√
R as a replacement lower bound.

6 Conclusions

We have introduced a new model independent technique for the computation of true upper

and lower bounds for VIX derivatives. Theorem 3 includes a general stochastic duality

result on payoffs involving convex (or concave) functions. In particular, convex (or concave)

conjugates are used to transform the contingent claims into a type of chooser options. This is

then applied to VIX derivatives in Theorem 5, along with minor adjustments to handle issues

caused by the square root function. The upper bound involves the evaluation of a variance
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swap, while the lower bound involves estimating a martingale increment corresponding to its

hedging portfolio. Our bounding technique is particularly useful in complex models where

it is difficult to directly compute VIX derivative prices. Numerically, a single linear least

squares Monte Carlo method is used to simultaneously compute the upper and lower bounds.

The method is shown to work very well for VIX futures, calls and puts under a wide range

of parameter choices.
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[2] Grünbichler, A., Longstaff, F. A.: Valuing futures and options on volatility. Journal of

Banking & Finance, 20(6), 985–1001 (1996)

[3] Detemple, J., Osakwe, C.: The valuation of volatility options. European Finance Review,

4(1), 21–50 (2000)

[4] Zhang, J. E., Zhu, Y.: VIX futures. Journal of Futures Markets, 26(6), 521–531 (2006)

[5] Lian, G. H., Zhu, S. P.: Pricing VIX options with stochastic volatility and random

jumps. Decisions in Economics and Finance, 36(1), 71–88 (2013)

[6] Sepp, A.: VIX option pricing in a jump-diffusion model. Risk magazine, 84–89 (2008)

[7] Baldeaux, J., Badran, A.: Consistent modelling of VIX and equity derivatives using a

3/2 plus jumps model. Applied Mathematical Finance, 21(4), 299–312 (2014)

[8] Cont, R., Kokholm, T.: A consistent pricing model for index options and volatility

derivatives. Mathematical Finance, 23(2), 248–274 (2013)

[9] Carriere, J. F.: Valuation of the early-exercise price for options using simulations and

nonparametric regression. Insurance: mathematics and Economics, 19(1), 19–30 (1996)

[10] Longstaff, F. A., Schwartz, E. S.: Valuing American options by simulation: a simple

least-squares approach. Review of Financial studies, 14(1), 113-147 (2001)

[11] Rogers, L. C.: Monte Carlo valuation of American options. Mathematical Finance, 12(3),

271-286 (2002)

[12] Haugh, M. B., Kogan, L.: Pricing American options: a duality approach. Operations

Research, 52(2), 258-270 (2004)

[13] Andersen, L., Broadie, M.: Primal-dual simulation algorithm for pricing multidimen-

sional American options. Management Science, 50(9), 1222-1234 (2004)

[14] Schoenmakers, J., Zhang, J., Huang, J.: Optimal dual martingales, their analysis, and

application to new algorithms for Bermudan products. SIAM Journal on Financial Math-

ematics, 4(1), 86–116 (2013)

[15] Joshi, M., Tang, R.: Effective sub-simulation-free upper bounds for the Monte Carlo pric-

ing of callable derivatives and various improvements to existing methodologies. Journal

of Economic Dynamics and Control, 40, 25–45 (2014)

[16] De Marco, S., Henry-Labordere, P.: Linking vanillas and VIX options: a constrained

martingale optimal transport problem. SIAM Journal on Financial Mathematics, 6(1),

1171–1194 (2015)

16



[17] Guyon, J., Menegaux, R., Nutz, M.: Bounds for VIX futures given S&P 500 smiles. to

appear in Finance and Stochastics (2016)

[18] Rockafellar, R. T.: Convex analysis. Princeton university press (2015)

[19] Fries, C. P.: Foresight Bias and Suboptimality Correction in MonteCarlo Pricing of

Options with Early Exercise. In: Progress in Industrial Mathematics at ECMI 2006 (pp.

645–649). Springer Berlin Heidelberg (2008)

17


	WP_CQFIS_08
	WP_CQFIS_08(1)

	IGvix_jota3

