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Pricing derivatives if trading in the underlying is limited:  Froot and Stein, and Merton ‘98 

 

As one of various suggested applications of their model, Froot and Stein describe the pricing of 

derivatives on assets that are not (cost-effectively) tradable.1  They derive a partial differential equation 

for the value a bank would assign to an option on an asset that cannot be traded easily (e.g. due to lack 

of liquidity or short-selling constraints), but for which observable market prices are available.  The 

derivation is as follows: 

The bank assumes that the observable market price S of the underlying nontraded asset (e.g. an illiquid 

share of a common stock) follows a geometric Brownian motion (lognormal diffusion process) with drift 

(instantaneous expected return) μS and volatility σS: 

SdzSdtdS s     

As the price of the untraded asset is observable (and consistent with the assumed pricing model for 

tradable assets), the option price is a continuous and twice differentiable function of time t and the 

underlying asset price2, so Ito’s lemma3 can be applied on this process – and subsequent taking of 

expectations gives an expression for the expected change of the option value F: 

                                                           
1
 page 73 in: Risk Management, Capital Budgeting, and Capital Structure Policy for Financial Institutions: An Integrated 

Approach, Kenneth A. Froot and  Jeremy C. Stein, The Journal of Financial Economics, 1998, no. 47, 55-82. 
2
 That the option value is a twice differentiable function of underlying price and time (and hence Ito’s lemma is applicable) is a 

derived conclusion – the derivation for traded assets is given in Robert C. Merton ’77 – On the Pricing of Contingent Claims and 

the Modigliani Miller Theorem, Journal of Financial Economics, Vol. 5, 1977, p. 241-249.  If trading in the underlying is not 

possible, Merton argues in Applications of Option Pricing Theory:  25 Years Later, American Economic Review, Vol. 88, Issue 3, 

June 1998, p. 323 – 349, that one can still define a derivative value function as if the underlying was tradable, and a hedging 

strategy that approximates this function by dynamically allocating funds between a portfolio of tradable risky assets to track 

the underlying, and the riskless asset.  For the hedging strategy that approximates the derivative value function best, the 

weights of the assets in the tracking portfolio are chosen so that the variance of the instantaneous tracking error, i.e. the 

difference between the instantaneous return of the tracking portfolio and the untradeable asset, is minimized.  This implies 

that the instantaneous tracking error is uncorrelated with any traded asset’s instantaneous return, as Merton has shown in his 

book Continuous Time Finance – in the revised edition of this book the proof can be found on page 396 within the section on 

theorem 15.3.  An alternative proof is given below, see pages 5-6.  It follows that the tracking error is also uncorrelated with the 

market portfolio (or any priced factor), and therefore, Merton states, on markets where only systematic risk is priced (as under 

the Froot and Stein pricing model assumption for traded assets used here – see the earlier posts in this blog and references 

given there for details), the price of the derivative will be the same as if the underlying asset was traded – see Merton ’98, page 

333.  For additional, informal intuition why this is the case, note that with continuous rebalancing, the probability distribution 

of the underlying return over any instantaneous period is the same as the probability distribution of the tracking portfolio 

return minus the tracking error.  The underlying can hence be replicated with the tracking portfolio minus an additional random 

payment series corresponding to the tracking error at the end of each instantaneous period – which as the latter constitutes 

only non-systematic risk, and as it does not require cash outlay at the beginning of the period, has an expected value of zero, 

and a volatility such that the variance of the tracking portfolio plus the variance of these payments to match the tracking error 

equal the untradeable underlying’s variance.  And with a replication strategy for the underlying found in this manner, the 

conditions for the application of Ito’s lemma are met as well as in the case with observable prices. 

3
 See the appendix A.1 on Ito’s Lemma. 
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In return notation, the Froot and Stein hurdle rate for a new, small exposure is:4 

II. NpRNMN Gr  *  

With GR corresponding to the Rubinstein measure of relative risk aversion for the bank5,  pNNp rr ,cov

being the covariance of the return of the untradeable component of the new investment with the return 

of the existing portfolio of untradeable assets,  MNNM rr ,cov  the covariance of the new investment’s 

return with the priced market factor, r the riskless interest rate,  the market price of risk and *
N  the 

expected return required by the bank for a small investment into the new untradeable asset.6 

Accordingly, the instantaneous hurdle rate *
F  for an option with price F can be written as follows (with 

r now being expressed as annual rate with continuous compounding, and t  with unit years): 

FpRFMpRMF Gtrr
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The change of the option value and hence the option return is a function of the instantaneous return of 

the underlying stock rS:
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And therefore both the covariance of the option with the market and its covariance with the 

untradeable part of the existing portfolio ( FM and Fp ) can be expressed as functions of the respective 

covariance parameters of the underlying stock ( SM and Sp ): 

 SpRSMSF G
F

S
Ftr  *  

                                                           
4
 For notes on the derivation of this hurdle rate see the October ’14 post in this blog and the references given there – note that 

the rate here is before subtracting financing costs (risk free rate). 
5
 This is based on interpreting the payoff function of the bank’s future, non-stochastic investment opportunity after deducting 

financing cost as utility function – for details see the October and November 14 posts on the Froot-Stein model in this blog, and 
the references given there (note that in the previous posts GR was labelled GK ). 
6
 As the market price of the stock is consistent with the pricing model for traded assets, sMs r    and the bank would 

not pay the observable “market price” for the not perfectly tradable stock (unless 0Np ), but would require a discount (or 

be willing to pay a premium, depending on the sign of Np ) – see Froot and Stein page 73 (note that the variance of the 

untradeable component does not appear here, as for a small investment, the impact on portfolio variance due to the asset’s 
stand-alone variance is considered to be negligible – different to the potential covariance impact). 
7
 see again fn. 2 
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And with equation II., one can write this hurdle rate as a function of the (minimum) expected stock 

return *
S  the bank would require if it had to hold the stock directly: 

 tr
F

S
Ftr SSF  **   

*
F is the fair (required) instantaneous expected return of the option from the bank’s perspective.  

Multiplying with the option value gives the required instantaneous expected change of the option value: 
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And as the expected change of the value of the option is also given by I., if the option is priced fairly 

from the bank’s perspective equation I. and III. are equal:8 
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Slightly rearrange IV.: 
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






 22*

2

1
  

and with SSS   ** :  
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Further rearranging gives equation 17 in Froot and Stein: 

  0
2

1 22* 







 trFFSFSFtr SStSS    

Rearranging again: 

  0
2

1 *22  trFtFFStrStFS tSSSS   

And with *
S now also expressed as annualized figure (and hence multiplied with t ): 

  0
2

1 *22  trFtFFtStrStFS tSSSS   

                                                           
8
 The same principle as for the alternative derivation of their option value differential equation by Black and Scholes (see the 

appendix A.2 and the earlier post in this blog on that derivation) is applied here – the expected change of the option value 
derived with Ito’s lemma is compared to the expected change of the value required by the investor – while in Black-Scholes the 
required expected change is the market’s required expected change determined with the CAPM, here an additional component 
is included by the bank to compensate for the impact of the bank’s portfolio’s untraded risk. 
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Now divide the whole equation by t : 

  0
2

1 *22  rFFFSrSFS tSSSS   

This is essentially the differential equation given by Merton for European options on stocks paying a 

constant dividend yield *
S .9  Hence the corresponding option pricing formulas can be applied to 

calculate a fair price from the bank’s perspective, by setting the constant continuous dividend yield 

equal to *
S .  These formulas for stocks paying a constant dividend yield lead to the same result as 

discounting the stock price with the dividend yield, and then applying the corresponding Black-Scholes-

Merton formula for a European option on a non-dividend paying stock, with this discounted stock price 

(and a slightly modified volatility measure), i.e. by setting the underlying spot price for the option 

valuation to:10 

TSeS
*

0
  

An intuitive reason for this equivalence is that after discounting the price of the dividend paying stock 

with the certain dividend yield (and adjusting the volatility), the probability distribution of that stock 

price at T will be the same as the probability distribution for the price at T of an (otherwise equal) non-

dividend-paying stock with current price equal to that discounted price.11 

 

Pricing derivatives on untraded assets if prices are not continuously observable 

Merton’s reasoning for pricing an option on an untradeable asset, when its price is only observable at 

the time the option is written and its expiry date, is based on the approach with observable prices 

described above in footnote 2. As in the case with observable prices, if the underlying is not traded, a 

portfolio of traded assets can be used to track the underlying’s return as closely as possible.  The return 

of the underlying in an instantaneous interval is the difference of this tracking portfolio’s return and the 

                                                           
9
 See Robert C. Merton, Theory of Rational Option Pricing, The Bell Journal of Economics and Management Science, Vol. 4, No. 1 

(Spring, 1973),pp. 141-183, equation 44 and Footnote 62, p.171. The option pricing formula given there implies that the 
dividend rate is a riskless instantaneous rate, paid in every infinitesimal small time interval during the life of the option.  An 
explicit derivation for this special case can be found in John C. Hull, Options, Futures & Other Derivatives, Ninth edition (in the 
following referred to as “Hull”, p. 372).  Hull further shows, that the put call parity also holds for options on stocks paying a 
constant dividend yield and derives the valuation formula for a put on a dividend paying stock (Hull p.372/373 and technical 
note 6, http://www-2.rotman.utoronto.ca/~hull/TechnicalNotes/TechnicalNote6.pdf).  Note that instead of the partial 
derivative of the option price with respect to the current time variable t, Merton uses the partial derivative with respect to time 
till expiration – which leads to the different sign of that partial derivative in Merton ‘73. 
10

 Hull, p. 372. the volatility measure has to be adjusted, as with a lower stock price a given price change is relatively larger (Hull 
p.343 fn. 12 – note that the adjustment is labelled there as “approximation” as it is introduced in the more general context with 
dividends not necessarily being paid with a constant yield – however for the special case with a constant instantaneous 
dividend yield like here, this approximation is exact). 
11

 Ibid.  “having the same probability distribution” can here be interpreted as “having the same value in every state of the 
world”.  Further, recall that the additional return component required by the bank in Froot and Stein can be interpreted as a 
discount (or potential premium, in case of a negative covariance of the position with the existing portfolio of untradeable 
assets) on the stock price. see again fn. 6 and the reference given there. 
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tracking error (with the tracking error defined as the difference between instantaneous tracking 

portfolio return and instantaneous underlying return).  With prices being only observable at issue and 

expiry date of the option, during the life of the option the value of the tracking portfolio constitutes the 

best estimate of the value of the underlying.  The instantaneous tracking errors are unobservable, and 

cumulate to a total tracking error that becomes only visible at option expiry.  At this moment the true 

value of the underlying gets revealed and the best estimate jumps from the value of the tracking 

portfolio to the true value.12 This means that the underlying asset price can be modelled as a special 

case of a mixed-jump diffusion process – more details further below. 

To derive the properties of the tracking portfolio mentioned in footnote 2, note that the instantaneous 

return rs of a tracking portfolio consisting of positions in all tradable assets i,…,n with portfolio weights 

wi is given by: 
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With the instantaneous return of the untradeable asset labelled vr , the instantaneous tracking error x is 

defined as follows: 

v
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The expected instantaneous tracking error is therefore: 
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and the variance of the instantaneous tracking error: 
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The tracking portfolio is supposed to track the underlying return as closely as possible, i.e. the variance 

of the tracking error is minimized, which gives the following set of conditions: 
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12

 Merton ’98, p. 335 
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I.e., when the tracking variance is minimized, the covariance of the tracking portfolio with any tradable 

asset equals the covariance of the untradeable underlying with that tradable asset. 

It follows for the covariance of the tracking error of the optimal tracking portfolio with any tradable 

asset: 

0
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Therefore, the tracking error is uncorrelated with the tracking portfolio, and hence: 

222
vxs    

Or with annualized instantaneous variances dt: 

dtdtdt vxs
222    

Merton assumes that the tracking error is normally distributed.13 Further, the replication portfolio is 

rebalanced continuously, and all assets’ volatilities and expected returns are constant, so the volatility 

and expected value of the tracking error are constant.14 The instantaneous tracking error can therefore 

be represented by a stochastic differential equation for a variable X (with an arbitrary starting value X0): 

xxx XdzXdtdX    

such that x=dX/X is the instantaneous tracking error and with xz being a Wiener process.  Merton 

assumes a starting value of X0=1.  Xt then can be interpreted as the value per notional dollar of a 

portfolio which in t=0 consists of a long position in the tracking portfolio “financed” with a short position 

with equal notional size in the untradeable asset.  Merton refers to Xt as cumulative proportional 

tracking error. 

As assets are jointly normal15, and if no dividends are assumed, the process assumed by Merton for the 

tracking portfolio of traded assets can be written as follows: 

                                                           
13

 See the process for the tracking error in Merton ’98, p. 330, where the stochastic component contains a Wiener process.  
14

 This follows from Merton ‘98, page 330 where it says that at each point in time, the weights in the replicating portfolio are 
chosen as to minimize the tracking error variance, and the assumption that the instantaneous covariance matrix including the 
asset to be hedged and all traded assets stays constant over time. 
15

 Merton does not explicitly state this assumption, however, tracking error and underlying are normally distributed and 
uncorrelated, and the sum of two uncorrelated normal variables is also normal – so to ensure that this holds here, the returns 
of the traded assets and the untraded asset must be jointly normal. 
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sss SdzSdtdS    

With zS being a Wiener process (this is essentially equation 4 in Merton ’98, here adjusted for zero 

dividends). The instantaneous return of the tracking portfolio is hence: 

SSSs dzdt
S

dS
r    

The untraded asset follows a similar process – see assumption 2 in Merton ’98, again here adjusted for 

the case of zero dividends: 

vvv VdzVdtdV    

with vz being a Wiener process.  Hence, the instantaneous return of the untraded asset (which is 

unobservable) equals: 

vvvv dzdt
V

dV
r    

With the process for S shown above, the value of S at the option’s expiry date, ST, can be (somewhat 

informally) written as follows:16  
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Where the period T is divided into infinitesimal small time intervals with length dt, numbered from 1 till 

N. 

And correspondingly VT and XT can be expressed as: 






















N

t
tvzvTv

v

eVVT
1
,

2

2

0






 

and: 






















N

t
txzxTx

x

eXXT
1
,

2

2

0






 

The instantaneous tracking error is the difference of the instantaneous returns of the replication 

portfolio and the untradeable asset: 

VVVSSSXXX dzdtdzdt
V

dV

S

dS
dzdt

X

dX
 

 

                                                           
16

 See the section on the stock price after a period longer than dt in the appendix A.1 on Ito’s Lemma. 



8 
 

As Merton argues, if the CAPM (or another equilibrium model that implies that the market prices only 

systematic risk) holds and as the tracking error is uncorrelated with any tradable asset and hence the 

market portfolio (or priced factor), i.e. the tracking error is purely nonsystematic, then the 

instantaneous expected returns of untradeable asset and replication portfolio are equal and the 

expected instantaneous tracking error is zero. 

Substituting 0X  in the equation above for XT : 
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
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As X0 = 1: 
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And with  

222
vxs   , dtdt vs    and xxssvv dzdzdz    

This simplifies to: 
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Because V0=S0: 

TTT VeVXS
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Or: 
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V. 
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Where 


N

t
txxdz

1
, is the realized cumulative tracking error. 

This corresponds to a special case of Merton’s Mixed Jump-Diffusion model17, with the underlying 

jumping exactly one time, the jump component XT being lognormally distributed, the expected jump size 

being zero, and the jump occurring at T.  As Merton shows, under these conditions the value of an 

option in t=0 is the standard Black Scholes value, except that the per unit time variance to be used is:18 

VI. TSV

2
22 

 
 

Where 2  is the variance of LN(X T) ,  which is in t=0 equal to 22
XX

TNdt   , as can be seen from: 








N

t
txdzxTx

eXT
1

,
2

2




 

So that: 

2
2

XT



  

And hence the variance measure for V to be used for pricing at t=0 is 

222
XSV

 
 

At later points in time (t>0), one cannot use 2
X , because the variance 2  of the logarithm of XT does not 

change during the life of the option, as the tracking error is not observable before expiry.  To calculate 

an annualized per unit time variance, one must instead divide the constant 2 by the remaining time to 

expiry (labelled τ by Merton), i.e. the variance per unit time for V to be used is then 





2
22  SV , such 

that with τ approaching zero, the variance of the continuously compounded return of V till maturity, 

2
V

 , does not approach zero as would be the case without the jump, but approaches 2 .19 

 

                                                           
17

 Option Pricing When Underlying Stock Returns Are Discontinuous, Robert C. Merton, Journal of Financial Economics, Vol. 3, 
1976, p. 124-144. See page 128 of this source, where the general description of the jump event is introduced in a notation 
analogous to the notation here (V=SX), and further Merton’s explanation to equation 18 on page 135, and note that here a 
special case with the conditions given above applies. 
18

 See footnote 13., page 136 in Merton ‘76 and page 335 in Merton ’98. 
19

 Merton ’98 page 335. 
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Combining Froot and Stein and Merton ‘98 

In summary, as it is certain that exactly one jump will occur during the life of the option, and as XT is 

lognormal with an expected value of one, the distribution of the final stock price will exactly equal the 

distribution the final stock price would have if there was no jump but if the stock’s (annualized) variance 

was the sum of the variance of the logarithm of the cumulative proportional tracking error divided by 

time to expiry, and the tracking portfolio’s (annualized) variance20  – which can be seen from equations 

V and VI.21  Further, it is known that the jump will happen at the end of the life of the option.  For these 

reasons, the final stock price from the perspective at any point in time before expiry has the same 

probability distribution as if the stock was traded and would follow a lognormal diffusion process with 

the mentioned non-proportional-in-time variance.22 It follows that at any point in time, the price of an 

option on this stock, the probability distribution of the instantaneous change of this option price and 

hence the instantaneous return distribution of the option are identical to those of an option on a traded 

but otherwise equal stock with a variance equal to the non-proportional-in-time variance. 

Hence the bank should derive the hurdle rate for the expected return of an option on an illiquid asset 

with unobservable prices analogously to the case with observable prices.  As mentioned in the first 

section, the risk premium required by the bank above the market’s required expected return can be 

treated as a dividend paid at a constant rate – hence amending the pricing formula to adjust for the 

additional premium can straightforwardly be done by discounting the underlying’s initial spot price with 

this rate (and adjusting total volatility and cumulative tracking error to reflect the lowered price)23.   

Recall that the bank will charge a premium exceeding the market’s required return only for the 

untradeable part of the option’s risk.  The component of the instantaneous risk premium to be added to 

the market requirement is therefore a function of the covariance of the untradeable part – the 

instantaneous tracking error – with the bank’s existing portfolio of untradeable assets.  As mentioned 

above, the variance of the logarithm of the cumulative proportional tracking error does not decrease 

with time, as during the life of the option no information about the cumulative tracking error gets 

revealed, and hence from the perspective of the bank it has the same distribution at option expiry no 

matter the time of valuation.  For the same reason also the adjustment to the underlying spot price to 

compensate for the contribution of the tracking error to the bank’s aggregate portfolio of untradeable 

risks stays constant over time when prices are unobservable – which requires discounting the stock price 

for valuation at later times also with the instantaneous “dividend” rate (the additional premium charged 

by the bank to compensate for the impact on untradeable portfolio risk) multiplied with the initial time 

to expiry T, as in the first instant. 

 

                                                           
20

 This sum will, following Merton, in the remainder of this text be referred to as “non-proportional-in-time variance” – see 
again Merton ’76, p. 136, fn. 13.  It is only in t=0 equal to the stock’s instantaneous (annualized) variance, as noted above. 
21

 This is analogous to Hull’s reasoning for the treatment of dividends – see page 4 and the references given there. 
22

 At a time later than t=0, with the current price of the underlying set equal to the price of the tracking portfolio – as the 
underlying’s price is unobservable – the impact of all tracking error realizations gets revealed only at option expiry, without 
distinction of realizations that may be attributable to a time before the current point in time. 
23

 see fn. 10 and the reference given there for the volatility adjustment 
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Appendix:   

A.1: Ito’s Lemma 

Preliminary: 

Taylor polynomial: 

 
  

 




n

k

k
k

n ax
k

af
axfT

0
!

;  

Taylor series (the Taylor polynomial when n approaches infinity):24 

 
  

      
 

  




2
''

'

0
2!

ax
af

axafafax
k

af
xf

k

k
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Taylor series in several variables:25 

For a function of two variables,  tSG , , the Taylor series to second order about the point  00 ,tS is: 

               
2

2
2

0002

2
2
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2
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,,

t

G
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G
ttSS

S

G
SS

t

G
ttSS

S

G
tSGtSG
























  

(with the cross partial derivative
t

G

t

SG

tS

G S














being “the first derivative with respect to t of the 

first derivative of G with respect to S”)26.  It gives an approximate value of G if both S and t change by a 

small amount. 

Note that 
t

G



 as partial derivative of G with respect to t implies holding S constant – an alternative 

notation to emphasize this is:  
St

G












.27   

Ito process: 

   dztxbdttxadx ,,   i.e. a and b are functions of x and t. 

with z following a Wiener process, so that: 

tz    

                                                           
24

See for example http://en.wikipedia.org/wiki/Taylor_series 

25
 See e.g. http://en.wikipedia.org/wiki/Taylor_series#Taylor_series_in_several_variables) 

26
See e.g.   http://en.wikipedia.org/wiki/Partial_derivative#Higher_order_partial_derivatives 

27
 http://en.wikipedia.org/wiki/Partial_derivative#Notation 

http://en.wikipedia.org/wiki/Taylor_series
http://en.wikipedia.org/wiki/Taylor_series#Taylor_series_in_several_variables
http://en.wikipedia.org/wiki/Partial_derivative#Higher_order_partial_derivatives
http://en.wikipedia.org/wiki/Partial_derivative#Notation
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(  is a standard normal variable and dz the limit for t approaching zero) 

Discrete time version:     ztxbttxax  ,,  or     ttxbttxax  ,,  

 

Derivation of Ito’s Lemma:28 

Step 1:  apply a Taylor series in several variables to a function G of time and a variable S that follows an 

Ito process: 

with 0SSS  and 0ttt  : 

        2
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


  

Step 2:  subtract G at the beginning of the time period considered ( t ), to get the price change: 29 

          

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A.I. 
    





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G
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S  

In “ordinary” calculus, typically terms of higher order (products containing variables with exponents 

larger than one) would be ignored, because when S and t approach zero, these terms would 

approach zero faster.  However, here this is not completely the case for  2
2

2

2

1
S

S

G





. 

To see this, look at the discrete time version of the Ito process:  

A.II.     ttSbttSaS  ,,  

And calculate  2S : 

          

    

    tbtbata
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tbtbtatatbtaS
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225.122

2222

2222

2

2

2







 

                                                           
28

 The following follows Hull, Options, Futures & Other Derivatives , 9
th

 edition (referred to as “Hull” in the following), p. 319-
320  with some additional explanations for which references are given. 
29

 That’s the starting equation 14.A.3 of the derivation of Ito’s Lemma in Hull, it can also be found in the slide pack to chapter 

14, p. 25. – available at http://www-2.rotman.utoronto.ca/~hull/ofodslides/index.html 

http://www-2.rotman.utoronto.ca/~hull/ofodslides/index.html
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This contains a term which is a multiple of t . 

Step 3:  determine the approximate limit of  2S  as t approaches zero:30 

When t approaches zero,     tbtabta  225.122 2   approaches tb 22 , because  2t and   5.1t

approach zero faster than t . 

The expected value of tb 22  is tb 2 , because  E  is zero and the variance of 2 is 1 and hence: 

    

 

  

 22

2
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so that     tbtEbtbE  22222     

Subtract this expected value from tb 22  to get the stochastic component of tb 22 : 

  tbtbtbtb  22222   

When t approaches zero, this stochastic component will approach zero considerably faster than the 

stochastic component in S  which is tb  (see equation A.II), and is hence considered negligible 

compared to that term and ignored.  Therefore,  2S  can be replaced with tb 2 in equation A.I: 

  

































2

2

2
2

2

2

2

1
t

t

G
tS

tS

G
tb

S

G
t

t

G
S

S

G
G

S

 

Step 4:  substitute for S  in tS
tS

G





: 

zbtaS   
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Substitute for tz   : 

           5.125.12
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  

                                                           
30

 http://www.sjsu.edu/faculty/watkins/ito.htm 

http://www.sjsu.edu/faculty/watkins/ito.htm
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As both summands are coefficients of t raised to higher powers than 1, they get both ignored (like 

other such terms in the Taylor-series approximation), so that G simplifies to: 
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Step 5: substitute for delta S : 
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Step 6: Rearranging: 
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Step 7:  Taking limits ( t approaching zero) gives Ito’s Lemma: 
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A process for stock prices:31 

Sa   

Sb   

SdzSdtdS    

or in discrete time: 

A.III: tStSzStSS    

Where return statistics (expected value and volatility) are given as p.a. figures and the unit of t is years.  

This process is known as geometric Brownian motion.  If the stock price follows this process, the stock’s 

instantaneous return (discrete return in an (infinitesimal) small interval) is:  dzdt
S

dS
  . 

 

 

                                                           
31

 See e.g. Hull, p. 308-309 



15 
 

Apply Ito’s Lemma to a function G of S and t: 

A.IV.: 

Sdz
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Apply Ito’s lemma to LN(S):32 

 SLNG   
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So in general, if S follows an Ito process, the process for G=LN(S) is: 

bdz
S

dtb
S

a
S

dG
1

2

11 2

2









  

And more specifically, if S follows a geometric Brownian motion, so that SdzSdtdS   , i.e. Sa  and 

Sb  , the process for dG is: 

dzdtdG 

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
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Hence: 
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 dtdtNdG 2

2

,
2

~ 


  

(i.e. dGe  is “log-normally distributed” meaning that its logarithm is normally distributed). 

and hence the following holds for the stock price after a short period of time: 

dzdt

t eSeSS t
dG

tdtt


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2

 

i.e. with the instantaneous return dS/S being defined as above, dG is the return of the stock expressed 

as rate of return with continuous compounding during time interval dt33. 

                                                           
32

 Hull, p. 314-315 
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The expected value of a log-normally distributed variable w, whose logarithm is normally distributed 

with mean m and standard deviation o is:34 

  2

2o
m
ewE


  

So that: 

    dtdG eSeESSE 
00   

 

An informal expression for the stock price after a period longer than dt: 

With 
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, and as under the assumption of S following a geometric Brownian 

motion,   and   are constant, one can derive an “informal”35 expression for the random variable St 

after a longer period than dt, for example a period containing two (infinitesimal small) periods, i.e. two 

periods with the length dt of each approaching zero – with the index t in St indicating the number of 

such periods of length dt that will have passed: 
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Correspondingly, with T being the point in time after N such periods with a length dt that approaches 

zero, the stock price at T is: 
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Hence, the expected return     0SLNSLNE T   with continuous compounding over the total period is: 

                                                                                                                                                                                           
33

 For the definition of the rate of return with continuous compounding and its relationship to a discrete return under certainty 
see e.g. Hull, Options Futures & Other Derivatives, 9

th
 edition, page 81.  For a discussion of the relationship between an 

uncertain instantaneous return and the corresponding random return with continuous compounding and stock price, see Hull, 
section 15.3 (page 325).  
  
34

 See Hull technical note 2 to Options, Futures & Other Derivatives, (9
th

 ed). 
35

 a formal expression would use a stochastic integral over t. 
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dtN


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
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

2

2
 , and the variance of the return with continuous compounding is: dtN 2  

And as the starting point was set as t=0, T is also the length of the total period measured in years, i.e. 

NdtT   - so that the expected return with continuous compounding can be written as: 

    
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 TdtTNSLNSLNE T  

and the variance of    0SLNSLN T   is: 

 22  TdtTN   

And with the returns in each sub-period being normally distributed (as S follows a geometric Brownian 

motion), the return with continuous compounding over the total period is a sum of independent normal 

variables and hence one gets for the annualized return x over the total period: 

     0
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A.2: CAPM-based derivation of the Black-Scholes differential equation:36 

A stock’s prices follow the process specified above (equation A.III.): 

zStSS    

For the change of the price of a derivative the price of which is a function of G and t in a small interval, 

one gets with Ito’s lemma as above (equation A.IV.): 
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Or, (somewhat closer to BS original notation):37 
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36

 Fisher Black and Myron Scholes, The Pricing of Options and Corporate Liabilities”, Journal of Political Economy, Vol. 81, Issue 
3, 1973, p. 645 - 646 
37

 Black/Scholes divide by Δt to get an annualized instantaneous return 
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Black/Scholes assume the CAPM holds for instantaneous returns.38 

Derive the option’s beta: Write the instantaneous option return as function of the stock return 
S
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Covariance of option return with market return: 
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Hence, the option beta as a function of the underlying stock’s beta S  is: 
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If CAPM holds, the instantaneous expected return of the option must equal: 
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Where Sr  is the instantaneous return of the stock.  The expected change in the option price is therefore: 

A.VI.: 
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The expected absolute change results also from taking the expected value of both sides of A.IV.: 

A.VII.: 
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Setting A.VI. and A.VII. equal, subtracting  SE
S

G




 on both sides, dividing by t and simplifying gives the 

Black-Scholes differential equation:39 
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 Black/Scholes page 646 and footnote 2 on page 639 
39

 Black/Scholes , equation 7, page 643 


