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Pricing Theory

Pricing theory for derivative securities is a highly technical topic in finance; its foundations
rest on trading practices and its theory relies on advanced methods from stochastic calculus
and numerical analysis. This chapter summarizes the main concepts while presenting the
essential theory and basic mathematical tools for which the modeling and pricing of financial
derivatives can be achieved.

Financial assets are subdivided into several classes, some being quite basic while others are
structured as complex contracts referring to more elementary assets. Examples of elementary
asset classes include stocks, which are ownership rights to a corporate entity; bonds, which
are promises by one party to make cash payments to another in the future; commodities,
which are assets, such as wheat, metals, and oil that can be consumed; and real estate assets,
which have a convenience yield deriving from their use. A more general example of an asset
is that of a contractual contingent claim associated with the obligation of one party to enter
a stream of more elementary financial transactions, such as cash payments or deliveries of
shares, with another party at future dates. The value of an individual transaction is called a
pay-off or payout. Mathematically, a pay-off can be modeled by means of a payoff function
in terms of the prices of other, more elementary assets.

There are numerous examples of contingent claims. Insurance policies, for instance, are
structured as contracts that envision a payment by the insurer to the insured in case a specific
event happens, such as a car accident or an illness, and whose pay-off is typically linked to the
damage suffered by the insured party. Derivative assets are claims that distinguish themselves
by the property that the payoff function is expressed in terms of the price of an underlying
asset. In finance jargon, one often refers to underlying assets simply as underlyings. To
some extent, there is an overlap between insurance policies and derivative assets, except the
nomenclature differs because the first are marketed by insurance companies while the latter
are traded by banks.

A trading strategy consists of a set of rules indicating what positions to take in response
to changing market conditions. For instance, a rule could say that one has to adjust the
position in a given stock or bond on a daily basis to a level given by evaluating a certain
function. The implementation of a trading strategy results in pay-offs that are typically
random. A major difference that distinguishes derivative instruments from insurance contracts
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is that most traded derivatives are structured in such a way that it is possible to implement
trading strategies in the underlying assets that generate streams of pay-offs that replicate the
pay-offs of the derivative claim. In this sense, trading strategies are substitutes for derivative
claims. One of the driving forces behind derivatives markets is that some market participants,
such as market makers, have a competitive advantage in implementing replication strategies,
while their clients are interested in taking certain complex risk exposures synthetically by
entering into a single contract.

A key property of replicable derivatives is that the corresponding payoff functions depend
only on prices of tradable assets, such as stocks and bonds, and are not affected by events,
such as car accidents or individual health conditions that are not directly linked to an asset
price. In the latter case, risk can be reduced only by diversification and reinsurance. A related
concept is that of portfolio immunization, which is defined as a trade intended to offset the
risk of a portfolio over at least a short time horizon. A perfect replication strategy for a given
claim is one for which a position in the strategy combined with an offsetting position in the
claim are perfectly immunized, i.e., risk free. The position in an asset that immunizes a given
portfolio against a certain risk is traditionally called hedge ratio.1 An immunizing trade is
called a hedge. One distinguishes between static and dynamic hedging, depending on whether
the hedge trades can be executed only once or instead are carried over time while making
adjustments to respond to new information.

The assets traded to execute a replication strategy are called hedging instruments. A set of
hedging instruments in a financial model is complete if all derivative assets can be replicated
by means of a trading strategy involving only positions in that set. In the following, we shall
define the mathematical notion of financial models by listing a set of hedging instruments
and assuming that there are no redundancies, in the sense that no hedging instrument can
be replicated by means of a strategy in the other ones. Another very common expression
is that of risk factor: The risk factors underlying a given financial model with a complete
basis of hedging instruments are given by the prices of the hedging instruments themselves
or functions thereof; as these prices change, risk factor values also change and the prices of
all other derivative assets change accordingly. The statistical analysis of risk factors allows
one to assess the risk of financial holdings.

Transaction costs are impediments to the execution of replication strategies and correspond
to costs associated with adjusting a position in the hedging instruments. The market for a
given asset is perfectly liquid if unlimited amounts of the asset can be traded without affecting
the asset price. An important notion in finance is that of arbitrage: If an asset is replicable by
a trading strategy and if the price of the asset is different from that of the replicating strategy,
the opportunity for riskless gains/profits arises. Practical limitations to the size of possible
gains are, however, placed by the inaccuracy of replication strategies due to either market
incompleteness or lack of liquidity. In such situations, either riskless replication strategies are
not possible or prices move in response to posting large trades. For these reasons, arbitrage
opportunities are typically short lived in real markets.

Most financial models in pricing theory account for finite liquidity indirectly, by postu-
lating that prices are arbitrage free. Also, market incompleteness is accounted for indirectly
and is reflected in corrections to the probability distributions in the price processes. In this
stylized mathematical framework, each asset has a unique price.2

1 Notice that the term hedge ratio is part of the finance jargon. As we shall see, in certain situations hedge ratios
are computed as mathematical ratios or limits thereof, such as derivatives. In other cases, expressions are more
complicated.

2 To avoid the perception of a linguistic ambiguity, when in the following we state that a given asset is worth a
certain amount, we mean that amount is the asset price.
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Most financial models are built upon the perfect-markets hypothesis, according to which:

• There are no trading impediments such as transaction costs.
• The set of basic hedging instruments is complete.
• Liquidity is infinite.
• No arbitrage opportunities are present.

These hypotheses are robust in several ways. If liquidity is not perfect, then arbitrage oppor-
tunities are short lived because of the actions of arbitrageurs. The lack of completeness and
the presence of transaction costs impacts prices in a way that is uniform across classes of
derivative assets and can safely be accounted for implicitly by adjusting the process proba-
bilities.

The existence of replication strategies, combined with the perfect-markets hypothesis,
makes it possible to apply more sophisticated pricing methodologies to financial derivatives
than is generally possible to devise for insurance claims and more basic assets, such as stocks.
The key to finding derivative prices is to construct mathematical models for the underlying
asset price processes and the replication strategies. Other sources of information, such as a
country’s domestic product or a takeover announcement, although possibly relevant to the
underlying prices, affect derivative prices only indirectly.

This first chapter introduces the reader to the mathematical framework of pricing theory
in parallel with the relevant notions of probability, stochastic calculus, and stochastic control
theory. The dynamic evolution of the risk factors underlying derivative prices is random, i.e.,
not deterministic, and is subject to uncertainty. Mathematically, one uses stochastic processes,
defined as random variables with probability distributions on sets of paths. Replicating and
hedging strategies are formulated as sets of rules to be followed in response to changing price
levels. The key principle of pricing theory is that if a given payoff stream can be replicated
by means of a dynamic trading strategy, then the cost of executing the strategy must equal
the price of a contractual claim to the payoff stream itself. Otherwise, arbitrage opportunities
would ensue. Hence pricing can be reduced to a mathematical optimization problem: to
replicate a certain payoff function while minimizing at the same time replication costs and
replication risks. In perfect markets one can show that one can achieve perfect replication at
a finite cost, while if there are imperfections one will have to find the right trade-off between
risk and cost. The fundamental theorem of asset pricing is a far-reaching mathematical result
that states;

• The solution of this optimization problem can be expressed in terms of a discounted
expectation of future pay-offs under a pricing (or probability) measure.

• This representation is unique (with respect to a given discounting) as long as markets
are complete.

Discounting can be achieved in various ways: using a bond, using the money market account,
or in general using a reference numeraire asset whose price is positive. This is because pricing
assets is a relative, as opposed to an absolute, concept: One values an asset by computing its
worth as compared to that of another asset. A key point is that expectations used in pricing
theory are computed under a probability measure tailored to the numeraire asset.

In this chapter, we start the discussion with a simple single-period model, where trades
can be carried out only at one point in time and gains or losses are observed at a later
time, a fixed date in the future. In this context, we discuss static hedging strategies. We then
briefly review some of the relevant and most basic elements of probability theory in the
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context of multivariate continuous random variables. Brownian motion and martingales are
then discussed as an introduction to stochastic processes. We then move on to further discuss
continuous-time stochastic processes and review the basic framework of stochastic (Itô)
calculus. Geometric Brownian motion is then presented, with some preliminary derivations
of Black–Scholes formulas for single-asset and multiasset price models. We then proceed
to introduce a more general mathematical framework for dynamic hedging and derive the
fundamental theorem of asset pricing (FTAP) for continuous-state-space and continuous-
time-diffusion processes. We then apply the FTAP to European-style options. Namely, by the
use of change of numeraire and stochastic calculus techniques, we show how exact pricing
formulas based on geometric Brownian motions for the underlying assets are obtained for a
variety of situations, ranging from elementary stock options to foreign exchange and quanto
options. The partial differential equation approach for option pricing is then presented. We
then discuss pricing theory for early-exercise or American-style options.

1.1 Single-Period Finite Financial Models

The simplest framework in pricing theory is given by single-period financial models, in which
calendar time t is restricted to take only two values, current time t = 0 and a future date
t = T > 0. Such models are appropriate for analyzing situations where trades can be made
only at current time t = 0. Revenues (i.e., profits or losses) can be realized only at the later
date T, while trades at intermediate times are not allowed.

In this section, we focus on the particular case in which only a finite number of scenarios
�1� � � � ��m can occur. Scenario is a common term for an outcome or event. The scenario set
� = ��1� � � � ��m� is also called the probability space. A probability measure P is given by
a set of numbers pi� i = 1� � � � �m, in the interval �0�1	 that sum up to 1; i.e.,

m∑

i=1

pi = 1� 0 ≤ pi ≤ 1� (1.1)

pi is the probability that scenario (event) �i occurs, i.e., that the ith state is attained. Scenario
�i is possible if it can occur with strictly positive probability pi > 0. Neglecting scenarios that
cannot possibly occur, the probabilities pi will henceforth be assumed to be strictly positive;
i.e., pi > 0. A random variable is a function on the scenario set, f 
 � → �, whose values
f��i� represent observables. As we discuss later in more detail, examples of random variables
one encounters in finance include the price of an asset or an interest rate at some point in
the future or the pay-off of a derivative contract. The expectation of the random variable f is
defined as the sum

EP�f	 =
m∑

i=1

pif��i�� (1.2)

Asset prices and other financial observables, such as interest rates, are modeled by
stochastic processes. In a single-period model, a stochastic process is given by a value f0

at current time t = 0 and by a random variable fT that models possible values at time T. In
finance, probabilities are obtained with two basically different procedures: They can either
be inferred from historical data by estimating a statistical model, or they can be implied from
current asset valuations by calibrating a pricing model. The former are called historical,
statistical, or, better, real-world probabilities. The latter are called implied probabilities.
The calibration procedure involves using the fundamental theorem of asset pricing to represent
prices as discounted expectations of future pay-offs and represents one of the central topics
to be discussed in the rest of this chapter.
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Definition 1.1. Financial Model A finite, single-period financial model � = ����� is given
by a finite scenario set � = ��1� � � � ��m� and n basic asset price processes for hedging
instruments:

� = �A1
t � � � � �A

n
t  t = 0� T�� (1.3)

Here, Ai
0 models the current price of the ith asset at current (or initial) time t = 0 and Ai

T

is a random variable such that the price at time T > 0 of the ith asset in case scenario �j

occurs is given by Ai
T ��j�. The basic asset prices Ai

t, i = 1� � � � � n, are assumed real and
positive.

Definition 1.2. Portfolio and Asset Let � = ����� be a financial model. A portfolio �
is given by a vector with components �i ∈ �� i = 1� � � � � n, representing the positions or
holdings in the the family of basic assets with prices A1

t � � � � �A
n
t . The worth of the portfolio at

terminal time T is given by
∑n

i=1 �i A
i
T ��� given the state or scenario �, whereas the current

price is
∑n

i=1 �i A
i
0. A portfolio is nonnegative if it gives rise to nonnegative pay-offs under

all scenarios, i.e.,
∑n

i=1 �i A
i
T ��j� ≥ 0� ∀j = 1� � � � �m. An asset price process At = At���

(a generic one, not necessarily that of a hedging instrument) is a process of the form

At =
n∑

i=1

�iA
i
t (1.4)

for some portfolio � ∈ �n.

The modeling assumption behind this definition is that market liquidity is infinite, meaning
that asset prices don’t vary as a consequence of agents trading them. As we discussed at the
start of this chapter, this hypothesis is valid only in case trades are relatively small, for large
trades cause market prices to change. In addition, a financial model with infinite liquidity is
mathematically consistent only if there are no arbitrage opportunities.

Definition 1.3. Arbitrage: Single-Period Discrete Case An arbitrage opportunity or arbi-
trage portfolio is a portfolio � = ��1� � � � ��n� such that either of the following condi-
tions holds:
A1. The current price of � is negative,

∑n
i=1 �iA

i
0 < 0, and the pay-off at terminal time T is

nonnegative, i.e.,
∑n

i=1 �iA
i
T ��j� ≥ 0 for all j states.

A2. The current price of � is zero, i.e.,
∑n

i=1 �iA
i
0 = 0, and the pay-off at terminal time T

in at least one scenario �j is positive, i.e.,
∑n

i=1 �iA
i
T ��j� > 0 for some jth state, and the

pay-off at terminal time T is nonnegative.

Definition 1.4. Market Completeness The financial model � = ����� is complete if for
all random variables ft 
 � →�, where ft is a bounded payoff function, there exists an asset
price process or portfolio At in the basic assets contained in � such that AT��� = fT ��� for
all scenarios � ∈ �.

This definition essentially states that any pay-off (or state-contingent claim) can be repli-
cated, i.e., is attainable by means of a portfolio consisting of positions in the set of basic
assets. If an arbitrage portfolio exists, one says there is arbitrage. The first form of arbitrage
occurs whenever there exists a trade of negative initial cost at time t = 0 by means of which
one can form a portfolio that under all scenarios at future time t = T has a nonnegative
pay-off. The second form of arbitrage occurs whenever one can perform a trade at zero cost
at an initial time t = 0 and then be assured of a strictly positive payout at future time T under
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at least one possible scenario, with no possible downside. In reality, in either case investors
would want to perform arbitrage trades and take arbitrarily large positions in the arbitrage
portfolios. The existence of these trades, however, infringes on the modeling assumption of
infinite liquidity, because market prices would shift as a consequence of these large trades
having been placed.

Let’s start by considering the simplest case of a single-period economy consisting of only
two hedging instruments (i.e., n = 2 basic assets) with price processes A1

t = Bt and A2
t = St.

The scenario set, or sample space, is assumed to consist of only two possible states of the
world: � = ��+��−�. St is the price of a risky asset, which can be thought of as a stock
price. The riskless asset is a zero-coupon bond, defined as a process Bt that is known to be
worth the so-called nominal amount BT = N at time T while at time t = 0 has worth

B0 = �1+ rT�−1N� (1.5)

Here r > 0 is called the interest rate. As is discussed in more detail in Chapter 2, interest
rates can be defined with a number of different compounding rules; the definition chosen here
for r corresponds to selecting T itself as the compounding interval, with simple (or discrete)
compounding assumed. At current time t = 0, the stock has known worth S0. At a later
time t = T , two scenarios are possible for the stock. If the scenario �+ occurs, then there
is an upward move and ST = ST ��+� ≡ S+; if the scenario �− occurs, there is a downward
move and ST = ST ��−� ≡ S−, where S+ > S−. Since the bond is riskless we have BT��+� =
BT��−� = BT . Assume that the real-world probabilities that these events will occur are p+ =
p ∈ �0�1� and p− = �1−p�, respectively.

Figure 1.1 illustrates this simple economy. In this situation, the hypothesis of arbitrage
freedom demands that the following strict inequality be satisfied:

S−
1+ rT

< S0 <
S+

1+ rT
� (1.6)

In fact, if, for instance, one had S0 <
S−

1+rT
, then one could make unbounded riskless profits by

initially borrowing an arbitrary amount of money and buying an arbitrary number of shares
in the stock at price S0 at time t = 0, followed by selling the stock at time t = T at a higher
return level than r. Inequality (1.6) is an example of a restriction resulting from the condition
of absence of arbitrage, which is defined in more detail later.

A derivative asset, of worth At at time t, is a claim whose pay-off is contingent on future
values of risky underlying assets. In this simple economy the underlying asset is the stock.
An example is a derivative that pays f+ dollars if the stock is worth S+, and f− otherwise, at
final time T: AT =AT��+�= f+ if ST = S+ and AT =AT��−�= f− if ST = S−. Assuming one
can take fractional positions, this payout can be statically replicated by means of a portfolio

p+

p –

S0

S–

S+

FIGURE 1.1 A single-period model with two possible future prices for an asset S.
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consisting of a shares of the stock and b bonds such that the following replication conditions
under the two scenarios are satisfied:

aS− +bN = f−� (1.7)

aS+ +bN = f+� (1.8)

The solution to this system is

a = f+ −f−
S+ −S−

� b = f−S+ −f+S−
N�S+ −S−�

� (1.9)

The price of the replicating portfolio, with pay-off identical to that of the derivative, must be
the price of the derivative asset; otherwise there would be an arbitrage opportunity. That is,
one could make unlimited riskless profits by buying (or selling) the derivative asset and, at
the same time, taking a short (or long) position in the portfolio at time t = 0. At time t = 0,
the arbitrage-free price of the derivative asset, A0, is then

A0 = aS0 +b�1+ rT�−1N

=
(
S0 − �1+ rT�−1S−

S+ −S−

)

f+ +
(
�1+ rT�−1S+ −S0

S+ −S−

)

f−� (1.10)

Dimensional considerations are often useful to understand the structure of pricing formulas
and detect errors. It is important to remember that prices at different moments in calendar
time are not equivalent and that they are related by discount factors. The hedge ratios a and
b in equation (1.9) are dimensionless because they are expressed in terms of ratios of prices
at time T. In equation (1.10) the variables f± and S+ −S− are measured in dollars at time T,
so their ratio is dimensionless. Both S0 and the discounted prices �1+ rT �−1S± are measured
in dollars at time 0, as is also the derivative price A0.

Rewriting this last equation as

A0 = �1+ rT�−1

[(
�1+ rT�S0 −S−

S+ −S−

)

f+ +
(
S+ − �1+ rT�S0

S+ −S−

)

f−

]

(1.11)

shows that price A0 can be interpreted as the discounted expected pay-off. However, the
probability measure is not the real-world one (i.e., not the physical measure P) with probabil-
ities p± for up and down moves in the stock price. Rather, current price A0 is the discounted
expectation of future prices AT , in the following sense:

A0 = �1+ rT�−1 EQ�AT 	 = �1+ rT�−1�q+AT��+�+q−AT��−�	 (1.12)

under the measure Q with probabilities (strictly between 0 and 1)

q+ = �1+ rT�S0 −S−
S+ −S−

� q− = S+ − �1+ rT�S0

S+ −S−
� (1.13)

q+ + q− = 1. The measure Q is called the pricing measure. Pricing measures also have
other, more specific names. In the particular case at hand, since we are discounting with a
constant interest rate within the time interval �0� T	, Q is commonly named the risk-neutral
or risk-adjusted probability measure, where q± are so-called risk-neutral (or risk-adjusted)
probabilities. Later we shall see that this measure is also the forward measure, where the
bond price Bt is used as numeraire asset. In particular, by expressing all asset prices relative
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to (i.e., in units of) the bond price Ai
t/Bt, with BT = N , regardless of the scenario and

B0/BT = �1+ rT�−1, we can hence recast the foregoing expectation as: A0 = B0 E
Q�AT/BT 	.

Hence Q corresponds to the forward measure. We can also use as numeraire a discretely
compounded money-market account having value �1 + rt� (or �1 + rt�N ). By expressing all
asset prices relative to this quantity, it is trivially seen that the corresponding measure is the
same as the forward measure in this simple model. As discussed later, the name risk-neutral
measure shall, however, refer to the case in which the money-market account (to be defined
more generally later in this chapter) is used as numeraire, and this measure generally differs
from the forward measure for more complex financial models.

Later in this chapter, when we cover pricing in continuous time, we will be more specific
in defining the terminology needed for pricing under general choices of numeraire asset. We
will also see that what we just unveiled in this particularly simple case is a general and
far-reaching property: Arbitrage-free prices can be expressed as discounted expectations of
future pay-offs. More generally, we will demonstrate that asset prices can be expressed in
terms of expectations of relative asset price processes. A pricing measure is then a martingale
measure, under which all relative asset price processes (i.e., relative to a given choice of
numeraire asset) are so-called martingales. Since our primary focus is on continuous-time
pricing models, as introduced later in this chapter, we shall begin to explicitly cover some
of the essential elements of martingales in the context of stochastic calculus and continuous-
time pricing. For a more complete and elaborate mathematical construction of the martingale
framework in the case of discrete-time finite financial models, however, we refer the reader
to other literature (for example, see [Pli97, MM03]).

We now extend the pricing formula of equation (1.12) to the case of n assets and m
possible scenarios.

Definition 1.5. Pricing Measure A probability measure Q = �q1� � � � � qm�, 0 < qj < 1, for
the scenario set � = ��1� � � � ��m� is a pricing measure if asset prices can be expressed as
follows:

Ai
0 = � EQ�Ai

T 	 = �
m∑

j=1

qjA
i
T ��j� (1.14)

for all i= 1� � � � � n and some real number �> 0. The constant � is called the discount factor.

Theorem 1.1. Fundamental Theorem of Asset Pricing (Discrete, single-period case)
Assume that all scenarios in � are possible. Then the following statements hold true:

• There is no arbitrage if and only if there is a pricing measure for which all scenarios
are possible.

• The financial model is complete, with no arbitrage if and only if the pricing measure
is unique.

Proof. First, we prove that if a pricing measure Q = �q1� � � � � qm� exists and prices Ai
0 =

� EQ�Ai
T 	 for all i = 1� � � � � n, then there is no arbitrage. If

∑
i �iA

i
T ��j� ≥ 0, for all �j ∈ �,

then from equation (1.14) we must have
∑

i �iA
i
0 ≥ 0. If

∑
i �iA

i
0 = 0, then from equation

(1.14) we cannot satisfy the payoff conditions in (A2) of Definition 1.3. Hence there is no
arbitrage, for any choice of portfolio � ∈ �n.

On the other hand, assume that there is no arbitrage. The possible price-payoff �m+1�-
tuples

� =
{( n∑

i=1

�iA
i
0�

n∑

i=1

�iA
i
T ��1�� � � � �

n∑

i=1

�iA
i
T ��m�

)

� � ∈ �n

}

(1.15)
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make up a plane in �×�m. Since there is no arbitrage, the plane � intersects the octant
�+ ×�m

+ made up of vectors of nonnegative coordinates only in the origin. Let � be the set
of all vectors �−���1� � � � � �m� normal to the plane � and normalized so that �> 0. Vectors
in � satisfy the normality condition

−�

( n∑

i=1

�iA
i
0

)

+
m∑

j=1

�j

( n∑

i=1

�iA
i
T ��j�

)

= 0 (1.16)

for all portfolios �.
Next we obtain two Lemmas to complete the proof.

Lemma 1.1. Suppose the financial model on the scenario set � and with instruments
�A1� � � � �An� is arbitrage free and let m be the dimension of the linear space � . If the matrix
rank dim� <m, then one can define l = �m−dim�� price-payoff tuples �−Bk

0�B
k
T ����� k =

1� � � � � l, so that the extended financial model with basic assets �A1� � � � �An�B1� � � � �Bl�
and scenario set � is complete and arbitrage free.

Proof. The price-payoff tuples �−Bk
0�B

k
T ��1�� � � � �B

k
T ��l�� can be found iteratively. Suppose

that l = m−dim� > 0. Then the complement to the linear space � has dimension l+1 ≥ 2.
Let X = �−Xk

0�X
k
T ���� and Y = �−Y k

0 � Y
k
T ���� be two vectors orthogonal to each other and

orthogonal to � . Then there is an angle � such that the vector B1 = cos�X+ sin �Y has at
least one strictly positive coordinate and one strictly negative coordinate, i.e., B1 � �×�+.
Hence the financial model with instruments �A1� � � � �An�B1� is arbitrage free. Iterating the
argument, one can complete the market while retaining arbitrage freedom. �

Lemma 1.2. If markets are complete, the space � orthogonal to � is spanned by a vector
����1� � � � � �m� lying in the main octant � = �+ ×�m

+ of vectors with strictly positive
coordinates.

Proof. In fact if � = 0, then � contains the line �x�0� � � � �0� and all positive payouts would
be possible, even for an empty portfolio, which is absurd. It is also absurd that �j = 0, ∀j.
In fact, in this case, since markets are complete, there is an instrument paying one dollar in
case the scenario �j occurs and zero otherwise, and since �j = 0, the price of this instrument
at time t = 0 is zero, which is absurd. �

If markets are not complete, one can still conclude that the set � contains a vector
����1� � � � � �m� with strictly positive coordinates. In fact, thanks to Lemma 1.1, one can
complete it while preserving arbitrage freedom by introducing auxiliary assets and the normal
vector can be chosen to have positive coordinates. Hence, in all cases of �i values, according
to equation (1.16) we have

Ai
0 = � EQ�Ai

T 	 = �
m∑

j=1

qjA
i
T ��j�� (1.17)

where Q is the measure with probabilities

qj = �j∑m
j=1 �j

(1.18)

and discount factor

� = �−1
m∑

j=1

�j� (1.19)

�
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The first project of Part II of this book is a study on single-period arbitrage. We refer the
interested reader to that project for a more detailed and practical exposition of the foregoing
theory. In particular, the project provides an explicit discussion of a numerical linear algebra
implementation for detecting arbitrage in single-period, finite financial models.

Problems

Problem 1. Consider the simple example in Figure 1.1 and assume the interest rate is r.
Under what condition is there no arbitrage in the model?

Problem 2. Compute EQ�ST 	 within the single-period two-state model. Explain your result.

Problem 3. Let p0
i denote the current price Ai

0 of the ith security and denote by Dij =Ai
T ��j�

the matrix elements of the n×m dividend matrix with i = 1� � � � � n, j = 1� � � � �m. Using
equation (1.14) with �= �1+rT�−1 show that the risk-neutral expected return on any security
Ai is given by the risk-free interest rate

EQ

[
Ai

T −Ai
0

Ai
0

]

=
m∑

j=1

qj

(
Dij

p0
i

−1
)

= rT� (1.20)

where qj are the risk-neutral probabilities.

Problem 4. State the explicit matrix condition for market completeness in the single-period
two-state model with the two basic assets as the riskless bond and the stock. Under what
condition is this market complete?

Problem 5. Arrow–Debreu securities are claims with unit pay-offs in only one state of the
world. Assuming a single-period two-state economy, these claims are denoted by E± and
defined by

E+��� =






1� if � = �+

0� if � = �−

� E−��� =






0� if � = �+

1� if � = �−

�

(a) Find exact replicating portfolios �+ = �a+� b+� and �− = �a−� b−� for E+ and E−,
respectively. The coefficients a and b are positions in the stock and the riskless bond,
respectively.

(b) Letting FT represent an arbitrary pay-off, find the unique portfolio of Arrow–Debreu
securities that replicates FT .

1.2 Continuous State Spaces

This section, together with the next section, presents a review of basic elements of probability
theory for random variables that can take on a continuum of values while emphasizing some
of the financial interpretation of mathematical concepts.

Modern probability theory is based on measure theory. Referring the reader to textbook
literature for more detailed and exhaustive formal treatments, we will just simply recall here
that measure theory deals with the definition of measurable sets D, probability measures �,
and integrable functions f 
 D → � for which one can evaluate expectations as integrals

E�f	 =
∫

D
f�x���dx�� (1.21)
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In finance, one typically deals with situations where the measurable set D ⊂ �d, with integer
d ≥ 1. Realizations of the vector variable x ∈ D correspond to scenarios for the risk factors
or random variables in a financial model.

Future asset prices are real-valued functions of underlying risk factors f�x� defined for
x ∈ D and hence themselves define random variables. Probability measures ��dx� are often
defined as ��dx� = p�x�dx, where p�x� is a real-valued continuous probability distribution
function that is nonnegative and integrates to 1; i.e.,

p�x� ≥ 0�
∫

D
p�x�dx = 1� (1.22)

The expectation EP
[
f
]

of f under the probability measure with p as density is defined by the
d-dimensional integral

EP
[
f
] =

∫

D
f�x�p�x�dx� (1.23)

The pair �D���dx�� is called a probability space.
In particular, this formalism can also allow for the case of a finite scenario set of vectors

D = �x�1�� � � � �x�N��, as was considered in the previous section. In this case the probability
distribution is a sum of Dirac delta functions,

p�x� =
N∑

i=1

pi��x −x�i��� (1.24)

As further discussed shortly, a delta function can be thought of as a singular function that
is positive, integrates to 1 over all space, and corresponds to the infinite limiting case
of a sequence of integrable functions with support only at the origin. Probabilistically,
a distribution, such as equation (1.24), which is a sum of delta functions, corresponds to
a situation where only the scenarios x�1�� � � � �x�N� can possibly occur, and they do with
probabilities p1� � � � � pN . These probabilities must be positive and add up to 1; i.e.,

N∑

i=1

pi = 1� (1.25)

In the case of a finite scenario set (i.e., a finite set of possible events with finite integer N), the
random variable f = f�x� is a function defined on the set of scenarios D, and its expectation
under the measure with p as density is given by the finite sum

EP�f	 =
N∑

i=1

pif�x
�i��� (1.26)

For an infinitely countable set of scenarios, then, the preceding expressions must be considered
in the limit N → 	. Hence in the case of a discrete set of scenarios (as opposed to a
continuum) the probability density function collapses into the usual probability mass function,
as occurs in standard probability theory of discrete-valued random variables.

The Dirac delta function is not an ordinary function in �d but, rather, a so-called dis-
tribution. Mathematically, a distribution is defined through its value when integrated against
a smooth function. One can regard ��x − x′�, x�x′ ∈ �d, as the limit of an infinitesimally
narrow d-dimensional normal distribution:

∫

�d
f�x���x −x′�dx = lim

�→0

1

��
√

2��d

∫

�d
f�x� exp

(

− �x −x′�2
2�2

)

dx = f�x′�� (1.27)
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For example, in one dimension a representation of the delta function is

��x−x′� = lim
�→0

1

�
√

2�
e−�x−x′�2/2�2

� (1.28)

Events are modeled as subsets G ⊂ D for which one can compute the integral that gives
the expectation EP�1G	. The function 1G�x� denotes the random variable equal to 1 for x ∈ G
and to zero otherwise; 1G�x� is called the indicator function of the set G. This expectation is
interpreted as the probability P(G) that event G ⊂ D will occur; i.e.,

P�G� = EP�1G	 =
∫

�d
1G�x�p�x�dx =

∫

G
p�x�dx� (1.29)

Examples of events are subsets, e.g., such as

G = �x ∈ D 
 a < f�x� < b�� (1.30)

with b > a and where f is some function. An important concept associated with events is
that of conditional expectation. Given a random variable f, the expectation of f conditioned
to knowing that event G will occur is

EP
[
f �G] = EP

[
f ·1G

]

P�G�
� (1.31)

Two probability measures �̃�dx�= p̃�x�dx and ��dx�= p�x�dx are said to be equivalent
(or absolutely continuous with respect to one another) if they share the same sets of null
probability; i.e., �̃ ∼ � if the probability condition P�G� > 0 implies P̃�G� > 0, where

P̃�G� = EP̃�1G	 =
∫

�d
1G�x�p̃�x�dx =

∫

G
p̃�x�dx� (1.32)

with EP̃� 	 denoting the expectation with respect to the measure �̃. When computing the
expectation of a real-valued random variable, say, of the general form of a function of a
random vector (such functions are further defined in the next section), f = f�X� 
�d →�, it
is sometimes useful to switch from one choice of probability measure to another, equivalent
one. One can use the following change of measure (known as the Radon–Nikodym theorem)
for computing expectations:

EP�f	 =
∫

D
f�x���dx� =

∫

D
f�x�

d�

d�̃
�x��̃�dx� = EP̃

[

f
d�

d�̃

]

� (1.33)

The nonnegative random variable denoted by d�

d�̃
is called the Radon–Nikodym derivative of

� with respect to �̃ (or P w.r.t. P̃). From this result it also follows that d�

d�̃
= (

d�̃

d�

)−1
and

EP̃� d�
d�̃

	 = 1. As will be seen later in the chapter, a more general adaptation of this result
for computing certain types of conditional expectations involving martingales will turn out
to form one of the basic tools for pricing financial derivatives using changes of numeraire.
Another particular example of the use of this change-of-measure technique is in the Monte
Carlo estimation of integrals by so-called importance-sampling methods, as described in
Chapter 4.

Just as integrals are approximated with arbitrary accuracy by finite integral sums, contin-
uous probability distributions can be approximated by discrete ones. For instance, let D ⊂�d

be a bounded domain and p�x� be a continuous probability density on D and let �G1� � � � �Gm�
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be a partition of D made up of a family of nonintersecting events Gi ⊂D whose union covers
the entire state space D and that have the shape of hypercubes. Let pi be the probability of
event Gi under the probability measure with density p(x). Then an approximation for p�x� is

p�x� =
m∑

i=1

pi��x −xi�� (1.34)

where xi is the center of the hypercube corresponding to event Gi. Let � be the volume of the
largest hypercube among the cubes in the partition �G1� � � � �Gm� and let f�x� be a random
variable on D. In the limit � → 0, as the partition becomes finer and finer, the number of
events m��� will diverge to 	. In this limit, we find

EP�f	 = lim
�→0

m���∑

i=1

pif�xi�� (1.35)

By using sums as approximations to expectations, which are essentially multidimensional
Riemann integrals, one can extend the theorem in the previous section to the case of continuous
probability distributions. Consider a single-period financial model with current (i.e., initial)
time t = 0 and time horizon t = T and with n basic assets whose current prices are Ai

0,
i= 1� � � � � n. The prices of these basic assets at time T are indexed by a continuous state space
represented by the domain � ⊂ �d, and the values of the basic assets are random variables
Ai

T �x�, with x ∈ �. That is, the asset prices Ai
t are random variables assumed to take on real

positive values, i.e., Ai
t 
 �→�+. Let’s denote by p�x�dx the real-world probability measure

in � and assume that the measure of all open subsets of � is strictly positive. A portfolio is
modeled by a vector � whose components denote positions or holdings �i, i = 1� � � � � n, in
the basic assets. The definition of arbitrage extends as follows.

Definition 1.6. Nonnegative Portfolio A portfolio is nonnegative if it gives rise to nonneg-
ative expected pay-offs under almost all events G ⊂ � of nonzero probability, i.e., such that

EP

[
n∑

i=1

�i A
i
T �x�

∣
∣
∣
∣x ∈ G

]

≥ 0� (1.36)

Definition 1.7. Arbitrage: Single-Period Continuous Case The market admits arbitrage if
either of the following conditions holds:
A1. There is a nonnegative portfolio � of negative initial price

∑n
i=1 �iA

i
0 < 0.

A2. There is a nonnegative portfolio of zero initial cost,
∑n

i=1 �iA
i
0 = 0, for which the

expected payoff is strictly positive, i.e., EP
[∑n

i=1 �iA
i
T

]
> 0�

Definition 1.8. Pricing Measure: Single-Period Continuous Case3 A probability measure
Q of density q�x�dx on D is a pricing measure if all asset prices at current time t = 0 can
be expressed as follows:

Ai
0 = �EQ�fi	 = �

∫

�
fi�x�q�x�dx (1.37)

for some real number � > 0. The constant � is called the discount factor. The functions
fi�x� = Ai

T �x� are payoff functions for a given state or scenario x.

3 Later we relate such pricing measures to the case of arbitrary choices of numeraire asset wherein the pricing
formula involves an expectation of asset prices relative to the chosen numeraire asset price. Changes in numeraire
correspond to changes in the probability measure.
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Market completeness is defined in a manner similar to that in the single-period discrete
case of the previous section. From the foregoing definitions of arbitrage and pricing measure
we then have the following result, whose proof is left as an exercise.

Theorem 1.2. Fundamental Theorem of Asset Pricing (Continuous Single-Period Case)
Assume that all scenarios in � are possible. Then the following statements hold true.

• There is no arbitrage if and only if there is a pricing measure for which all scenarios
are possible.

• If the linear span of the set of basic instruments Ai
T , i = 1� � � � � n, is complete and

there is no arbitrage, then there is a unique pricing measure Q consistent with the
prices Ai

0 of the reference assets at current time t = 0.

The single-period pricing formalism can also be extended to the case of a multiperiod
discrete-time financial model, where trading is allowed to take place at a finite number of
intermediate dates. This feature gives rise to dynamic trading strategies, with portfolios in
the basic assets being rebalanced at discrete points in time. The foregoing definitions and
notions of arbitrage and asset pricing must then be modified and extended substantially.
Rather than present the theory for such discrete-time models, we shall instead introduce more
important theoretical tools in the following sections that will allow us ultimately to consider
continuous-time financial models. Multiperiod discrete-time (continuous-state-space) models
can then be obtained, if desired, as special cases of the continuous models via a discretization
of time. A further discretization of the state space leads to discrete-time multiperiod finite
financial models.

1.3 Multivariate Continuous Distributions: Basic Tools

Marginal probability distributions arise, for instance, when one is computing expectations
on some reduced subspace of random variables. Consider, for example, a set of continuous
random variables that can be separated or grouped into two random vector spaces X =
�X1� � � � �Xm� and Y = �Y1� � � � � Yn−m� that can take on values x = �x1� � � � � xm� ∈ �m and
y = �y1� � � � � yn−m� ∈ �n−m, respectively, with 1 ≤ m < n, n ≥ 2. The function p�x�y� is
the joint probability density or probability distribution function (pdf) in the product space
�n = �m ×�n−m. The integral

py�y� ≡
∫

�m
p�x�y�dx (1.38)

defines a marginal density py�y�. This function describes a probability density in the subspace
of random vectors Y ∈ �n−m and integrates to unity over �n−m. The conditional density
function, denoted by p�x�Y = y�≡ p�x�y� for the random vector X, is defined on the subspace
of �m (for a given vector value Y = y) and is defined by the ratio of the joint probability
density function and the marginal density function for the random vector Y evaluated at y:

p�x�y� = p�x�y�
py�y�

� (1.39)

assuming py�y� �= 0. From the foregoing two relations it is simple to see that, for any given y,
the conditional density also integrates to unity over x ∈ �m.



1.3 Multivariate Continuous Distributions: Basic Tools 17

Conditional distributions play an important role in finance and pricing theory. As we
will see later, derivative instruments can be priced by computing conditional expectations.
Assuming a conditional distribution, the conditional expectation of a continuous random
variable g = g�X�Y�, given Y = y, is defined by

E�g�Y = y	 =
∫

�m
g�x�y�p�x�y�dx� (1.40)

Given any two continuous random variables X and Y, then E�X�Y = y	 is a number while
E�X�Y	 is itself a random variable as Y is random, i.e., has not been fixed. We then have the
following property that relates unconditional and conditional expectations:

E�X	 = E
[
E�X�Y	] =

∫ 	

−	
E�X�Y = y	py�y�dy� (1.41)

This property is useful for computing expectations by conditioning. More generally, for a
random variable given by the function g = g�X�Y� we have the property

E�g	 =
∫

�n−m

∫

�m
g�x�y�p�x�y�dxdy

=
∫

�n−m

[∫

�m
g�x�y�p�x�y�dx

]

py�y�dy

=
∫

�n−m
E�g�Y = y	py�y�dy = E

[
E�g�Y	

]
� (1.42)

Functions of random variables, such as g�X�Y�, are of course also random variables. In
general, the pdf of a random variable given by a mapping f = f�X� 
�n → � is the function
pf 
� → �,

pf ��� = lim
��→0

P
(
f�X� ∈ ��� �+���

)

����
� (1.43)

defined on some open or closed interval between a and b. This interval may be finite or
infinite; some examples are � ∈ �0�1	, �0�	�, and �−	�	�. The cumulative distribution
function (cdf) Cf for the random variable f is defined as

Cf�z� =
∫ z

a
pf ���d� (1.44)

and gives the probability P�a ≤ f ≤ z�, with Cf�b� = 1. Let us consider another independent
real-valued random variable g ∈ �c�d�, where (c,d) is generally any other interval. We recall
that any two random variables f and g are independent if the joint pdf (or cdf) of f and g is
given by the product of the respective marginal pdfs (or cdfs). The sum of two independent
random variables f and g is again a random variable h = f + g. The cumulative distribution
function, denoted by Ch, for the random variable h is given by the convolution integral

Ch��� =
∫∫

�+�≤�

pf ���pg���d�d�

=
∫ b

a
pf ���Cg�� −��d� =

∫ d

c
pg���Cf �� −��d�� (1.45)
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where pg and Cg are the density and cumulative distribution functions, respectively, for the
random variable g. By differentiating the cumulative distribution function we find the density
function for the variable h:

ph��� =
∫ b

a
pf ���pg�� −��d� =

∫ d

c
pg���pf �� −��d�� (1.46)

The preceding formulas are sometimes useful because they provide the cumulative (or density)
functions for a sum of two independent random variables as convolution integrals of the
separate density and cumulative functions.

The definition for cumulative distribution functions extends into the multivariate case in
the obvious manner. Given a pdf p 
�n →� for �n-valued random vectors X = �X1� � � � �Xn�,
the corresponding cdf is the function Cp 
�

n → � defined by the joint probability

Cp�x� = P�X1 ≤ x1� � � � �Xn ≤ xn� =
∫ xn

−	
· · ·

∫ x1

−	
p�x′�dx′� (1.47)

We recall that any two random variables Xi and Xj (i �= j) are independent if the joint
probability P�Xi ≤ a�Xj ≤ b�=P�Xi ≤ a�P�Xj ≤ b� for all a�b ∈�, i.e., if the events �Xi ≤ a�
and �Xj ≤ b� are independent. Hence, for two independent random variables the joint cdf
and joint pdf are equal to the product of the marginal cdf and marginal pdf, respectively:
p�xi� xj� = pi�xi�pj�xj� and Cp�xi� xj� = Ci�xi�Cj�xj�.

Another useful formula for multivariate distributions is the relationship between probabil-
ity densities (within the same probability measure, say, ��dx�� expressed on different variable
spaces or coordinate variables. That is, if p�x� and pX̃�x̃� represent probability densities on
n-dimensional real-valued vector spaces x and x̃, respectively and the two spaces are related
by a one-to-one continuously differentiable mapping x̃ = x̃�x�, then

p�x� = pX̃�x̃�

∣
∣
∣
∣
dx̃
dx

∣
∣
∣
∣� (1.48)

where dx̃
dx is the Jacobian matrix of the invertible transformation x → x̃. The notation �M�

refers to the determinant of a matrix M.
A probability distribution that plays a distinguished role is the n-dimensional Gaussian

(or normal) distribution, with mean (or average) vector � = ��1� � � � ��n�, defined on x ∈�n

as follows:

p�x��C� = 1
√
�2��n�C� exp

(

− 1
2
�x −�� ·C−1 · �x −��

)

� (1.49)

The shorthand notation x ∼ Nn���C� is also used to denote the values of an n-dimensional
random vector with components x1� � � � � xn that are obtained by sampling with distribution
p�x��C�. C = �Cij� is called covariance matrix and enjoys the property of being positive
definite, i.e., is such that the inner product �x�Cx� ≡ x · �Cx� > 0 for all real vectors x, and
Cij = Cji. It follows that the cdf of the n-dimensional multivariate normal random vector is
defined by the n-dimensional Gaussian integral

�n�x��C� =
∫ xn

−	
· · ·

∫ x1

−	
p�x′��C�dx′� (1.50)

A particularly important special case of equation (1.50) for n = 1 is the univariate standard
normal cdf (i.e., �1�x0�1�), defined by

N�x� ≡ 1√
2�

∫ x

−	
e−y2/2dy� (1.51)
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The mean of a random vector X with given pdf p�x�, is defined by the components

�i = E
[
Xi	 =

∫

�n
xip�x�dx =

∫

�
xpi�x�dx� (1.52)

and the covariance matrix elements are defined by the expectations

Cij ≡ Cov�Xi�Xj� = E
[
�Xi −�i��Xj −�j�

] =
∫

�n
�xi −�i��xj −�j�p�x�dx� (1.53)

for all i� j = 1� � � � � n. The standard deviation of the random variable Xi is defined as the
square root of the variance:

�i ≡
√

Var�Xi� =
√
E
[
�Xi −�i�

2	� (1.54)

and the correlation between two random variables Xi and Xj is defined as follows:

�ij ≡ Corr�Xi�Xj� = Cij

�i�j

� (1.55)

Since
√
Cii = �i, the correlation matrix has a unit diagonal, i.e., �ii = 1. As well, they obey

the inequality ��ij� ≤ 1 (see Problem 1 of this section). For random variables that may be
positively or negatively correlated (e.g., as is the case for different stock returns) it follows that

−1 ≤ �ij ≤ 1� (1.56)

In the particular case of a multivariate normal distribution with positive definite covariance
matrix as in equation (1.49), the strict inequalities −1 < �ij < 1 hold.

The main property of normal distributions is that the convolution of two normal distribu-
tions is also normal. A random variable that is a sum of random normal variables is, therefore,
also normally distributed (see Problem 2). Because of this property, multivariate normal
distributions can be regarded as affine transformations of standard normal distributions with
� = 0n×1 and C = In×n (the identity matrix). Consider the vector � = ��1� � � � � �n� of inde-
pendent standard normal variables with zero mean and unit covariance, i.e., with probability
density

p��� =
n∏

i=1

e−�2
i /2

√
2�

� (1.57)

If L = �Lij�, is an n-dimensional matrix, then the random vector X = � + L� is normally
distributed with mean � and covariance C = LL†, † ≡ matrix transpose. Indeed, taking
expectations over the components gives

E
[
Xi

] = E

[

�i +
n∑

j=1

Lij�j

]

= �i� (1.58)

and

E
[
�Xi −�i��Xj −�j�

] = E

[(
n∑

k=1

Lik�k

)(
n∑

l=1

Ljl�l

)]

=
n∑

k=1

LikLjk = Cij� (1.59)
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Here we have used E��i	 = 0 and E��i�j	 = �ij , where �ij is Kronecker’s delta, with value 1
if i = j and zero otherwise.

Conversely, given a positive definite matrix C, one can show that there is a lower triangular
matrix L = �Lij� with Lij = 0 if j > i, such that C = LL†. The matrix L can be evaluated with
a procedure known as Cholesky factorization. As discussed later in the book, this algorithm is
at the basis of Monte Carlo methods for generating scenarios obeying a multivariate normal
distribution with a given covariance matrix.

A special case of a multivariate normal is the bivariate distribution defined for x =
�x1� x2� ∈ �2:

p�x1� x2�1��2��1��2� �� = e
− 1

2�1−�2�

[
�x1−�1�

2

�2
1

+ �x2−�2�
2

�2
2

−2� �x1−�1�
�1

�x2−�2�
�2

]

2��1�2

√
1−�2

�

The parameters �i and �i > 0 are the mean and the standard deviation of Xi, i = 1�2,
respectively, and � (−1 < � < 1) is the correlation between X1 and X2, i.e., � = �12 =
C12/�1�2. In this case the covariance matrix is

C =
(

�2
1 ��1�2

��1�2 �2
2

)

� (1.60)

and the lower Cholesky factorization of C is given by

L =
(

�1 0
��2 �2

√
1−�2

)

� (1.61)

The correlation matrix is simply

� =
(

1 �
� 1

)

� (1.62)

with Cholesky factorization � = ��†,

� =
(

1 0
�

√
1−�2

)

� (1.63)

The covariance matrix has inverse

C−1 = 1
�1−�2�

(
1/�2

1 −�/�1�2

−�/�1�2 1/�2
2

)

� (1.64)

Conditional and marginal densities of the bivariate distribution are readily obtained by inte-
grating over one of the variables in the foregoing joint density (see Problem 3).

For multivariate normal distributions one has the following general result, which we state
without proof.

Proposition. Consider the random vector X ∈ �n with partition X = �X1�X2�, X1 ∈ �m,
X2 ∈ �n−m with 1 ≤ m < n, n ≥ 2. Let X ∼ Nn���C� with mean � = ��1��2� and n×n
covariance

C =
(

C11 C12

C21 C22

)
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with nonzero determinant �C22� �= 0, where C11 and C22 are m×m and �n−m�× �n−m�
covariance matrices of X1 and X2, respectively, and C12 = C†

21 is the m× �n−m� cross-
covariance matrix of the two subspace vectors. The conditional distribution of X1, given
X2 = x2, is the m-dimensional normal density with mean �̃ = �1 + C12C−1

22 �x2 − �2� and
covariance C̃ = C11 −C12C−1

22 C21, i.e., x1 ∼ Nm��̃� C̃� conditional on X2 = x2.

A relatively simple proof of this result follows by application of known identities for
partitioned matrices. This result is useful in manipulating multidimensional integrals involving
normal distributions.

In deriving analytical properties associated with expectations or conditional expectations
of random variables, the concept of a characteristic function is useful. Given a pdf p 
�n →�
for a continuous random vector X = �X1� � � � �Xn�, the (joint) characteristic function is the
function �X 
�n → � defined by

�X�u� = E�eiu·X	 =
∫

�n
eiu·xp�x�dx� (1.65)

where u = �u1� � � � � un� ∈ �n, i ≡ √−1. Since �X is the Fourier transform of p, then from
the theory of Fourier integral transforms we know that the characteristic function gives a
complete characterization of the probabilitic laws of X, equivalently as p does. That is,
any two random variables having the same characteristic function are identically distributed;
i.e., the characteristic function uniquely determines the distribution. From the definition we
observe that �X is always a well-defined continuous function, given that p is a bonafide
distribution. Evaluating at the origin gives �X�0� = E�1	 = 1. The existence of derivatives
�k�X�0�/�u

k
i , k ≥ 1 is dependent upon the existence of the respective moments of the random

variables Xi. The kth moment of a single random variable X ∈ � is defined by

mk = E�Xk	 =
∫ 	

−	
xkp�x�dx� (1.66)

while the kth centered moment is defined by

��k� = E��X−��k	 =
∫ 	

−	
�x−��kp�x�dx� (1.67)

� = E�X	, k ≥ 1. [Note: for X = Xi then p → pi is the ith marginal pdf, � → �i = E�Xi	,
��k� → �

�k�
i = E��Xi −�i�

k	, etc.] From these integrals we thus see that the existence of the
moments depends on the decay behavior of p at the limits x→ ±	. For instance, a distribution
that exhibits asymptotic decay at least as fast as a decaying exponential has finite moments
to all orders. Obvious examples of these include the distributions of normal, exponential,
and uniform random variables. In contrast, distributions that decay as some polynomial to a
negative power may, at most, only possess a number of finite moments. A classic case is the
Student t distribution with integer d degrees of freedom, which can be shown to possess only
moments up to order d. This distribution is discussed in Chapter 4 with respect to modeling
risk-factor return distributions.

The moments can be obtained from the derivatives of �X at the origin. However, it is
a little more convenient to work directly with the moment-generating function (mgf). The
(joint) moment-generating function is given by

MX�u� = E�eu·X	 =
∫

�n
eu·xp�x�dx� (1.68)
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If the mgf exists (which is not always true), then it is related to the characteristic function:
MX�u� = �X�−iu�. It can be shown that if E��X�r 	 < 	, then MX�u� (and �X�u�) has
continuous rth derivative at u = 0 with moments given by

mk = E�Xk	 = dkMX�0�
duk

= �−i�k
dk�X�0�

duk
� k = 1� � � � � r� (1.69)

Hence, a random variable X has finite moments of all orders when MX�u� (or �X�u�) is
continuously differentiable to any order with mk = M

�k�
X �0� = �−i�k�

�k�
X �0� , k = 1� � � � .

Given two independent random variables X and Y, the characteristic function of the
sum X+Y simplifies into a product of functions: �X+Y �u� = E�eiu�X+Y�	 = E�eiuX	E�eiuY 	 =
�X�u��Y �u�. Hence for Z =∑n

i=1 Xi we have �Z�u� = �n
i=1�Xi

�u� if all Xi are independent.
Characteristic functions or mgfs can be obtained in analytically closed form for various
common distributions.

Problems

Problem 1. Make use of equations (1.53) and (1.54) and the Schwarz inequality,

(∫

�n
f�x�g�x�dx

)2

≤
(∫

�n
�f�x��2dx

)(∫

�n
�g�x��2dx

)

� x ∈ �n� (1.70)

to demonstrate the inequality �Cij� ≤ �i�j , hence ��ij� ≤ 1.

Problem 2. Consider two independent normal random variables X and Y with probability
distributions

px�x� = 1

�x

√
2�

e−�x−�x�
2/2�2

x and py�y� = 1

�y

√
2�

e−�y−�y�
2/2�2

y � (1.71)

respectively. Use convolution to show that Z = X + Y is a normal random variable with
probability distribution

pz�z� = 1

�z

√
2�

e−�z−�z�
2/2�2

z � (1.72)

where �2
z = �2

x +�2
y and �z = �x +�y.

Problem 3. Show that the joint density function for the bivariate normal has the form

p�x� y�1��2��1��2� �� = 1

2��1�2

√
1−�2

e−�y−�2�
2/2�2

2

exp
[

− 1

2�2
1 �1−�2�

(

x−�1 −�
�1

�2

�y−�2�

)2]

� (1.73)

and thereby obtain the marginal and conditional distributions:

pY �Y� = 1√
2��2

e−�Y−�2�
2/2�2

2 � (1.74)

p�x�Y� = 1
√

2��1−�2��1

exp
[

− 1

2�1−�2��2
1

[

x−�1 −�
�1

�2

�Y −�2�

]2]

� (1.75)

Verify that this same result follows as a special case of the foregoing proposition.
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Problem 4. Find the moment-generating function for the following distributions:

(a) The uniform distribution on the interval (a,b) with pdf: p�x� = �b−a�−11x∈�a�b�.
(b) The exponential distribution with parameter � > 0 and pdf: p�x� = �e−�x1x≥0.
(c) The gamma distribution with parameters (n��), n = 1�2� � � � , � > 0, and pdf: p�x� =

�e−�x��x�n−1

�n−1�! 1x≥0.

By differentiating the mgf, obtain the mean and variance of the random variable X for each
distribution (a)–(c).

Problem 5. Obtain the moment-generating function for:

(a) The multivariate normal with density given by equation (1.49).
(b) The chi-squared random variable with n degrees of freedom: Y = ∑n

i=1 Z
2
i , where

Zi ∼ N�0�1�.

Problem 6. Rederive the result in problem 2 using an argument based solely on moment-
generating functions.

Problem 7. Consider two independent exponential random variables X1 and X2 with respec-
tive parameters �1 and �2, �1 �= �2. Find the pdf for X1 +X2 and the probability P�X1 <X2�.
Hint: Use convolution and conditioning, respectively.

1.4 Brownian Motion, Martingales, and Stochastic Integrals

A particularly important example of a multivariate normal distribution is provided by a random
path evaluated at a sequence of dates in the future. Consider a time interval �0� t	 = �t0 =
0� t1� � � � � tN = t	, and subdivide it into N ≥ 1 subintervals �ti� ti+1	 of length �ti = ti+1 − ti,
i = 0� � � � �N −1. The path points �t� xt� are defined for all t = ti by means of the recurrence
relation

xti+1
= xti

+��ti��ti +��ti��Wti
� (1.76)

where the increments �Wti
= Wti+1 −Wti

are assumed uncorrelated (independent) normal
random variables with probability density at �Wti

= �wi:

pi��wi� = 1
√

2��ti
e−��wi�

2/2�ti � (1.77)

Since the increments are assumed independent, the joint pdf for all increments is

p��w0� � � � � �wN−1� =
N−1∏

i=0

pi��wi�� (1.78)

This gives rise to two important unconditional expectations:

E
[
�Wti

�Wtj

] = �ij�ti E
[
�Wti

] = 0� (1.79)

By usual convention we fix W0 = 0. The joint pdf for the random variables Wt1
� � � � �WtN

representing the probability density at the path points Wti
= wi (w0 = 0) is then also a
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multivariate Gaussian function, which is obtained by simply setting �wi = wi+1 −wi in
equation (1.78). The set of real-valued random variables �Wti

�i=0� � � � �N therefore represents the
time-discretized standard Brownian motion (or Wiener process) at arbitrary discrete points
in time. Iterating equation (1.76) gives

xt = x0 +
N−1∑

j=0

[
��tj��tj +��tj��Wtj

]
� (1.80)

where xtN
= xt and xt0

= x0. The random variable xt is normal with mean

E0�xt	 = x0 +
N−1∑

i=0

��ti��ti (1.81)

and variance

E0��xt −E0�xt	�
2	 = E0





(
N−1∑

i=0

��ti��Wti

)2


 =
N−1∑

i=0

��ti�
2�ti� (1.82)

Note: We use E0� 	 to denote the expectation conditional only on the value of paths being
fixed at initial time; i.e., xt0

= x0 = fixed value. This is hence an unconditional expectation
with respect to path values at any later time t > 0. Later, we will at times simply use the
unconditional expectation E� 	 to denote E0� 	. Sample paths of a process with zero mean and
constant volatility are displayed in Figure 1.2.

Typical stochastic processes in finance are meaningful if time is discretized. The choice
of the elementary unit of time is part of the modeling assumptions and depends on the
applications at hand. In pricing theory, the natural elementary unit is often one day but
can also be one week, one month as well as five minutes or one tick, depending on the
objective. The mathematical theory, however, simplifies in the continuous-time limit, where
the elementary time is infinitesimal with respect to the other time units in the problem, such as

0
0

10

20

0.2 0.4 0.6 0.8 1 1.2

FIGURE 1.2 A simulation of five stochastic paths using equation (1.76), with x0 = 10, constant
��t� = 0�1, ��t� = 0�2, N = 100, and time steps �ti = 0�01.
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option maturities and cash flow periods. Mathematically, one can construct continuous-time
processes by starting from a sequence of approximating processes defined for discrete-time
values i�t� i = 0� � � � �N , and then pass to the limit as �t → 0. More precisely, one can define
a continuous-time process in an interval �t0� tN 	 by subdividing it into N subintervals of equal
length, defining a discrete time process xN

t ≡ xtN
and then compute the limit

xt = lim
N→	

xN
t (1.83)

by assuming that the discrete-time process xN
t is constant over the partition subintervals.

The elementary increments �xt = xt+�t −xt are random variables that obviously tend to zero
as �t → 0, but which are still meaningful in this case. The convention is to denote these
increments as dx in the limit �t → 0 and to consider the straight d as a reminder that, at the
end of the calculations, one is ultimately interested in the limit as �t → 0.4

The continuous-time limit is obtained by holding the terminal time t = tN fixed and letting
N → 	, i.e.,

E0�xt	 ≡ lim
N→	

E0�x
N
t 	 = x0 +

∫ t

0
����d� ≡ x0 + �̄�t�t� (1.84)

and

E0��xt −E0�xt	�
2	 ≡ lim

N→	
E0��x

N
t −E0�x

N
t 	�

2	 =
∫ t

0
�2���d� ≡ �̄�t�2t� (1.85)

where we introduced the time-averaged drift �̄ = �̄�t� and volatility �̄ = �̄�t� over the time
period �0� t	� t ∈ �+. Since xt is normally distributed, we finally arrive at the transition
probability density for a stochastic path to attain value xt at time t, given an initially known
value x0 at time t = 0:

p�xt� x0 t� = 1

�̄
√

2�t
exp

(

− �xt − �x0 + �̄t��2

2�̄2t

)

� (1.86)

This density, therefore, gives the distribution (conditional on a starting value x0) for a process
with continuous motion on the entire real line xt ∈ �−	�	� with constant drift and volatility.
[Note: x0� xt are real numbers (not random) in equation (1.86).]

A Markov chain is a discrete-time stochastic process such that for all times t ∈ � the
increments xt+�t − xt are random variables independent of xt. A Markov process is the
continuous-time limit of a Markov chain. The process just introduced provides an example
of a Markov chain because the increments are independent.

The probability space for a general discrete-time stochastic process where calendar time
can take on values t0 < t1 < · · · < tN is the space of vectors x ∈ �N with an appropriate
multivariate measure, such as P�dx� = p�x1� � � � xN �dx, where p is a probability density. By
considering a process xt only up to an intermediate time ti, i <N , we are essentially restricting
the information set of possible events or probability space of paths. The family

(
�t

)
t≥0

of all
reduced (or filtered) probability spaces �t up to time t, for all times t ≥ 0, is called filtration.
One can think of �t as the set of all paths up to time t. A pay-off of a derivative contract

4 These definitions are admittedly NOT entirely rigorous, but they are meant to allow the reader to quickly
develop an intuition in case she doesn’t have a formal probability education. In keeping with the purpose of this
book, our objective is to have the reader learn how to master the essential techniques in stochastic calculus that are
useful in finance without assuming that she first learn the formal mathematical theory.
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occuring at time t is a well-defined (measurable) random variable on all the spaces �t′ with
t′ ≥ t but not on the spaces with t′ < t. Filtrations are essentially hierarchies of probability
spaces (or information sets) through which more and more information is revealed to us
as time progresses; i.e., �t′ ⊂ �t if t′ < t so that given a time partition t0 < t1 < · · · < tN ,
�t0

⊂ �t1
⊂ · · · ⊂ �tN

. We say that a random variable or process is �t-measurable if its value
is revealed at time t. Such a random variable or process is also said to be nonanticipative
with respect to the filtration or �t-adapted (see later for a definition of nonanticipative
functions, while a definition of an adapted process is also provided in Section 1.9 in the
context of continuous-time asset pricing). Conditional expectations with respect to a filtration
�t represent expectations conditioned on knowing all of the information about the process
only up to time t. It is customary to use the following shorthand notation for conditional
probabilities:

Et

[·	 = E
[ · ∣∣�t

]
� (1.87)

Definition 1.9. Martingale A real-valued �t-adapted continuous-time process �xt�t≥0 is said
to be a P-martingale if the boundedness condition E��xt�	 < 	 holds for all t ≥ 0 and

xt = Et

[
xT

]
� (1.88)

for 0 ≤ t < T < 	
This definition implies that the conditional expectation for the value of a martingale

process at a future time T, given all previous history up to the current time t (i.e., adapted
to a filtration �t), is its current time t value. Our best prediction of future values of such
a process is therefore just the presently observed value. [Note: Although we have used the
same notation, i.e., xt, this definition generally applies to arbitrary continuous-time processes
that satisfy the required conditions; the pure Wiener process or standard Brownian motion is
just a special case.] We remark that the expectation E� 	 ≡ EP� 	 and conditional expectation
Et� 	 ≡ EP

t � 	 are assumed here to be taken with respect to a given probability measure P.
For ease of notation in what follows we drop the explicit use of the superscript P unless the
probability measure must be made explicit. If one changes filtration or the probability space
associated with the process, then the same process may not be a martingale with respect to
the new probability measure and filtration. However, the reverse also applies, in the sense
that a process may be converted into a martingale by modifying the probability measure.

A more general property satisfied by a stochastic process �xt�t≥0 (regardless of whether
the process is a martingale or not) is the so-called tower property for s < t < T :

Es

[
Et

[
xT

]] = Es

[
xT

]
� (1.89)

This follows from the basic property of conditional expectations: The expectation of a
future expectation must be equal to the present expectation or presently forecasted value.
Another way to see this is that a recursive application of conditional expectations always
gives the conditional expectation with respect to the smallest information set. In this case
�s ⊂ �t ⊂ �T . A martingale process ft = f�xt� t� can also be specified by considering a
conditional expectation over some (payoff) function � of an underlying process. In particular,
consider an underlying process xt starting at time t0 with some value x0 and the conditional
expectation

ft = f�xt� t� = Et���xT �T�	� (1.90)
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for any t0 ≤ s ≤ t ≤ T , then ft satisfies the martingale property. In fact

Es

[
f�xt� t�

] = Es

[

Et

[
��xT �T�

]
]

= Es

[
��xT �T�

] = f�xs� s�� (1.91)

The process introduced in equation (1.76) is a martingale in case the drift function ��t�
is identically zero. In fact, in this case if ti < tj , we have

Eti
�xtj

	 = Eti

[ · · ·Etj−1

[
Etj

[
xtj

]] · · · ] (1.92)

= Eti

[ · · ·Etj−1

[
xtj

] · · · ] = xti
� (1.93)

Bachelier was one of the pioneers of stochastic calculus, and he proposed to use a process
similar to xt as defined by equation (1.76) in the continuous-time limit to model stock price
processes.5 A difficulty with the Bachelier model was that stock prices can attain negative
values. The problem can be corrected by regarding xt to be the natural logarithm of stock
prices; this conditional density turns out to be related to (although not equivalent to) the
risk-neutral density used for pricing derivatives within the Black–Scholes formulation, as is
seen in Section 1.6, where we take a close look at geometric Brownian motion. The density
in equation (1.86) leads to Bachelier’s formula for the expectation of the random variable
�xt −K�+, with constant K> 0, where �x�+ ≡ x if x > 0, �x�+ ≡ 0 if x ≤ 0 (see Problem 9).
In passing to the continuous-time limit, we have, based on equation (1.86), arrived at an
expression for the random variable xt in terms of the random variable Wt for the standard
Brownian motion (or Wiener process):

xt = x0 + �̄t+ �̄Wt� (1.94)

The distribution for the zero-drift random variable �Wt�t≥0, representing the real-valued
standard Brownian motion (Wiener process) at time t with Wt=0 ≡ W0 = 0, is given by

pW�w� t� = 1√
2�t

e−w2/2t (1.95)

at Wt = w. Note that this is also entirely consistent with the marginal density obtained by
integrating out all intermediate variables w1� � � � �wN−1 in the joint pdf of the discretized
process �Wti

�i=0� � � � �N with w = wN , t = tN .
According to the distributions given by equations (1.77) and (1.95), one concludes that

standard Brownian motion (or the Wiener process) is a martingale process characterized by
independent Gaussian (normal) increments with trajectories [i.e., path points �t� xt�] that are
continuous in time t ≥ 0: �Wt = Wt+�t −Wt ∼ N�0� �t� (i.e., normally distributed with mean
zero and variance �t) and Wt+�t −Wt is independent of Ws for �t > 0, 0 ≤ s ≤ t, 0 ≤ t < 	.
Moreover, specializing to the case of zero drift and �̄ = 1 and putting t0 = s, the corresponding

5 The date March 29, 1900, should be considered as the birth date of mathematical finance. On that day, Louis
Bachelier successfully defended at the Sorbonne his thesis Théorie de la Spéculation. As a work of exceptional
merit, strongly supported by Henri Poincaré, Bachelier’s supervisor, it was published in Annales Scientifiques de l’
Ecole Normale Supérieure, one of the most influential French scientific journals. This model was a breakthrough
that motivated much of the future work by Kolmogorov and others on the foundations of modern stochastic calculus.
The stochastic process proposed by Bachelier was independently analyzed by Einstein (1905) and is referred to as
Brownian motion in the physics literature. It is also referred to as the Wiener–Bachelier process in a book by Feller,
An Introduction to Probability Theory and Its Applications [Fel71]. However, this terminology didn’t affirm itself,
and now the process is commonly called the Wiener process.
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probability distribution given by equation (1.86) with shifted time t → �t− s� then gives the
well-known property: Wt −Ws ∼ N�0� t− s�, Wt ∼ N�0� t�. In fact we have the homogeneity
property for the increments: Wt+s −Ws ∼ Wt −W0 = Wt ∼ N�0� t�. In particular, E�Wt	 = 0
and E�W 2

t 	 = t. An additional property is E�WsWt	 = min�s� t�. This last identity obtains
from the independence of the increments [i.e., equation (1.79)]. Indeed consider any ti < tj ,
0 ≤ i < j ≤ N , then:

E
[
Wti

Wtj

]= E
[
�Wti

−W0���Wtj
−Wti

�+ �Wti
−W0��

]

= E
[
�Wti

−W0�
2	 = E

[
W 2

ti
	 = ti� (1.96)

A similar argument with tj < ti gives tj , while for ti = tj we obviously obtain ti. All of these
properties also follow by taking expectations with respect to the joint pdf for the Wiener paths.

An important aspect of martingales is whether or not their trajectories or paths are
continuous in time. Consider any real-valued martingale xt, then �xt = xt+�t − xt is a pro-
cess corresponding to the change in a path over an arbitrary time difference �t > 0. From
equation (1.88), Et

[
�xt

] = 0, so, not surprisingly, the increments of a martingale path are
unpredictable (irregular), even in the infinitesimal limit �t → 0. However, the irregularity of
paths can be either continuous or discontinuous. An example of a martingale with discontinu-
ous paths is a jump process, where paths are generally right continuous at every point in time
as a consequence of incorporating jump discontinuities in the process at a random yet count-
able number of points within a time period. We refer the interested reader to recent works on
the growing subject of financial modeling with jump processes (see, for example, [CT04]).
Here and throughout, we focus on continuous diffusion models for asset pricing; hence our
discussion is centered on continuous martingales (i.e., martingales with continuous paths).
Let f�t� = xt���, t ≥ 0, represent a particular realized path indexed by the scenario �, then
continuity in the usual sense implies that the graph of f(t) against time is continuous for all
t ≥ 0. Denoting the left and right limits at t by f�t−�= lims→t− f�s� and f�t+�= lims→t+ f�s�,
then f�t�= f�t−�= f�t+�. Every Brownian path or any path of a stochastic process generated
by an underlying Brownian motion displays this property, as can be observed, for example, in
Figure 1.2. [In contrast, a path of a jump diffusion process would display a similar continuity
in piecewise time intervals but with the additional feature of vertical jump discontinuities at
random points in time at which only right continuity holds. If t̄ is a jump time, then f�t̄−�,
f�t̄+� both exist, yet f�t̄−� �= f�t̄+� with f�t̄� = f�t̄+�, where f�t̄�−f�t̄−� is the size of the
jump at time t̄.]

Stochastic continuity refers to continiuty of sample paths of a process �xt�t≥0 in the
probabilitistic sense as defined by

lim
s→t

P
(�xs −xt� >  

) = 0� s� t > 0 (1.97)

for any  > 0. This is readily seen to hold for Brownian motion and for continuous martingales.
The class of continuous-time martingales that are of interest are so-called continuous square
integrable martingales, i.e., martingales with finite unconditional variance or finite second
moment: E�x2

t 	 < 	 for t ≥ 0. Such processes are closely related to Brownian motion and
include Brownian motion itself. Further important properties of the paths of a continuous
square integrable martingale (e.g., Brownian motion) then also follow. Consider again the
time discretization �0� t	 = �t0 = 0� t1� � � � � tN = t	 with subintervals �ti� ti+1	 and path points
�ti� xti

�. The variation and quadratic variation of the path are, respectively, defined as:

V1 = lim
N→	

VN
1 ≡ lim

N→	

N−1∑

i=0

��xti
� (1.98)
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and

V2 = lim
N→	

VN
2 ≡ lim

N→	

N−1∑

i=0

��xti
�2� (1.99)

�xti
= xti+1

−xti
. The properties of V1 and V2 provide two differing measures of how paths

behave over time and give rise to important implications for stochastic calculus. Since the
process is generally of nonzero variance, then P�VN

2 > 0�= 1 and P�V2 > 0�= 1. In particular,
if we let �ti = �t = t/N and consider the case of Brownian motion xt = Wt, then by rewriting
V2 we have with probability 1:

V2 = lim
N→	

(
1
N

N−1∑

i=0

��xti
�2

)

N = lim
N→	

(
1
N

N−1∑

i=0

��Wti
�2

)

N = t� (1.100)

Here we used the Strong law of large numbers and the fact that the ��Wti
�2 are identically

and independently distributed random variables with common mean of �t. Based on this
important property of nonzero quadratic variation, Brownian paths, although continuous, are
not differentiable. For finite N the variation VN

1 is finite. As the number N of increments
goes to infinity, �ti → 0 and, from property (1.97), we see that the size of the increments
approaches zero. The question that arises then is whether V1 exists or not. Except for the
trivial case of a constant martingale, the result is that VN

1 → 	 as N → 	; i.e., the variation
V1 is in fact infinite. Without trying to provide any rigorous proof of this here, we simply state
the usual heuristic and somewhat instructive argument for this fact based on the following
observation:

VN
2 =

N−1∑

i=0

��xti
�2 ≤

[

max
0≤i≤N

���xti
��
] N−1∑

i=0

��xti
� =

[

max
0≤i≤N

���xti
��
]

VN
1 � (1.101)

Since the quadratic variation V2 is greater than zero, taking the limit N → 	 on both
sides of the inequality shows that the right-hand side must have a nonzero limit. Yet from
equation (1.97) we have max���xti

��→ 0 as N → 	. Hence we must have that the right-hand
side is a limit of an indeterminate form (of type 0 ·	); that is, V1 = limN→	 VN

1 = 	, which
is what we wanted to show.

Once we are equipped with a standard Brownian motion and a filtered probability space,
then the notion of stochastic integration arises by considering the concept of a nonanticipative
function. Essentially, a (random) function ft is said to be nonanticipative w.r.t. a Brownian
motion or process Wt if its value at any time t > 0 is independent of future information. That
is, ft is possibly only a function of the history of paths up to time t and time t itself: ft =
f���Ws�0≤s≤t�� t�. The value of this function at time t for a particular realization or scenario �
may be denoted by ft���. Nonanticipative functions therefore include all deterministic (i.e.,
nonrandom) functions as a special case. Given a continuous nonanticipative function ft that
satisfies the “nonexplosive”condition

E

[∫ t

0
f 2
s ds

]

< 	� (1.102)

the Itô (stochastic) integral is the random variable denoted by

It�f� =
∫ t

0
fsdWs < 	 (1.103)
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and is defined by the limit

It�f� = lim
N→	

N−1∑

i=0

fti�Wti
= lim

N→	

N−1∑

i=0

fti �Wti+1
−Wti

	� (1.104)

It can be shown that this limit exists for any choice of time partitioning of the interval �0� t	;
e.g., we can choose �ti = �t = t/N . Each term in the sum is given by a random number fti
[but fixed over the next time increment �ti� ti+1�] times a random Gaussian variable �Wti

.
Because of this, the Itô integral can be thought of as a random walk on increments with
randomly varying amplitudes. Since ft is nonanticipative, then for each ith step we have
the conditional expectation for each increment in the sum: Eti

�fti�Wti
	 = ftiEti

��Wti
	 = 0.

Given nonanticipative functions ft and gt, the following formulas provide us with the first
and second moments as well as the variance-covariance properties of Itô integrals:

�i� E�It�f�	 = E

[∫ t

0
fsdWs

]

= 0� (1.105)

�ii� E��It�f��
2	 = E

[(∫ t

0
fsdWs

)2]

= E

[∫ t

0
f 2
s ds

]

� (1.106)

�iii� E�It�f�It�g�	 = E

[(∫ t

0
fsdWs

)(∫ t

0
gsdWs

)]

= E

[∫ t

0
fsgsds

]

� (1.107)

Based on the definition of It�f� and the properties of Brownian increments, it is not difficult
to obtain these relations. We leave this as an exercise for the reader. Of interest in finance
are nonanticipative functions of the form ft = f�xt� t�, where xt is generally a continuous
stochastic (price) process �xt�t≥0. The Itô integral is then of the form

It�f� =
∫ t

0
f�xs� s�dWs� (1.108)

and, assuming that condition (1.102) holds, then properties (i)–(iii) also apply. Another notable
property is that the Itô integral is a martingale, since Et�Iu�f�	 = It�f�, for 0 < t < u.

The Itô integral leads us into important types of processes and the concept of a stochastic
differential equation (SDE). In fact the general class of stochastic processes that take the form
of sums of stochastic integrals are (not surprisingly) known as Itô processes. It is of interest
to consider nonanticipative processes of the type at = a�xt� t� and bt = b�xt� t�, t ≥ 0, where
�xt�t≥0 is a random process. A stochastic process �xt�t≥0 is then an Itô process if there exist
two nonanticipative processes �at�t≥0 and �bt�t≥0 such that the conditions

P

(∫ t

0
�as�ds < 	

)

= 1 and P

(∫ t

0
b2
s ds < 	

)

= 1

are satisfied, and

xt = x0 +
∫ t

0
a�xs� s�ds+

∫ t

0
b�xs� s�dWs� (1.109)

for t > 0. These probability conditions are commonly imposed smoothness conditions on the
drift and volatility functions. This stochastic integral equation is conveniently and formally
abbreviated by simply writing it in SDE form:

dxt = a�xt� t�dt+b�xt� t�dWt� (1.110)

We shall use SDE notation in most of our future discussions of Itô processes.
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Itô integrals give rise to an important property, known as Doob–Meyer decomposition. In
particular, it can be shown that if �Ms�0≤s≤t is a square integrable martingale process, then
there exists a (nonanticipative) process �fs�0≤s≤t that satisfies equation (1.102) such that

Mt = M0 +
∫ t

0
fsdWs� (1.111)

From this we observe that an Itô process xt as given by equation (1.109) is divisible into a
sum of a martingale component and a (generally random) drift component.

Problems

Problem 1. Show that the finite difference
xti+1

−xti
�ti

of the Brownian motion in equation (1.76)

is a normally distributed random variable with mean ��ti� and volatility ��ti�/
√
�ti. Hint:

Use equation (1.76) and take expectations while using equation (1.79).

Problem 2. Show that the random variable

� =
N−1∑

i=0

a�ti��xti
� (1.112)

where �xti
= xti+1

−xti
, and xti

defined by equation (1.76), is a normal random variable. Com-
pute its mean and variance. Hint: Take appropriate expectations while using equation (1.79).

Problem 3. Suppose that the time intervals are given by �ti = t/N , where t is any finite time
value and N is an integer. Show that equations (1.84) and (1.85) follow in the continuous-time
limit as N → 	 for fixed t.

Problem 4. Show that the random variable � = ∑N
i=1 a�ti���Wti

�2 has mean and variance
given by

E��	 =
N∑

i=1

a�ti��ti� E���−E��	�2	 = 2
N∑

i=1

a�ti�
2��ti�

2 (1.113)

Hint: Since �Wti
∼ N�0� �ti� independently for each i, one can use the identity in Problem 2

of Section 1.6. That is, by considering E�exp���Wti
�	 for nonzero parameter � and applying

a Taylor expansion of the exponential and matching terms in the power series in �n, one
obtains E���Wti

�n	 for any n ≥ 0. For this problem you only need terms up to n = 4.

Problem 5. Show that the distribution p�x�x0 t� in equation (1.86) approaches the one-
dimensional Dirac delta function ��x−x0� in the limit t → 0.

Problem 6. (i) Obtain the joint marginal pdf of the random variables Ws and Wt, s �= t.
Evaluate E��Wt −Ws�

2	 for all s� t ≥ 0. (ii) Compute Et�W
3
s 	 for s > t.

Problem 7. Let the processes �xt�t≥0 and �yt�t≥0 be given by xt = x0 +�xt +�xWt and
yt = y0 +�yt+�yWt, where �x, �y, �x, �y are constants. Find:

(i) the means E�xt	, E�yt	;
(ii) the unconditional variances Var�xt�, Var�yt�;

(iii) the unconditional covariances Cov�xt� yt� and Cov�xs� yt� for all s� t ≥ 0.

Problem 8. Obtain E�Xt	, Var�Xt�, and Cov�Xs�Xt� for the processes

�a�Xt = X0e
−�t +�

∫ t

0
e−��t−s�dWs� t ≥ 0� (1.114)

�b�Xt = ��1− t/T�+��t/T�+ �T − t�
∫ t

0

dWs

T − s
� 0 ≤ t ≤ T� (1.115)
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where �, �, � are constant parameters and time T is fixed in (b). The process in (a) describes
the so-called Ornstein–Uhlenbeck process, while (b) describes a Brownian bridge, whereby
the process is Brownian in nature, yet it is also exactly pinned down at initial time and final
time T, i.e., X0 = �, XT = �. For (a) assume X0 is a constant.

Problem 9. Assume that xt is described by a random process given by equation (1.94),
or equivalently by the conditional density in equation (1.86). Show that the conditional
expectation at time t = 0 defined by

C�t�K� = E0��xt −K�+	� (1.116)

where �x�+ = x if x > 0 and zero otherwise gives the formula

C�t�K� = �x0 + �̄t−K�N

(
x0 + �̄t−K

�̄
√
t

)

+ �̄
√
t!

(
x0 + �̄t−K

�̄
√
t

)

� (1.117)

where N�·� is the standard cumulative normal distribution function and

!�x� = 1√
2�

e−x2/2� (1.118)

By further restricting the drift, � = 0 gives Bachelier’s formula. This corresponds (from the
viewpoint of pricing theory) to the fair price of a standard call option struck at K, and maturing
in time t, assuming a zero interest rate and simple Brownian motion for the underlying “stock”
level xt at time t. Hint: One way to obtain equation (1.117) is by direct integration over all
xt of the product of the density p [of equation (1.86)] and the payoff function �xt −K�+. Use
appropriate changes of integration variables and the property 1−N�x� = N�−x� to arrive at
the final expression.

1.5 Stochastic Differential Equations and Itô’s Formula

For purposes of describing asset price processes it is of interest to consider SDEs for diffusion
processes xt that are defined in terms of a lognormal drift function ��x� t� and a lognormal
volatility function ��x� t� and are written as follows:6

dxt = ��xt� t�xtdt+��xt� t�xtdWt� (1.119)

Assuming the drift and volatility are smooth functions, the discretization process in the
previous section extends to this case and produces a solution to equation (1.119) as the limit
as N → 	 of the Markov chain xt0

� � � � � xtN
defined by means of the recurrence relations

xti+1
= xti

+��xti
� ti�xti

�ti +��xti
� ti�xti

�Wti
� (1.120)

6 When the drift and volatility (or diffusion) terms in the SDE are written in the form given by equation (1.119)
it is common to refer to � and � as the lognormal drift and volatility, respectively. The reason for using this
terminology stems from the fact that in the special case that � and � are at most only functions of time t (i.e., not
dependent on xt), the SDE leads to geometric Brownian motion, and, in particular, the conditional transition density
is exactly given by a lognormal distribution, as discussed in the next section.
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From this discrete form of equation (1.119) we observe that xt+�t −xt = �xt = ��xt� t�xt�t+
��xt� t�xt�Wt. Alternatively, the solution to equation (1.119) can be characterized as the
process xt such that

��xt� t� = lim
�t→0

Et�xt+�t −xt	

xt�t
� ��xt� t�

2 = lim
�t→0

Et��xt+�t −xt�
2	

x2
t �t

� (1.121)

These expectations follow from the properties Et��Wt	 = 0 and Et���Wt�
2	 = �t. Notice

that, although an SDE defines a stochastic process in a fairly constructive way, conditional
distribution probabilities, such as the one for the Wiener process in equation (1.86), can be
computed in analytically closed form only in some particular cases. Advanced methods for
obtaining closed-form conditional (transition) probability densities for certain families of drift
and volatility functions are discussed in Chapter 3, where the corresponding Kolmogorov
(or Fokker–Planck) partial differential equation approach is presented in detail.

A method for constructing stochastic processes is by means of nonlinear transformations.
The stochastic differential equation satisfied by a nonlinear transformation as a function of
another diffusion process is given by Itô’s lemma:

Lemma 1.3. Itô’s Lemma If the function ft = f�xt� t� is smooth with continuous derivatives
�f/�t, �f/�x, and �2f/�x2 and xt satisfies the stochastic differential

dxt = a�xt� t�dt+b�xt� t�dWt� (1.122)

where a�x� t� and b�x� t� are smooth functions of x and t, then the stochastic differential of
ft is given by

dft =
(
�f

�t
+a�xt� t�

�f

�x
+ b�xt� t�

2

2
�2f

�x2

)

dt+b�xt� t�
�f

�x
dWt (1.123)

≡ A�xt� t�dt+B�xt� t�dWt�

In stochastic integral form:

ft = f0 +
∫ t

0
A�xs� s�ds+

∫ t

0
B�xs� s�dWs� (1.124)

A nonrigorous, yet instructive, “proof ” is as follows.7

Proof. Using a Taylor expansion we find

�ft = f�xt +�xt� t+�t�−f�xt� t�

= �f

�t
�xt� t��t+

�f

�x
�xt� t��xt +

1
2
�2f

�x2
�xt� t���xt�

2 +O���t�
3
2 �� (1.125)

where the remainder has an expectation and variance converging to zero as fast as ��t�2 in the
limit �t → 0. Inserting the finite differential form of equation (1.122) into equation (1.125)
while replacing ��Wt�

2 → �t and retaining only terms up to O��t� gives

�ft =
(
�f

�t
�xt� t�+a�xt� t�

�f

�x
�xt� t�+

b�xt� t�
2

2
�2f

�x2
�xt� t�

)

�t

+b�xt� t�
�f

�x
�xt� t��Wt +O���t�

3
2 �� (1.126)

7 For more formal rigorous treatments and proofs see, for example, [IW89, �ks00, JS87].
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Taking the limit N → 	 (�t → 0), the finite difference �t is the infinitesimal differential dt,
�Wt is the stochastic differential dWt, the remainder term drops out, and we finally obtain
equation (1.123). Alternatively, with the use of equation (1.125) we can obtain the drift
function of the ft process:

A�xt� t� = lim
�t→0

Et��ft	

�t

= �f

�t
+ �f

�x
lim
�t→0

Et��xt	

�t
+ 1

2
�2f

�x2
lim
�t→0

Et���xt�
2	

�t

= �f

�t
�xt� t�+a�xt� t�

�f

�x
�xt� t�+

b�xt� t�
2

2
�2f

�x2
�xt� t�

and the volatility function of the ft process:

B�xt� t�
2 = lim

�t→0

Et���ft�
2	

�t

=
(
�f

�x

)2

lim
�t→0

Et���xt�
2	

�t
= b�xt� t�

2

(
�f

�x
�xt� t�

)2

�

The drift and volatility functions therefore give equation (1.123), as required. Here we have
made use of the expectations

a�xt� t� = lim
�t→0

Et��xt	

�t
� b�xt� t�

2 = lim
�t→0

Et���xt�
2	

�t

following from the finite differential form of equation (1.122). �

Note: Itô’s formula is rather simple to remember if one just takes the Taylor expansion of
the infinitesimal change df up to second order in dx and up to first order in the time increment
dt and then inserts the stochastic expression for dx and replaces �dx�2 by b�x� t�2dt.

As we will later see, in most pricing applications, xt represents some asset price pro-
cess, and therefore it proves convenient to consider Itô’s lemma applied to the SDE of
equation (1.119); i.e., a�x� t� = x��x� t�, b�x� t� = x��x� t�, written in terms involving the
lognormal drift and volatility functions for the random variable x. Equation (1.123) then gives

dft =
(
�f

�t
+x�

�f

�x
+ x2�2

2
�2f

�x2

)

dt+x�
�f

�x
dWt (1.127)

≡ �fftdt+�fftdWt (1.128)

From this form of the SDE we identify the corresponding lognormal drift �f = �f�x� t� and
volatility �f = �f�x� t� for the process ft.

The foregoing derivation of Itô’s lemma for one underlying random variable can be
extended to the general case of a function f�x1� � � � � xn� t� depending on n random variables
x = �x1� � � � � xn� and time t. [Note: To simplify notation, we shall avoid the use of subscript
t in the variables, i.e., x1�t = x1, etc.] We can readily derive Itô’s formula by assuming that
the xi, i = 1� � � � � n, satisfy the stochastic differential equations

dxi = aidt+bi

n∑

j=1

"ijdW
j
t � (1.129)
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Here the coefficients ai = ai�x1� � � � � xn� t� and bi = bi�x1� � � � � xn� t� are any smooth func-
tions of the arguments. Furthermore we assume that the Wiener processes W

j
t are mutually

independent, i.e.,

E�dWi
t dW

j
t 	 = �ij dt� (1.130)

The constants �ij = �ji (with �ii = 1) are correlation matrix elements and are convenient for
introducing correlations among the increments (e.g. see equation (1.176) of Section 1.6):

E��dxi��dxj�	 = bibj

n∑

k=1

n∑

l=1

"ik"jlE�dW
k
t dW

l
t 	

= bibj

n∑

k=1

"ik"jkdt ≡ bibj�ijdt� (1.131)

When i = j this gives E��dxi�
2	 = b2

i dt. Taylor expanding df up to second order in the dxi

increments and to first order in dt we have

df = �f

�t
dt+

n∑

i=1

�f

�xi

dxi +
1
2

n∑

i�j=1

�2f

�xi�xj

�dxi��dxj� (1.132)

Now replacing �dxi��dxj� by the right-hand side of equation (1.131) while substituting the
above expression for dxi and collecting terms in dt and the dWi

t gives the final expression:

df =
(
�f

�t
+

n∑

i=1

[

ai

�f

�xi

+ b2
i

2
�2f

�x2
i

]

+
n∑

i<j=1

bibj�ij

�2f

�xi�xj

)

dt

+
n∑

j=1

( n∑

i=1

�ijbi

�f

�xi

)

dWj
t � (1.133)

This procedure can be straightforwardly applied or extended to stochastic differentials of
various processes that are dependent on groups of underlying random variables.

As we shall see in the coming sections, where we cover derivatives pricing in continuous
time, it is important to work out the stochastic differential of the quotient of two processes,
namely; ft ≡ gt/ht, where

dgt
gt

= �gdt+
n∑

i=1

�i
gdW

i
t �

dht

ht

= �hdt+
n∑

i=1

�i
hdW

i
t (1.134)

are stochastic differential equations assumed satisfied by gt and ht, respectively. Note that the
drift and volatility functions8 are generally considered functions of time and of the underlying
processes, �g = �g�gt� ht� t�, �h = �h�gt� ht� t�, �i

g = �i
g�gt� ht� t�, �i

h = �i
h�gt� ht� t�. The

function �i
g is the volatility of the process gt with respect to the ith independent Wiener

process (or ith risk factor).9 The stochastic differential of the ratio ft = gt/ht can be obtained
via the Taylor expansion of the differential df up to first order in dt and up to second order

8 Here and throughout the rest of the book we shall sometimes take the liberty to refer to the lognormal drift and
volatility functions simply as the drift and volatility so as to avoid excessive use of such terminology.

9 In what follows we shall at times also refer to independent Brownian motions as risk factors.
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in the dg and dh terms. Hence considering f as function of g, h, and t and taking appropriate
partial derivatives gives

df = 1
h
dg− g

h2
dh− 1

h2
�dg��dh�+ g

h3
�dh�2� (1.135)

Here �f

�t
= 0, since there is no explicit time dependence. Moreover, since �2f

�g2 = 0, the �dg�2

term is absent. This last SDE takes on a particularly simple form when we divide through by f:

df

f
= dg

g
− dh

h
− dg

g

dh

h
+
(
dh

h

)2

=
(
dg

g
− dh

h

)(

1− dh

h

)

(1.136)

Substituting equations (1.134), expanding out, and setting to zero any term containing
�dWi

t ��dt� or �dt�2 [i.e., terms of O��dt�3/2� or higher] then gives

df

f
=
[

�g −�h −
n∑

i=1

�i
h��

i
g −�i

h�

]

dt+
n∑

i=1

��i
g −�i

h�dW
i
t � (1.137)

Here we have also made use of the replacement dWi
t dW

j
t = �ij dt. This gives the stochastic

differential of ft = gt/ht. Note that this equation in compact form reads

df

f
= �fdt+

n∑

i=1

�i
fdW

i
t � (1.138)

where the drift of f is �f = �g − �h −∑n
i=1 �

i
h��

i
g − �i

h� and the volatility is given
by �i

f = �i
g − �i

h. It is important to note that pricing formulas ultimately involve the

absolute value or square of the volatilities, i.e., �i
f = ∣

∣�i
g −�i

h

∣
∣ =

√
��i

g�
2 + ��i

h�
2 −2�i

g�
i
h.

This will become clear in the sections that follow. Namely, a rigorous justification of
this arises from consideration of the partial differential equation (i.e., the forward or
backward Kolmogorov equation) satisfied by the corresponding transition probability
density function, which explicitly involves only terms in the square of the volatilities.
Finally, note that for the case of only one risk factor, i.e., n = 1, we have equation (1.138)
with �f = �g −�h −�h��g −�h� and �f = �g −�h. For general n, using vector notation
��f = �g −�h, �f = �g −�h −�h · ��g −�h�� and equation (1.138) takes the form:

df

f
= �fdt+�f ·dWt� (1.139)

Recall that a martingale process, which we shall here simply denote by ft, is a stochastic
process for which EP

t �fT 	 = ft, t ≤ T , under a given probability measure P. Recall that this
is a driftless process, in the sense that its expected value, under P, is constant over all future
times. We have already encountered a simple example of such a process, namely, the standard
Brownian motion, or Wiener process Wt. Equation (1.90) provides a method of generating a
martingale process. Based on Itô’s Lemma we now have the following result.

Theorem. (Feynman–Kac) If f(x,t) is the function given by the conditional expectation

f�x� t� = Et���xT �	� (1.140)

at time t ≤ T , with xt = x and underlying process obeying equation (1.122), then f(x,t) satisfies
the partial differential equation

�f�x� t�

�t
+a�x� t�

�f�x� t�

�x
+ b�x� t�2

2
�2f�x� t�

�x2
= 0� (1.141)

with terminal time condition f�x�T� = ��x�.
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Proof. The proof follows by considering the conditional expectation of equation (1.126) at
time t, which leaves us with only the drift term in �t (to order �t), since the Wiener term is
Markovian. On the other hand,

Et

[
�ft

] = Et

[
ft+�t

]−ft = 0� (1.142)

The last equality is due to the martingale property of ft. In the limit of infinitesimal time step
we are left with the infinitesimal drift term, which vanishes identically only if equation (1.141)
is satisfied. The terminal condition follows simply because f�x� t = T� = ET ���xT �	 = ��x�,
with xT = x imposed when t = T . �

The Black–Scholes partial differential equation discussed in Section 1.13 is a special case
of the Feynman–Kac result. The generalization of equation (1.141) to n dimensions is also
readily obtained by using Itô’s lemma in n dimensions.

Problems

Problem 1. Consider the stochastic processes gt and ht defined earlier. Further assume that
the volatilities of the two processes are identical with respect to all Brownian increments,
i.e., �i

g = �i
h for all i. Show that the process ft = gt/ht is deterministic with solution

fT = ft exp
(∫ T

t

(
�g�gs� s�−�h�hs� s�

)
ds

)

� (1.143)

Problem 2. Consider two processes defined by gt = g0e
�gWt+�gt and ht = h0e

�hWt+�ht, where
Wt is a standard Wiener process and �g, �h, �g, �h, g0, and h0 are constants. Use Itô’s lemma
to show that

dgt
gt

=
(

�g + �2
g

2

)

dt+�gdWt�
dht

ht

=
(

�h + �2
h

2

)

dt+�hdWt� (1.144)

Then assume dft/ft = �fdt+�fdWt. Find these drift and volatility coefficients in terms of
�g, �h, �g, and �h, for the cases ft = gt/ht and ft = gtht.

Problem 3. Obtain the stochastic differential equations satisfied by the Ornstein–Uhlenbeck
and Brownian bridge processes in Problem 8 of Section 1.4.

1.6 Geometric Brownian Motion

Univariate geometric Brownian motion with time-dependent coefficients is characterized by
the SDE of the form

dSt = ��t�St dt+��t�St dWt� (1.145)

with initial condition S0, where � = ��t� and � = ��t� are deterministic functions of time t.
This equation can be solved by means of the change of variable

xt = log
St

S0

� (1.146)
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The transformed equation is obtained using Itô’s lemma,

dxt =
(

��t�− ��t�2

2

)

dt+��t�dWt� (1.147)

and is to be solved with initial condition x0 = 0. Following the procedure in Section 1.4 we
discretize this equation in the time interval [0,T] using a partition in N subintervals of length
�t = T

N
:

xti+1
= xti

+
(

��ti�−
��ti�

2

2

)

�t+��ti� �Wti
� (1.148)

By iterating the recurrence relations up to time T, we find

xT =
N−1∑

i=0

[(

��ti�−
��ti�

2

2

)

�t+��ti� �Wti

]

� (1.149)

Hence xT is a normal random variable for all N > 1. In the limit as N → 	, the mean of xT

is given by

E0�xT 	 = lim
N→	

N−1∑

i=0

(

��ti�−
��ti�

2

2

)

�t =
∫ T

0

(

��t�− ��t�2

2

)

dt (1.150)

and the variance is given by

E0�x
2
T 	− �E0�xT 	�

2 = lim
N→	

N−1∑

i=0

��ti�
2 �t =

∫ T

0
��t�2 dt� (1.151)

Introducing the time-averaged drift and volatility

�̄�T� ≡ 1
T

∫ T

0
��t�dt (1.152)

and

�̄�T� ≡
√

1
T

∫ T

0
��t�2 dt� (1.153)

we conclude that xT = log ST
S0

∼ N

((
�̄�T�− �̄2�T�

2

)
T� �̄2�T�T

)

. This result is also easily

verified by directly applying properties (1.105) and (1.106) to the integrated form of equa-
tion (1.147).

The solution to stochastic differential equation (1.145) for all t ≥ 0 is hence

St = S0 exp
((

�̄�t�− �̄2�t�

2

)

t+ �̄�t�Wt

)

� (1.154)

where �̄�t� and ��t� are given by equations (1.152) and (1.153), respectively. This solution
(which is actually a strong solution) can also be verified by a direct application of Itô’s lemma
(see Problem 1). Note that this represents a solution, in the sense that the random variable
denoted by St and parameterized by time t is expressed in terms of the underlying random
variable, Wt, for the pure Wiener process.
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This solution gives a closed-form expression for generating sample paths for geometric
Brownian motion. Equation (1.154) provides a general expression for the case of time-
dependent drift and volatility. It is very instructive at this point to compute expectations of
functions of St. Let us consider the process in equation (1.145) and proceed now to compute the
expectations E0�St	 and E0��St −K�+	, for some constant K ≥ 0, where �x�+ ≡ max�x�0�= x
if x > 0 and zero if x ≤ 0. Using the solution in equation (1.154), the expectation of St under
the density of equation (1.95) (i.e., conditional on St=0 = S0, hence we write E0� 	) is

E0�St	 = S0e
��̄−�̄2/2�tE0�e

�̄Wt 	

= S0e
��̄−�̄2/2�te�̄

2t/2 = S0e
�̄t� (1.155)

To compact notation we denote �̄≡ �̄�t�, �̄ ≡ �̄�t�. In the last step we have used an important
identity derived in Problem 2 of this section. This result shows that the stock price is expected
to grow exponentially at a rate of �̄.

Using equation (1.154), the expectation E0��St −K�+	 is given by

E0��St −K�+	 =
∫ 	

−	
p�y� t�

(
S0e

��̄−�̄2/2�te�̄y −K
)
+dy

= S0e
��̄−�̄2/2�t

√
2�t

∫ 	

−	
e−y2/2t

(

e�̄y − K

S0

e−��̄−�̄2/2�t

)

+
dy (1.156)

The last step obtains from the identity �ax− b�+ = a�x− b/a�+, for a > 0. Changing inte-
gration variable y = √

tx while employing this identity again gives

E0��St −K�+	 = S0e
��̄− �̄2

2 �t

√
2�

∫ 	

−	
e−x2/2+�̄

√
tx

(

1− K

S0

e−���̄− �̄2
2 �t+�̄

√
tx	

)

+
dx (1.157)

Since e−�̄
√
tx is a monotonically decreasing function of x, there is a value xK such that

(

1− K

S0

e−���̄−�̄2/2�t+�̄
√
tx	

)

+
=






1− K

S0

e−���̄−�̄2/2�t+�̄
√
tx	� x > xK

0� x ≤ xK

(1.158)

where

xK = − log�S0/K�+ ��̄− �̄2/2�t

�̄
√
t

� (1.159)

Hence, the integral in equation (1.157) becomes a sum of two parts in the region x ∈ �xK�	�:

E0��St −K�+	 = S0e
��̄− �̄2

2 �t

√
2�

∫ 	

xK

e−x2/2+�̄
√
tx dx− K√

2�

∫ 	

xK

e−x2/2 dx� (1.160)

Completing the square in the first integration gives

E0��St −K�+	 = S0e
�̄t�1−N�xK − �̄

√
t��−KN�−xK�

= S0e
�̄tN��̄

√
t−xK�−KN�−xK�

= S0e
�̄tN�d+�−KN�d−�� (1.161)
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where N�·� is the standard cumulative normal distribution function and

d± = log�S0/K�+ ��̄± �̄2/2�t

�̄
√
t

� (1.162)

Note that here we have used the property N�−x� = 1−N�x�.
The Black–Scholes pricing formula for a plain European call option follows automatically.

In particular, assuming a risk-neutral pricing measure, the drift is given by the instantaneous
risk-free rate ��t� = r�t�. Hence, the price of a call at current time (t = 0) with current stock
level (or spot) S0, strike K, and maturing in time t is given by the discounted expectation

C0�S0�K� t� = e−r̄tE0��St −K�+	 = S0N�d+�− e−r̄tKN�d−�� (1.163)

where r̄ is the time-averaged continuously compounded risk-free interest rate

r̄ = r̄�t� ≡ 1
t

∫ t

0
r���d�� (1.164)

and d± is given by equation (1.162) with �̄= r̄. It is instructive to note the inherent difference
between the Black–Scholes pricing formula in equation (1.163) and Bachelier’s formula in
equation (1.117). Bachelier’s formula is a result of assuming a standard Brownian motion
for the underlying stock price process [i.e., equation (1.94)]. In contrast, formulas of the
Black–Scholes type are equivalent to the assumption of geometric Brownian motion for the
underlying price process. Using equation (1.154) as defining a change of probability variables
Wt → St, the one-dimensional analogue of equation (1.48) together with equation (1.95) gives

p�St� S0 t� = 1

St�̄
√

2�t
e−�log�St/S0�−��̄−�̄2/2�t	2/2�̄2t� (1.165)

This is the lognormal distribution function defined on positive stock price space St ∈ �0�	�.
The log-returns log�St/S0� are distributed normally with mean ��̄− �̄2/2�t and variance �̄2t.
Setting �̄ = r̄ gives the risk-neutral conditional probability density for a stock attaining a
value St at time t > 0 given an initial value S0 at time t = 0. Hence, the Black–Scholes
pricing formula for European options can also be obtained by taking discounted expectations
of payoff functions with respect to this risk-neutral density. In particular, a European-style
claim having pay-off "�ST � as a function of the terminal stock level ST , where T > 0 is a
maturity time, has arbitrage-free price f0�S0� T � at time t = 0 expressible as

f0�S0� T� = e−r̄�T�TEQ
0

[
"�ST �	 = e−r̄�T�T

∫ 	

0
p�ST � S0T�"�ST �dST � (1.166)

Here the superscript Q is used to denote an expectation with respect to the risk-neutral density
given by equation (1.165) with drift �̄ = r̄�T�. Note that within this probability measure,
equation (1.155) shows that stock prices drift at the time-averaged risk-free rate r(t) at time t.
As will become apparent in the following sections, this must be the case in order to ensure
arbitrage-free pricing.

For pricing applications, discussed in greater length in later sections of this chapter, it
is useful to consider a slight extension of the foregoing closed-form solutions to geometric
Brownian motion. Namely, we can extend equation (1.154) by a simple shift in time variables
as follows:

ST = St exp
((

�̄�t� T �− �̄2�t� T �

2

)

�T − t�+ �̄�t� T �WT−t

)

� (1.167)
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with time-averaged drift and volatility over the period [t,T]

�̄�t� T� ≡ 1
T − t

∫ T

t
����d�� �̄2�t� T� ≡ 1

T − t

∫ T

t
�2���d�� (1.168)

Here WT−t =WT −Wt is the Wiener normal random variable with mean zero and variance T −
t; i.e., WT−t ∼ √

T − tx, x ∼ N�0�1�. For constant drift and volatility this solution simplifies
in the obvious manner. The formula for the conditional expectation now extends to give

Et��ST −K�+	 = e�̄�T−t�StN�d+�−KN�d−�� (1.169)

with

d± = log�St/K�+ ��̄± �̄2/2��T − t�

�̄
√
T − t

(1.170)

and �̄ = �̄�t� T�, �̄ = �̄�t� T�. A related expectation that is useful for pricing purposes is (see
Problem 3)

Et��K−ST �+	 = KN�−d−�− e�̄�T−t�StN�−d+�� (1.171)

Within the risk-neutral probability measure, �̄ = r̄. Hence discounting this expectation by
e−r̄�T−t� gives the analogue of equation (1.163) for the Black–Scholes price of a put option at
calendar time t, spot St, and maturing at time T with strike K:

Pt�St�K�T� = e−r̄�T−t�KN�−d−�−StN�−d+�� (1.172)

where d± is given by equation (1.170) with �̄ = r̄ ≡ r�t� T�.
In closing this section, we consider the more general multidimensional case of geometric

Brownian motion. Multivariate geometric Brownian motions describe n-dimensional state
spaces of vector valued processes S1

t � � � � � S
n
t and can be described with two different but

equivalent sets of notations. Let’s consider n uncorrelated standard Wiener processes

W 1
t � � � � �W

n
t �with Et�dW

i
t dW

j
t 	 = �ij dt� (1.173)

A simple way to introduce correlations among the price processes is to allow for correlated
Wiener processes by defining a new set of n processes WSi

t as

dWSi

t =
n∑

j=1

"ij dW
j
t � (1.174)

or, in matrix-vector notation,

dWS
t = � ·dWt� (1.175)

Using equation (1.174) we have

Et

[
dWSi

t dWSj

t

]
=

n∑

k�l=1

"ik"jl �kl dt =
n∑

k=1

"ik"jk dt ≡ �ij dt� (1.176)

where the last relation defines a correlation matrix �, with elements �ij , and lower Cholesky
decomposition given by

� = ��†� (1.177)

Throughout this section, superscript † denotes matrix transpose.
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Stochastic differential equations for the stock price processes can be written as follows:

dSi
t

Si
t

= �i dt+�i dW
Si

t (1.178)

= �i dt+�i

n∑

j=1

"ij dW
j
t ≡ �i dt+

n∑

j=1

Lij dW
j
t (1.179)

where the last expression defines the matrix L, Lij = �i"ij . Note that the lognormal drifts
�i and volatilities �i can generally depend on time, although to simplify notation we have
chosen not to denote this explicitly. The last relation in equation (1.179) defines a lower
Cholesky factorization of the covariance matrix

C = LL† = ���†� = ���� (1.180)

Here � is the diagonal matrix of lognormal volatilities with (ij)-elements given by �ij �i,
L = �� and � = �

†. In vector notation we can write equations (1.179) in a compact form as

dSi
t

Si
t

= �i dt+� i ·dWt� (1.181)

where � i = ��i1� � � � ��in� is the volatility vector for the ith stock, whose jth component
�ij = Lij gives the lognormal volatility with respect to the jth risk factor.

Equation (1.61) in Section 1.2 gives L for the case n = 2. In particular, in the case of two
stocks we can introduce a correlation �, where equations (1.179) now take the specific form

dS1
t

S1
t

= �1 dt+�1 dW 1
t � (1.182)

dS2
t

S2
t

= �2 dt+��2 dW 1
t +√

1−�2�2 dW 2
t � (1.183)

with infinitesimal variances and covariances

Et

[(
dS1

t

S1
t

)2
]

= �2
1 dt�Et

[(
dS2

t

S2
t

)2
]

= �2
2 dt�Et

[
dS1

t

S1
t

dS2
t

S2
t

]

= ��1�2 dt� (1.184)

For this case the volatility vectors are given by �1 = ��1�0� and �2 = (
��2��2

√
1−�2

)
for

stock prices S1
t and S2

t , respectively.
More generally, equations (1.179) [or (1.181)] describe geometric Brownian motion for

an arbitrary number of n stocks with infinitesimal correlations and variances:

Et

[
dSi

t

Si
t

dS
j
t

S
j
t

]

= Cij dt� Et

[(
dSi

t

Si
t

)2
]

= �2
i dt� (1.185)

The vectors � i are seen to be given by the ith rows of matrix L, i.e., the matrix of the lower
Cholesky factorization of the covariance matrix.

A solution to the system of stochastic differential equations (1.179) [or (1.181)] is readily
obtained by employing a simple change-of-variable approach (see Problem 4). In particular,

Si
T = Si

t exp
((

�i −
�2

i

2

)

�T − t�+�i

n∑

j=1

"ijW
j
T−t

)

 i = 1� � � � � n� (1.186)
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where we denote W
j
T−t =W

j
T − W

j
t , for each jth independent Wiener normal random variable

with mean zero and variance T − t; i.e., W
j
T−t = √

T − txj , xj ∼ N�0�1� independently for
all j = 1� � � � � n. From this result one readily obtains the multivariate lognormal distribution
function p�ST �St T − t�, i.e., the analogue of equation (1.165) [see equation (1.198) in
Problem 5]. The pricing of European-style options whose pay-offs depend on a group of n
stocks, i.e., European basket options, can then proceed by computing expectations of such
pay-offs over this density, where the drifts are set by risk neutrality. That is, let’s assume
a money-market account Bt = ert with constant risk-free rate r, then within the risk-neutral
measure the stock prices must all drift at the same rate, giving �i = r.10 Let Vt denote
the option price at time t for a European-style contract with payoff function at maturity time
T given by VT = ��ST �, ST = �S1

T � � � � � S
n
T �. The arbitrage-free price is then given by the

expectation

Vt = e−r�T−t�E
Q�B�
t

[
��ST �

]

= e−r�T−t�
∫

�n+
p�ST �St T − t���ST �dST

= e−r�T−t�

�2��n/2

∫

�n
e− 1

2 �x�2��ST �x��dx� (1.187)

where ST �x� has components Si
T �x� given by equation (1.186), x = �x1� � � � � xn�. The price

hence involves an n-dimensional integral over a multivariate normal times some payoff
function. Exact analytical expressions for basket options are generally difficult to obtain,
depending on the type of payoff function as well as the number of dimensions n. Numerical
integration methods can be used in general. Monte Carlo simulation methods are very useful
for this purpose. The reader interested in gaining insight into the numerical implementation
of standard Monte Carlo methods for pricing such options is referred to Project 8 on Monte
Carlo pricing of basket options in Part II of this book.

Exact analytical pricing formulas for certain types of elementary basket options, however,
can be obtained, as demonstrated in the following worked-out example.

Example. Chooser basket options on two stocks.

Consider a basket of two stocks with prices S1
t (for stock 1) and S2

t (for stock 2) modeled
as before with constants �1, �2, �, �1, �2. Specifically, the risk-neutral geometric Brownian
motions of the two stocks are given by

S1
T = S1

T �x1� x2� = S1
0e

�r− �2
1
2 �T+�1

√
Tx1� (1.188)

S2
T = S2

T �x1� x2� = S2
0e

�r− �2
2
2 �T+�2

√
T��x1+

√
1−�2x2�� (1.189)

where S1
0 , S2

0 are initially known stock prices at current time t = 0. The earlier pricing
formula gives

V0 = e−rT

2�

∫ 	

−	

∫ 	

−	
e− 1

2 �x
2
1+x2

2���S1
T �x1� x2�� S

2
T �x1� x2��dx1 dx2 (1.190)

10 This drift restriction is further clarified later in the chapter where we discuss the asset-pricing theorem in
continuous time.
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for the general payoff function. A simple chooser option is a European contract defined by
the payoff max�S1

T � S
2
T �. This pay-off has a simple relation to other elementary pay-offs; i.e.,

max�S1
T � S

2
T �= �S2

T −S1
T �+ +S1

T = �S1
T −S2

T �+ +S2
T . The current price V0 of the simple chooser

is hence given by V0 = C0 + S1
0 , where C0 denotes the price of the contract with payoff

�S2
T −S1

T �+. This follows since an expectation of a sum is the sum of expectations and from
the fact that the stock prices drift at rate r; i.e., e−rTE

Q�B�
0 �Si

T 	 = Si
0. The problem remains to

find the price C0 given by the integral

C0 = e−rT

2�

∫ 	

−	

∫ 	

−	
e− 1

2 �x
2
1+x2

2�
(
S2
T �x1� x2�−S1

T �x1� x2�
)
+ dx1 dx2� (1.191)

The integrand is nonzero on the domain ��x1� x2� ∈ �2 S2
T �x1� x2� > S1

T �x1� x2��. From equa-
tions (1.188) and (1.189) we find the domain is ��x1� x2� ∈ �2 x1 < ax2 +b�, where

a ≡ �2

√
1−�2

��1 −��2�
� b ≡ log�S2

0/S
1
0�+ 1

2 ��
2
1 −�2

2 �T

��1 −��2�
√
T

�

Here we assume �1 −��2 > 0 and leave it to the reader to verify that a similar derivation
of the same price given next also follows for the case �1 −��2 ≤ 0. Using this integration
domain and inserting expressions (1.188) and (1.189) into the last integral gives

C0 = S2
0e

− 1
2 �

2
2T

2�

∫ 	

−	
e− 1

2 x
2
2+

√
1−�2�2

√
Tx2

[∫ ax2+b

−	
e− 1

2 x
2
1+��2

√
Tx1dx1

]

dx2

−S1
0e

− 1
2 �

2
1T

2�

∫ 	

−	
e− 1

2 x
2
2

[∫ ax2+b

−	
e− 1

2 x
2
1+�1

√
Tx1dx1

]

dx2

By completing the square in the exponents, the integrals in x1 give cumulative normal
functions N�·�. In particular,

C0 = S2
0e

− 1
2 �1−�2��2

2T√
2�

∫ 	

−	
e− 1

2 x
2
2+

√
1−�2�2

√
Tx2N�ax2 +b−��2

√
T�dx2

− S1
0√

2�

∫ 	

−	
e− 1

2 x
2
2N�ax2 +b−�1

√
T�dx2�

At this point we make use of the integral identity (see Problem 6),

1√
2�

∫ 	

−	
e− 1

2 x
2+CxN�Ax+B�dx = e

1
2 C

2
N

(
AC+B√

1+A2

)

� (1.192)

for any constants A, B, and C, giving

C0 = S2
0N

(
�a
√

1−�2 −���2

√
T +b√

1+a2

)

−S1
0N

(
b−�1

√
T√

1+a2

)

�

After a bit of algebra, using a and b just defined, we finally obtain the exact expression for
the price in terms of the initial stock prices and the effective volatility # as

C0 = S2
0N�d+�−S1

0N�d−�� (1.193)

with

d± = log�S2
0/S

1
0�± 1

2#
2T

#
√
T

� (1.194)

#2 = �2
1 +�2

2 −2��1�2.
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Changes of numeraire methods for obtaining exact analytical solutions in the form of
Black–Scholes–type formulas for basket options on two stocks, as well as other options
involving two correlated underlying random variables, are discussed later in this chapter.

Problems

Problem 1. Use Itô’s lemma to verify that equation (1.154) provides a solution to equa-
tion (1.145).

Problem 2. Consider an exponential function of a normal random variable X, eaX for any
parameter a, where X ∈ �−	�	� has probability density at X = x given by

p�x� t� = 1√
2�t

e−x2/2t� �t > 0��

Show that

E�eaX	 = exp
(
a2t/2

)
�

Hint: make use of the integral identity

∫ 	

−	
e−ax2+bx dx =

√
�

a
eb

2/4a�

where a > 0 and b are constants.

Problem 3. Derive the expectation in equation (1.171) by making use of the identity
�a−b�+ = �b−a�+ +a−b.

Problem 4. Consider the general correlated n-dimensional geometric Brownian process dis-
cussed in this section. Use Itô’s lemma to show that the processes Y i

t ≡ logSi
t obey

dY i
t = ��i −�2

i /2�dt+�i

n∑

j=1

�ijdW
j
t � (1.195)

Assuming all volatilities are nonzero, the correlation matrix is positive definite. Hence, � has
an inverse �−1. Define new random variables X

j
t ≡ ∑n

i=1 �
−1
i �−1

ji Y
i
t and show that

dXj
t = �̃j dt+dWj

t � (1.196)

with �̃j ≡ ∑n
i=1 �

−1
i �−1

ji ��i − 1
2�

2
i �, has solution

X
j
T = Xj

t + �̃j�T − t�+W
j
T −Wj

t � j = 1� � � � � n� (1.197)

Invert this solution back into the old random variables, hence obtaining equation (1.186).

Problem 5. Treat W
j
T−t and log�Si

T /S
i
t� as two sets of n independent variables in equa-

tion (1.186) and thereby compute the Jacobian of the transformation among the variables.
Then invert equation (1.186) and use the identity in equation (1.48) with the distribution
function for the n independent uncorrelated Wiener processes to show that the analytical
formula for the transition probability density for geometric Brownian motion is given by

p�ST �St T − t� = �2��T − t��− n
2 �C�− 1

2 exp
(− 1

2 z ·C−1 · z
)
� (1.198)
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where the n-dimensional vector z has components

zi ≡
log�Si

T /S
i
t�− ��i − 1

2�
2
i ��T − t�√

T − t
� (1.199)

Problem 6. Using the definition of the cumulative normal function, write

1√
2�

∫ 	

−	
e− 1

2 x
2+CxN�Ax+B�dx = 1

2�

∫ 	

−	
e− 1

2 x
2+Cx

[∫ Ax+B

−	
e− 1

2 y
2
dy

]

dx� (1.200)

Introduce a change of variables ����� ≡ �y−Ax�y+Ax� and integrate while completing
squares to obtain equation (1.192).

1.7 Forwards and European Calls and Puts

Consider a situation with a stock price that at current time t = 0 has price S0 while at time
T > 0 in the future is described by a certain random variable ST . Suppose that there is also a
zero-coupon bond maturing at time T, i.e., a riskless claim to one unit of account at time T. Let

Zt�T� = e−r�T−t� (1.201)

be its price at time t. Here r is the yield up to time T. Unlike the rate introduced in
equation (1.5), in this case r is defined with the continuously compounded rule; we refer
again to Chapter 2 for a more systematic discussion of fixed-income terminology.

Let’s consider a situation where St is contained in the half-line of positive real numbers
�+. Let P be the real-world measure with density p(S); P is inferred through statistical
estimations based on historical data. Pricing measures, instead, are evaluated as the result of
a calibration procedure starting from option prices. Also, as discussed in detail later in this
chapter, pricing measures depend on the choice of a numeraire asset. In our framework, a
numeraire asset is given by an asset price process, gt, that is strictly positive at initial time
t = 0 and any other future time t, t ≤ T . The corresponding pricing measure is denoted by
Q(g), specifying the fact that the asset price gt is the chosen numeraire. A possible choice of
numeraire is given by the bond gt = Zt�T�; this choice corresponds to the pricing measure
denoted by Q(Z(T)), which is called the forward measure. Note that since r is constant, this
also coincides with the risk-neutral measure. Technically speaking the name for the risk-
neutral measure corresponds to using the continuously compounded money-market account
Bt = ert (i.e., the continuously compounded value of one unit of account deposited at time
t = 0 earning interest rate r) as numeraire.11 For constant interest rate, the two measures are
then easily shown to be equivalent since Zt�T� = Bt/BT . This point is further clarified in
Chapter 2. Other choices of numeraire asset are also possible; for example, gt = St corresponds
to using the stock price as numeraire. As mentioned earlier and also described in detail later
in the chapter, expectations taken based on the information available up to current time t with
respect to the pricing measure Q(g), with gt as numeraire asset price, are denoted by E

Q�g�
t � 	.

In this section, note that (without loss in generality) we are simply setting t = 0 as current
time and allowing T to be any future time.

11 Note that we previously used the symbol Bt to denote the bond price. However, here we instead use Bt to
denote the value of the money-market account.
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By applying risk-neutral valuation to the zero-coupon bond, we find that

Z0�T� = e−rT = �E
Q�Z�T��
0

[
ZT�T�	 = �E

Q�Z�T��
0

[
1	 = �� (1.202)

where ZT�T� = 1. Hence, the discount factor � can be interpreted as the initial price of the
zero-coupon bond. Although we have not yet formally introduced continuous-time financial
models at this point in the chapter, the arguments presented in this section are generally valid
if we assume dynamic trading is allowed in continuous time.

Risky assets are modeled by a function � 
 �+ → � of the stock price at time T. Let
�At�0≤t≤T be a price process such that AT = ��ST �; such an asset is called a European-style
option on the stock S with maturity T and payoff function ��ST �. Applying the asset-pricing
theorem, the arbitrage-free price A0 at time t = 0 of this option can be written as a discounted
expectation under a pricing measure Q(Z(T)),

A0 = e−rTE
Q�Z�T��
0 ���ST �	 � (1.203)

An alternative and instructive way of writing this equation is

A0

Z0�T�
= E

Q�Z�T��
0

[
AT

ZT�T�

]

� (1.204)

Although the numeraire asset in equation (1.204) is the riskless bond Zt�T�, the pricing
formula can be extended to the case of a generic numeraire asset g. Let’s denote Q(g) as the
probability measure, with gt as numeraire asset price at time t, and defined so that

A0

g0

= E
Q�g�
0

[
AT

gT

]

(1.205)

for all random variables AT =��ST � and for all T> 0. Assuming the price is unique, equating
the price A0 in equation (1.204) with that in this last equation gives a relationship for the
equivalence of the two pricing (or probability) measures:

g0E
Q�g�
0

[
��ST �

gT

]

= Z0�T�E
Q�Z�T��
0

[
��ST �

ZT �T�

]

� (1.206)

A variety of numeraire assets can be chosen for derivative pricing. Depending on the
pay-off, one choice over another may be more convenient for evaluating the expectation and
hence obtaining the derivative price, as seen in detail in the examples of pricing derivations
in Section 1.12.

A forward contract on an underlying stock S stipulated at initial time t = 0 and with
maturity time t = T is a European-style claim with payoff ST −F0 at time T. Here F0 is the
forward price at time t = 0. Forward contracts are entered at the equilibrium forward price F0,
for which their present value is zero. A simple arbitrage argument gives a (model-independent)
forward price F0 as

F0 = Z0�T�
−1S0� (1.207)

Indeed, to replicate the pay-off of a forward contract one can buy the underlying stock at
price S0 and carry it to maturity while funding the purchase with a loan to be returned also
at maturity. The nominal of the loan to be paid back at time T is then Z0�T�

−1S0 (e.g., this
equals erTS0 if we assume a constant interest rate).
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Since the forward contract is initially worthless, the valuation formula yields

0 = E
Q�Z�T��
0

[
ST −F0	� (1.208)

Since F0 is constant, we have that

E
Q�Z�T��
0

[
ST 	 = F0 = Z0�T�

−1S0 = erTS0� (1.209)

The interpretation of this formula is that, under the pricing measure Q(Z(T)), the expected
return on a stock is the risk-free yield r over the maturity T. The argument just outlined is
model independent and can be shown to extend to all assets with no intermediate cash flows,
thus no carry costs, before maturity time T. The expected return on any asset under the pricing
measure Q�Z�T �� is the risk-free rate, no matter how volatile they are. Also notice that the
expected return with respect to the real-world measure is quite different.

The popular geometric Brownian motion model, also called the Black–Scholes model,
gives a lognormal risk-neutral probability density for the stock price process. As derived in
Section 1.6, the stock price at time T is a lognormal random variable,

ST = S0 exp
((

r − �2

2

)

T +�
√
Tx

)

� (1.210)

where x ∼ N�0�1� and � > 0 is the model volatility parameter. As we have seen, the risk-
neutral distribution for ST is defined in such a way as to satisfy the growth condition in
equation (1.209)

E
Q�Z�T��
0 �ST 	 = 1√

2�

∫ 	

−	
S0 exp

((

r − �2

2

)

T +�
√
Tx

)

e− x2
2 dx = S0e

rT � (1.211)

Two important examples of European-style securities are the call option struck at K and of
maturity T with price process Ct and payoff function

CT ≡ �ST −K�+ (1.212)

and the put option struck at K and of maturity T with price process Pt and payoff function

PT ≡ �K−ST �+� (1.213)

Theorem 1.3. (Put-Call parity). If C0�S0�K�T� and P0�S0�K�T� denote the prices at time
t = 0 of a plain European call and a plain European put, respectively, both maturing at a
later time T and both struck at K, then we have the put-call parity relationship, namely,

C0�S0�K�T�−P0�S0�K�T � = S0 −KZ0�T�� (1.214)

The proof of the put-call parity relationship descends from the fact that a portfolio with a
long position in a call struck at K and maturing at T and a short position in a put struck at K
and maturing at T has the same pay-off as a forward contract stipulated at the forward price
K. (See Section 1.8.)

In contrast to the put-call parity relationship in equation (1.214), the evaluation of the
price of a call or put option requires making an assumption on the measure Q(Z(T)) and the
stock price process. Under the Black–Scholes model, where the stock at time T is given by
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equation (1.210), the expectation E
Q�Z�T��
0 ��ST −K�+	 can be reduced to a simple integral.

As shown in a detailed derivation in Section 1.6,

E
Q�Z�T��
0 ��ST −K�+	 = S0e

rTN�d+�−KN�d−�� (1.215)

where N�·� is the standard cumulative normal distribution function,

d± = log�S0/K�+ �r ±�2/2�T

�
√
T

� (1.216)

and the pricing formula for a plain European call option (with constant interest rate) in the
Black–Scholes model is

CBS�S0�K�T��� r� = e−rTE
Q�Z�T��
0 ��ST −K�+	

= S0N�d+�−Ke−rTN�d−�� (1.217)

European put options are priced analytically in similar fashion by computing the expectation
e−rTE

Q�Z�T��
0 ��K−ST �+	, as seen in the derivation of equation (1.172) of Section 1.6. From

this formula, or by applying the put-call parity relation (1.214) using equation (1.217), we
have the equivalent formulas for the put option price:

PBS�S0�K�T��� r� = e−rTE
Q�Z�T��
0 ��K−ST �+	

= S0N�d+�−Ke−rTN�d−�−S0 +Ke−rT

= Ke−rTN�−d−�−S0N�−d+�� (1.218)

A direct calculation shows that the functions CBS and PBS satisfy the Black–Scholes partial
differential equation (BSPDE). Analytical and numerical methods for solving this equation
are discussed at length throughout later sections and chapters of this book. The numerical
projects in Part II provide implementation details for finite-difference lattice approaches to
option pricing. A derivation of the BSPDE based on a dynamic replication strategy is provided
in Section 1.9 (and a general derivation is given in Section 1.13), but here we simply quote
it for the purposes of the present discussion. In terms of the partial derivatives with respect
to the time to maturity T and current stock price S0 (with r and � constants) this equation
can be rewritten in the form

�V

�T
= �2S2

0

2
�2V

�S2
0

+ rS0

�V

�S0

− rV� (1.219)

where the option value V = V�S0� T�. The original Black–Scholes equation is really a
backward-time equation involving �V/�t in calendar time t, where the price V is expressed in
terms of t and equals the pay-off at maturity (or expiry) t = T . That is, if we were to express
the option value explicitly in terms of such a function of calendar time t, then, for example,
for the case of a call struck at K, C�S� t = T� = �S−K�+. Note that in the present context,
however, since we are expressing the option value with respect to the time to maturity, denoted
here by the variable T, the option price equals the pay-off when T = 0 (i.e., at zero time to
expiry): CBS�S�K�T = 0� = �S−K�+ and PBS�S�K�T = 0� = �K−S�+, as is easily verified
via equations (1.217) and (1.218) in the limit T → 0. Since the Black–Scholes equation is
time homogeneous for time-independent interest rate and volatility, option prices are gener-
ally functions of T − t (where t and T ≥ t represent actual calendar times), so �/�t = −�/�T
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in the original Black–Scholes equation. By replacing T − t → T (without loss in generality
this corresponds to setting current time t = 0), we further simplify all expressions, wherein
T now represents the time to maturity. The form in equation (1.219) is convenient for the
following discussion.

Whether the pricing measure Q(Z(T)) is unique or not depends on the choice of hedg-
ing instruments. The asset-pricing theorem (in the single-period setting as stated earlier and
in the continuous-time case discussed later in this chapter) only implies that — assuming
absence of arbitrage — there exists such a measure and that this measure prices all pay-offs.
Indeterminacies in Q(Z(T)) arise in case there is no perfect replication strategy for the given
pay-off, which can be priced independently. The Black–Scholes model provides the most
basic pricing model that captures option prices through the single volatility parameter � .
Since in finance there is no fundamental theory ruling asset price processes, all models
are inaccurate to some degree. The Black–Scholes model is perhaps the most inaccurate
among all those used, but also the most basic because of its simplicity. Inaccuracies in the
Black–Scholes model are captured by the implied volatility surface, defined as the function
�BS�K�T� such that

CBS�S0�K�T��BS�K�T�� r� = C0�K�T�� (1.220)

where C0�K�T� is the observed market price of the call option struck at K and maturing at
time T. This describes a surface �I = �BS�K�T� in which the implied volatility �I is graphed
as a function of two variables K, T, i.e., across a range of strikes K and time to maturity
values T. For any fixed pair of values (K,T) (and assumed fixed S0, r), the function CBS

is monotonically increasing in � [see equation (1.222)], hence the preceding equation can
be uniquely inverted to give a value for the so-called Black–Scholes implied volatility �I

for any observed market price of a call. If the Black–Scholes (i.e., lognormal) model were
accurate, the implied volatility surface would be flat and constant, for one single volatility
parameter would price all options. Empirical evidence shows that implied volatility surfaces
are instead curved (not flat!).

A practical and widely used approach to risk management involving the Black–Scholes
pricing formulas is based on the calculation of portfolio sensitivities. Sensitivities of option
prices in the Black–Scholes model with respect to changes in the underlying parameters
r�T�S�� are of importance to hedging and computing risk for nonlinear portfolios. Within
the Black–Scholes formulation, these sensitivities are easily obtained analytically by taking
the respective partial derivatives of the European-style option price V for a given pay-
off. The list of sensitivities (also known as the Greeks) are defined as follows, where we
specialize to provide the exact expressions for the case of a plain-vanilla call under the
Black–Scholes model:

• The delta, denoted by $, is defined as the derivative

$ = �V

�S0

= �CBS

�S0

= N�d+�� (1.221)

• The vega, denoted by ", is defined as the derivative

" = �V

��
= �CBS

��
= S0

√
T
e−d2+/2

√
2�

� (1.222)
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• The gamma, denoted by % , is defined as the second derivative

% = �2V

�S2
0

= �2CBS

�S2
0

= e−d2+/2

�S0

√
2�T

� (1.223)

• The rho, denoted by �, is defined as the derivative

� = �V

�r
= �CBS

�r
= KTe−rTN�d−�� (1.224)

• The theta, denoted by &, is defined as the derivative12

& = �V

�T
= �CBS

�T
= ��2S2

0/2�% + r�S0$−CBS�� (1.225)

The numerical project called “The Black–Scholes Model” in Part II provides the interested
reader with an in-depth implementation of such formulas for calls as well as for puts
and so-called butterfly spread options. The corresponding spreadsheet is then useful for
numerically graphing and analyzing the dependence of the various option prices and their
sensitivities as functions of either r, � , S0, K, or T.

Given the sensitivities, one can approximate the change in price �C of a call option due to
small changes T → T +�T , S0 → S0 +�S0, � → �+�� , r → r+�r by means of a truncated
Taylor expansion,

�C � $��S0�+"����K�T��+ 1
2
%��S0�

2 +���r�+&��T�� (1.226)

Here, �S0, �r, ���K�T�, and �T are small changes in the stock price, the interest rate, the
implied Black–Scholes volatility � = ��K�T�, and the time to maturity T of the option at
hand. In the Black–Scholes model, ��K�T� does not depend on the two arguments and these
parameters are constant, so the only source of randomness is the price of the underlying.
However, in practice one observes that implied volatilities and interest rates also change over
time and affect option values.

As we discuss in more detail in Chapter 4, the risk of option positions is hedged on a
portfolio basis and risk-reducing trades are placed in such a way as to decrease portfolio
sensitivities to the underlyings. In particular:

• The delta can be reduced by taking a position in the stock or, more commonly, in a
forward or futures contract on the stock.

• The vega and gamma can be reduced by taking a position in another option.
• The rho can be reduced by taking a position in a zero-coupon bond of maturity T.

Problems

Problem 1. Derive the formulas in equations (1.221)–(1.225).

Problem 2. Obtain formulas analoguous to equations (1.221)–(1.225) for the corresponding
put option with value PBS .

12 In other literature this is sometimes defined as −�V/�T .
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Problem 3. Consider a portfolio with positions �i in N securities, each with price fi, i =
1� � � � �N , respectively. Assume the security prices are functions of the same spot S0 at
current time t0 and that each price function fi = fi�S0� Ti − t0� satisfies the time-homogeneous
BSPDE with constant interest rate and volatility. The contract maturity dates Ti are allowed
to be distinct. Find the relation between the &, $, and % of the portfolio.

1.8 Static Hedging and Replication of Exotic Pay-Offs

Options other than the calls and puts considered in the previous section are often called exotic.
In this section, we consider the replication of arbitrary pay-offs via portfolios made up of
standard instruments (i.e., consisting of calls, puts, underlying stock, and cash). In finance,
such replicating portfolios are useful for the static hedging of European-style options.

A butterfly spread option maturing in time T is a portfolio of three calls with current value

B0�S0�K�T�  � = 1
 2

�C0�S0�K−  �T�+C0�S0�K+  �T�−2C0�S0�K�T��� (1.227)

for some  > 0, where C0�S0�K�T� represents the (model-independent) price of a European
call with current stock price S0, strike K, and time to maturity T. We observe that (apart from
the normalization constant) this option consists of a long position in a call struck at K+ , a
long position in a call struck at K−  , and two short positions in a call struck at K, with all
calls maturing at the same time. At expiry T → 0 we simply have the payoff function for the
butterfly spread:

� �ST −K� = 1
 2

�CT �ST �K−  �+CT�ST �K+  �−2CT�ST �K��

= 1
 2






�ST − �K−  ��+� ST ≤ K

��K+  �−ST �+� ST > K�

(1.228)

Here we have used CT�ST �K� ≡ �ST −K�+ for the pay-off of a call. The normalization factor
hence ensures that the area under the graph of the pay-off (as function of ST ) is unity, for all
choices of  (see Figure 1.3). In the limit  → 0, the function � �ST −K� converges to the
Dirac delta function ��ST −K� (see Problem 1).

From the one-dimensional version of equation (1.27), we have

lim
 →0

∫ 	

0
� �ST −K�f�K�dK =

∫ 	

0
��ST −K�f�K�dK = f�ST �� (1.229)

call spread butterfly spread

1

0
K K + ε K K + εK – ε

1/ε

FIGURE 1.3 Payoff functions for a call spread and a corresponding unit butterfly spread struck at K,
where 2 is the width of the butterfly spread.
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for any ST > 0 and any continuous function f. From the linearity property of expectations and
risk-neutral pricing we must have

B0�S0�K�T�  � = e−rTEQ
0 �� �ST −K�	� (1.230)

In particular, we find that in the limit  → 0,

lim
 →0

B0�S0�K�T�  � = lim
 →0

e−rTEQ
0

[
� �ST −K�

]

= e−rT lim
 →0

∫ 	

0
p�S0�0 ST �T�� �ST −K�dST

= e−rT
∫ 	

0
p�S0�0 ST �T���ST −K�dST

= e−rTp�S0�0K�T�� (1.231)

where p�S0�0K�T� is the risk-neutral probability density that the stock price ST equals K
at time t = T , conditional to its equaling S0 at initial time t = 0. This result basically tells
us that the price of an infinitely narrow butterfly spread is the price of a so-called Arrow–
Debreu security, i.e., the value of a security that pays one unit of account if the stock price
(i.e., the state) ST = K is attained at maturity. One concludes that knowledge of the prices
of European calls at all strikes is equivalent to the knowledge of the risk-neutral transition
probability density p�S0�0 ST �T� for all ST . Notice, though, that this does not uniquely
identify the price process under the risk-neutral measure because all possible transition
probabilities p�St� tK�T� for any t > 0 are not uniquely determined.13 By recognizing that
equation (1.227) is in fact a representation of the finite difference for the second derivative,
we obtain from the last equation

�2C0�S0�K�T�

�K2
= e−rTp�S0�0K�T�� (1.232)

We will arrive at this equation again in Section 1.13 when we discuss the Black–Scholes
partial differential equation and its dual equation.

Other common portfolios of trades include the following.

• Covered calls consist of a long position in the underlying and a short position in a
call, typically struck above the spot at the contract inception. This position is meant to
trade potential returns above the strike at future time for the option price. The pay-off
at the option maturity is

ST − �ST −K�+� (1.233)

• Bull spreads are option spread positions consisting of one long call struck at K1 and
one short call struck at K2 with payoff function

�ST −K1�+ − �ST −K2�+� (1.234)

K1 <K2. This portfolio is designed to profit from a rally in the price of the underlying
security.

13 There are in general a variety of models involving jumps, stochastic or state-dependent volatility, or a combi-
nation of all that result in the same prices for European options but yield different valuations for path-dependent
pay-offs.
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• Bear spreads are option spread positions in one short put struck at K1 and one long
put struck at K2 with payoff function

−�K1 −ST �+ + �K2 −ST �+� (1.235)

K1 <K2. This portfolio profits from a decline in price of the underlying security.
• Digitals obtain in the limit that �K2 −K1�→ 0 in a spread option with positions scaled

by the strike spread �K2 −K1�
−1. A digital is also called a binary. For instance, the

pay-off of a bull digital (or digital call) is a unit step function obtained when such a
limit is taken in a bull spread with �K2 −K1�

−1 long positions in a call struck at K1

and �K2 −K1�
−1 short positions in a call struck at K2, with K1 <K2:

��ST −K� =
{

1 if ST ≥ K

0 otherwise
� (1.236)

The bear digital (or digital put) obtains similarly by considering the limiting case of
the bear spread, and the pay-off is ��K−ST � = 1−��ST −K�, giving 1 if ST < K and
zero otherwise.

• Wingspreads (also called Condors) consist of two long and two short positions in
calls. These are similar to butterfly spreads, except the body of the payoff function
has a flat maximum instead of a vertex; in formulas, the payoff function is

�ST −K1�+ − �ST −K2�+ − �ST −K3�+ + �ST −K4�+� (1.237)

with K1 <K2 <K3 <K4 and K2 −K1 = K4 −K3.
• Straddles involve the simultaneous purchase or sale of an equivalent number of calls

and puts on the same underlying with the same strike and same expiration. The straddle
buyer speculates that the realized volatility up to the option’s maturity will be large
and cause large deviations for the price of the underlying asset. The pay-off is

�ST −K�+ + �K−ST �+� (1.238)

• Strangles are similar to straddles, except the call is struck at a different level than the
put; i.e.,

�ST −K1�+ + �K2 −ST �+� (1.239)

with K1 >K2 or K1 <K2. The case K1 <K2 is an in-the-money strangle, and K1 >K2

is an out-of-the-money strangle, since the minimum payoff values attained are K2 −K1

and zero, respectively.
• Calendar spreads are spread options where the expiration dates are different and the

strike prices are the same, for example:

�ST1
−K�+ − �ST2

−K�+� (1.240)

with T1 �= T2. This option strategy is added here for completeness, although it differs
from all of the foregoing because the portfolio involves options of varying expiry dates.

Consider the problem of replicating a generic payoff function ��S�, 0 < S< 	, assumed
throughout to be twice differentiable. By virtue of equation (1.229), one can achieve repli-
cation by means of positions in infinitely narrow butterfly spreads of all possible strikes.
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A perhaps more instructive replication strategy involves positions in the underlying stock,
a zero-coupon bond and European call options, of all possible strikes and fixed expiration
time T. Assuming ��0� �′�0� exist, the formula is

��S� = ��0�+�′�0�S+
∫ 	

0
n�K�CT�S�K�dK� (1.241)

n�K�dK represents the size of the position in the call of strike K. The function n(S) is related
to the payoff function and can be evaluated by differentiating equation (1.241) twice:

�′′�S� =
∫ 	

0
n�K���S−K�dK = n�S�� (1.242)

Here we make use of the identity

�2

�S2
�S−K�+ = �2

�K2
�S−K�+ = ��S−K�� (1.243)

As shown in Problem 3 of this section, equation (1.241) can be derived via an integration-
by-parts procedure. The conclusion we can draw is that if calls of all strikes are available, the
arbitrage-free price f0 = f0�S0� T� at time t = 0 of a contingent European claim with payoff
��ST � at maturity t = T is

f0 = ��0�Z0�T�+�′�0�S0 +
∫ 	

0
�′′�K�C0�S0�K�T�dK� (1.244)

Besides the basic assumption that asset prices satisfy equation (1.205), it is crucial to
point out that the foregoing replication formulas follow without any assumption on the model
of the underlying stock motion; i.e., the replication equations are also true by assuming a
stochastic process of a more general form that includes the lognormal model as a special case.
Moreover, these equations can be extended to apply to a payoff ��S� defined on a region
S ∈ �S0� S1	, where S0, S1 may be taken as either finite or infinite. Specifically, let us consider
the space �S0� S1	, then, using the delta function integration property14 and assuming ��S0�,
�′�S0� exist, one can derive

��S� = ��S0�+�′�S0��S−S0�+
∫ S1

S0

�′′�K��S−K�+ dK� (1.245)

The discretized form of this formula reads

��S� ≈ ��S0�+�′�S0��S−S0�+
N∑

i=1

�$Ki��
′′�Ki��S−Ki�+� (1.246)

where Ki are chosen as S0 < K1 < K2 < · · · < KN < S1. Let us assume that the strikes are
chosen as equally spaced, $Ki = Ki −Ki−1 = $K. Hence, the replication consists of a cash
position of size ��S0�−�′�S0�S0, a stock position of size �′�S0�, and N call positions of
size �$Ki��

′′�Ki� in calls struck at Ki. In most practical cases, this formula actually offers a
more accurate discrete representation than the analogous form obtained from discretizing the
integral in equation (1.241). This is especially the case when considering a pay-off whose
nonzero values are localized to a region �S0� S1	 for finite S1 or to a region �S0�	�, with S0 > 0.

14 Here one uses the general property
∫ S+�

S−�
��S−K���K�dK = ��S� for any real constants ��� > 0.
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This is the situation for pay-offs of the general form "�S�X�1�, for some function "�S�X�
with strike X> 0. Here 1� is the indicator function having nonzero value only if condition �
is satisfied. If � is chosen as the condition S > X, then 1S>X = ��S−X�. The plain European
call pay-off obtains with the obvious choice "�S�X� = S−X. It should also be noted that
an alternate replication formula involving puts at various strikes (instead of calls) is readily
obtained in a manner similar as before or by a simple application of put-call parity (see
Problem 6), giving

��S� = ��S1�+�′�S1��S−S1�+
∫ S1

S0

�′′�K��K−S�+ dK� (1.247)

assuming that ��S1�, �
′�S1� exist.

Note that these formulas assume that the payoff function is well behaved at either the
lower endpoint or the upper endpoint. A formula that is valid irrespective of whether the
payoff function is singular at either endpoint can be obtained by subdividing the interval
�S0� S1	 into two regions: a lower region �S0� S̄	 and an upper region �S̄� S1	 for any S̄ with
S0 < S̄ < S1. In the lower region we use puts, while calls are used for the upper region. In
particular, via a straightforward integration-by-parts procedure one can derive (see Problem 7)

��S� = ��S̄�+�′�S̄��S− S̄�+
∫ S̄

S0

�′′�K��K−S�+ dK+
∫ S1

S̄
�′′�K��S−K�+ dK� (1.248)

One is then at liberty to choose S̄, which acts as a kind of separation boundary for whether calls
or puts are used. Note that in the limit S̄ → S0 the formula reduces to that in equation (1.245),
with only calls being used, while the opposing limit S̄ → S1 gives equation (1.247), with only
puts used for replication. A similar approximate discretization scheme as discussed earlier
may be used for these integrals, giving rise to a replication in terms of a finite number of calls
and puts at appropriate strikes. This last formula may hence prove advantageous in practice
when liquidity issues are present. In particular, this replication can be exploited to better
balance the use of available market contracts that are either in-the-money or out-of-the-money
puts or calls.

We now give some examples of applications of the foregoing replication theory.

Example 1. Exponential Pay-Off.

As a first example, let

��S� = �eS−X −1�+ = �eS−X −1	��S−X� =






eS−X −1� S ≥ X

0� S < X�

(1.249)

One can readily verify that this payoff function can be exactly replicated using the right-
hand side of either equation (1.241) or equation (1.245) with S1 = 	. Using ��X� = 0,
�′�K� = �′′�K� = eK−X (for K>X), and adopting the replication formula in equation (1.246)
with S0 = X and any S1 > X gives

��S� ≈ S−X+
N∑

i=1

wi�S−Ki�+� (1.250)

with call positions (i.e., weights) wi = �$K�eKi−X and strikes Ki = X+ i $K. Note that one
may also use slightly different subdivisions, all of which converge to the same result in the
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FIGURE 1.4 Rapid convergence of the static replication of the exponential pay-off defined in equa-
tion (1.249) (in the region �X�X+L	 with X = 10�L = 3) using equation (1.250) with a sum of (a) two
calls with K1 = 10�75, K2 = 12�25 versus (b) four calls with K1 = 10�375, K2 = 11�125, K3 = 11�875,
K4 = 12�625.

limit of infinitesimal spacing $K → 0. Figure 1.4 partly shows the result of this replication
strategy in practice. Nearly exact replication is already achieved with only eight strikes.

Example 2. Sinusoidal Pay-Off.

Consider the sinusoidal pay-off

��S� = sin
(
��S−X�

L

)

1X≤S≤X+L� X�L > 0� (1.251)

The choice of strikes Ki = X + iL/N , i = 1� � � � �N , with S0 = X and S1 = X +L, within
equation (1.246) gives

��S� ≈ �

L
�S−X�+

N∑

i=1

wi�S−Ki�+� (1.252)

where wi = −��2/NL� sin�i�/N�. Figure 1.5 shows the convergence using this replication
strategy.

1
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FIGURE 1.5 A comparison of three replication curves and the exact sine pay-off defined in equa-
tion (1.251) (in the region �X�X+L	 with X = 10�L = 3) with N = 4, N = 8, and N = 12 short calls, a
long position in the stock, and a short cash position using equation (1.252). With N = 12 the replication
is already very accurate.
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Example 3. Finite Number of Market Strikes.

In realistic applications there typically is only a select number of strikes available in the
market, so the trader has no control over the values of Ki to be used in the replication
strategy. In this situation the set of calls (puts) with strikes Ki, i = 1� � � � �N , is already
given (i.e., preassigned) for some fixed N, and the spacing between strikes is not necessarily
uniform. A solution to this problem is to consider a slight variation to equation (1.246) and
write the finite expansion

��S� ≈ w−1 +w0S+
N∑

i=1

wi�S−Ki�+� (1.253)

The coefficient w−1 gives the cash position, while the weight w0 gives the stock position,
and the weights wi give the positions in the calls struck at values Ki. The goal is to find the
positions wi providing the best fit, in the linear least squares sense, as follows. By subdividing
the stock price space �S0� S1	 into M interval slices S�j�, with S�j� < S�j+1�, j = 1� � � � �M ,
the N + 2 positions wi can be determined by matching the approximate payoff function on
the right-hand side of equation (1.253) to the value of the exact payoff function ��S�j�� at
these M stock points. This leads to a linear system of M equations in the N + 2 unknown
weights wi:

��S�j�� = w−1 +w0S
�j� +

N∑

i=1

wi�S
�j� −Ki�+� j = 1� � � � �M� (1.254)

One can always make the choice M ≥N +2 so that there are at least as many equations as
unknown weights. A solution to this system can be found within the linear least squares sense,
giving the wi. This technique is fairly robust and also offers a rapidly convergent replication.
The reader interested in gaining further experience with the actual numerical implementation
of this procedure as applied to logarithmic pay-offs is referred to the numerical project in
Part II of this book dealing specifically with the replication of the static component of variance
swap contracts.

Problems

Problem 1. A particular representation of the Dirac delta function ��x� is given by the limit
 → 0 of the sequence of functions f �x� = �1/ 2�� − �x��+. Using this fact, demonstrate
that the butterfly spread pay-off defined in equation (1.228) gives the Dirac delta function
��ST −K� in the limit  → 0.

Problem 2. Consider the bull spread portfolio with maximum pay-off normalized to unity:

CT�S�K+  �−CT�S�K�

 
� (1.255)

CT�S�K�= �S−K�+. Compute the limit  → 0 and thereby obtain the pay-off of a bull digital.

Problem 3. Show that under suitable assumptions on the function � [i.e., ��0� and �′�0�
exist] we have

∫ 	

0
�′′�K��S−K�+ dK = ��S�−�′�0�S−��0�� (1.256)

hence verifying equation (1.241). For this purpose use integration by parts twice, together
with the property in equation (1.243) as well as the identity

�

�S
�S−K�+ = ��S−K�� (1.257)
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where ��x� is the Heaviside unit step function having value 1, or 0 for x ≥ 0, or x < 0,
respectively. Note that the derivative of this function gives the Dirac delta function.

Problem 4. Demonstrate explicitly that the pay-offs of Examples 1 and 2 of this section
satisfy equation (1.245) with S0 = X, S1 = X+L, L > 0.

Problem 5. Assume that calls of all strikes are available for trade and have a known price.
Express the present value of the log payoff ��ST �= log ST+a

S0
, with constant a> 0, in terms of

call option prices of all strikes K> 0. Find a similar expression in terms of put option prices.

Problem 6. Apply equation (1.241) to a call payoff ��S� = �S −X�+, with constant X, to
obtain the put-call parity relation

�S−X�+ = S−X+ �X−S�+� (1.258)

for all S > 0. In deriving this result, the property in equation (1.243) is useful. Now make
use of the right-hand side of this put-call parity formula into equation (1.245) and integrate
by parts to arrive at equation (1.247).

Problem 7. Consider the interval S ∈ �S0� S1	. Integrate by parts twice while using the general
properties stated earlier for the functions ��x�, �x�+, and the delta function ��x� to arrive at
the identities

∫ S̄

S0

�′′�K��K−S�+dK = ��S�1S0<S<S̄ −��S̄���S̄−S�+�′�S̄��S̄−S�+ (1.259)

and
∫ S1

S̄
�′′�K��S−K�+dK = ��S�1S̄≤S<S1

−��S̄���S− S̄�−�′�S̄��S− S̄�+ (1.260)

where 1	 is the indicator function having unit value for the domain 	 and zero otherwise.
Add these two expressions to finally obtain equation (1.248).

Problem 8. Using risk-neutral valuation, i.e., equation (1.166), derive the Black–Scholes
pricing formula for the price of a European digital call and that of a digital put struck at K with
time to maturity T. For simplicity assume geometric Brownian motion with constant interest
rate and volatility. Interpret the meaning of the digital option prices in terms of the price of a
standard call. Hint: The derivation of the European digital call boils down to computing the
risk-neutral probability P�ST ≥ K�, where the algebraic steps are similar to what is used to
derive a standard call price.

Problem 9. Derive the Greeks $, % , and vega for a European digital call.

1.9 Continuous-Time Financial Models

In this section, we introduce the basic concepts in continuous-time finance. Derivative claims
are structured as contracts written on underlying assets that can be used as hedging instru-
ments. An elegant mathematical structure underlying these financial concepts is reviewed in
this section.

In perfect-markets models, a basic asset price process is given by a money-market account
on which we can deposit and out of which we can borrow without limits. The value at time
t of one dollar deposited in a money-market account at initial time t = 0 with continuously
compounded interest up to time t, is denoted by Bt.
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Definition 1.10. Money-Market Account. Assuming continuous compounding, a money-
market account is an asset price process Bt that is monotonically increasing in time, has zero
volatility, and follows an equation of the form

dBt = rtBt dt� (1.261)

where rt is a stochastic process that is positive at all times.15 By integrating equation (1.261)
we find the stochastic integral representation

Bt = e
∫ t

0 rsds� (1.262)

The instantaneous rate (or short rate) rt is assumed positive at all times. This is a way
to implicitly account for an important restriction: If interest rates were negative, an arbitrage
strategy would be to borrow money at negative interest and hold the cash in a safety deposit
instead of in an interest-bearing account. Assuming that security costs to store money in a
safety deposit are negligible, the existence of such a strategy constrains interest rates to stay
positive.

Definition 1.11. Financial Model: Continuous Time. A continuous-time financial model
� = ��t�A

1
t � � � � �A

n
t � is given by a filtration �t and n price processes as basic hedging

instruments:

�A1
t � � � � �A

n
t �� t ∈ �+� (1.263)

The value Ai
0 can be used to model the current (or spot) price of the ith asset if current time

is set as t = 0 and the random variable Ai
t models the price of the ith asset at any time t > 0.

Definition 1.12. Diffusion Pricing Model. In a diffusion model the price processes of all
hedging instruments (or securities) obey stochastic differential equations of the form

dAi
t

Ai
t

= �Ai

t dt+
M∑

�=1

�Ai

��t dW
�
t � (1.264)

Here, the dW�
t �� = 1� � � � �M , are independent Brownian motions (or Wiener processes)

with E�dW�
t 	 = 0 and E�dW�

t dW
�
t 	 = ��� dt. The functions �Ai

��t are so-called lognormal
volatilities of the ith asset price process �Ai

t�t≥0 with respect to the �th Brownian motion
(i.e., with respect to the �th risk factor), and the functions �Ai

t are lognormal drifts of the ith
asset price process. These are generally functions of the asset values A1

t � � � � �A
n
t and time t.

Note: We can assume further that one of the assets, e.g., A1
t , is the money-market account,

which is the only asset characterized by having zero volatility; in this case �A1

��t = 0 for all
� = 1� � � � �M .

Definition 1.13. Adapted Process. A stochastic process �t is adapted to the filtration �t if
�t is a random variable in the probability space generated by �t. In other words, the value
of �t depends only on the values taken by the paths �A1

s � � � � �A
n
s � for 0 ≤ s ≤ t, as they were

realized up to time t, i.e., �t is �t-measurable.

15 Technically, Bt is of zero quadratic variation because the differential contains no term with dWt; however, rt
can generally be stochastic.
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Definition 1.14. Stopping Time. A stopping time � ∈ �0� T	, for any finite time T, is an
�t-measurable positive random variable such that the time event �t = ��, with probability
P�� <	�= 1, corresponds to a decision to stop and is determined entirely by the information
set �t up to time t = �. That is, given the filtration �t we know whether or not � ≤ t.

Note that for asset-pricing purposes the information set �t basically derives from the set
of all asset price paths �A1

t � � � � �A
n
t �, 0 ≤ t ≤ �. This rather technical definition and abstract

concept of a stopping time is best illustrated with examples. For instance, let xt be some
real-valued diffusion process (e.g., a Wiener process) and let �a� b	 ⊂ � be a given fixed
finite interval. Assume initially x0 � �a� b	 at time t = 0 and allow the process to evolve in
time t > 0 up to time T. The random variable defined by

� =
{

min�t such that xt ∈ �a� b	�� if 0 < t < T

T� otherwise
(1.265)

is then a stopping time and corresponds to the first entry time t < T of the process xt into
the interval [a,b]. Some basic useful properties of stopping times follow readily, such as
additivity: If �1 and �2 are two stopping times in a given time interval, then � = �1 +�2 is also
a stopping time and, moreover, min��1� �2� and max��1� �2� are also stopping times. In the
pricing of European-style options the expiration time is an example of a stopping time that
is actually known at contract inception. In contrast, for American-style options the expiration
period (or lifetime of the contract) is still finite, yet there is the added freedom of early
exercise. As we shall see in Section 1.14, the early-exercise time is actually an example of an
optimal stopping time that is (dynamically) determined by the level of the asset or stock price
at the time of early exercise. Other examples of stopping times and derivative instruments
are given by barrier contracts, for which the pay-off depends on whether or not a certain
price process crosses a given barrier in the future. Suppose H is a fixed number, and define
� as the time t = � at which At = H for the first time, subject to the initial condition A0.
Then � is a stopping time. Cash flows for barrier options can occur at the time the barrier
is crossed or at maturity. A counterexample to a stopping time is the time � ′, defined as the
last time before a given maturity date T for which A� ′ = H . � ′ is not a stopping time because
knowledge about when � ′ occurs requires information on the full path xt for all t ∈ �0� T	 and
in particular for times after � ′ itself.

Definition 1.15. Derivative instrument.16 A derivative instrument, or contingent claim, is
a contractual agreement between two parties who agree to exchange a cash flow stream in
the future, where the cash flow amounts are adapted processes and the timings are stopping
times in the given financial model. A discrete cash flow stream is modeled by a sequence of
pairs ��j� cj�, j = 1� � � � �m, where the �j are stopping times and the cj are cash flow amounts
depending on the price processes �A1

t � � � � �A
n
t � up to time �j . Continuous cash flow streams

are modeled by more general adapted processes �t such that d�t is the cash flow occurring
in the time interval �t� t+dt�. In the particular case of a discrete cash flow stream ��j� cj�,
�j = �1� � � � � �m < t, the continuous-time representation ct is given by

∫ t

0
d�t =

m∑

j=1

cj� (1.266)

16 It should be clearly understood that we are throughout assuming all claims or assets are nondefaultable; e.g., the
money-market account is assumed nondefaultable. The definition must be modified in the case of defaultable
(credit) derivatives, where pricing depends on time of default and recovery, quantities not directly observable from
market-traded instruments.
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An example of a continuous cash flow stream is given by exchange-traded futures and
options contracts. These contracts have the same final pay-off as forward and ordinary option
contracts. However, to reduce credit risk to a minimum, exchanges ask investors to hold a
margin account and mark-to-market gains and losses on a daily basis based on realized prices
or to unwind the position. This results in a daily stream of cash flows that can be modeled as
continuous.

Definition 1.16. Self-Financing Trading Strategy. A self-financing trading strategy in the
hedging instruments A1

t � � � � �A
n
t is a zero cash flow–replicating strategy for all time t ∈ �0� T	.

That is, this strategy consists of a portfolio of positions �i
t in the assets Ai

t, with value
Vt = ∑n

i=1 �
i
tA

i
t, where the �i

t , i = 1� � � � � n, are adapted processes such that at all times
t ∈ �0� T	 we have

n∑

i=1

�Ai
t +dAi

t�d�
i
t = 0� (1.267)

The meaning of the self-financing condition is that the cash flow d�t resulting at time
t+dt are reinvested in the underlying assets by adjusting the positions �i

t+dt by purchasing or
selling the corresponding hedging instruments at the prices Ai

t +dAi
t at an infinitesimally later

time t+dt (i.e., positions are readjusted only after the prices have changed during time dt). In
this sense the positions are adapted, i.e., nonanticipative with respect to the stochastic changes
in the asset prices. The infinitesimal change in the portfolio value Vt of a self-financing
strategy is only due to changes in the prices of the underlying instruments since there are no
allowed additional cash inflows or outflows after initial time; hence,17

dVt =
n∑

i=1

�i
tdA

i
t� (1.268)

In integral form this is written as

Vt = V0 +
n∑

i=1

∫ t

0
�i
sdA

i
s� (1.269)

Using Itô’s lemma, the change in portfolio value, dVt = Vt+dt −Vt, must also satisfy

dVt =
n∑

i=1

[
�i
tdA

i
t +Ai

td�
i
t + �d�i

t��dA
i
t�
]
� (1.270)

Equating these two expressions then gives the self-financing condition rewritten in the form
contained in equation (1.267).

Definition 1.17. Self-Financing Replicating Strategy. A self-financing replicating strategy
(or perfect hedge) in the hedging instruments A1

t � � � � �A
n
t that replicates a given cash flow

stream d�t, where �t is a given contingent claim at time t in some time interval t ∈ �0� T	,
is defined as a family of adapted processes �i

t , i = 1� � � � � n, such that at all times t ∈ �0� T	
we have

�t = �0 +
n∑

i=1

∫ t

0
�i
s dA

i
s� (1.271)

17 Note: We assume throughout that the assets do not pay dividends, although in the case of dividends the
appropriate formulas extend in a simple manner.
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or, equivalently in differential form,

d�t =
n∑

i=1

�i
t dA

i
t� (1.272)

In the case of a European-style option with payoff ��ST � at time T, where St is the
underlying stock price process, a self-financing replication strategy in the stock and the
money-market account, with value �1

t Bt +�2
t St at time t, would satisfy

Bt d�
1
t + �St +dSt�d�

2
t = 0 (1.273)

for all times t ∈ �0� T�. [Note that the term dBt = rtBt dt vanishes since it gives rise to a term
of O��dt�d�1

t �, i.e., of order greater than dt.] At time T, the position is unwound so that the
payout ��ST � [i.e., �T = ��ST � in this case] is generated; i.e., the portfolio has terminal value

�1
TBT +�2

TST = ��ST �� (1.274)

In the case of a barrier or American option, where the payout occurs at a stopping time
0 ≤ � ≤ T , the equation (1.273) is valid until time �, at which point we have

B��
1
� +S��

2
� = ��S��� (1.275)

One of the main problems in pricing theory is whether or not the cash flow streams associ-
ated with a contingent claim can be replicated by means of a self-financing trading strategy. If
a self-financing trading strategy exists and reproduces all the cash flows of a given contingent
claim, then the present value of the cash flow stream can (uniquely in case of no arbitrage)
be identified as the cost of setting up the self-financing trading strategy. The question of
whether such a self-financing strategy exists relates to attainability and market completeness.

The practical implementation of trading strategies is limited by the existence of transaction
costs, by liquidity effects, which pose restrictions on the amounts of a given instrument that
can be traded at the posted price, and by the delays with which information reaches market
participants. To a first approximation, these effects can be taken into account implicitly by
assuming that there are no imperfections. A key role is played by the condition of absence
of arbitrage, which is stated next and which implies that all portfolios with the same payoff
structure have the same price. Asking for absence of arbitrage is a way of accounting for
finite market liquidity since, in fact, if an asset had two different prices, trades to exploit the
opportunity would cause the prices to realign.

Definition 1.18. Arbitrage: Continuous Time. The self-financing trading strategy ��1
t � � � � �

�n
t �, 0 ≤ t ≤ T , in the hedging assets �A1

t � � � � �A
n
t � is an arbitrage strategy if either of the

following two conditions holds.
A1. The portfolio value process

Vt =
n∑

i=1

�i
tA

i
t (1.276)

is such that V0 < 0 and with probability P�VT ≥ 0� = 1.
A2. The value process Vt is such that V0 = 0 and P�VT > 0� > 0 with P�Vt ≥ 0� = 1 for all
t ∈ �0� T	.

In plain language, condition A2 says that an arbitrage opportunity is a self-financed
strategy that can generate a profit at zero cost and with no possibility of a loss at any time
during the strategy.
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Typically, when solving the replication problem for a cash flow stream, the current price
of the stream is not known, a priori. Knowledge of the cash flow stream, however, is sufficient
because if a trading strategy replicates the cash flows, in virtue of the hypothesis of absence
of arbitrage, the value of this strategy at all times yields the price or value process Vt. Next
we consider a couple of examples of replication (or hedging) strategies. One is static in time;
the other is dynamic.

Example 1. Perpetual Double Barrier Option.

Suppose there are no carry costs such as interest rates or dividends for holding a posi-
tion in the stock. Consider a perpetual option with two barriers: a lower barrier at stock
value L and an upper barrier at H, with L < H . If the stock price touches the lower barrier
before it touches the upper barrier, the holder receives RL dollars and the contract termi-
nates. Otherwise, whenever the upper barrier is hit first, the holder receives RH dollars and
the contract terminates. The problem is to find the price and a hedging strategy for this
contract.

To solve this problem, let �L be the stopping time for hitting the lower barrier and �H
be the stopping time for hitting the higher barrier. The stopping time � at which the option
expires is the minimum of these times,

� = min��L� �H�� (1.277)

If one considers a replicating portfolio ft = aSt +b at any time t, then the barrier levels give
rise to two equations:

aH +b = RH� aL+b = RL� (1.278)

corresponding to the portfolio value (i.e., payout) for hitting either barrier. The value f� of
the perpetual double barrier contract evaluated at the stopping time t = � is

f� = aS� +b� (1.279)

Solving the system in equation (1.278) for the portfolio weights a and b, we find that

a = RH −RL

H −L
� b = RH −aH� (1.280)

Absence of arbitrage therefore implies that the price process followed by ft is given by the
value of the portfolio aSt +b that replicates the cash flows.

Example 2. Dynamic Hedging in the Black–Scholes Model

Consider the Black–Scholes model with a stock price following geometric Brownian motion,

dSt

St

= � dt+� dWt� (1.281)

In this model, the price at time t of a call struck at K and maturity at calendar time T > t
is given by the function CBS�St�K�T − t��� r� in equation (1.217). Let’s assume that in this
economy interest rates are constant and equal to r.

One can show that the pay-off of the call can be replicated by means of a self-financing
trading strategy that costs Ct = CBS�St�K�T − t��� r� to set up at calendar time t. This
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strategy involves two adapted processes at and bt for the hedge ratios that give the positions
at calendar time t in two assets: the stock of price St and a zero-coupon bond maturing at
time T of price Zt�T� = e−r�T−t�. Namely,

Ct = atSt +btZt�T�� (1.282)

To show this, we need to find the two processes at and bt. Let us note that self-financing
condition (1.267) in this case reads

�St +dSt�dat +Zt�T�dbt = 0� (1.283)

By the differential of equation (1.282) and using the self-financing condition we find

dCt = at dSt + rbtZt�T�dt� (1.284)

On the other hand, applying Itô’s lemma (in one dimension) to the price process Ct (considered
as function of t and St) we find

dCt =
(
�CBS

�t
+ �2S2

2
�2CBS

�S2

)

dt+ �CBS

�S
dSt�

where S = St. By equating coefficients in dt and dSt with the previous equation we find

at = �CBS

�S
(1.285)

and

rbtZt�T� = �CBS

�t
+ �2S2

2
�2CBS

�S2
� (1.286)

Solving for bt from replication equation (1.282) gives

bt = Zt�T�
−1�Ct −atSt�� (1.287)

Substituting bt as given by equation (1.287), as well as at from equation (1.285) into
equation (1.286), we arrive at the Black–Scholes partial differential equation in current time
t and spot price S = St:

�CBS

�t
+ rS

�CBS

�S
+ �2S2

2
�2CBS

�S2
− rCBS = 0 (1.288)

This is precisely the equation satisfied by the function CBS�St�K�T − t��� r� given by equa-
tion (1.217) with T → T − t.

Notice that the parameter � in the equation for the stock price process (1.281) appears in
neither the Black–Scholes formula, the Black–Scholes equation, nor the hedge ratios at and
bt. Section 1.10 provides a more general explanation of this very notable simplification.

1.10 Dynamic Hedging and Derivative Asset Pricing
in Continuous Time

In this section, we present the main theorem for pricing derivative assets within the continuous-
time framework.
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Theorem 1.4. Fundamental Theorem of Asset Pricing (Continuous-Time Case). Part I.
Consider a diffusion continuous-time financial model � = ��t�A

1
t � � � � �A

n
t �, where the hedg-

ing instruments are assumed to satisfy a diffusion equation of the form (1.264), i.e.,

dAi
t

Ai
t

= �Ai

t dt+
M∑

�=1

�Ai

��t dW
�
t � i = 1� � � � � n� (1.289)

where dW�
t are understood to be standard Brownian increments with respect to a specified

probability measure. Also, suppose there exists a money-market account Bt with

dBt = rtBt dt� (1.290)

Finally, suppose there are no arbitrage opportunities. Then:
(i) Under all equivalent probability measures, there exists a family of adapted processes

q��t��= 1� � � � �M (one for each risk factor), such that, for any asset price process At obeying
an equation similar to equation (1.289) with drift �A

t and volatilities �A
��t, the drift term is

linked to the corresponding volatilities by the equation

�A
t = rt +

M∑

�=1

q��t�
A
��t� (1.291)

where q��t are independent of the asset A in question.

In finance parlance, the adapted processes q��t are known as the price of risk for the �th
risk factor (or �th Brownian motion). Note that this result applies to any asset obeying a
diffusion process: In particular, the drifts �Ai

t and volatilities �Ai

��t of the base asset prices Ai
t

are themselves also linked by an equation similar to equation (1.291), with q��t independent
of the prices Ai

t.

Definition 1.19. Numeraire Asset. Any asset gt whose price process is positive, in the sense
that gt > 0 for all t, is chosen as the numeraire for pricing. That is, gt is an asset price
relative to which the value of all other assets At are expressed using the ratio At

gt
.

Theorem 1.5. Fundamental Theorem of Asset Pricing (Continuous-Time Case). Part II.
Under the hypotheses in Part I of the theorem, we have the following: (ii) If gt is a numeraire
asset, then there exists a probability measure Q(g) for which the price At at time t of any
attainable instrument without cash flows up to a stopping time �> t is given by the martingale
condition

At

gt
= E

Q�g�
t

[
A�

g�

]

� (1.292)

Under the measure Q(g) the prices of risk in equation (1.291) for the �th factors are given
by the volatilities of gt for the corresponding �th factors:

qg
��t = �g

��t� (1.293)

Note that we are throughout assuming that the contingent claim or derivative instrument
to be priced is attainable, meaning that one can find a self-financing replicating strategy that
exactly replicates the cash flows of the claim. If one also assumes that the financial model
satisfies market completeness, then every contingent claim or cash flow stream is assumed
attainable.
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Definition 1.20. Pricing Measure: Continuous Time. Given a numeraire asset price pro-
cess gt, the pricing measure associated with g is the martingale measure Q(g) for which
pricing formula (1.292) holds for any asset price process At.

Definition 1.21. Risk-Neutral Measure. Assuming continuous compounding, the risk-
neutral measure Q(B) is the martingale measure with the money-market account as numeraire
asset gt = Bt = e

∫ t
0 rsds�

Theorem 1.6. Fundamental Theorem of Asset Pricing (Continuous-Time Case). Part III.
Under the hypotheses in Part I of the theorem, we have the following: (iii) Under the risk-
neutral measure Q(B) all the components of the price-of-risk vector, q

g
��t, � = 1� � � � �M ,

vanish, and the drift �A
t of any asset price At at time t is equal to the riskless rate rt. The

price process for any attainable instrument without cash flows up to any stopping time � > t
is given by the expectation at time t:

At = E
Q�B�
t

[

e− ∫ �
t ruduA�

]

� (1.294)

(iv) Any attainable price process At can be replicated by means of a self-financing trading
strategy with portfolio value Vt = �

�0�
t Bt +

∑n
i=1 �

�i�
t Ai

t in the base assets Ai
t and in the

money-market account Bt:

dAt = dVt = �
�0�
t rtBt dt+

n∑

i=1

�
�i�
t dAi

t� (1.295)

where the positions �
�i�
t satisfy the self-financing condition

Bt d�
�0�
t +

n∑

i=1

�Ai
t +dAi

t�d�
�i�
t = 0� (1.296)

Proof.
(i). Assume no arbitrage and consider a self-financing trading strategy, with components
�
�1�
t � � � � � �

�n�
t as adapted positions in the family of base assets A1

t � � � � �A
n
t . Then

n∑

i=1

�Ai
t +dAi

t�d�
�i�
t = 0 (1.297)

holds. This strategy has portfolio value at time t given by

�t =
n∑

i=1

�
�i�
t Ai

t� (1.298)

This strategy is instantaneously riskless if the stochastic component is zero, i.e., d�t = rt�t dt.
Given our assumptions, a riskless strategy exists and can be explicitly constructed as follows.
Using the self-financing condition in equation (1.297) and Itô’s lemma for the stochastic
differential d�t we obtain the infinitesimal change in portfolio value in time �t� t+dt�:

d�t =
n∑

i=1

[
�Ai

t +dAi
t�d�

�i�
t + �

�i�
t dAi

t

] =
n∑

i=1

�
�i�
t dAi

t� (1.299)
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Due to the assumption of no arbitrage, the rate of return on this portfolio over the period �t� t+
dt� must equal the riskless rate of return on the money-market account, i.e., d�t = rt�t dt.

18

Substituting equation (1.289) into the foregoing stochastic differential and setting the coeffi-
cients in all the stochastic terms dW�

t to zero gives

n∑

i=1

�Ai

��t�
�i�
t Ai

t = 0� (1.300)

for all � = 1� � � � �M . Here the functions �Ai

��t are volatilities in the �th factor for each asset
Ai. This equation states that the �n-dimensional vector of components �

�i�
t Ai

t is orthogonal
to the subspace of M vectors (labeled by � = 1� � � � �M) in �n having components �Ai

��t,
i = 1� � � � � n.

Absence of arbitrage also implies that the portfolio earns a risk-free rate, d�t = rt�tdt;
hence, setting the drift coefficient in the stochastic differential d�t to rt�t while using
equation (1.298) gives this additional condition:

n∑

i=1

��Ai

t − rt��
�i�
t Ai

t = 0� (1.301)

Here, the quantities �Ai

t are drifts for each ith asset. Hence equation (1.300) must imply
equation (1.301) for all arbitrage-free strategies satisfying the self-financing condition. Equa-
tion (1.301) states that the �n-dimensional vector of components �

�i�
t Ai

t must be orthogonal
to the �n-dimensional vector with components ��Ai

t − rt�. This means that if the vector with
components ��i�

t Ai
t is orthogonal to the M vectors of components �Ai

��t, then it is also orthogonal
to the vector of components ��Ai

��t − rt�. From linear algebra we know that this is possible if
and only if the vector of components ��Ai

t − rt� is a linear combination of the M vectors of
components �Ai

��t (i.e., is contained in the linear subspace spanned by the M vectors). Hence
for any given time t, we have

�Ai

t = rt +
M∑

�=1

q��t�
Ai

��t� (1.302)

with coefficients q��t independent of the asset Ai, for all i = 1� � � � � n. Since this is true for all
self-financing strategies and choices of base assets, this implies that the same relation must
follow for any asset At; namely, equation (1.291) obtains.
(ii) Let g be a numeraire asset. The measure Q(g) is specified by the condition in equa-
tion (1.292). At this point we make use of a previously derived result contained in equa-
tion (1.138). Applying that formula now to the quotient At/gt, where At satisfies an equation of
the form (1.264) (with Ai replaced by A) and the numeraire asset gt satisfies a similar equation,

dgt
gt

= �g
t dt+

M∑

�=1

�g
��t dW

�
t � (1.303)

18 A simple argument shows that if the portfolio return is greater than rt , then an arbitrage strategy exists by
borrowing money at the lower rate rt at time t and investing in the portfolio until time t+dt. On the other hand, if
the portfolio return is less than rt , then an arbitrage strategy also exists by short-selling the portfolio at time t and
investing the earnings in the money-market account. Both strategies yield a zero-cost profit.
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immediately gives the drift component:

Et

[

d
At

gt

]

= At

gt

[

�A
t −�g

t −
M∑

�=1

�g
��t��

A
��t −�g

��t�

]

dt (1.304)

= At

gt

M∑

�=1

�q��t −�g
��t���

A
��t −�g

��t�dt� (1.305)

In the last equation we have used equation (1.291) for both gt and At. In order for the ratio
At/gt to be a martingale process for all (arbitrary) choices of the asset At, this expectation
must be zero. This is the case if and only if the process for the price of risk q�

t is related to
the numeraire asset gt, q��t = q

g
��t, as follows:

qg
��t = �g

��t� � = 1� � � � �M� (1.306)

That is, the prices of risk q�
t are equal to the volatilities of the numeraire asset for each

respective risk factor.
(iii) This is a particular case of (ii) and follows when money-market account Bt is chosen as
numeraire asset. Since dBt = rtBt dt, the prices of risk in this case are all zero, i.e., qB

��t = 0,
and therefore �A

t = rt for all asset price processes At. In particular, we have that

At = E
Q�B�
t

[

A�

Bt

B�

]

= E
Q�B�
t

[

A�e
− ∫ �

t rsds

]

� (1.307)

giving the result. Here we have used the fact that Bt at time t is a known (i.e., nonstochastic)
quantity that can be taken inside the expectation.
(iv). Consider the trading strategy with positions �

�i�
t in the base assets Ai

t. A long position
in this trading strategy and a short position in the generic asset At is a riskless combination
that accrues at the risk-free rate. By adjusting the position in the money-market account ��0�

0

so that the trading strategy has the same value of asset A0 at initial time t = 0, the resulting
trading strategy will track the price process At for all times. This trading strategy is also
self-financing. In fact

dAt = d

(

�
�0�
t Bt +

n∑

i=1

�
�i�
t Ai

t

)

= �
�0�
t rtBt dt+Bt d�

�0�
t +

n∑

i=1

��Ai
t +dAi

t�d�
�i�
t + �

�i�
t dAi

t	� (1.308)

Hence equation (1.295) obtains from equation (1.296). �

In summary, we observe that the asset pricing theorem is connected to the evaluation of
conditional expectations of martingales (i.e., relative asset price processes) within a filtered
probability space and under a choice of an equivalent probability measure (also called an
equivalent martingale measure). A measure is specified by the chosen numeraire asset g
obeying a stochastic price process of its own, given by equation (1.303). Given a numeraire
g, the relative asset price process At/gt, for a generic asset price At, is a martingale under
the corresponding measure Q(g). Equivalent martingale measures then arise by considering
different choices of numeraire assets. In particular, consider another numeraire asset, denoted
by g̃, with price process g̃t, and suppose that measure Q�g̃� is equivalent to Q(g), then prices
computed under any two equivalent measures must be equal:

At = gtE
Q�g�
t

[
AT

gT

]

= g̃tE
Q�g̃�
t

[
AT

g̃T

]

� (1.309)
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Rearranging terms gives

E
Q�g�
t

[
AT

gT

]

= g̃t
gt
E

Q�g̃�
t

[
AT

g̃T

]

= E
Q�g̃�
t

[
gT/g̃T
gt/g̃t

AT

gT

]

� (1.310)

Note that this holds true for an arbitrary random variable XT = AT/gT . We hence obtain the
general property under two equivalent measures:

E
Q�g�
t

[
XT

] = �−1
t E

Q�g̃�
t

[
XT�T

]
� (1.311)

where �t = gt/g̃t ≡
(

dQ�g�

dQ�g̃�

)

t

, t ∈ �0� T	, is a Radon–Nikodym derivative of Q(g) with respect

to Q�g̃� (with both measures being restricted to the filtration �t). For t = T we write(
dQ�g�

dQ�g̃�

)

T

= dQ�g�

dQ�g̃�
. Choosing Xt = 1 in the foregoing equation shows that �t is also a martingale

with respect to Q�g̃�.
Let’s now fix our choice for one of the numeraires; i.e., let g̃t = Bt be the value process

of the money-market account so that Q�g̃� = Q�B� is the risk-neutral measure. Taking the
stochastic differential of the quotient process �t = gt/Bt gives

d�t

�t

= ��g
t − rt�dt+

M∑

�=1

�g
��t dW

�
t � (1.312)

Under the risk-neutral measure with dW�
t as Brownian increments under Q(B), this process

must be driftless so that we have �
g
t = rt. In particular, this martingale takes the form of an

exponential martingale,

�t = gt
Bt

= exp
(

− 1
2

∫ t

0
���g

s ��2ds+
∫ t

0
�g

s ·dWs

)

� (1.313)

where ���g
s ��2 = �g

s · �g
s = ∑M

�=1��
g
��s�

2 and �g
s · dWs = ∑M

�=1 �
g
��s dW�

s . At this point we
can implement the Girsanov theorem for exponential martingales, which tells us that the
�M -valued vector increment defined by

dWg
t = −�g

t dt+dWt (1.314)

is a standard Brownian vector increment under the measure Q(g). In the risk-neutral measure
the base assets must all drift at the same risk-free rate,

dAi
t

Ai
t

= rt dt+
M∑

�=1

�Ai

��t dW
�
t � i = 1� � � � n� (1.315)

Substituting for dWt using equation (1.314) into this equation and compacting to vector
notation gives

dAi
t

Ai
t

= �rt +�g
t ·�Ai

t �dt+�Ai

t ·dWg
t � i = 1� � � � � n� (1.316)

This last equation is therefore entirely consistent with the formulation presented earlier in
terms of the prices of risk. In particular, equation (1.316) is precisely equation (1.289),
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wherein the Brownian increments are understood to be w.r.t. Q(g), with gt as an arbitrary
choice of numeraire asset-price process. From equation (1.316) we again see that the vector
of the prices of risk is qt = �

g
t . In financial terms, each component of qt essentially represents

the excess return on the risk-free rate (per unit of risk or volatility for the component risk
factor) required by investors in a fair market.

Example 1. Perpetual Double Barrier Option — Risk-Neutral Measures.

Reconsider the case of the perpetual double barrier option with zero interest rates discussed
previously. The pricing formula for ft is independent of the real-world stock price drift,
although this drift does in fact affect the real-world probability of hitting one barrier before
the other. Since interest rates vanish, no discounting is required, and the price process ft has
the following representation under the risk-neutral measure Q = Q�B�:

ft = EQ
t

[
f�
]
� (1.317)

In this case, the price process ft is a martingale under the risk-neutral measure because
interest rates are zero for all time and the value of the money-market account is constant, i.e.,
unity. Hence the martingale property gives

ft = RH ProbQ
[
S� = H�St

]+RL ProbQ
[
S� = L�St

]
� (1.318)

where the probabilities are conditional on the current stock price’s value St. These probabilities
of hitting either barrier must also sum to unity,

ProbQ
[
S� = H�St

]+ProbQ
[
S� = L�St

] = 1� (1.319)

Note that ft = aSt +b, where a and b are given by equations (1.280). Hence, the probability of
hitting either barrier under the risk-neutral measure can be found by solving equations (1.318)
and (1.319). Notice that these probabilities do not depend on the drift of the stock price under
the real-world measure.

Problems

Problem 1. Find explicit expressions for the preceding risk-neutral probabilities PL =
ProbQ

[
S� = L�St

]
and PH = ProbQ

[
S� = H�St

]
. Find the limiting expressions for the case that

H >> L (i.e., H → 	 for fixed L). What is the price of the perpetual double barrier for
this case?

1.11 Hedging with Forwards and Futures

Let At be an asset price process for the asset A. A forward contract, with value Vt at time t,
on the underlying asset A (e.g., a stock) is a contingent claim with maturity T and pay-off at
time T equal to

VT = AT −F� (1.320)

where F is a fixed amount. According to the fundamental theorem of asset pricing (FTAP), the
price of this contract at time t < T prior to maturity is equal to At −FZt�T�, where Zt�T� is
the value at calendar time t of a zero-coupon (discount) bond maturing at time T. This can be
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seen in several ways. The first is the following. The payout AT can be replicated by holding
a position in the asset A at all times, while the cash payment F at time T is equivalent to
holding a zero-coupon bond of nominal F and maturing at time T. Alternatively, to assess
the current price Vt of the forward contract using FTAP of Section 1.10, we can evaluate the
following expectation at time t of the pay-off under the forward measure with gt = Zt�T� as
numeraire, giving

Vt = Zt�T�E
Q�Z�T ��
t �AT −F	 = At −FZt�T�� (1.321)

Here we used the facts that at maturity ZT�T� = 1 and that E
Q�Z�T��
t �AT 	 = At/Zt�T�,

E
Q�Z�T��
t �F	 = F . The equilibrium forward price (at time t), denoted by Ft�A�T�, is the so-

called forward price such that the value Vt of the forward contract at time t is zero. Setting
Vt = 0 in equation (1.321), we find

Ft�A�T� = At

Zt�T�
� (1.322)

Let’s assume stochastic interest rates, i.e., a diffusion process for the zero-coupon bond
[satisfying equation (1.349) of Problem 1], as well as diffusion processes for the asset At

[satisfying equation (1.348) of Problem 1] and the equilibrium forward price satisfying

dFt�A�T�

Ft�A�T�
= �

F�A�T�
t dt+�

F�A�T�
t dWt� (1.323)

Then a relatively straightforward calculation using Itô’s lemma yields the following form for
the lognormal volatility of the forward price (see Problem 1 of this section):

�
F�A�T�
t = �A

t −�
Z�T�
t � (1.324)

and its drift

�
F�A�T�
t = �A

t −�
Z�T�
t −�

Z�T�
t ��A

t −�
Z�T�
t �� (1.325)

where �
Z�T�
t is the lognormal volatility of the zero-coupon bond price and �A

t that of the asset.
We note that the foregoing drift and volatility functions are generally functions of the
underlying asset price At, calendar time t, and maturity T. Moreover, these relationships hold
for any choice of numeraire asset gt. As part of Problem 1 of this section, the reader is also
asked to derive more explicit expressions for the drifts and volatilities of the forward price
under various choices of numeraire.

Definition 1.22. Futures Contract. Futures contracts are characterized by an underlying
asset of price process At and a maturity T. Let us partition the lifetime interval [0,T] in N
subintervals of length �t = T

N
. Let ti = i · �t be the endpoints of the intervals. The futures

contract with reset period �t is characterized by a futures price F ∗
ti
�A�T� for all i= 0� � � � �N ,

and at all times ti the following cash flow occurs at time ti+1:

cti+1
= F ∗

ti+1
�A�T�−F ∗

ti
�A�T�� (1.326)

Furthermore, the futures price at time tN = T equals the asset price F ∗
T �A�T� = AT , while

at previous times the futures price is set in such a way that the present value of the futures
contract is zero.
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Recall that under the risk-neutral measure Q(B), the price of risk is zero (i.e., the numeraire
gt is the money-market account Bt with zero volatility with respect to all risk factors —
�

g
��t = 0). Hence, according to equation (1.291) of the asset pricing theorem, all asset prices

At drift at the riskless rate �A
t = rt under Q(B):

dAt

At

= rt dt+
M∑

�=1

�A
��t dW

�
t � (1.327)

where we have assumed M risk factors or, in the case of one risk factor, we simply have

dAt

At

= rt dt+�A
t dWt� (1.328)

Proposition. In the limit as �t → 0, futures prices behave as (zero-drift) martingales under
the risk-neutral measure.

Proof. By definition, the futures price is such that the present value of a futures contract is
zero at all reset times t, and the cash flows at the subsequent times t+�t are given by the
random variable �F ∗

t �A�T�= F ∗
t+�t�A�T�−F ∗

t �A�T�, so the following condition holds under
the risk-neutral measure:

E
Q�B�
t

[
�F ∗

t �A�T�

Bt+�t

]

= 0� (1.329)

where we discount at times t+�t. Taking the limit �t → 0, gives B−1
t E

Q�B�
t �dF ∗

t �A�T�	 = 0.
Since Bt �= 0, the stochastic differential dF ∗

t �A�T� has zero-drift terms for all t; i.e., F ∗
t �A�T�

is a martingale under the measure Q(B), with E
Q�B�
t �dF ∗

t �A�T�	 = 0. �

The price spread between futures and forwards is given by

F ∗
t �A�T�−Ft�A�T� = E

Q�B�
t

[
AT

]− At

Zt�T�
� (1.330)

with F ∗
T �A�T�= FT�A�T� (i.e., at maturity the two prices are the same). In Chapter 2 we shall

derive a formula for this spread based on a simple diffusion model for the asset and discount
bond. The topic of stochastic interest rates and bond pricing will be covered in Chapter 2.
However, we note here that when interest rates are deterministic (nonstochastic), where rt is a
known ordinary function of t, then the discount bond price is simply given by a time integral:
Zt�T� = exp�− ∫ T

t
rs ds� = Bt/BT . When interest rates are stochastic (i.e., nondeterministic),

as is more generally the case, then we can use equation (1.294) of the asset-pricing theorem,
for the case Zt�T� as asset, to express the discount bond price as an expectation of the payoff
ZT�T� = 1 (i.e., the payout of exactly one dollar for certain at maturity) under the measure
with the money-market account as numeraire:

Zt�T� = E
Q�B�
t �e− ∫ �

t rsdsZT �T�	 = E
Q�B�
t �e− ∫ �

t rsds	� (1.331)

[This expectation is not a simple integral (as arises in the pricing of European options) and
can in fact generally be expressed as a multidimensional path integral. See, for example,
the project on interest rate trees in Part II.] In the case that the interest rate process is a
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deterministic function of time or, more generally, when the underlying asset price process
At is statistically independent of the interest rate process (where both processes may be
nondeterminsitic), then forward and future prices coincide and the spread vanishes. In fact,
in this case

E
Q�B�
t �AT 	 = E

Q�B�
t �e− ∫ T

t rsds	

Zt�T�
E

Q�B�
t �AT 	 = E

Q�B�
t �e− ∫ T

t rsdsAT 	

Zt�T�
= At

Zt�T�
� (1.332)

where we have used equations (1.331) and (1.294).

Definition 1.23. European-Style Futures Options. European-style futures options are con-
tracts with a payoff function ��AT� at maturity T. They are similar to the regular earlier
European-style option contracts, except those are written on the underlying and traded over
the counter with upfront payment, while futures options are traded using a margin account
mechanism similar to that of futures contracts. Namely, futures options are traded in terms
of a futures option price A∗

t that equals ��AT� at maturity t = T , while the associated cash
flow stream to the holder’s margin account is given by

ct = A∗
t −A∗

t−dt� (1.333)

Notice that, similar to an ordinary futures contract, futures option prices A∗
t follow

martingale processes under the risk-neutral measure.

Example 1. European Futures Options.

The futures option price V ∗
t for a European-style option with payoff function ��AT� is thus

given by the martingale condition

V ∗
t = E

Q�B�
t ���AT�	 � (1.334)

The analogue of the Black–Scholes (i.e., lognormal) model can be written as follows under
the risk-neutral measure

dA∗
t = �A∗

t dWt� (1.335)

where the drift is zero because of the martingale property. We remark here that, in case
interest rates are stochastic, the implied Black–Scholes volatility on the futures option does not
necessarily coincide with the implied Black–Scholes volatility for plain vanilla equivalents.

Let A∗
t = F ∗

t �A�T� be the futures price on the asset. At maturity we have AT = F ∗
T �A�T�=

FT�A�T�. The pricing formula for a futures call option struck at the futures price K is given by

C∗
t �K�T� = E

Q�B�
t ��AT −K�+	 = F ∗

t �A�T�N�d+�−KN�d−�� (1.336)

where

d± = log�F ∗
t �A�T�/K�± ��2/2��T − t�

�
√
T − t

(1.337)

and we have used the standard expectation formula in equation (1.169) for the case of zero
drift, and where the underlying variable St in that formula is now replaced by F ∗

t �A�T�.
Notice that this formula carries no explicit dependence on interest rates.
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Example 2. Variance Swaps.

An example of a dynamic trading strategy involving futures contracts and the static hedging
strategies discussed in Section 1.8 is provided by variance swaps. Variance swaps are defined
as contracts yielding the pay-off at maturity time T:

�

[
1
T

∫ T

0
�2

t dt−'2

]

� (1.338)

where � is a fixed notional amount in dollars per annualized variance. Assuming that
technical upfront fees are negligible, variance swaps are priced by specifying the variance '2,
which, as we show, is computed in such a way that the value of the variance swap contract
is zero at contract inception (t = 0); i.e., since this is structured as a forward contract, it
must have zero initial cost. Computing the expectation of the pay-off at initial time t = 0
and setting this to zero therefore gives the fair value of this variance in terms of a stochastic
integral:

'2 = 1
T
E

Q�B�
0

[∫ T

0
�2

t dt

]

� (1.339)

We shall compute this expectation by recasting the integrand as follows. Assuming a diffusion
process for futures prices and assuming that European call and put options of all strikes and
maturity T are available, such a contract can be replicated exactly.19

More precisely, assume that futures prices F ∗
t ≡ F ∗

t �A�T� on a contract maturing at time T
with underlying asset price At (e.g., a stock price) at time t obeys the following zero-drift
process under the risk-neutral measure Q(B):

dF ∗
t

F ∗
t

= �t dWt� (1.340)

where the volatility �t is a random process that can generally depend on time as well as on
other stochastic variables.

Then consider the dynamic trading strategy, whereby at time t one holds 1
F∗
t

futures
contracts. If one starts implementing the strategy at time t = 0 and accumulates all the
gains and losses from the futures position into a money-market account, then the worth �T

accumulated at time T is

�T =
∫ T

0

dF ∗
t

F ∗
t

=
∫ T

0
�t dWt� (1.341)

Due to Itô’s lemma we have

d logF ∗
t = dF ∗

t

F ∗
t

− 1
2

(
dF ∗

t

F ∗
t

)2

= dF ∗
t

F ∗
t

− �2
t

2
dt� (1.342)

and integrating from time t = 0 to T we find

logF ∗
T − logF ∗

0 =
∫ T

0
�t dWt −

1
2

∫ T

0
�2

t dt = �T − 1
2

∫ T

0
�2

t dt� (1.343)

19 We point out that in actuality the price of a variance swap is largely model independent. That is, it is possible
to replicate the cash flows as long as the trader can set up a static hedge and trade futures on the underlying.
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where equation (1.340) has been used. Rearranging this equation gives the integrand in
equation (1.339) as

1
T

∫ T

0
�2

t dt = 2
T
�T − 2

T
log

F ∗
T

F ∗
0

� (1.344)

This last expression demonstrates the precise nature of the replication. This contains (i) a
static part given by the logarithmic payoff function and (ii) a dynamic part given by the
stochastic time integral �T . Substituting this last expression into equation (1.339) and using
the fact that �t is a martingale,20 i.e., EQ�B�

0 ��T 	 = 0, we obtain

'2 = − 2
T
E

Q�B�
0

[

log
F ∗
T

F ∗
0

]

� (1.345)

Replicating the logarithmic payoff function in terms of standard call and/or put pay-offs of
various strikes using the replication schemes described in Section 1.8 then gives a formula for
'2 in terms of futures calls and/or puts. In particular, by applying replication equation (1.248)
on the domain F ∗

T ∈ �0�	� and taking expectations, equation (1.345) takes the form (see
Problem 2)

'2 = 2
T

[

1− F ∗
0

F̄
− log

F̄

F ∗
0

+
∫ F̄

0
P∗

0 �K�T�
dK

K2
+
∫ 	

F̄
C∗

0 �K�T�
dK

K2

]

� (1.346)

with any choice of nonzero parameter F̄ ∈ �0�	�, and where C∗
0 �K�T� and P∗

0 �K�T� represent
the current t = 0 prices of a futures call and put option, respectively, at strike K and maturity T.
Note that this formula holds irrespective of what particular assumed form for the volatility �t.
In the cases of analytically solvable diffusion models, such as some classes of state-dependent
models studied in Chapter 3, the call and put options can be expressed in closed analytical
form. Of course, if �t = ��t�, i.e., a deterministic function of only time, then the futures price
obeys a geometric Brownian motion, and in this case, according to our previous analysis,
we have simple analytical expressions of the Black–Scholes type, with C∗

t �K�T� given by
equation (1.336), and

P∗
t �K�T� = E

Q�B�
t ��K−F ∗

T �+	 = KN�−d−�−F ∗
t �A�T�N�−d+�� (1.347)

with d± given by equation (1.337), wherein � → �̄ ≡
√
�T − t�−1

∫ T

t
�2�s�ds. For a numerical

implementation of the efficient replication of logarithmic pay-offs for variance swaps in
cases where only a select number of market call contracts is assumed available, the reader is
encouraged to complete the project on variance swaps in Part II.

Problems

Problem 1. Derive the equations for the drift and volatility of the forward price as discussed
in this section. For the domestic asset assume the process

dAt

At

= �A
t dt+�A

t dWt� (1.348)

20 Here we recall the property for the first moment E0�
∫ t

0 fs dWs	 = 0, which is valid under a suitable measure
and conditions on the adapted process ft .
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Let Zt�T� be the price process of a domestic discount bond of maturity T. For any fixed
maturity T > t, the discount bond price process is assumed to obey a stochastic differential
equation of the form

dZt�T�

Zt�T�
= �Zdt+�ZdWt� (1.349)

where shorthand notation is used (�Z ≡ �
Z�T�
t , �Z ≡ �

Z�T�
t ) to denote the lognormal drift and

volatility functions of the discount bond. Find the drift of the forward price process Ft�A�T�,
defined by equation (1.322), within the following three different choices of numeraire asset
gt: (i) the money-market account: gt = Bt = e

∫ t
0 rsds, where rt is the domestic short rate at

time t, (ii) the discount bond: gt = Zt�T�, and (iii) the asset : gt = At. Hint: Make use of the
formula for the stochastic differential of a quotient of two processes that was derived in a
previous section.

Problem 2. Use equation (1.248) with payoff function ��F� = − log F
F∗

0
, F ≡ F ∗

T , S̄ = F̄ ,

S0 = 0, S1 = 	, with 0 < F̄ < 	, to show

��F� = 1− F

F̄
− log

F̄

F ∗
0

+
∫ F̄

0
�K−F�+

dK

K2
+
∫ 	

F̄
�F −K�+

dK

K2
� (1.350)

Now, arrive at the formula in equation (1.346) by taking the expectation of this pay-off at
t = 0 under the measure Q(B) while making use of the fact that an expectation can be taken
inside any integral over K and the fact that EQ�B�

t �F ∗
T 	= F ∗

t , i.e., that F ∗
t is a martingale within

this measure.

1.12 Pricing Formulas of the Black–Scholes Type

In this section we apply the fundamental theorem of asset pricing of Section 1.10 to derive
a few exact pricing formulas. The worked-out examples are meant to demonstrate the use of
different numeraire assets for option pricing.

Example 1. Plain European Call Option.

As a first example, let’s revisit the problem of pricing the plain European call. Consider
the Black–Scholes model (i.e., geometric Brownian motion) for a stock of constant volatility
� and in an economy with a constant interest rate r. Under the risk-neutral measure with
money-market account gt = Bt = ert as numeraire, the expected return on the stock is just the
risk-free rate r; hence,

dSt = rSt dt+�St dWt� (1.351)

The stock price process is given in terms of a standard normal random variable [i.e., equa-

tion (1.154)]: ST = Ste

(
r− �2

2

)
�T−t�+�

√
T−tx, x ∼ N�0�1�. Using equation (1.292), the arbitrage-

free price at time t of a European call option struck at K> 0 with maturity T > t is hence the
discounted expectation under the risk-neutral measure Q(B):

Ct�St�K�T� = e−r�T−t�E
Q�B�
t

[
�ST −K�+

]

= e−r�T−t�

√
2�

∫ 	

−	
e− x2

2

(

Ste

(
r− �2

2

)
�T−t�+�

√
T−tx −K

)

+
dx

= StN�d+�−Ke−r�T−t�N�d−�� (1.352)
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where

d± = log�St/K�+ (
r ± 1

2�
2
)
�T − t�

�
√
T − t

� (1.353)

Note that the details of this integral expectation were presented in Section 1.6.
This Black–Scholes pricing formula plays a particularly important role because it is the

prototype for a large number of pricing formulas. As we shall see in a number of examples
in this and the following chapters, analytically solvable pricing problems for European-style
options often lead to pricing formulas of a similar structure. In the case that the underlying
asset pays continuous dividends, the foregoing pricing formula for a European call (and the
corresponding put) must be slightly modified. A similar derivation procedure also applies, as
shown at the end of this section.

If the drift and the volatility are deterministic functions of time, r = r�t� and � = ��t�,
the Black–Scholes formula extends thanks to the formula in equation (1.167) of Section 1.6.
Using again the money-market account gt =Bt = exp�

∫ t

0 r�s�ds� as numeraire asset and setting

r̄�t� T� = 1
�T − t�

∫ T

t
r�u�du

gives Bt/BT = e−r̄�t�T��T−t�, and we find

Ct�St�K�T� = e−r̄�t�T��T−t�E
Q�B�
t

[
�ST −K�+

]

= e−r̄�t�T��T−t�

√
2�

∫ 	

−	
e− x2

2

(

Ste

(

r̄�t�T�− �̄�t�T�2

2

)

�T−t�+�̄�t�T�
√
T−tx −K

)

+
dx

= StN�d+�−Ke−r̄�t�T��T−t�N�d−�� (1.354)

where

�̄�t� T�2 = 1
�T − t�

∫ T

t
��t�2 dt� (1.355)

and

d± = log�St/K�+ (
r̄�t� T�± 1

2 �̄�t� T�2
)
�T − t�

�̄�t� T�
√
T − t

� (1.356)

Note that, in agreement with the results obtained in Section 1.6, the Black–Scholes pric-
ing formula now involves the time-averaged interest rate and volatility over the maturity
time T − t.

Example 2. A Currency Option.

Let

dXt = �XXt dt+�XXt dWt (1.357)

be a model for the foreign exchange rate Xt at time t, assuming that the lognormal volatility
�X of the exchange rate and drift �X are constants. Suppose that the domestic risk-free interest
rate rd and the foreign interest rate rf are both constant, and let Bd

t = er
dt and B

f
t = er

f t be
the worth of the two money-market accounts, respectively. The drift �X can be computed as
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follows. First we note that the foreign currency money-market account, after conversion into
domestic currency, is a domestic asset and therefore must obey a price process of the form

d�XtB
f
t � = �rd +�g�XBf ��XtB

f
t �dt+�XBf �XtB

f
t �dWt� (1.358)

where �g and �XBf are lognormal volatilities of the numeraire gt and XtB
f
t , respectively.

We shall choose gt = Bd
t (i.e., the domestic risk-neutral measure) giving �g = 0. By direct

application of Itô’s lemma for the product of two processes we also have the stochastic
differential

d�XtB
f
t � = Xt dB

f
t +Bf

t dXt + �dXt��dB
f
t � = Xt dB

f
t +Bf

t dXt� (1.359)

where the third term in the middle expression is of order dt dWt and hence set to zero.
This follows since both domestic and foreign money-market accounts satisfy a deterministic
differential equation, in particular,

dBf
t = rfBf

t dt� (1.360)

Plugging this and equation (1.357) into equation (1.359) gives

d�XtB
f
t � = �rf +�X��XtB

f
t �dt+�X�XtB

f
t �dWt� (1.361)

Hence, comparing equations (1.358) and (1.361) gives �X = rd − rf . The foreign exchange
rate therefore follows a geometric Brownian motion with this constant drift and constant
volatility �X . The pricing formula for a foreign exchange call option struck at exchange rate
K is then

Ct�Xt�K�T� = e−rd�T−t�E
Q�Bd�
t

[
�XT −K�+

]

= e−rd�T−t�

√
2�

∫ 	

−	
e− x2

2

(

Xte
��rd−rf �− �2

X
2 ��T−t�+�X

√
T−tx −K

)

+
dx

= e−rd�T−t�
[
e�r

d−rf ��T−t�XtN�d+�−KN�d−�
]
�

= e−rf �T−t�XtN�d+�−Ke−rd�T−t�N�d−�� (1.362)

where

d± = log�Xt/K�+ �rd − rf ± 1
2�

2
X��T − t�

�X

√
T − t

� (1.363)

Example 3. A Quanto Option.

Consider the case of a quanto option, in which we have a stock denominated in a foreign
currency with geometric Brownian process

dSf
t = �Sf

t dt+�SS
f
t dWS

t � (1.364)

and the foreign exchange process is also a geometric Brownian motion, with

dXt = �rd − rf �Xt dt+�XXt dW
X
t � (1.365)
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under the risk-neutral measure with numeraire gt = Bd
t . Note that the drift rate �X = rd − rf

was derived in the previous example. The constants �S and �X are the lognormal volatilities
of the stock and foreign exchange rate, respectively. These Brownian increments are not
independent; however, the foregoing equations can also be written equivalently in terms of
two independent Brownian increments dW 1

t , dW 2
t , where

dWX
t = � dW 1

t +√
1−�2 dW 2

t � dWS
t = dW 1

t �

Here � is a correlation between the stock price and the foreign exchange rate at time t, with

dWS dWX = � dt� (1.366)

In vector notation, dWt = �dW 1
t � dW

2
t � and

dXt

Xt

= �rd − rf �dt+�X ·dWt� (1.367)

dS
f
t

S
f
t

= �dt+�S ·dWt� (1.368)

where �X = ���X��X

√
1−�2�, �S = ��S�0�. Suppose one wants to price a call option on

the stock S
f
t struck at K and then to convert this into domestic currency at a preassigned fixed

rate X̄. Since gt = Bd
t , the prices of all domestic assets (as well as the prices of foreign assets

denominated in domestic currency) drift at the domestic risk-free rate. Hence the return on the
price process XtS

f
t must be rd. This also follows because the price of risk qg = qBd = �Bd = 0.

By direct application of Itô’s lemma we also have

d�XtS
f
t �

XtS
f
t

= dS
f
t

S
f
t

+ dXt

Xt

+ dS
f
t

S
f
t

dXt

Xt

� (1.369)

Plugging the preceding expressions into this equation gives

d�XtS
f
t �

XtS
f
t

= ��+ rd − rf +�X ·�S�dt+ ��X +�S� ·dWt

= ��+ rd − rf +��X�S�dt+�SdW
S
t +�XdW

X
t (1.370)

Since the drift must equal rd,

� = rf −��S�X (1.371)

is the constant drift of Sf
t in equation (1.364). The arbitrage-free price of a quanto call option

struck at foreign price K is then given by

Ct�S
f
t �K�T� = X̄e−rd�T−t�E

Q�Bd�
t

[(
S
f
T −K

)
+
]

= X̄e−rd�T−t�
[
e��T−t�Sf

t N�d+�−KN�d−�
]

= X̄
[
e−�rd−rf+��S�X��T−t�Sf

t N�d+�− e−rd�T−t�KN�d−�
]
� (1.372)

where

d± = log�Sf
t /K�+ (

rf −��S�X ± 1
2�

2
S

)
�T − t�

�S

√
T − t

� (1.373)
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Example 4. Elf-X Option (Equity-Linked Foreign Exchange Option).

Assume equation (1.364), as in the previous example, and now write

dXt = �XXt dt+�XXt dW
X
t (1.374)

for the foreign exchange process, with �X dependent on the choice of numeraire. Consider
the case where the pay-off is

CT = �XT −K�+S
f
T � (1.375)

The foreign asset price S
f
t cannot be used as a domestic numeraire asset, but the converted

process gt = XtS
f
t can. Indeed this is a positive price process denominated in domestic

currency. Under the measure with gt as numeraire we first need to compute the drift �X

explicitly. This is done by considering the process XtB
f
t , which must drift at the domestic

risk-free rate plus a price-of-risk component

d�XtB
f
t �

XtB
f
t

= �rd +�XSf ·�XBf �dt+�XBf ·dWt� (1.376)

where �XSf and �XBf are volatility vectors of the price processes XtS
f
t and XtB

f
t , respectively.

These are expressible in the basis of either �dW 1
t � dW

2
t � or �dWS

t �dW
X
t �, as described in the

previous example. [Note also that the Brownian increments, written still as dWt in the SDE
are actually w.r.t. the measure Q�XSf �.] From equation (1.370) we have �XSf = �X +�S .
From a direct application of Itô’s lemma we also have

d�XtB
f
t �

XtB
f
t

= �rf +�X�dt+�X ·dWt� (1.377)

By equating drifts and the volatility vectors in these two expressions we find �XBf = �X and

rd + ��S +�X� ·�X = rf +�X� (1.378)

Hence,

�X = rd − rf +�S ·�X +���X��2�
The drift �X−1 and volatility of the inverse exchange rate X−1

t under the same measure are
computed using Itô’s lemma [i.e., apply equation (1.138) with numerator = 1 and denomina-
tor = Xt]:

dX−1
t

X−1
t

= �−�X +�2
X�dt−�X dWX

t �

Hence,

�X−1 = −�X +�2
X = rf − rd −�S ·�X = rf − rd −��X�S�

where the square of the volatility is the same as that of Xt, namely �2
X . Using the measure

Q�XSf �, we therefore have the arbitrage-free price:

Ct�S
f
t �Xt�K�T� = �XtS

f
t �E

Q�XSf �
t

[
S
f
T �XT −K�+

XTS
f
T

]

= KXtS
f
t E

Q�XSf �
t ��K−1 −X−1

T �+	

= KXtS
f
t

[
K−1N�−d−�− e�X−1 �T−t�X−1

t N�−d+�
]

= Sf
t

[
XtN�−d−�− e−�rd−rf+��X�S��T−t�KN�−d+�

]
� (1.379)
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where

d± = log�K/Xt�+ �rf − rd −��X�S ± 1
2�

2
X��T − t�

�X

√
T − t

� (1.380)

Let us now consider Black–Scholes pricing formulas as well as symmetry relations for
European calls and puts under an economy whereby the underlying asset pays continuous
dividends. This will be useful for the discussion on American options in Section 1.14.
In particular, let us assume that the asset price St follows geometric Brownian motion, as in
Example 1, but with an additional drift term due to a constant dividend yield q:

dSt = �r −q�St dt+�St dWt� (1.381)

Note that from equation (1.165) we readily have the risk-neutral lognormal transition density
for this asset price process,

p�ST � St �� = 1

�ST

√
2��

e−�log�ST /St�−�r−q− �2
2 ��	2/2�2�� (1.382)

� = T − t. We follow Example 1 and choose Bt = ert as numeraire. Then, using equa-
tion (1.169) with drift �r−q� as given by equation (1.381), the price of a European call struck
at K with underlying asset paying continuous dividend q is

Ct�St�K�T� = e−r�T−t�E
Q�B�
t

[
�ST −K�+

]

= e−r�T−t�
[
e�r−q��T−t�StN�d+�−KN�d−�

]

= e−q�T−t�StN�d+�−Ke−r�T−t�N�d−�� (1.383)

with

d± = log�St/K�+ (
r −q± 1

2�
2
)
�T − t�

�
√
T − t

� (1.384)

The corresponding European put price is easily derived in similar fashion, giving

Pt�St�K�T� = Ke−r�T−t�N�−d−�−Ste
−q�T−t�N�−d+�� (1.385)

The previous put-call parity relation for plain European calls and puts, i.e., equation (1.214),
is now modified to read

Ct�St�K�T�−Pt�St�K�T� = e−q�T−t�St −Ke−r�T−t� (1.386)

for generally nonzero q.
This put-call parity is a rather general property that obtains whenever relative asset prices

are martingales. Within the geometric Brownian motion model, we can further establish
another special symmetry property that relates a call price to its corresponding put price.
In particular, explicitly denoting the dependence on the interest rate r and dividend yield q,
we have

Ct�S�K�T r� q� = Pt�K�S�Tq� r�� (1.387)

This relation states that the Black–Scholes pricing formula for a call, with spot St = S,
strike K, interest rate r, and dividend q, is the same as the Black–Scholes pricing formula
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for a put where one inputs the strike as S, spot as St = K, interest rate as q, and dividend
as r. That is, by interchanging r and q and interchanging S and K, the call and put pricing
formulas give the same price. For this reason we can also refer to identity (1.387) as a put-call
reversal symmetry. This result can be established by relating expectations under different
numeraires as follows. Consider the modified asset price process defined by S̃t ≡ eqtSt, then
Itô’s lemma gives

dS̃t = rS̃t dt+�S̃t dWt (1.388)

within the risk-neutral measure. By alternatively choosing g̃t = S̃t as numeraire, equa-
tion (1.292) gives the arbitrage-free price of the call as

Ct�S�K�T r� q� = SKe−q�T−t�E
Q�g̃�
t

[
�K−1 −XT�+

]
(1.389)

where we have used the spot value St = S and defined the process Xt ≡ S−1
t . From equa-

tion (1.388), we see that the lognormal volatility of g̃t (or the price of risk) is �; therefore,
under the new measure, Q�g̃�, equation (1.381) becomes

dSt = �r −q+�2�St dt+�St dW̃t� (1.390)

where dW̃t denotes the Brownian increment under measure Q�g̃�. Using this equation and
applying Itô’s lemma to Xt = S−1

t gives

dXt = �q− r�Xt dt−�Xt dW̃t (1.391)

Under Q�g̃�, the transition density p̃ for the process Xt is hence given by equation (1.382)
with r and q interchanged and the replacement St → Xt, ST → XT :

p̃�XT �Xt �� = 1

�XT

√
2��

e−�log�XT /Xt�−�q−r− �2
2 ��	2/2�2� � (1.392)

Under Q�g̃�, the drift of the lognormal diffusion Xt is q− r. Using equations (1.171) and
(1.392) with spot Xt = 1/St = 1/S at current time t, the expectation in equation (1.389) is
evaluated to give

Ct�S�K�T r� q� = SKPt�1/S�1/K�Tq� r�� (1.393)

This establishes the identity, which is actually equivalent to equation (1.387), as can be
verified using equation (1.385). Finally, note that equation (1.387) is also verified by directly
manipulating equation (1.385) or (1.383).

A class of slightly more sophisticated options that can also be valued analytically within
the Black–Scholes model are European-style compound options. Such contracts are options
on an option. Examples are a call-on-a-call and a call-on-a-put. Such compound options
are hence characterized by two expiration dates, T1 and T2, and two strike values. Let us
specifically consider a call-on-a-call option. This contract gives the holder the right (not the
obligation) to purchase an underlying call option for a fixed strike price K1 at calendar time T1.
The underlying call is a call option on an asset or stock with strike K2 and expiring at a later
calendar time T2 >T1 — we denote its value by CT1

�ST1
�K2� T2�, where ST1

denotes the stock
price at T1. Hence at time T1 this underlying call will be purchased (i.e., the compound call-on-
a-call will be exercised at time T1) only if CT1

�ST1
�K2� T2� >K1. Let t denote current calendar

time, t < T1 < T2, then the pay-off of the call-on-a-call at T1 is
(
CT1

�ST1
�K2� T2�−K1

)
+.
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Since CT1
is a monotonically increasing function of ST1

, this pay-off is nonzero only for values
of ST1

above a (critical) value S∗
1 defined as the unique solution to the (nonlinear) equation

CT1
�S∗

1�K2� T2� = K1. Hence
(
CT1

�ST1
�K2� T2�−K1

)
+ = CT1

�ST1
�K2� T2�−K1 for ST1

> S∗
1

and zero otherwise.
Denoting the value of the call-on-a-call option by Vcc�S� t�, where St = S is the spot

at time t, and assuming a constant interest rate with gt = ert as numeraire asset price, we
generally have

Vcc�S� t� = e−r�T1−t�E
Q�B�
t

[(
CT1

�ST1
�K2� T2�−K1

)
+
]
� (1.394)

Specializing to the case where the stock price process obeys equation (1.381) within the risk-
neutral measure Q(B), this expectation is readily evaluated in terms of the standard univariate
cumulative normal and bivariate cumulative normal functions. Inserting the price of the call
from equation (1.383) gives

Vcc�S� t�= e−r�1

∫ 	

S∗
1

[
e−q�T2−T1�S1N�d+�−K2e

−r�T2−T1�N�d−�−K1

]
p�S1� S �1�dS1� (1.395)

�1 = T1 − t, where p is the transition density function defined in equation (1.382) and

d± = log�S1/K2�+
(
r −q± 1

2�
2
)
�T2 −T1�

�
√
T2 −T1

� (1.396)

Equation (1.395) is a sum of three integrals. The third integral term involves the risk-neutral
probability that the stock price is above S∗

1 after a time �1 and having initiated at S. This
integral is reduced to a standard cumulative normal function by changing the integration
variable to x = logS1:

∫ 	

S∗
1

p�S1� S �1�dS1 = N�a−�� (1.397)

where we define

a± = log�S/S∗
1�+

(
r −q± 1

2�
2
)
�1

�
√
�1

� (1.398)

The second integral term in equation (1.395) can be rewritten using

N�d−� =
∫ 	

K2

p�S2� S1T2 −T1�dS2� (1.399)

giving
∫ 	

S∗
1

N�d−�p�S1� S �1�dS1 =
∫ 	

S∗
1

∫ 	

K2

p�S2� S1T2 −T1�p�S1� S �1�dS2 dS1� (1.400)

This double integral can be recast in terms of a standard bivariate cumulative normal function

N2�a� b�� = 1

2�
√

1−�2

∫ a

−	

∫ b

−	
exp

[

− x2 +y2 −2�xy
2�1−�2�

]

dy dx� (1.401)

where � is a correlation coefficient. For this purpose it proves useful to define

�2 = T2 − t and � = √
�1/�2� (1.402)
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hence T2 −T1 = �2 − �1. Introducing the change of variables

−x = log�S1/S�−
(
r −q− 1

2�
2
)
�1

�
√
�1

�−y = log�S2/S�−
(
r −q− 1

2�
2
)
�2

�
√
�2

Equation (1.400) then becomes (after some algebraic manipulation)

∫ 	

S∗
1

N�d−�p�S1� S �1�dS1 = 1

2�
√

1−�2

∫ a−

−	

∫ b−

−	
exp

[

− x2

2 − �y−�x�2

2�1−�2�

]

dy dx�

= N2�a−� b−��� (1.403)

where

b± = log�S/K2�+
(
r −q± 1

2�
2
)
�2

�
√
�2

� (1.404)

We leave it to the reader to verify that the first integral term in equation (1.395) can be
reduced, using similar manipulations as earlier, to give

∫ 	

S∗
1

S1N�d+�p�S1� S �1�dS1 = Se�r−q��1N2�a+� b+��� (1.405)

Combining the three integrals in equation (1.395) finally gives

Vcc�S� t� = Se−q�2N2�a+� b+��−K2e
−r�2N2�a−� b−��−K1e

−r�1N�a−�� (1.406)

Derivations of similar pricing formulas for related types of compound options are left to the
interested reader (see Problem 10).

Problems

Within the problems involving a single underlying asset or stock, assume we are in a Black–
Scholes world where the asset price process obeys geometric Brownian motion of the form

dAt = �r +q ·�A�At dt+�AAt dWt� (1.407)

where dWt is the assumed Brownian increment under the given measure, the interest rate r
(in the appropriate economy) and volatility �A are constants, and q is a market price of risk.

Problem 1. Find the price of a call option on foreign stock struck in foreign currency, i.e.,
of the contract with payoff

CT = XT�S
f
T −K�+� (1.408)

Problem 2. Find the price of a call option on foreign stock struck in domestic currency
with payoff

CT = �XTS
f
T −K�+� (1.409)

where Xt is the exchange rate at time t.
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Problem 3. Consider again the example of the quanto option in Example 3. Compute the
coefficient � in such a way that the price process

gt ≡ X̄e�tSf
t (1.410)

is a domestic asset price process. Further, price the quanto option in Example 3 using gt as a
numeraire asset. Describe the replication strategy for the numeraire asset gt.

Problem 4. Derive the price of an Elf-X option from the point of view of the foreign investor
taking as payoff

CT = �S
f
T −KS

f
TYT �+� (1.411)

where YT = 1/XT .

Problem 5. A forward starting call on a stock S is structured as follows. The holder will
receive at a preassigned future time T1 a call struck at K = �ST1

and maturing at time T2 >T1.
Here, � is a positive preassigned constant and ST1

is the stock price realized at time T1.
Find (i) the present time t = t0 ≤ T1 price of the forward starting call prior to maturity T1

and (ii) a static hedging strategy that applies up to time T1. Using the result in (i), show that
the price of the contract simplifies to that of a standard call struck at K = �S0 with time to
maturity T2 − t0 in the limiting case that T1 → t0 (with t0� T2 held fixed). On the other hand,
show that in the limit T2 → T1 (with t0� T1 held fixed) the contract price is simply given by
S0�1−��+. This last result is consistent with the price of a standard call with maturity t = T1

and strike K = �ST1
.

Problem 6. Consider two stocks S1 and S2 described by correlated geometric Brownian
motion with constant volatilities �1 and �2 and with correlation �. As seen in Section 1.6, a
simple chooser option yields the pay-off as the maximum of the two stock levels,

max�S1
T � S

2
T �� (1.412)

at the maturity date T. Find the price of this instrument at time t < T . Find the relationship
between the price of this chooser option and that of the chooser with payoff �S2

T −S1
T �+.

One Solution: To solve for either option price, pick the price of stock 1 as numeraire,
gt = S1

t . So, for instance, to price the latter option, show that the price Ct is given by an
expectation

Ct = S1
t E

p
t

[(
fT −1

)
+
]
� (1.413)

where the random variable ft = S2
t /S

1
t obeys

dft
ft

= ���2 −�1�dW
1
t +�2

√
1−�2 dW 2

t � (1.414)

From this, show that we have

log
fT
ft

= −#2

2
�T − t�+ ���2 −�1��W

1
T −W 1

t �+�2

√
1−�2�W 2

T −W 2
t �� (1.415)

where Wi
t are independent Wiener processes at time t and

# ≡
√
�2

1 +�2
2 −2��1�2 = ��f ��
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Since log�fT/ft� is normally distributed, find its mean and variance and thereby obtain the
lognormal drift and volatility of ft, i.e., the lognormal density p = p�fT � ft T − t�, giving
the price

Ct = S2
t N�d+�−S1

t N�d−�� (1.416)

where

d± ≡ log�S2
t /S

1
t �± 1

2#
2�T − t�

#
√
T − t

� (1.417)

Problem 7. Derive the standard call option-pricing formula of Example 1 of this section,
but this time use the stock price as numeraire, i.e., gt = St. In particular, show that with this
choice of numeraire,

d�1/St�

�1/St�
= −r dt−� dWt� (1.418)

where dWt stands for the Brownian increment under the measure Q(S) with St as numeraire.
Then show that this leads to

Ct�St�K�T� = KStE
Q�S�
t

[(
1/K−1/ST

)
+
]
� (1.419)

Note: This is related to the price of an European put contract where the random variable
is now the inverse of the stock price struck at the inverse of the strike, i.e., 1/K, and with
drift = −r. Compute this expectation to obtain the final expression.

Problem 8. Consider a foreign money-market account B
f
t = e

∫ t
0 r

f
s ds (with interest rate in

foreign currency given by r
f
t at time t), a domestic asset with price Ad

t , and a foreign asset with
price A

f
t . Let Xt be the exchange rate process in converting foreign currency into domestic.

Suppose we choose gt = Ad
t as our numeraire asset. Compute the drift of the following

processes: Xt, B
f
t , and A

f
t , within the Q(g) measure.

Problem 9. Consider a domestic asset with price Ad
t and a foreign asset with price A

f
t . Let

the constant ( be the conversion factor

( = Ad
0

A
f
0

� (1.420)

[Note that this is given in terms of the asset prices at some current time t = 0.]
(i) Find a pricing formula for the contract at current time t = 0 with payoff function

max�Ad
T �(A

f
T � (1.421)

at maturity t = T . Assume that all relevant lognormal volatilities and correlations are constant.
(ii) How can one hedge this contract? Is it necessary to trade the foreign currency

dynamically?

Problem 10. Derive pricing formulas analogous to equation (1.406) for (i) a call-on-a-put,
(ii) a put-on-a-put, and (iii) a put-on-a-call.
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1.13 Partial Differential Equations for Pricing Functions
and Kernels

Consider the continuous-time model with state-dependent volatility

dSt

St

= �r�t�+q��St� t��dt+��St� t�dWt� (1.422)

where q is the price of risk (also equal to the volatility of the numeraire asset). Here, r(t) is
a deterministic, time-dependent short rate consistent with the term structure of interest rates.
The state-dependent volatility ��S� t� is sometimes called the local volatility.

The asset price process At of an European-style option contingent on the asset S in the
model described by equation (1.422) is given by a pricing function A(S,t) through a formula
of the form

At = A�St� t�� (1.423)

The existence of a pricing function is an expression of the fact that the current price of an
European option depends only on current calendar time and on the current (i.e., spot) price
S = St for the underlying asset (assuming all other contract parameters are held fixed as the
maturity time, etc.).

Theorem. (Black–Scholes Equation) The pricing function A(S, t) of a European claim
contingent on the asset S in equation (1.422) satisfies the Black–Scholes equation

�A

�t
+ �2S2

2
�2A

�S2
+ rS

�A

�S
− rA = 0� (1.424)

where r = r�t�, � = ��S� t�.
This is a backward time parabolic partial differential equation related closely to the

backward Kolmogorov equation, as we shall see later.

Proof. Choosing as numeraire asset the money-market account Bt = e
∫ t

0 r�s�ds, the price of risk
q = 0 and the risk-neutral pricing formula yields

EQ�B�
[
dAt

] = r�t�At dt (1.425)

Equation (1.424) follows by applying Itô’s lemma to the calculation of dAt = dA�St� t�.
Namely,

�A

�t
+ rS

�A

�S
+ �2S2

2
�A

�S2
= rA� (1.426)

r = r�t�, � = ��S� t�. Lastly, note that this follows simply from the Feynman–Kac
theorem. �

A second important partial differential equation concerns the probability density function
P(S, t) under the risk-neutral measure for the stock price values S at time t, given an initial
Dirac delta function distribution at time t = t0:

P�S� t = t0� = ��S−S0�� (1.427)
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More explicitly, this function is given by P�S� t� ≡ p�S� t S0� t0�; i.e., this is the risk-neutral
transition probability density for the price of the underlying asset to begin at value S0

at initial time t0 and end with value St = S at time t. The function p�S� t S0� t0� is also
commonly referred to as a pricing kernel. We have already seen a specific example of this
as the lognormal transition density for geometric Brownian motion. In general, the resulting
equation, called the Fokker–Planck (or forward Kolmogorov) equation, is contained in the
following statement.

Theorem 1.7. (Fokker–Planck Equation) The probability density function P(S, t) under the
risk-neutral measure for the stock price values S at time t satisfying initial condition (1.427)
obeys the following equation:

�P

�t
= 1

2
�2

�S2
��2S2P�− r

�

�S
�SP�� (1.428)

where r = r�t�, � = ��S� t�.

Proof. This result can be derived as a consequence of the Black–Scholes equation. Consider
a generic asset with pricing function A(S, t) defined in the interval t ∈ �t0� T�, we then have
from risk-neutral valuation that at any time t,

A�S0� t0� = e
− ∫ t

t0
r�s�ds

∫ 	

0
P�S� t�A�S� t�dS� (1.429)

Note here that we assume that the range of solution is S ∈ �0�	�, although the derivation
can be extended to cases with different ranges. Taking the partial derivative with respect to
calendar time t on both sides of this equation, we find

∫ 	

0

[

− rPA+A
�P

�t
+P

(

rA− rS
�A

�S
− S2�2

2
�2A

�S2

)]

dS = 0�

where r = r�t�, � = ��S� t�, and the Black–Scholes equation (1.424) has been used for �A
�t

.
Integrating the last two terms by parts we obtain:

−
∫ 	

0
PS

�A

�S
dS = −�PSA�

∣
∣
∣
∣

	

0

+
∫ 	

0
A

�

�S
�SP�dS =

∫ 	

0
A

�

�S
�SP�dS�

and

−
∫ 	

0

�2S2

2
P
�2A

�S2
dS = −1

2
�

�S
��2S2P�

�A

�S

∣
∣
∣
∣

	

0

+
∫ 	

0

�A

�S

�

�S

(
�2S2P

2

)

dS

= −1
2
�
�A

�S
−A�

�

�S
��2S2P�

∣
∣
∣
∣

	

0

− 1
2

∫ 	

0
A

�2

�S2
��2S2P�dS

= −1
2

∫ 	

0
A

�2

�S2
��2S2P�dS�

In the last equation we have integrated by parts twice. Notice that the nonintegral terms all
vanish, due to the boundary conditions on the probability density function P, namely, that
the function P and the first and second partial derivatives with respect to S, are assumed to
be rapidly decaying functions of S as S → 0 and S → 	. Collecting terms gives that for any
derivative pricing function A(S,t),

∫ 	

0
A�S� t�

[
�P

�t
+ r

�

�S
�SP�− 1

2
�2

�S2
��2S2P�

]

dS = 0�
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This can only occur if the integrand term in brackets is identically zero; hence equation (1.428)
is fulfilled. �

The corresponding backward Kolmogorov equation for the density is given by the so-
called Lagrange adjoint of equation (1.428). By combining equations (1.429) [with P�S� t� ≡
P ≡ p�S� t S0� t0�] and (1.424), we readily see that e− ∫ t

t0
r�s�ds

P must satisfy the same equation
as A�S0� t0� for all initial times t0 < t. Simplifying the equation in terms of P only, we find
the backward Kolmogorov equation:

�P

�t0

+ 1
2
�2�S0� t0�S

2
0

�2P

�S2
0

+ r�t0�S0

�P

�S0

= 0� (1.430)

This is a backward-time parabolic partial differential equation of the form of the Black–
Scholes equation [i.e., replacing (S,t) by �S0� t0� in equation (1.424)]. The only term missing
is the compounding term r�t0�A. However, as just mentioned, the function e

− ∫ t
t0

r�s�ds
P does

exactly satisfy the Black–Scholes equation. This is, not surprisingly, consistent with our
discussion in Section 1.8, where we showed [see equation (1.231)] that the discounted
transition density gives the current price of a European butterfly option with inifinitely narrow
spread (i.e., the price of an Arrow–Debreu security).

A partial differential equation satisfied by the pricing function of European-style call
options C(S, t; K, T) regarded explicitly as functions of the strike and maturity time arguments
(K,T) [instead of functions of the arguments (S, t), which are held fixed] can now be derived
as follows.

Theorem 1.8. (Dual Black–Scholes Equation) The pricing function for a European call
option C(S, t; K, T) satisfies the following equation:

�C

�T
= −r�T�K

�C

�K
+ 1

2
K2�2�K�T�

�2C

�K2
� (1.431)

Proof. European-style call prices admit the following representation in terms of the risk-
neutral transition probability density [i.e., the density for the risk-neutral measure Q(B)]:

C�K�T� = Z0�T�E
Q�B�
0 ��S−K�+	 = Z0�T�

∫ 	

0
P�S�T��S−K�+ dS� (1.432)

where Z0�T� = e− ∫ T
0 r�s�ds. Without loss of generality we simply set current time t = 0. Using

the property ��S −K�+/�K = −��S −K�, where ��x� is the Heaviside step function with
value 1 for x ≥ 0 and value 0 for x < 0, the first and second derivatives of equation (1.432)
with respect to the strike K give

�C

�K
= −Z0�T�

∫ 	

K
P�S�T�dS� (1.433)

and

�2C

�K2
= Z0�T�P�K�T�� (1.434)

The derivative with respect to maturity is given by

�C

�T
= −rZ0�T�

∫ 	

0
�S−K�+P dS+Z0�T�

∫ 	

0

�P

�T
�S−K�+ dS

= −rC+Z0�T�
∫ 	

0

[

− r
�

�S
�SP�+ 1

2
�2

�S2
��2S2P�

]

�S−K�+ dS�
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where r = r�T�, � = ��S�T�. Note that we have used equation (1.428) with t = T . The
integral containing the first derivative with respect to S can be evaluated by parts as follows:

∫ 	

0
�S−K�+

�

�S
�SP�dS = −

∫ 	

K
SP dS

= −
∫ 	

0
�S−K�+P dS−K

∫ 	

K
P dS

=
[

−C+K
�C

�K

]

Z0�T�
−1�

where we used the identity S = �S − K�+ + K, for S ∈ �K�	�, and equations (1.432)
and (1.433). The integral containing the second derivative can again be evaluated by parts:

∫ 	

0
�S−K�+

�2

�S2
��2S2P�dS = −

∫ 	

K

�

�S
��2S2P�dS

= �2�K�T�K2P�K�T�

= Z0�T�
−1�2�K�T�K2 �

2C

�K2
�

Collecting the intermediate results obtained so far, we arrive at the following dual Black–
Scholes equation:

�C

�T
= −rC+ rC− rK

�C

�K
+ 1

2
K2�2�K�T�

�2C

�K2

= −rK
�C

�K
+ 1

2
K2�2�K�T�

�2C

�K2
�

�

A consequence of this result is the following, which may be used in practice to calibrate
a local volatility surface �I = ��K�T� via market European call option prices across a range
of maturities and strikes.

Theorem 1.9. (Derman–Kani) If a local volatility function exists, then it is unique and it
can be expressed in analytical closed form as follows in terms of call option prices:

�2�K�T� = 2
K2

�C
�T

+ rK �C
�K

�2C
�K2

� (1.435)

This PDE pricing formalism extends readily into arbitrary dimensions. A general con-
nection between a system of SDEs and the corresponding forward (backward) Kolmogorov
PDEs that govern the transition probability density is as follows. Consider a diffusion model
with n correlated random processes xt = �x1

t � � � � � x
n
t � ∈ �n satisfying the system of SDEs:

dxi
t

xi
t

= �i�xt� t�dt+
M∑

�=1

�i���xt� t�dW
�
t  i = 1� � � � � n� (1.436)

with M ≥ 1 independent Brownian motions, dW�
t dW

�
t = ���� dt, and where the drifts and

volatilites are generally functions of time t and xt. Let us define the differential operator 
 by


x�tf ≡
n∑

i=1

xi�i�x� t�
�f

�xi

+ 1
2

n∑

i�j=1

xixj#i�j�x� t�
�2f

�xi�xj

� (1.437)



92 C H A P T E R 1 . Pricing theory

with Lagrange adjoint operator 
† given by


†
x�tf ≡ −

n∑

i=1

�
[
xi�i�x� t�f

]

�xi

+ 1
2

n∑

i�j=1

�2
[
xixj#i�j�x� t�f

]

�xi �xj

� (1.438)

where the functions #i�j , i� j = 1� � � � � n, are defined by

#i�j�x� t� =
M∑

�=1

�i���x� t��j���x� t�� (1.439)

These operators act on any sufficiently differentiable function f = f�x� t�. The transition
probability density p = p�x� tx0� t0� associated with the foregoing diffusion process then
satisfies the forward (Fokker–Planck) Kolmogorov PDE,

�p

�t
= 
†

x�tp (1.440)

as well as the corresponding backward PDE,

�p

�t0

+
x0�t0
p = 0� (1.441)

for all t0 < t, with initial (or final) time condition

p�x� t = t0x0� t0� = p�x� tx0� t0 = t� = ��x −x0��

Assuming that a diffusion path starting at some point x0 at time t0 and ending at a point x at
time t must be at all possible points x̄ at any intermediate time t̄, t0 ≤ t̄ ≤ t, then a consistency
requirement in the theory is the so-called Chapman–Kolmogorov integral equation:

p�x� tx0� t0� =
∫

�n
p�x� t x̄� t̄�p�x̄� t̄x0� t0�dx̄� (1.442)

Prices of European-style contingent claims can then be computed by taking integrals over
an appropriate pricing kernel as follows. Suppose we are within a certain measure Q(g) where
underlying assets depend on random variables xi

t that have appropriate drift and volatilites
in accordance with equation (1.436). Assuming the existence of a martingale measure where
the numeraire is, for example, of the form e

∫ t
0 ��xs �s�ds (i.e., with � as a discounting function),

then according to the asset pricing theorem of the previous section, the price of a contingent
claim A�x� t� with payoff ��x� is given by the expectation

A�x� t� = EQ
t

[
e− ∫ T

t ��xs �s�ds��x�
]
� (1.443)

Then due to the Feynman–Kac formula (in n dimensions) we have the corresponding Black–
Scholes PDE:

�A�x� t�
�t

+
x�tA�x� t�−��x� t�A�x� t� = 0� (1.444)

t < T , with terminal condition A�x� T� = ��x�, as required. From this analysis we see
that the price of the contingent claim satisfying this Black–Scholes type of PDE can in
fact be expressed as an integral over the set of diffusion paths. With the particular choice
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��xt� t� = r�t� (the risk-free rate), then, the density p is the risk-neutral density expressed in
the x-space variables. The claim’s price is then simply given by an integral in �n:

A�x� t� = e− ∫ T
t r�s�ds

∫
p�xT �Tx� t���xT �dxT � (1.445)

This is a multidimensional extension of equation (1.429). Note also that here, variables x do
not necessarily represent prices. In general, asset prices are functions of x and time t. A nice
feature of such integral equations, among others, is the fact that they provide a solution
whereby the kernel p and hence the expected values can be propagated forward in the time
variable T, starting from T = t, where the delta function condition is employed.

Problems

Problem 1. Consider the one-dimensional lognormal density p�S�S0 t− t0� given by equa-
tion (1.165). Show that it satisfies forward and backward equations of the form (1.428)
and (1.430) as well as the Chapman–Kolmogorov equation,

∫ 	

0
p�S� S̄ t− t̄�p�S̄� S0 t̄− t0�dS̄ = p�S�S0 t− t0�� (1.446)

t0 ≤ t̄ ≤ t.

Problem 2. Consider the n-dimensional lognormal density given by equation (1.198). Verify
that this density satisfies the appropriate Kolmogorov equations.

1.14 American Options

In this section we briefly present the theory for pricing American, or early-exercise, options.
The distinction between an American-style option and its European counterpart is that the
holder of the American option has the additional freedom or right to exercise the option at any
date from contract inception until expiration. This additional time optionality generally gives
rise to an additional worth, appropriately also referred to as the early-exercise premium. We
mainly focus our discussion on calls and puts, although the theory is also useful for treating
other types of pay-offs. Throughout this section, we shall assume that we are within a Black–
Scholes world with only one underlying asset. Although the formal theory readily extends into
the multiasset case, the practical implementation and analysis issues are nontrivial and not
within the scope of our present discussion. The development of numerical methods for pricing
multiasset American options remains a topic of active research (see, for example, [BD96,
BG97b, BG97a, BKT01, Gla04]).

1.14.1 Arbitrage-Free Pricing and Optimal Stopping Time Formulation

To begin our discussion, we consider the case where the underlying asset (or stock) price
process �St�t≥0 follows the geometric Brownian motion model as given by equation (1.381)
in the risk-neutral measure, where r is the risk-free interest rate and q is a continuous
dividend yield. We therefore assume that r ≥ 0, q ≥ 0, � are constants (i.e., state and time
independent), although the formalism (i.e., the governing equations) readily extends to the
case of state-dependent drift and volatility functions. Let t0 be the present time (i.e., contract
inception). An American call (or put) option struck at K with expiration at time T is a claim
to a payoff �St −K�+ (or �K − St�+) that the holder can exercise at any intermediate time
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t prior to maturity, i.e., t0 ≤ t ≤ T . The time at which the option is exercised is a stopping
time. Recall the simpler situation in which the stopping time is initially known (i.e., as in
the case of a European-style claim), then from the theorem of asset pricing the arbitrage-free
price of a claim with a given pay-off occurring at time t is simply given by the discounted
expectation via equation (1.294). In particular, the value at present time t0 of a cash flow
�St −K�+ delivered at a later time t is given by

e−r�t−t0�E0

[
�St −K�+

]
�

where E0�·	 = EQ�·��t0
	 = EQ�·�St0

= S0	 is used as a simplified notation to denote the
expectation at time t0 within the risk-neutral measure Q(B), with Bt = ert as numeraire,
conditional on St=t0

= S0. This expectation gives us the fair value of the cash flow as
long as the delivery time t is a given stopping time, which may either be deterministic or
random. For the case in which the stopping time is given by the maturity, e.g., t = T , the
foregoing expectation obviously corresponds to the price of an European call [as given by
equation (1.383), with t� St replaced by t0� S0].

For American contracts the holder has the freedom to exercise at any time within the
continuous set of values � = �t 
 t0 ≤ t ≤ T�, giving rise to an optimal stopping time (i.e.,
early-exercise time) at which the holder should exercise the option for maximal gain. In
particular, we shall see that an early-exercise boundary arises on the �t� St�-plane (i.e., time-
spot plane) that separates the domain �t0� T	×�+ into two subdomains. These consist of
a so-called continuation domain, for which the option is not yet exercised, and a stopping
domain, whereby the option is exercised early. Hence, a main distinction from the European
case is that the exercise time is not known prematurely and must be optimally determined as
part of the solution to the pricing problem. As observed later, the basic financial reasoning
for the emergence of an early-exercise boundary is that the holder can either claim a profit
from the underlying dividend income by opting to purchase the asset (e.g., for the case of a
call) or profit from the interest that arises from selling the underlying asset and investing the
proceeds in a money-market account (e.g., for a put).

More generally, let us consider a nonnegative payoff function ��S�, S ∈�+. The values of
the European and corresponding American claim to such a pay-off are given, respectively, by

VE�S0� T − t0� = E0

[
e−r�T−t0���ST �

]
(1.447)

and

V�S0� T − t0� = sup
t∈�

E0

[
e−r�t−t0���St�

]
� (1.448)

Throughout this section we use VE to distinguish the European price from its American
counterpart. In equation (1.448) the supremum is taken over all possible stopping times in the
set � . Note that both pricing functions are functions of the current time to maturity T − t0,
as is generally true when the drift and volatility terms have no explicit time dependence.
We remark that although various theoretical frameworks exist for the determination of optimal
stopping times, exact analytical formulas for such quantities as well as for American option
values in terms of known transcendental functions have not been found to date. This is
the case for the geometric Brownian motion model and, of course, for the more complex
state-dependent models. In Section 1.14.4 we develop an integral-equations approach for
computing the early-exercise boundary and the American option value, whereas in this section
we provide a discrete-time backward induction formulation, which is useful for approximating
the continuous-time quantities.
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Formally, the optimal stopping time, denoted by t∗, is given by the infimum over the set
� such that the value of the American option is equal to its intrinsic value (or face value) as
given by the pay-off at the observed asset price:

t∗ = inf�t ∈ � �V�St� T − t� = ��St��� (1.449)

The stopping domain, corresponding to spot and time values for which it is optimal to exercise
prematurely, consists of the set of points

	 = ��t� S� 
 t ∈ � �V�S�T − t� = ��S��� (1.450)

while the continuation domain, corresponding to spot and time values for which the option
is not exercised prematurely, is the set of points

� = ��t� S� 
 t ∈ � �V�S�T − t� > ��S��� (1.451)

Assuming there exists an optimal stopping time t∗, then from asset-pricing theory this time
is given implicitly by

E0

[
e−r�t∗−t0���St∗�

] = V�S0� T − t0�� (1.452)

This is a result that is not practical as it stands since the equation involves the American
option value on the right-hand side, which is itself not yet known and dependent upon the
stopping domain. This is a common feature among optimal stopping problems for Markov
processes in continuous time, because they are essentially free-boundary value problems as
shown shortly.

The structure of the stopping domains may be quite complicated for certain classes of
payoff functions and diffusion models. However, for standard piecewise call/put types of
pay-offs considered here, the domains turn out to be simply connected. In particular, the
boundary of 	 is an early-exercise boundary curve given by

�	 = ���� S� 
 0 ≤ � ≤ T − t0� S = S∗����� (1.453)

with S∗��� given by a smooth curve

S∗��� = min�S > 0 
 V�S� �� = �S−K�+� (1.454)

for a call and

S∗��� = max�S > 0 
 V�S� �� = �K−S�+� (1.455)

for a put struck at K. Here the function V�S� �� represents the value of the American call
C�S�K��� or put P�S�K���, respectively, where S is the value of the underlying spot. From
equation (1.451) it is obvious that the continuation domain is the set of all points ��� S� such
that V�S� �� is greater than the respective payoff function at S. As we will see, the subscript
+ signs are actually redundant in equations (1.454) and (1.455). Note that here we have
simply expressed the boundary and the option price in terms of the time-to-maturity variable
� = T − t ∈ �0� T − t0	 rather than the calendar time t ∈ �t0� T	. This is convenient for what
follows since the diffusion models are assumed to be time homogeneous. The optimal-exercise
decision for the holder therefore depends on the observed spot (or stock price level) and the
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time to maturity (or calendar time) of the observation. In this sense, Amercian options can
be characterized as having a kind of path dependence.

Before any further analysis, we make note of one very basic and important property of
the early-exercise premium (or value): The European option value VE satisfies the condition
(i) VE�S� �� ≥ ��S� for all �S� �� if and only if the corresponding American option value V
satisfies (ii) V�S� �� = VE�S� �� for all �S� ��. That is, if the corresponding European price is
always above its intrinsic value during the contract lifetime, then it is never optimal to exercise
the American option at any time earlier than expiry; i.e., there is no early-exercise premium
and V = VE . To show this, note that equation (1.448) implies V�S� �� ≥ VE�S� ��. Hence
condition (i) gives V�S� ��≥��S�, so the American option is always above the intrinsic value,
implying that the holder would not exercise earlier for a lower value. The optimal exercise
(stopping) time is therefore at expiry T; hence (i) implies (ii). To prove the converse, observe
that since the American option value must satisfy V�S� �� ≥ ��S� for all �S� ��, condition (ii)
implies (i). This result is essentially a statement of the fact that an early-exercise boundary
(and premium) arises only if the corresponding European option value falls below the intrinsic
(payoff function) value. Because of this we have the following rather well-known result.

Proposition.
(i) An Amercian call has a nonzero early-exercise premium if and only if q > 0.
(ii) An Amercian put has a nonzero early-exercise premium if and only if r > 0.

This result will be seen to follow explicitly from the early-exercise boundary properties
and the formulas for the early-exercise premiums developed in the following subsections.
However, a simple and instructive proof goes as follows.

Proof. The put-call parity relation for European calls and puts gives

CE�S�K���−PE�S�K� �� = e−q�S− e−r�K� (1.456)

Rewriting this we have

CE�S�K��� = S−K+PE�S�K� ��+ ��e−q� −1�S− �e−r� −1�K	� (1.457)

Since PE�S�K� �� > 0, then for q = 0 either of these expressions gives CE�S�K��� > S −
e−r�K ≥ S−K. Hence CE is always above its intrinsic value, and from the previous property
we conclude that the European call value is equal to the American call value, CE�S�K��� =
C�S�K���, so the early-exercise premium is zero. For the case q > 0, we use equation (1.457)
and note that since the European put is a decreasing function of S, there exist large enough
values of S > K such that PE�S�K� ��+ ��e−q� − 1�S− �e−r� − 1�K	 < 0, i.e., CE�S�K��� <
S−K for some S > K. From the previous result we therefore have C�S�K��� �= CE�S�K���
and hence conclude that the early-exercise premium is nonzero for q > 0. This proves (i),
while statement (ii) is proved in a similar fashion by reversing the roles of S,q with K,r and
is left as an exercise. �

An obvious consequence of this proposition is that: (i) for an American call on a non-
dividend-paying stock the exercise boundary is trivial (i.e., it is never optimal to exercise
early), and (ii) for an American put on a nondividend-paying stock the exercise boundary is
nontrivial (i.e., there is an optimal early-exercise time) if the interest rate is positive. In what
follows (and also from the framework of Section 1.14.4) we will be able to further assess
such properties.
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Pricing by Recurrence: Dynamic Programming Approach

We now consider specifically the recursive formulation for pricing American options. This
involves an iteration method that goes backward in calendar time (or forward in time to
maturity). Formally, the American option price is given by equation (1.448). In order to
actually implement this formula in a practical manner, we subdivide the time interval �t0� T	=
�t0� t1� � � � � tN = T	 into N ≥ 1 subintervals �ti� ti+1	, �ti = ti+1 − ti > 0, i = 0� � � � �N − 1.
For notational purposes it is useful to introduce the price function Vt�S�. For the case of
time-homogeneous diffusions we have

Vt�S� ≡ V�S�T − t� = V�S� ��� (1.458)

with � = T − t being the time remaining to maturity. We therefore assume that exercise
can only occur at a fixed set of (intermediate stopping) times given by �ti 
 i = 0� � � � �N�.
Equation (1.448) can then be approximated by

V0�S0� = sup
t∈�ti
i=0� � � � �N�

E0

[
e−r�t−t0���St�

]
� (1.459)

V0�S0� ≡ Vt0
�S0� = V�S0� T − t0�. For small �ti values we expect equation (1.459) to be a

good approximation to equation (1.448). From the theory of optimal stopping rules, one can
show that in the limit �ti → 0 (N → 	) this approximation approaches the exact American
option value in equation (1.448), which allows for continuous-time exercise. We remark that
equation (1.459) actually gives the exact price of a Bermudan option with payoff function �.
Bermudans are bonafide contracts that essentially lie in between European and American
contracts and are in reality structured specifically with only a fixed set of allowable exercise
dates. Moreover, in any realistic trading strategy it is interesting to note that the actual
information on asset price levels can only be accessible to the trader at intermittent times
(i.e., at best one obtains “tick-by-tick”data). Hence, for the holder of an American option
the exercise decision times, although approaching the continuum limit, essentially occur at
discretely spaced points in time.

By discretizing time, the underlying asset price process with values Sti
∈�+, i= 0� � � � �N ,

is then a Markov chain. Iterating backward in calendar time starting from maturity, equa-
tion (1.459) is readily shown to imply that the option price at any intermediate time satisfies
the recurrence relation

Vti
�S� = max

{
��S��Eti

[
e−r�tiVti+1

�Sti+1
��Sti

= S
]}
� (1.460)

i = N −1� � � � �0, where VT�S� = ��S�. This result states that the option price at each date ti
is given by the maximum of the pay-off (or the immediate-exercise value) and the discounted
expected value of continuing without early exercise at time ti. Note that at each ith step the
expectation is conditional on Sti

= S. [Remark: Equation (1.460) can also be rewritten as a
forward recurrence relation in terms of a discretized time to maturity variable �i = T − ti
using equation (1.458)]. This formulation can be applied to asset prices that obey diffusion
processes with generally state- and time-dependent drift and volatility functions. Here and
in the following subsections, however, we are assuming time-homogeneous solutions; i.e.,
the drift and volatility functions of the asset price process are only allowed to be explicitly
state dependent. Assuming a generally state-dependent Markov diffusion process �St�t≥0,
St ∈ �+ with assumed risk-neutral transition probability density function p�S′� S ��, the
earlier expectation then gives

Vti
�S� = max

{
��S�� Ṽti

�S��� (1.461)
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where

Ṽti
�S� = e−r�ti

∫ 	

0
p�S′� S�ti�Vti+1

�S′�dS′ (1.462)

represents the continuation value of the option at time ti. For the particular process, of
equation (1.381), p is specifically the lognormal density function given by equation (1.382).
In this iteration approach, the American (or Bermudan) option prices are obtained without
necessarily computing the early-exercise boundary. However, this can also be obtained simul-
taneously. From equation (1.461) we see that equations (1.449), (1.450), and (1.451) give the
stopping rule

t∗ = min�ti i = 0� � � � �N 
 ��Sti
� = Ṽti

�Sti
��� (1.463)

the early-exercise (stopping) domain as the union of line segments

	 = ∪i=0� � � � �N ��ti� S� 
 ��S� ≥ Ṽti
�S��� (1.464)

and the continuation domain

� = ∪i=0� � � � �N ��ti� S� 
 ��S� < Ṽti
�S��� (1.465)

Relation to Lattice (Tree) Methods

The dynamic programming approach provides a basis for implementing a number of different
numerical methods for computing option prices using either Monte Carlo simulations, quadra-
ture rules of integration, lattice methods, or a combination of such methods. In particular,
the dynamic programming formulation can be directly related to the simplest of the lattice
models — the binomial and trinomial lattices. For a detailed exposition on the implementa-
tions of lattice methods for pricing American options (as well as their European counterparts)
the reader is urged to take a close look at the relevant numerical projects in Part II. The
intricate details as well as the relevant equations and algorithms are explicitly described in
those projects — the reader is also given the opportunity to numerically program the option-
pricing applications. Here we shall simply give a very brief and generic discussion, meant
only to emphasize the basic connection between the dynamic programming formulation and
the lattice pricing models without having to repeat the underlying details.

Lattice methods can be viewed as either: (i) approximate solutions to recurrence rela-
tion (1.460) (or alternatively as approximate solutions to the equivalent option-pricing PDE by
way of finite differences) or (ii) option-pricing models in their own right. Lattice models can
accommodate time-inhomogeneous processes, as is the case for time-dependent drift and/or
volatility functions. However, let’s assume time-homogeneous models, where the underlying
asset or stock price process is essentially modeled as a Markov chain on a discrete set of
possible states. Generally, one assumes that the stock price can only move on a set of nodes,
each denoted by a pair of integers (i,j) corresponding to a stock price value Si

j . The lattice
is a mesh or grid made up of all such nodes, where the integer j is an index for the spatial
position of the stock price on the lattice at time ti, i = 0� � � � �N . Lattice models allow for
the implementation of time steps of fixed or variable size, but for the sake of simplicity let’s
assume a fixed time step of size �t = �T − t0�/N . In fact, most implementations are based on
equal-size time steps. Then conditional on Sti

= Si
j , the probability of a movement of the stock

price within a single time step �t from a node �i� j� into a successor node �i+1� j′�, with value
Sti+1

= Si+1
j′ , is given by the transition probability value P�Sti+1

= Si+1
j′ �Sti

= Si
j� ≡ pj→j′ > 0.
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Although not critical to the present discussion, we note that for the binomial model there are
only two successor nodes with j′ = j� j+1, whereas the trinomial model has three successor
nodes with j′ = j−1� j� j+1, and so on.

The positive quantities pj→j′ are risk-adjusted probabilities and must obviously obey
probability conservation,

∑

j′
pj→j′ = 1� for all j� (1.466)

where the sum is over all successor nodes in the model. Assuming the risk-neutral measure
with money market as numeraire, the expected rate of return of the stock must equal the
risk-free rate; i.e., Et�St+�t	 = Ste

r�t. This is the risk-neutrality or no-arbitrage condition. For
the lattice model it takes the form

∑

j′
pj→j′S

i+1
j′ = e��tSi

j� (1.467)

for all �i� j� nodes, where � = r or � = r − q for nondividend- or dividend-paying stock.
In order to capture the variance in the asset price returns, the lattice model is also built to take
into account the asset price volatilty. For instance, one can relate the variation either of stock
prices or of the log-returns that are computed separately using the diffusion model and the
lattice model. If the variation or second moment of the log-returns are considered, then we have
Et��� logSt�

2	= ���St��
2 �t within order �t, where ��St� is the local volatility function for the

general case of a state-dependent diffusion model of the form �St =��St�St �t+��St�St �Wt.
Applying this same expectation at each node within the lattice model and equating the two
expectations gives

��i
j�

2�t = ∑

j′
pj→j′ log2�Si+1

j′ /Si
j�� (1.468)

where �i
j = ��Si

j� forms a set of volatility parameters. This is just one possible way of intro-
ducing lattice volatility parameters into the model. Equations (1.466), (1.467), and (1.468) are
therefore collective constraints on the lattice geometry and the nodal transition probabilities.
These form an integral part of the construction of the lattice model and its parameters —
this is part of the model calibration procedure. Further steps in the calibration can also be
undertaken by fitting the lattice parameters so that certain computed option prices exactly
match the corresponding market prices. In most applications the number of adjustable lattice
parameters is greatly reduced. In particular, for geometric Brownian motion there is only one
volatility parameter, i.e., �i

j → � . Moreover, most lattice models are simplified by assuming
that the nodal transitions are independent of the starting node, as is the case for constant
local volatilities, i.e., pj→j′ → pj′ . For specific details on the contruction of lattices and on
implementing various calibration schemes for American and European option pricing within
the binomial and trinomial models, we again refer the reader to the relevant projects in
Part II.

Once the lattice geometry and transition probabilities are determined, i.e., the lattice is
calibrated, the option prices at each node in the lattice, V i

j = Vti
�Si

j�, can be determined by
recurrence:

V i
j = max

{
��Si

j�� e
−r�t

∑

j′
pj→j′V

i+1
j′

}
� (1.469)

The current option price V 0
0 = V0�S0� at spot S0

0 ≡ S0 is obtained by simply iterating over
N time steps, starting from the known payoff VN

j = ��SN
j � at the terminal node values SN

j .
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Equation (1.469) also divides up the lattice into two groups of nodes: (i) a stopping domain
as the set ��i� j� 
 V i

j = ��Si
j�� and (ii) a continuation domain as the set ��i� j� 
 V i

j > ��Si
j��.

This second set gives the times ti and spot values Si
j for which the option should not be

exercised early. According to equation (1.463), the optimal stopping time is

t∗ = min�ti = i�t 
 V i
j = ��Si

j��� (1.470)

The early-exercise boundary is then also readily obtained. For instance, for a call this is the set
of points �i�t� Si

∗�, i = 0� � � � �N , where Si
∗ = max�Si

j 
 V
i
j > Si

j −K�; for a put, Si
∗ = min�Si

j 

V i
j > K−Si

j�. This offers a simple approach for approximating the early-exercise boundary
curve in the continuous diffusion model corresponding to the limit �t → 0. However, the
resulting curve will not be smooth, even for relatively small time steps. More accurate
calculations are afforded by applying more advanced techniques, such as the integral-equation
approach discussed in Section 1.14.4. For the case of a trinomial lattice, equation (1.469) is
related to the explicit finite-difference scheme for solving the Black–Scholes PDE. Alternative
PDE solvers are based on implicit finite-difference schemes. Implicit schemes require the
solution of a linear system of equations (or matrix inversion) for each time step in the
propagation, yet they may offer more flexibility in the allowable range of lattice parameters
for achieving accuracy and numerical stability. We refer the reader to the “Crank–Nicolson
Option Pricer” project in Part II, which discusses a special type of implementation of the
Crank–Nicolson implicit scheme for calibration and option pricing on a mesh.

The Smooth Pasting Condition and PDE Approach

Although the free-boundary curve is not analytically computable as a function of time, one
can generally establish the smooth pasting condition. This property guarantees that the price
function for an American option has a continuous derivative at the exercise boundary and
that the derivative is equal to the derivative of the payoff function at the exercise boundary.
The following proposition summarizes this result.

Proposition. Let 	� , with time to expiry � = T − t > 0, be the early-exercise domain for which
Vt�S� ≡ V�S� �� = ��S� when S ∈ 	� , where � is any differentiable payoff function. Then
the American option price function V satisfies the smooth pasting condition at the boundary
denoted by S∗��� ≡ S∗

t :

�V�S� ��

�S

∣
∣
∣
∣
S=S∗���

= �′�S∗����� (1.471)

and the zero-time-decay condition obtains on the early-exercise domain,

�V�S� ��

��
= 0� for S ∈ 	� � (1.472)

Remark: The condition in equation (1.471) is also obviously valid for S ∈ 	� (excluding
the boundary) since V�S� �� = ��S� on that domain. What is important to emphasize here is
that the derivative is continuous at the boundary of the stopping and continuation domains.
These properties are valid under general proper Itô diffusion models. For a call (or put),
then, equation (1.471) simply gives �V�S∗������

�S
= 1 (or −1). This is illustrated in Figure 1.6.

Although this proposition can be formally proven from the PDE approach, we shall instead
demonstrate how it arises based on a dynamic hedging strategy argument, which turns out
to be financially more insightful. First we note that the graph of the American option value
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FIGURE 1.6 The pricing functions for an American put (left) and an American call (right) with
continuous dividend yield satisfy the smooth pasting condition with slope equal to −1 and 1, respectively,
at the optimal exercise boundary S∗��� for given time to expiry � > 0.

is never below that of the payoff function. Moreover, for given calendar time t (or time
to maturity �), the slope of the graph of Vt�S� = V�S� �� at the exercise boundary point
S = S∗��� ≡ S∗

t must be less (greater) than or equal to that of the payoff function if the
latter is an increasing (decreasing) function at the boundary. That is: (i) �Vt�S�

�S
�
S=S

∗�−�
t

≤ �′�S∗
t �

for the case �′�S∗
t � ≥ 0 or (ii) �Vt�S�

�S
�
S=S

∗�+�
t

≥ �′�S∗
t � for the case �′�S∗

t � ≤ 0. Here we use

S
∗�±�
t to denote the limiting values from the right (+) or left (−) of S∗

t . Our objective is to
show that these inequalities in the slopes are actually strict equalities. We now show this
for case (i) as the argument follows in identical fashion for case (ii). In particular, let us
assume that the asset or stock price at calendar time t is at the boundary; i.e., let St = S∗

t .
After an infinitesimally small time lapse �t, the stock price can move either up into the
exercise domain 	� or down into the (no-exercise) domain of continuation. If the stock
price moves upward, then its change is �St = St+�t − S∗

t > 0, so St+�t > S∗
t and it remains

in the exercise domain. In this case, Vt+�t�St+�t� = ��St+�t� and the option value changes
by an amount �Vt = ��St+�t�−��S∗

t � = �′�S∗
t ��St, to leading order in �t. So to achieve

a delta hedge for an upward tick over time �t, the option writer has to buy $t = �′�S∗
t �

shares of the stock. The writer’s delta-hedge portfolio at time t consists of one short position
in the option and $t shares in the stock. Hence for an upward tick the hedge portfolio
has value �t = −Vt�S

∗
t �+$tS

∗
t = −Vt�S

∗
t �+�′�S∗

t �S
∗
t , and the change in portfolio value is

��t = −�Vt +�′�S∗
t ��St = 0, to leading order in �t. On the other hand, if at time t the

stock ticks down, then �St < 0, St+�t < S∗
t ; hence the stock price falls into the domain of

continuation. Now assume the SDE in equation (1.381) holds. [Note: The same argument
also readily follows if we assume a more general Itô diffusion with state- and time-dependent
drift and volatility.] To leading order, then,

�St = �S∗
t �Wt = −�S∗

t

√
�t�z�� (1.473)

where z ∼ N�0�1�, since �Wt < 0 for a downward tick. Now, �Vt = �Vt�S�

�S
�
S=S

∗�−�
t

�St and,
using the foregoing expression, the hedge portfolio changes by

��t = −�Vt +�′�S∗
t ��St

=
[
�Vt�S�

�S

∣
∣
∣
∣
S=S

∗�−�
t

−�′�S∗
t �

]

�S∗
t

√
�t�z�� (1.474)
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Taking expectations and using E��z�	 = √
2/� gives the expected change in the hedge port-

folio:

E���t	 =
√

2
�

[
�Vt�S�

�S

∣
∣
∣
∣
S=S

∗�−�
t

−�′�S∗
t �

]

�S∗
t

√
�t� (1.475)

We hence conclude that the writer cannot exactly set up a delta hedge portfolio and in
particular is expected to suffer a loss every time the underlying stock is in the vicinity of
the boundary unless �Vt�S

∗�−�
t �

�S
= �′�S∗

t �. Since �Vt�S
∗�+�
t �

�S
= �′�S∗

t �, the function �Vt�S�

�S
≡ �V�S���

�S
is

continuous at the boundary and we have established equation (1.471).
The zero-time-decay condition is shown by simply considering the total change in the

American option value along the boundary S = S∗��� as the calendar time (or time to
maturity) changes and the boundary point moves accordingly. Along the boundary we have
V�S∗���� �� = ��S∗����, and differentiating both sides of this relation w.r.t. � gives (Note:
The analysis in terms of t is the same):

�V�S∗���� ��
�S

dS∗���
d�

+ �V�S∗���� ��
��

= �′�S∗����
dS∗���
d�

� (1.476)

Hence, using equation (1.471) gives �V�S∗������
��

= 0, and since the option is given by the
time-independent payoff function everywhere else on the stopping domain, we have equa-
tion (1.472).

Delta hedging and continuous-time replication arguments apply to American options in
the same way they apply to European options. Within the (no-exercise) continuation domain
we therefore expect and require that the option price function satisfy the Black–Scholes PDE.
The connection between the optimal stopping time formulation and the PDE approach can be
shown as follows. Consider recurrence relation (1.460) with time step �t > 0 for any calendar
time t < T ,

Vt�S� = max
{
��S�� e−r�tEt

[
Vt+�t�St+�t��St = S

]}
� (1.477)

Assuming Vt�S� is sufficiently smooth with continuous derivatives then to leading order
O��t�, we can Taylor-expand Vt+�t�St+�t� while using Itô’s lemma. For a generally state- and
time-dependent process obeying �St = ��St� t��t+��St� t��Wt, we have

Vt�S� = max
{

��S�� �1− r�t�Et

[

Vt�St�+
(
�Vt�St�

�t
+��St� t�

�Vt�St�

�St

+ 1
2
�2�St� t�

�2Vt�St�

�S2
t

)

�t+��St� t�
�Vt�St�

�St

�Wt

∣
∣
∣
∣St = S

]}

+O���t�2�

= max
{

��S��Vt�S�+
[
�Vt�S�

�t
+
BSVt�S�

]

�t

}

+O���t�2�� (1.478)

The second equation obtains by evaluating the conditional expectation (which sets St = S and
eliminates the �Wt term) and then collecting terms up to O��t�. This expression has been
written more compactly using the Black–Scholes differential operator (for general drift and
volatility functions) defined by


BSV ≡ 1
2
�2�S� t�

�2V

�S2
+��S� t�

�V

�S
− rV ≡ �
S�t − r�V� (1.479)
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For values of S in the continuation domain, the inequality Vt�S� > ��S� is satisfied, and
hence, from equation (1.478) we must have the Black–Scholes PDE:

�Vt�S�

�t
+
BSVt�S� = 0� for all S � 	� � (1.480)

By specializing to the geometric Brownian motion model, then, ��S� t� = �r −q�S, ��S� t� =
�S and the Black–Scholes PDE is

�V

��
= �2S2

2
�2V

�S2
+ �r −q�S

�V

�S
− rV ≡ 
BSV� for all S � 	� � (1.481)

Thanks to the time-homogeneous property of the solution in this case, we have a PDE in
terms of the time-to-maturity variable, V = V�S� ��, which will be convenient in subsequent
discussions.

1.14.2 Perpetual American Options

An option with infinite time to maturity is called a perpetual option. Here we consider per-
petual American calls and puts. These options are instructive since simple analytic solutions
exist. Moreover, since the exercise boundary S∗��� is a monotonic function of time to matu-
rity � (i.e., increasing for a dividend-paying American call and decreasing for an American
put), the perpetual option price provides us with the asymptotic limit lim�→	 S∗��� ≡ S∗ of
the exercise boundary for times infinitely far from maturity. We again consider an asset price
process St following geometric Brownian motion with constant interest rate r and continuous
dividend yield at constant rate q. Since a perpetual option has infinite time to maturity, its
value does not depend on the passage of time; i.e., the price function is independent of
time. Hence the time derivative of the price function is zero and the Black–Scholes partial
differential equation (1.481) for the price of a perpetual option reduces to a time-independent
ordinary differential equation (ODE).

We first consider the case of a perpetual put struck at K. The price function denoted by
P(S) must satisfy the ODE

1
2
�2S2 d

2P

dS2
+ �r −q�S

dP

dS
− rP = 0 (1.482)

for values away from the exercise boundary, S∗ < S < 	. The optimal exercise price S∗ is
therefore the asset price at which the perpetual American put should be exercised. Since the
value of the perpetual put must be equal to the intrinsic value at all values of S ≤ S∗ and
S∗ <K, (see Figure 1.6) the boundary conditions on P(S) are

lim
S→	

P�S� = 0� P�S∗� = K−S∗� (1.483)

S∗ is yet unknown but uniquely determined once P(S) is obtained in terms of S∗ as described
just next. Equation (1.482) is an ODE of the Cauchy–Euler (equidimensional) type and
therefore has the general solution

P�S� = a+S
�+ +a−S

�−� (1.484)

where a± are arbitrary constants and �± are roots of the auxiliary quadratic equation

�2

2 �2 + �r −q− �2

2 ��− r = 0� (1.485)
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Solving for the roots gives

�± =
−�r −q− �2

2 �±
√
�r −q− �2

2 �2 +2�2r

�2
� (1.486)

Assuming positive interest rate r, then �− and �+ are negative and positive roots, respectively.
To satisfy the first condition at infinity in equation (1.483) we must have a+ = 0. By satisfying
the second boundary condition in equation (1.483), a− = �K−S∗�/�S∗��− , we obtain the price
function in the form

P�S� = �K−S∗�
(

S

S∗

)�−
� S ≥ S∗� (1.487)

The exercise boundary value S∗ can now be determined as the optimal value that maximizes
the price P(S) for all possible choices of S∗. The derivative w.r.t. the parameter S∗ of this
price function gives

�P

�S∗ = −
(

S

S∗

)�−(

1+ K−S∗

S∗ �−

)

� (1.488)

Setting this derivative to zero yields the extremum

S∗ = K�−
�− −1

� (1.489)

Computing the second derivative at this extremum gives �2P
�S∗2 = K�−

�S∗�2 �
S
S∗ �

�− < 0. Hence S∗ in
equation (1.489) is a maximum, and inserting its value into equation (1.487) gives the price
of the perpetual American put in the equivalent forms

P�S� = K

1−�−

(
�− −1
�−

)�−( S

K

)�−

= − S∗

�−

(
S

S∗

)�−
� (1.490)

for S ≥ S∗. This solution is easily shown to satisfy the required smooth pasting condition

dP

dS

∣
∣
∣
∣
S=S∗

= −1� (1.491)

Next we consider the perpetual American call struck at K. As in the case of the put, the
price function now denoted by C(S) also satisfies equation (1.482), but for values 0 < S< S∗.
The optimal value S∗ is therefore the asset price at which the call should be exercised. The
value C(S) must be given by the intrinsic value of the call pay-off for values on the boundary
S ≥ S∗, where S∗ >K; hence the boundary conditions are

lim
S→0

C�S� = 0� C�S∗� = S∗ −K� (1.492)

The general solution is again given by equations (1.484) and (1.486). However, by satis-
fying the boundary conditions in equation (1.492) we now instead have a− = 0 and a+ =
�S∗ −K�/�S∗��+ , giving

C�S� = �S∗ −K�

(
S

S∗

)�+
� 0 < S < S∗� (1.493)
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Using the same procedure as for the put, the optimal exercise boundary is determined by
finding the maximum of C(S) w.r.t. S∗, giving

S∗ = K�+
�+ −1

� (1.494)

Using S∗ from equation (1.494) in equation (1.493) gives the price of the perpetual American
call, written equivalently in terms of K or S∗:

C�S� = K

�+ −1

(
�+ −1
�+

)�+( S

K

)�+

= S∗

�+

(
S

S∗

)�+
� (1.495)

This satisfies the required smooth pasting condition

dC

dS

∣
∣
∣
∣
S=S∗

= 1� (1.496)

It is instructive to examine what happens to the exercise boundary in the two separate
limiting cases: (i) zero interest rate r = 0 and (ii) zero dividend yield q = 0. In case (i)
we have from equation (1.486) that �− = 0 (assuming q ≥ −�2/2, which is the case if
q ≥ 0). From equation (1.489) we see that S∗ = 0; hence, for zero interest rate the perpetual
put is never exercised early. This is consistent with the property of an American put for
r = 0 and for any finite time to maturity, as shown in the next section. From a financial
standpoint, there is no time value gained from an early pay-off with zero interest. For case (ii):
Equation (1.486) gives �+ = 1 (assuming r ≥ −�2/2, which is the case for r ≥ 0). Moreover,
�+ → 1+ as q → 0+ and from equation (1.494) we have S∗ → 	. Hence in the limit of zero
dividend yield the perpetual call is never exercised early, irrespective of the interest rate.
This feature is also consistent with the plain American call of finite maturity, as shown in
the next section.

1.14.3 Properties of the Early-Exercise Boundary

The perpetual American option formulas of the previous section already allowed us to
determine the precise behavior of the optimal exercise boundary in the asymptotic limit of
infinite time to expiry, i.e., as � → 	. To further complete the analysis of the boundary we
now consider the opposite limit, of infinitesimally small positive time to maturity � → 0+.
In particular, let us consider the case of the Amercian call struck at K with continuous dividend
yield q and price function denoted by C�S�K��� at spot S. Since C�S�K��� is an increasing
function of �, for � > 0, the graph of the American call price (plotted as a function of S) with
greater time to maturity �2 must lie above the graph of the price function for the corresponding
call with time to maturity �1 < �2. Furthermore, the smooth pasting condition guarantees that
the price functions join the intrinsic line at levels S∗��1�−K and S∗��2�−K, respectively,
giving S∗��1� < S∗��2�. Hence, we conclude that S∗��� is a continuously increasing function
of positive �. To put this in financial terms, an American call with greater time to maturity
should be exercised deeper in the money to account for the loss of time value on the strike
K. Due to the fact that one would never prematurely exercise at a spot value below the strike
level (i.e., exercising for a nonpositive pay-off), the early-exercise boundary for an Amercian
call must, in addition, satisfy the property S∗��� > K for all � > 0.
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To determine the boundary in the limit � → 0+, note that the option value approaches the
intrinsic value; i.e., at expiry it is exactly given by the payoff function C�S�K�� = 0� = S−K
for values on the exercise boundary. Inserting this function into the right-hand side of
equation (1.481) and taking derivatives gives

�C�S�K�0+�
��

= rK−qS (1.497)

for S > K. Since the condition �C�S�K�0+�/�� > 0 ensures that the option is still alive (i.e.,
not yet exercised), the spot value S at which �C�S�K�0+�/�� becomes negative and hence
for which the call is exercised at an instant just before expiry is given by S = r

q
K. This is

the case, however, if the value r
q
K is in the interval S > K, that is, if r > q > 0. In this

case, just prior to expiry the call is not yet exercised if the spot is in the region K< S < r
q
K

but would be exercised if S ≥ r
q
K. Hence, S∗�0+� = r

q
K for r > q > 0. In the other case,

r ≤ q, so r
q
K ≤ K. Yet S > K, so S∗�0+� = K for r ≤ q. Note that the condition S∗�0+� > K

is not possible in this case because this leads to a suboptimal early exercise, since the loss
in dividends would have greater value than the interest earned over the infinitesimal time
interval until expiry. Combining these arguments we arrive at the general limiting condition
for the exercise boundary of an American call just prior to expiry:

lim
�→0+

S∗��� = max�K�
r

q
K�� (1.498)

From this property we see that S∗�0+� → 	 as q → 0. Hence, for zero dividend yield
the American call is never exercised early, which is consistent with the fact that the plain
(nondividend) American call has exactly the same worth as the plain European call.

Similar arguments can also be employed in the case of the Amercian put struck at K with
continuous dividend yield q. At expiry the put has value P�S�K�� = 0� = K−S for values
on the exercise boundary. We leave it as an exercise for the reader to show that the exercise
boundary of an American put just prior to expiry is given by

lim
�→0+

S∗��� = min�K�
r

q
K�� (1.499)

For r = 0 we therefore have S∗�0+� = 0, irrespective of the value of q. Since S∗��� is a
decreasing function of �, we conclude that the early-exercise boundary is always at zero,
meaning that the American put with zero interest rate is never exercised before maturity. This
is consistent with the conclusion we arrived at earlier, where we considered the perpetual
American put. For q ≤ r we observe that the early-exercise boundary just before expiry is at
the strike, S∗�0+� = K. A special case of this is the vanilla American put, i.e., when r > 0
and q = 0. Figure 1.7 gives an illustration of typical early-exercise boundaries for a call and
put. Given a time to maturity of T at contract inception, we see that the American call with
nonzero dividend is not yet exercised (i.e., is still alive) on the domain of points �S� �� below
the exercise curve: S ∈ �0� S∗���� and � ∈ �0� T	. In contrast, the American put is kept alive
above the exercise curve: S ∈ �S∗����	� and � ∈ �0� T	.

1.14.4 The Partial Differential Equation and Integral Equation Formulation

The problem of pricing an American option can be formulated as an initial-value partial
differential equation (PDE) with a time-dependent free boundary. The early-exercise boundary
is an unknown function of time, which must also be determined as part of the solution.
In particular, let V�S� �� represent the pricing function of an American option with spot S
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τ τ

FIGURE 1.7 Early-exercise smooth boundary curves S = S∗��� for the American call (left), with q> 0,
and put (right), with values depicted just before expiry � → 0+. In the limit of infinite time to expiry,
the curves approach the horizontal asymptotes at S = S∗, where S∗ is given by equation (1.494) or
equation (1.489) for the call or put, respectively.

and time to maturity �, 0 ≤ � ≤ T , and having payoff or intrinsic function V�S�0� = ��S�.
Here we assume the pay-off is time independent, although the formulation also extends to
the case of a known time-dependent payoff function. For given �, the solution domain is
divisible into a union of two regions: (1) a continuation region �S� �� ∈ 	′

� × �0� T	, for
which the option is still alive or not exercised, and (2) a stopping region �S� �� ∈ 	� × �0� T	,
where 	� is the complement of 	′

� within �+, for which the American option is already
exercised. The domains depend on �. As seen in the previous section, in the case of the
American call, ��S� = S −K on 	� = �S∗����	� (and 	′

� = �0� S∗����, while for the put,
��S� = K − S on 	� = �0� S∗���	 (and 	′

� = �S∗����	�. Assuming the underlying asset
follows equation (1.381), equation (1.481) holds for S ∈ 	′

� . In contrast, the homogeneous
Black–Scholes PDE does not hold on the domain of the early-exercise boundary, where the
American option is given by the time-independent payoff function V�S� �� = ��S�. Since
���S�

��
= 0, the solution on 	� satisfies �V

��
= 0. Combining regions and assuming the pay-off

is twice differentiable gives a nonhomogeneous Black–Scholes PDE:

�V�S� ��

��
= 
BSV�S� ��+f�S� ��� (1.500)

with (source) function

f�S� �� =






0� S ∈ 	′
�

−
BS��S�� S ∈ 	��

(1.501)

where 
BS is the Black–Scholes differential operator. For geometric Brownian motion, 
BS is
defined by equation (1.481). Given the function f�S� ��, whose time dependence is determined
in terms of the free boundary, the solution to equation (1.500), subject to the initial condition
V�S� � = 0� = ��S� and boundary conditions V�S = 0� �� = ��0�, V�S = 	� �� = ��	�, can
be obtained in terms of the solution to the corresponding homogeneous Black–Scholes PDE.
Recall from previous discussions that the transition probability density function p�S′� S ��
solves the forward Kolmogorov PDE in the S′ variable and the backward PDE in the spot
variable S with zero boundary conditions at S = 0�	 for all � > 0. As already mentioned,
for process (1.381) p is just the lognormal density given by equation (1.382). We also know
that e−r�p solves the homogeneous Black–Scholes PDE. Combining these facts and applying
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Laplace transforms, one arrives at the well-known Duhamel’s solution to equation (1.500) in
the form

V�S� �� = e−r�
∫ 	

0
p�S′� S ����S′�dS′

+
∫ �

0
e−r� ′

[∫ 	

0
p�S′� S � ′�f�S′� � − � ′�dS′

]

d� ′

≡ VE�S� ��+Ve�S� ��� (1.502)

One can readily verify that this solves equation (1.500), even for the more general case
of state-dependent models (see Problem 1). An important aspect of this result is that the
American option value V�S� �� is expressible as a sum of two components. The first term is
simply the European option value VE , as given by the discounted risk-neutral expectation of
the pay-off. Hence the second term, denoted by Ve�S� ��, must represent the early-exercise
premium, which gives the holder the additional liberty of early exercise.

Assuming geometric Brownian motion for the underlying asset, equations (1.500)
and (1.501) for the American call and put specialize to

�C

��
− �2S2

2
�2C

�S2
− �r −q�S

�C

�S
+ rC =






0� S < S∗���

qS− rK� S ≥ S∗���
(1.503)

and

�P

��
− �2S2

2
�2P

�S2
− �r −q�S

�P

�S
+ rP =






rK−qS� S ≤ S∗���

0� S > S∗���
� (1.504)

respectively. Here we used 
BS�S−K�= rK−qS, and S∗��� denotes the early-exercise bound-
ary for the respective call and put with strike K. The right-hand sides of these nonhomogeneous
PDEs are nonzero only within the respective stopping regions. Using equation (1.502), the
solutions to equations (1.503) and (1.504) for the American call and put price are given by

C�S�K��� = CE�S�K���+Ce�S�K� �� (1.505)

and

P�S�K��� = PE�S�K� ��+Pe�S�K� ��� (1.506)

where the respective early-exercise premiums take on the integral forms

Ce�S�K� �� =
∫ �

0
e−r� ′

[∫ 	

S∗��−� ′�
p�S′� S � ′��qS′ − rK�dS′

]

d� ′ (1.507)

and

Pe�S�K� �� =
∫ �

0
e−r� ′

[∫ S∗��−� ′�

0
p�S′� S � ′��rK−qS′�dS′

]

d� ′� (1.508)

These premiums can also be recast as

Ce�S�K� �� =
∫ �

0
e−r� ′

E0

[
�qS� ′ − rK�1�S�′ ≥S∗��−� ′��

]
d� ′ (1.509)
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and

Pe�S�K� �� =
∫ �

0
e−r� ′

E0

[
�rK−qS� ′�1�S�′ ≤S∗��−� ′��

]
d� ′� (1.510)

where E0 denotes the current-time expectation, conditional on asset paths starting at S0 =
S under the risk-neutral measure with density p�S� ′ � S � ′�. The time integral is over all
intermediate times to maturity, and the indicator functions ensure that all asset paths fall
within the early-exercise region. The properties of the early-exercise boundaries established
in the previous section guarantee that the early-exercise premiums are nonnegative. For a
dividend-paying call, equation (1.498), together with the indicator function condition, leads to
S� ′ ≥ max� r

q
K�K� ≥ r

q
K; hence qS� ′ − rK ≥ 0 and Ce is positive. A similar analysis follows

for the put premium. The exercise premiums hence involve a continuous stream of discounted
expected cash flows, beginning from contract inception until maturity. This lends itself to
an interesting financial interpretation, as follows. Consider the case of the American put
(a similar argument applies to the dividend-paying call) and an infinitesimal intermediate
time interval �� ′� � ′ +d� ′	. Then from the holder’s perspective the option should be optimally
exercised if the asset price, given by S� ′ at time � ′, attains the stopping region (i.e., reaches the
early-exercise boundary with S� ′ ≤ S∗�� − � ′� and � − � ′ as the remaining time to maturity).
Assuming that the holder is instead forced to keep the American put alive until expiry, the
holder would have to be fairly compensated for the loss due to the delay in exercising during
the time interval d� ′. The value of this compensation is the difference between the interest
on K dollars and the dividend earned on the asset value S� ′ , continuously compounded over
time d� ′. This cash flow is an amount �rK−qS� ′�d� ′, and corresponds to the early-exercise
gain if the holder in fact had the privilege to optimally exercise. Allowing for all possible
asset price scenarios from S to S� ′ that attain the boundary gives rise to the expectation
integral under the risk-neutral density for all intermediate times 0 ≤ � ′ ≤ �. Summing up
all of these infinitesimal cash flows and discounting their values to present time by an
amount e−r� ′

gives the time integral, as in equation (1.508) or (1.510). We conclude that the
early-exercise premium has an equivalent and alternative interpretation as a delay-exercise
compensation.

The foregoing integral representations for the American call and put price can also be
applied to cases where the volatility of the asset price process St is considered generally state
dependent. In order to implement the integral formulas, we need to be able to compute the
transition density function p, either analytically or numerically. Moreover, the integrals can
only be computed after having determined the early-exercise boundary S∗�� ′� for 0 ≤ � ′ ≤ �.
For the geometric Brownian motion model (with constants r,q,�), p is given by the lognormal
density, and the foregoing double integrals readily simplify to single time integrals in terms
of standard cumulative normal functions. In particular, one readily derives explicit integral
representations for the price of the American call and put (see Problem 2):

C�S�K��� = Se−q�N�d+�−Ke−r�N�d−�

+
∫ �

0

[
qSe−q��−� ′�N�d∗

+��
′��− rKe−r��−� ′�N�d∗

−��
′��
]
d� ′� (1.511)

P�S�K��� = Ke−r�N�−d−�−Se−q�N�−d+�

+
∫ �

0

[
rKe−r��−� ′�N�−d∗

−��
′��−qSe−q��−� ′�N�−d∗

+��
′��
]
d� ′� (1.512)
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where

d± = log S
K

+ (
r −q± 1

2�
2
)
�

�
√
�

� (1.513)

d∗
±��

′� = log S
S∗�� ′� + (

r −q± 1
2�

2
)
�� − � ′�

�
√
� − � ′ � (1.514)

These integral representations are valid for S ∈ �0�	�, � ≥ 0. By setting S = S∗��� and
applying the respective boundary conditions, C�S∗����K� �� = S∗���−K for the call and
P�S∗����K� �� = K − S∗��� for the put, equations (1.511) and (1.512) give rise to integral
equations for the early-exercise boundary. For the call,

S∗���−K = Se−q�N�d̃+�−Ke−r�N�d̃−�

+
∫ �

0

[
qSe−q��−� ′�N�d̃∗

+��
′��− rKe−r��−� ′�N�d̃∗

−��
′��
]
d� ′� (1.515)

and separately for the put,

K−S∗��� = Ke−r�N�−d̃−�−Se−q�N�−d̃+�

+
∫ �

0

[
rKe−r��−� ′�N�−d̃∗

−��
′��−qSe−q��−� ′�N�−d̃∗

+��
′��
]
d� ′� (1.516)

where

d̃± = log S∗���
K

+ (
r −q± 1

2�
2
)
�

�
√
�

� (1.517)

d̃∗
±��

′� = log S∗���
S∗�� ′� + (

r −q± 1
2�

2
)
�� − � ′�

�
√
� − � ′ � (1.518)

Note that equations (1.515) and (1.516) involve a variable upper integration limit and the
integrands are nonlinear functions of S∗���, S∗�� ′�, � and � ′. From the theory of integral
equations, equations (1.515) and (1.516) are known as nonlinear Volterra integral equations.
Note that the solution S∗���, at time to maturity �, is dependent on the solution S∗�� ′� from
zero time to maturity � ′ = 0 up to � ′ = �. Although equations (1.515) and (1.516) are not
analytically tractable, simple and efficient algorithms can be employed to solve for S∗���
numerically. For detailed descriptions on various numerical algorithms for solving these types
of integral equations, see, for example, [DM88]. A typical procedure divides the solution
domain into a regular mesh: �0 = 0, �i = ih, i = 1� � � � � n, with n steps spaced as h = �/n.
By approximating the time integral via a quadrature rule (e.g., the trapezoidal rule), one
obtains a system of algebraic equations in the values S∗��i�, which can be iteratively solved
starting from the known value S∗��0� = S∗�� = 0+� at zero time to maturity. Alternatively,
popular Runge–Kutta methods usually used for solving initial-value nonlinear ODEs can be
also adapted to these integral equations. Once the early-exercise boundary is determined, the
integral in equation (1.511) or (1.512) for the respective call or put can be computed. In
particular, a quadrature rule that makes use of the computed points S∗��i� can be implemented.
Accurate approximations to the early-exercise boundary are obtained by choosing the number
n of points to be sufficiently large.
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Problems

Problem 1. Consider the state-dependent model dSt =��St�dt+��St�dWt. Assuming f�S� ��
is differentiable w.r.t. �, show that equation (1.502) satisfies equation (1.500) for the appro-
priate operator 
BS . Hint: Since VE satisfies the homogeneous Black–Scholes PDE, from
superposition one need only show that Ve satisfies equation (1.500). Use the property of inter-
changing order of differentiation and integration, integration by parts, and the fact that e−r�p
satisfies the homogeneous Black–Scholes PDE with initial condition p�S′� S0� = ��S′ −S�.
Provide an extension to equation (1.502), if possible, for the more general case of explicitly
time-dependent drift and volatility.

Problem 2. (a) By employing similar manipulations as were used to obtain the standard
Black–Scholes formulas in Section 1.6, derive equations (1.511) and (1.512) from equa-
tions (1.507) and (1.508). (b) Show that the pricing formulas for the American call and put in
equations (1.511) and (1.512) satisfy the required boundary conditions at S = 0 and S = 	.

Problem 3. Find an analytical formula for the price as well as the early-exercise boundaries
of a perpetual American butterfly option with payoff function � �S −K� given by equa-
tion (1.228) of Section 1.8. Assume K −  > 0 and that the underlying asset price obeys
geometric Brownian motion with constant interest rate r and continuous dividend yield q.

Problem 4. Using equations (1.511) and (1.512), derive integral representations for the delta,
gamma, and vega sensitivities of the American call and put.

Problem 5. Let V�S� �� and VE�S� �� denote the American and European option values,
respectively, with spot S, time to maturity �, and payoff function ��S�. Assume a constant
interest rate r and continuous dividend yield q under the geometric Brownian motion model
for the process St. Prove the equivalence of these two statements:

(i) V�S� �� > VE�S� �� for all S > 0, � > 0.
(ii) ��S� > e−r���e�r−q��S� for some point �S� ��. Explain why American options on futures
have a nonzero early-exercise premium.

Problem 6. Consider a Bermudan put option with strike K at maturity T with only a single
intermediate early-exercise date T1 ∈ �0� T	. Assume the underlying stock price obeys equa-
tion (1.381) within the risk-neutral measure, and let P�St�K�T − t� denote the option value
at calendar time t with spot St. Find an analytically closed-form expression for the present-
time t = 0 price P�S0�K�T�. Hint: This problem is very closely related to the valuation of
a compound option discussed at the end of Section 1.12. In particular, proceed as follows.
From backward recurrence show that

P�S0�K�T� = e−rT1E0

[
P�ST1

�K�T −T1�
]
� (1.519)

with

P�ST1
�K�T −T1� =






PE�ST1
�K�T −T1�� ST1

> S∗
T1

K−ST1
� ST1

≤ S∗
T1
�

(1.520)

where PE is the European put price function, E0� 	 is the risk-neutral expectation at time 0,
and the critical value S∗

T1
for the early-exercise boundary at calendar time T1 solves

PE�S
∗
T1
�K�T −T1� = K−S∗

T1
�
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Compute this expectation as a sum of two integrals, one over the domain ST1
> S∗

T1
and the

other over 0 < ST1
≤ S∗

T1
while using equations (1.382) and (1.385) to finally arrive at the

expression for P�S0�K�T� in terms of univariate and bivariate cumulative normal functions.
Show whether S∗

T1
is a strictly increasing or decreasing function of the volatility � , and

explain your answer. What is this functional dependency for the case of a Bermudan call?
Explain.


