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Variational Models (1)

A powerful modeling tool in image processing and computsiowi is to
construct a functional such that its minimizer(s) are gaadtsgons to the
problem of interest.

A general form:

m%&n J(u) suchthat Au=1"0
uelR™

Common difficulties:

Image and video problems are large with many variables
Models often involve nonsmooth objective functions



Variational Models (2)

mI;&n J(u) suchthat Au=10
UECR™

Common advantages:

Separable structure:

J(u):ZJz(uz) u= | : N >n

un

with simple functions/;
Convex: J((1 — s)u+ sv) < (1 —s)J(u) + sJ(v) for all u, v
s € (0,1)

Goal: Study and develop practical algorithms for minimizing &rg
nonsmooth convex functions with separable structure.



Convexity

In fact the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity.

- R. T. Rockafellar

Let us first look at some illustrative examples of large, m@dr, nonsmooth
convex models in image processing which can be effectivalyes using the
primal-dual algorithms which will be discussed later:



TVL1 Denoising (1)

min [|uf|rv + Allu — £l

|u||7v is a discretization of the total variation of~ [ |Vu/| (details later)

Noisy Image

L. RUDIN, S. OSHER, AND E. FATEMI, Nonlinear Total Variation Based Noise Removal Algorithms, PhySica
D, 60, 1992, pp. 259-268.

T.F. CHAN AND S. ESEDOGLU, Aspects of Total Variation Regularized L' Function Approximation, 2004.



TVL1 Denoising (2)

Recovered Image



TVL1 Denoising (3)

Sparse Error



Constrained TVLZ2 Deblurring

min ||u||7ry suchthat ||kxu— f|2 <e

Original, blurry/noisy and image recovered from 300 itienas

E. ESSER, X. ZHANG, AND T. F. CHAN, A General Framework for a Class of First Order Primal-Dual
Algorithms for Convex Optimization in Imaging Science, SIAM J. Imaging Sci. Volume 3, Issue 4,
2010.



Sparse/Low Rank Decomposition (1)

min ||u||« + Alle||1 suchthat f=u+e

)

Here,||u||« denotes the nuclear norm, which is the sum of the singulaiegal

of w.

original movie

Original Video

E. CANDES, X. LI, Y. MA AND J. WRIGHT, Robust Principal Component Analysis, 2009.



Sparse/Low Rank Decomposition (2)

low rank part

Recovered Background
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Sparse/Low Rank Decomposition (3)

sparse error

Sparse Erroe
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Multiphase Segmentation (1)

Many problems deal with the normalization constrairt C', where

W
C={c=(c1,--,cw) : Cu ERM,chzl,cw > 0}

w=1

Example: Convex relaxation of multiphase segmentation

Goal: Segment a given image.c RM, into W regions where the intensities

in thew™ region are close to given intensities € R and the lengths of the
boundaries between regions are not too long.

min N (||cw||Tv - é<cw, (h — Zw)2>>

ceC 2

w=1

This is a convex approximation of the related nonconvextional which
additionally requires the labels, to only take on the values zero and one.

E. BAE, J. YUAN, AND X. TAI, Global Minimization for Continuous Multiphase Partitioning Problems Using a
Dual Approach, UCLA CAM Report [09-75], 2009.

C. ZACH, D. GALLUP, J.-M. FRAHM, AND M. NIETHAMMER, Fast global labeling for real-time stereo using
multiple plane sweeps, VMV, 2008. 12



Multiphase Segmentation (2)

A = .0025 z:[75 105 142 178 180]

Thresholde when each|c® ™t — ¢k || < .01 (150 iterations)

original image segmented image

Segmentation of Brain Image InfoRegions

Modifications: We can also add,, parameters to regularize differently the
lengths of the boundaries of each region and alternatelgtegtie averages
when they are not known beforehand.
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Reductions to Standard Form

All the previous illustrative examples can be rewrittenha form

Uy

min Z Ji(u;) suchthat Au=1"0 u =

uUn

Sometimes this requires introducing additional variables constraints.
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Constrained TVL2 Deblurring Example

min |[ul|ry  suchthat  |[ksu— flls <e¢

Let D be a discrete gradient afid ||  anl;-like norm such tha| Du|| g
corrseponds to our discretization|af|| -y (details later).

Introducew = Du andz = k£ xu — f. An equivalent problem is:

min ||w||g + g5(2) S.t. w—Du=0and z—k*xu=—f
uU,W, 2

0 if ||z]l2 <€ . L .
gB(z) = _ IS a convex indicator function.
oo otherwise
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Convex Models for Nonconvex Problems

Convex optimization is still important for many nonconveawiplems:

Convex relaxation
Basis Pursuit Example:

min ulo = min [Jull,
Exact convex relaxation
Functional lifting
2 phase segmentation c < {0,1} — ¢ € [0, 1]
Convex subproblems for nonconvex problems
Alternating minimization for problems like blind deconutibn
Global branch and bound methods rely on convex subproblems

M. BURGER AND M. HINTERMLLER, Projected Gradient Flows for BV / Level Set Relaxation, 2005.
T. GOLDSTEIN, X. BRESSON AND S. OSHER, Global Minimization of Markov Random Fields with

Applications to Optical Flow, 2009.
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Outline for the Rest of the Talk

Convex analysis background

Connections between primal, dual and saddle point problem
formulations

A practically useful class of primal dual methods that anee, require
few assumptions and can take advantage of separable s&ructu

Algorithm variants that accelerate the convergence radeganeralize
applicability

Applications and implementation details
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Some Convex Optimization References

D. BertsekasConstrained Optimization and Lagrange Multiplier Methods,
Athena Scientific, 1996.

D. Bertsekasonlinear Programming, Athena Scientific, Second Edition.
1999.

D. Bertsekas and J. TsitsikliBarallel and Distributed Computation, Prentice
Hall, 1989.

S. BoyD AND L. VANDENBERGHE, Convex Analysis, Cambridge University
Press, 2006.

P.L. COMBETTES, Proximal Splitting Methods in Signal Processing, 2011.

|. EKELAND AND R. TEMAM, Convex Analysis and Variational Problems, SIAM,
Classics in Applied Mathematics, 28, 1999.

R.T. ROCKAFELLAR, Convex Analysis, Princeton University Press,
Princeton, NJ, 1970.

R.T. ROCKAFELLAR AND R. WETS, Variational Analysis, Springer, 1998.

L. VANDENBERGHE, Optimization Methods for Large-Scale Systems, Course
Notes: http://www.ee.ucla.edu/"vandenbe/ee236c¢.html
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Closed Proper Convex

Assume we are working with closed, proper convex functidrib@form
J:R" — (—o00, ]

Convex: J((1 —s)u+ sv) < (1 —s)J(u) + sJ(v) for all u, v
s € (0,1)

Proper: J is not identically equal tec

Closed: The epigraptEpi J := {(u,2) : u € R", z € R, 2 > J(u)} is closed.

Z///

This is equivalent to lower semicontinuity gt

Note: We could also define convexity gfin terms ofEpi J being a convex
set.

dom(J) = {u € R™ : J(u) < oo} Is also the projection dfpi J ontoR"™
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Subgradients

Subgradientsof .J define non vertical supporting hyperplanesia .J.
Thesubdifferential 0.J(u) is the set of all subgradients dfat w.

p € 0J(u) means/(v) — J(u) — (p,v —u) >0 forall v
Example:f(z) = |z

;

—1 x <0
dof(x) =<1 x>0
=11 =0

Condition for minimizer:0 € 0J(u) < J(u) < J(v) Yo

Note: If J is differentiable, the®.J(u) = VJ(u)
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Indicator Function and Normal Cone

Let C be a convex set. Define the indicator functiondoby

(1) = 0 wed
I =Y 5%  otherwise

gc 1s convex and its subdifferential is the normal cavie(u)

Ne(u) = dgo(u)
={p: —(p,v—u) >0 Vv e C'}
0

:{p;<p’u—v>2 V’UEC}
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Convex Conjugate

(This is also called the Legendre-Fenchel Transform)

J*(p) = sup (u,p) — J(u)

u

We will see that this can be thought of as a dual way of reptegpa convex
function as a pointwise supremum of affine functions.

(If J is differentiable, thep = VJ(u*), where the supremum is attained at
u*, the point where the hyperplane is tangent/tp

Useful Properties:

J* 1S convex

J** — J
(still assuming/ is closed
proper convex)

pedJ(u) & uedJ*(p)
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Convexity of Convex Conjugate

J*(p) = sup (u,p) — J(u)

u

J* is convex because it issap of affine functions, namely

J*(p) = sup (u,p) —2
(u,z)eEpi J
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J** _ J
Consider the set of all, q), p € R™, g € R such that

J(u) > (u,p) —q  Vu
Equivalently,

q 2 (u,p) = J(u)  Vu
q > sup (u,p) — J(u) = J*(p) by definition

u

Sinceg > J*(p), {(p, q) : J(u) = (u,p) — ¢ Vu} = Epi J".

J(u)= sup (u,p)— q by convexity ofJ
(p,q)€Epi J*
= sup (u,p) — J*(p) = J**(p) by definition
p

R.T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
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"Inverse" of 0J

p € 0J(u)
J(w)—J(u) — (p,v—u) >0 Vv by definition
(u,p) = J(u) = sup(v, p) = J(v) = J*(p)

Fenchel Inequality: (u,p) > J(u) + J*(p)



Example: Convex Conjugate of Norm

Suppose/(u) = ||u||. Then

J*(p) = Sgp<u,p> — [Ju]]

(0 if (u,p) < Jul| Vu
oo  otherwise

\

< 0 if supy,<i{u,p) <1
oo  otherwise

\

0 if |p[|« < 1 by dual norm definition
co  otherwise

\

So the Legendre-Fenchel transform of a norm is the indidataation for the
unit ball under the dual norm.
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Support Function

Dual norms are related to support functions.

Let C be a convex set.

0 wuwedl

Recall indicator functio u) =
Bo(w) {oo otherwise

By definition, g7 (u) = sup,cc(p, u) := support functionoc (u).
From the previous example, Ji(u) = ||u|| andC = {p : ||p||+ < 1}, then

oo (u) = |l = T (u) = J(u) = ||u]
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General Moreau Decomposition

Let f € R™, J a closed proper convex function &, andA € R"*™,

2
. 1 2 . o /
f=arg min J(Au)+o—|lu = fll;+ad” arg min J*(p)+5 || ATp -~ :
Proof: Letp* be a minimizer of/*(p) + <||ATp — L2

Then  0€ dJ*(p*) + aA(ATp* — 1)

Let u* = f — aAl'p*, which impliesAu* € 8J*(p*)
Then  p* € 8J(Au*), which impliesA®p* € ATOJ(Au*)
Thus 0 € AT9J(Au*) + “ =L, which means

2

u* = argmin,, J(Au) + 5=||u — f]

J. J. MOREAU, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France, 93, 1965.
P. COMBETTES, AND W. WAJS, Signal Recovery by Proximal Forward-Backward Splitting, Multiscale

Model. Simul., 2006.
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Orthogonal Projection

Let C be a convex set. The orthogonal projectionr@ntoC' is

1 1
To(2) = argmin ~ lu — 2|3 = argmin go(u) + - Ju — 2|

Example: A familiar case of the Moreau decomposition isiwgita vector as
a sum of projections onto orthogonal subspaces

Let L be a subspace @&" andg;, the indicator function fo.. Then

{O pe L+t

g97(p) = sup{u, p) = =gr+(p)

welL oo otherwise

So by the Moreau decomposition, we can write a vef¢terR” as

f=Hr(f) +UpL(f)
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Soft Thresholding

Minimization of [, -like norms leads to soft thresholding.

1
So(z) = argmi —lu— 2|2
() = argmin Julls + -—[lu — 2|

By the Moreau decomposition and the fact that the dual norfin ¢if, is

|| ) ||oo’

2= 54(2) + aarg ”prnningl %Ilp — 2\\2
= Sa(2) + all )<ty (=)
= Sa(2) + Wipip) e <a} (2)
Componentwise,

S..(2) z; —asign(z;)  |z] > «
al?)i = .
0 otherwise
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Subdifferential Calculus

When can we use Fermat’s rule for simplifying sums of conugctions
composed with linear operators?

Example: Consided|G(u) + H (u)] for closed proper convet, H and
G(u) = J(Au)

0|G(u) + H(u)] D 0G(u) + 0H (u)

OG (u) > AT0J(Au)

These inclusions are equalities iIf some technical conutimold, usually
satisfied in practice.
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Relative Interior

LetC' be aconvexset € riC' iff foreveryx € C there existg, > 1 such
that(1 — p)z + pz € C.

Example: LetD = {(z,y) e R : y =0, z € [0,1]}

Let gp be the indicator function faob), this segment of the-axis.
domgp = D

int(dom gp) iIs empty

ridomgp = {(z,y) : y = 0,2 € (0,1)}
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Chain Rule

If ri dom G andridom H have a point in common, then
0|G(u) + H(u)] = 0G(u) + 0H (u)
RecallG(u) = J(Au). If the image ofA contains a point ofi dom .J, then
0G(u) = AT 0J(Au)
These requirements can be weakened when@yéf or J is polyhedral, (ie:

when the epigraph is the intersection of finitely many cldsaif spaces), in
which case we can replacedom with dom in the above conditions.

R.T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
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Strict/Strong Convexity and Differentiability

Sketch of main properties:

J is differentiable at: iff J has a unique subgradient.at
le: J Is differentiable iffoJ is single valued

J is differentiable iff.J* is strictly convex

V J is Lipschitz continuous with consta@t iff J* Is strongly convex
with modulusa

The Lipschitz condition meangv.J(u1) — VJ (u2)|l2 < < |lur — uz2

The strong convexity condition meat$ — || - ||? is convex
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Infimal Convolution

(1l Jo)(y) = inf Ji(u) + Jo(y — u)
Still assume/J; and.J; are closed proper convex functions.

If ridom J andridom J35 have a point in common and eithéy or J IS
differentiable, thery;.J5 is differentiable.

Use the fact that
J1OJy = (J7 + J3)°

Then since eithey; or J3 is strictly convex, so is the sum, and thiig 1.J; is
differentiable.
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Moreau-Yosida Regularization

Moreau envelope af

1
Eq(y) = minJ —[lu —yl?
(y) = min J(u) + 5—|lu —y||
Letu(y) = argmin, J(u) + 5= [lu — y||*.
Properties of Moreau-Yosida regularizéd

E.(y) is differentiable

VEa(y) = 5y —u(y))
VE,(y) is Lipschitz continuous with constarit
Note that0 € 9.J (a(y)) + < (a(y) — y)

-

SoVE,(u*) =0« 0¢€ dJ(u*).
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Proximal Point Method

Computeu* = arg min,, J(u) by iterating

1
k+1 _ in.J k2
arg min (u) + o |u — u”||

Uu
If a solution exists{u"*} converges to a solution.
The proximal point method is related to gradient descenton
bt =% — §VE,(u*) for § =a

Note this gradient scheme convergesdar (0, 2«).

(In practice howevery can depend ok as long asim inf,_, ., > 0.)
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Outline for Algorithm Comparisons

Transition to primal dual methods for linearly constraimeddels of the form

min J(u) suchthat Au=15b

u

Method of multipliers and Bregman iteration

Bregman operator splitting and linearized method of mlidrp
Alternating direction method of multipliers (ADMM) and $pBregman
Split inexact Uzawa and linearized ADMM special cases

Proximal forward backward splitting

Primal dual hybrid gradient (PDHG) and modified variants
Comparisons

Accelerated and generalized variants
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Primal and Dual Problems

Primal Problem: min,, J(u) suchthat Au=15 (PO)
Lagrangian: L(u,p) = J(u) + (p,b — Au)

p can be thought of as a Lagrange multiplier or a dual variable
Augmented Lagrangian: Ls(u, p) = J(u) + (p,b — Au) + S || Au — b]||?
Dual Functions:

q(p) = inf L(u,p) = (p, ) — SgpMTp, u) — J(u) = (p,b) — J* (A" p)
¢5(p) = inf Ls(u, p)
Dual Problem: max, q(p) (QO)

Assuming (P0O) has a solution, the maximumg aindgs are attained and
equal.
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Saddle Point Characterizations

Strong Duality: Assuming a solutiom* to (PO) exists, a solutiop® to (QO)
exists and/(u*) = q(p*).

Saddle Point Characterization: v* solves (P0O) ang* solves (QO) iff
(u*, p*) is a saddle point of.

L(u*,p) < L(u*,p*) < L(u,p*)  Vu,p
Optimality Conditions:
Au* =b
Alp* € 0J(u*) & u* € 0J* (AT p*)
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Method of Multipliers

)
uF T = arg min Ls(u, p®) = J(u) + (p¥,b — Au) + §HAu —b||?

pk—l—l _ pk + 5(b L Auk—l—l)

Note that(u**1, p**1) is a saddle point of.(u, p) — 55||p — p*||* because

1
Pt = argmax L(u"**, p) — —|lp — p"||?
p 20
| 1
ut = argmin L(u, pt ) — o< = pt|7

Foré > 0, {p*} converges to a solution of (Q0) by analogy to the proximal
point method.

Any limit point of {«.*} solves the primal problem (P0).
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Sinceqs (p)

Sop**! = argmax, q(p) — 55|lp — p

Dual Interpretation

max L(u, p) — —Hp p"||? = Ls(u, p*)

= min, Ls(u,p),

kH2

u

q5(p") = min max L (u, p)——llp P

_ mgxme(u p) — —Hp pkHQ

_ LT T
= maxq(p) 25Hp P
The max is attained at* !

kHQ

This is the proximal point method for maximizing
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Gradient Interpretation

The Lagrange multiplier update can also be understood asdeegt ascent
step for maximizingys.

Sincegs (p*) = max, q(p) — 55||p — p*||? is the Moreau envelope aqf

1
vqé(pk) _ 5(pk—l—l _pk) — b Auk—l—l

Therefore the multiplier update
pkz—}—l :pk + 5([) . Aukz—i—l)
can be interpreted as the gradient ascent step

pk—l—l _ pk + 5vq5(pk)
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Bregman lteration

Bregman Distance:DZ}k (u, u®) = J(u) — J(u*) — (p*,u — u*) where
p* € 0J(uk).

Bregman iteration for solving (PO): E’EU,L]()

I

0
w1 = arg min D?k (u, u®) + §HAu —b||?
pF Tl = pF 1 AT (b — AuFTY) € 0T (uPTh)
Equivalentu**1 update:
0
ut = argmin J(u) — (p*, u) + 5[ Au - b’

Initialization: p° = 0, « arbitrary

S. OSHER, M. BURGER, D. GOLDFARB, J. XU, An iterated regularization method for total variation based

image restoration, 2005.



Bregman / Method of Multipliers

Bregman iteration for (PO)
uhtl = argm&n J(u) — (p® u) + gHAu —b|)?
pk+1 :pk 4 5AT(b B Auk+1), po —0
Equivalent to method of multipliers:
uF Tl = arg m&n J(w) + (\¥, b — Au) + gHAu —b||?
AL = 2R 1 50— AuFth), AP =0
with p* = AT )\F VEk.

It was from the Bregman interpretation that this was showpetoery useful
for [y minimization problems

W. YIN, S. OSHER, D. GOLDFARB AND J. DARBON, Bregman lIterative Algorithms for {1 -Minimization with

Applications to Compressed Sensing, 2007.
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Decoupling Variables

Given a step of the method of multipliers algorithm of thenfior
k+1 : k 0 2
u" T = argmin J(u) + (p ,b—Au>—|—§||Au—b||
modify the objective functional by adding

% <u . (é _ 5ATA) (u — uk)> ,

whereqa is chosen such thét< o < m.

Modified update is given by

1
wF T = arg min J(u) + (p¥,b — Au) + 2—Hu —uf + ad AT (AuF —b)|*.
Uu (87
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Bregman Operator Splitting (BOS)

The strategy of linearizing the quadratic penalty can berpreted from the

Bregman perspective or considered as a linearized varidhé anethod of

multipliers.

Full BOS algorithm:

1 k
w1 = arg min J(u) + 2—Hu —u® + ad AT (AuF — b — %)HQ
u o)

pkz—}—l _ pk 4+ 5([) . Aukz—i—l)

If a,6 > 0andad < W, then limit points of{u*} solve (PO0)

Ref: X. ZHANG, M. BURGER, X. BRESSON, AND S. OSHER, Bregmanized Nonlocal Regularization for
Deconvolution and Sparse Reconstruction, UCLA CAM Report [09-03] 2009.
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General Proximal Point Interpretation

(uFt1 p*T1) as defined by the BOS iteration is a saddle point of

| 1 1
Hhmmgxt](u) + (p,b— Au) — 2—5||p—pkH2 + §||U_Uku%

with D = % — AT A anda, § > 0 chosen to ensurB is positive definite.
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Pros and Cons of BOS

BOS takes full advantage of separable structure of the pnoblf
J(u) = . Ji(u;), each minimization step decouples into simple
proximal minimizations of the form

1
uft! = arg min J; (u) + 2—HuZ — stuff||?
U; Q0

(2

These often have closed form solutions or are easy to solve.

The rate of convergence can be slow, especially i$ poorly
conditioned.
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Reformulation for Split Bregman/ADMM

In imaging applications, combining operator splittinghwvionstrained
optimization techniques was a breakthrough for solvingltedriation
regularized problems.

FTVd — Quadratic penalty method with alternating minimization

Y. WANG, J. YANG, W. YIN AND Y. ZHANG, A New Alternating Minimization Algorithm for Total

Variation Image Reconstruction, 2007.

Split Bregman— Alternating minimization variant of Bregman iteration

T. GOLDSTEIN AND S. OSHER, The Split Bregman Algorithm for L1 Regularized Problems, 2008.

Split Bregman and related methods often require consigéhia objective to
be a sum of two convex functions, so we change the primal pnolpiotation

to
min F(z)+ H(u) suchthatBz + Au = b
ze R ueR™
Bz+Au=1b

wherel’ and H are closed proper convex functions. "



Split Bregman

J
A = argmin F(2) — F(2%) — (p¥, 2 — 2%) + §Hb — Au® — Bz|?

0
w1 = arg min H(u) — H(u®) — (pF,u — u®) + §Hb — Au — Bz"TY|?
pitl = pb L BT (b — AufTt — BT
pitl = ph L 5AT (b — AuFTt — B2FT)

pl=0 p,=0 piedHW") pedF(z"

We will see this converges far > 0 by comparing it to the Alternating
Direction Method of Multipliers (ADMM)
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ADMM

Ls(z,u, \*) = F(2) + H(u) + (\",b — Au — Bz) + g”b — Au — Bz|)?

2P = argmin Ls(z, u®, \¥)
z
uF T = argmin Ls (28T, u, AF)
u
AL = 2P L §(b — AuPT — B2

Equivalence to Split Bregman with

pt =BT\ pf=ATN N0 =0

D. GABAY, AND B. MERCIER, A dual algorithm for the solution of nonlinear variational problems via
finite-element approximations, Comp. Math. Appl., 2 1976, pp. 17-40.
R. GLOWINSKI, AND A. MARROCCO, Sur lapproximation par elements finis dordre un, et la resolution par

penalisation-dualite dune classe de problemes de Dirichlet nonlineaires, Rev. Francaise dAut., 1975.
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ADMM Convergence

Theorem 1 (Eckstein, Bertsekas) Consider the primal problem where F' and
H are closed proper convex functions, F'(z) + || Bz||? is strictly convex and
H(u) + || Aul|? isstrictly convex. Let \° € R? and «° € R™ be arbitrary and
let o > 0. Suppose we are also given sequences { i } and {1 } such that

pr > 0,0 >0, 00 g < ocandd o v < oo. Suppose that

)
|25+ — arg min F'(z) + (\*, —Bz) + b= Au® — Bz|]?|| < py
zeR™

J
|uf Tt — arg m%&n H(u) + (\F, —Au) + §Hb — Au — B2"H?|| < v
uelR™

AL = AF (b — AuFTt — B2RTL),

If there exists a saddle point of L(z, u, \), then z* — z*, u* — «* and
A — \* where (z*, u*, \*) is such a saddle point. On the other hand, if no

such saddle point exists, then at least one of the sequences {u”*} or {\*} must
be unbounded.

J. ECKSTEIN AND D. BERTSEKAS, On the Douglas-Rachford splitting method and the proximal point

algorithm for maximal monotone operators, Mathematical Programming 55, North-Holland, 19952?;



Dual Interpretations

L(z,u,A\) = F(z) + H(u) + (\,b — Au — Bz)

— : % T . * T
qg(A) = uER’}nn,EER” L(z,u,\) = —=F*(B"\) — H* (A" \) 4+ (\, b)
Dual Problem: max q(\)
AERA

Strong Duality: F(z*)+ Hu") = q(\*)

Saddle Point Characterizatiofx™, «™) solves primal problem\* solves dual iff

L(z*u", \) < L(z*,u", \*) < L(z,u, \") YV 2, u, A

Optimality Conditions  Au* + Bz* =10

BYX* € OF (%) z* € OF* (BT \¥)
AT X € OH (u*) uw* € OH* (AT \)
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Douglas Rachford Splitting

Define:U(\) = BOF*(BTA) —b  ¢(\) = AOH* (AT ))
An Approach for solving dual: Find € U(\) + ¢(N)
Formal Douglas Rachford Splitting:

0
)\k—l—l L )\k

0¢€ p + W) + o\,

LAY,
0¢c

+ U(AF) + ¢ (AF),

ADMM Equivalent Version (Derived using Moreau decompasi)

. - < | R
A = arg mAinF*(BT)\) — (A, b) + 2—5”)\ — (2>\k — yk)HQ
A

1 ~
)\k-l—l _ argmgnH*(AT)\) + 2_5H>\ L (yk . )\k + )\k)HQ

gL — gk Rk )R

S. SETZER, Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage, 2009.
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Split Inexact Uzawa

We can apply the same linearization techniques to ADMM thaapplied to
the method of multipliers when deriving BOS.

2 = argmin Ls(z, u®, \F)
z

k+1

uF T = argmin Ls (28T, u, AF)
u

)\k—l—l _ )\k: —|—5(b— Auk—i-l . sz—l—l)

In general, we can adg|z — 2*||, to thez"*! objective and/or
5llu — || totheu**! objective if Q. andQ,, are positive definite.

The quadratic terms can be linearized for example by chgosin
Q. = é — 0BT B with o, § > 0 chosen to ensur@., is positive definite.

X. ZHANG, M. BURGER, AND S. OSHER, A Unified Primal-Dual Algorithm Framework Based on Bregman
lteration, UCLA CAM Report [09-99], 2009.
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A Simpler Problem to Show Connections

We will see that many popular primal-dual methods are algtgalite similar
to each other. Consider

u%%&% J(Au) + H(u) (P)

J, H closed proper convex
H:R™ — (—o00,00]
J: R" — (—00, ]

A € Rxm

Assume there exists an optimal solutiohto (P)

So we can use Fenchel duality later, also assume there exsts(dom H)
such thatdu € ri(dom J) (almost always true in practice)

57



Saddle Point Form via Legendre Transform

SinceJ** = J for arbitrary closed proper convek we can use this to define
a saddle point version @fP).

J(Au) = J**(Au) = sup(p, Au) — J*(p)

p

Primal Function  Fp(u) = J(Au) + H(u)
Saddle Function  Lpp(u,p) = (p, Au) — J*(p) + H(u)

Saddle Point Problem

min sup —J*(p) + (p, Au) + H(u) (PD)

v p
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Dual Problem and Strong Duality

The dual problem is

max Fp(p) (D)

where the dual functiondl’, (p) is a concave function defined by

Fp(p) = inf Lpp(u,p)= inf —J"(p)+(p, Au)+H(u) = =J"(p)—H" (A" p)

By Fenchel duality there exists an optimal solutignto (D)
Strong duality holds, meaningp (u*) = Fp(p*)
u* solves (P) ang* solves (D) iff(u*, p*) is saddle point of.pp

R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
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More Saddle Point Formulations

Introduce the constraint = Au in (P) and form the Lagrangian
Lp(u,w,p) = J(w) + H(u) + (p, Au — w)

The corresponding saddle point problem is
max inf  Lp(u,w,p) (SPP)

pER™ ueR™ weR™

Introduce the constraint = — A’ p in (D) and form the Lagrangian
Lp(p,y,u) = J*(p) + H*(y) + (u, —A'p — y)
Obtain yet another saddle point problem,

inf L PD
mex  inf p(p,y,u) (SPD)
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oy~~~ -~ -~ -~~~ 7 ! -~~~ - - T~ 7
| P) min,, Fp(u) | | | (D) max, F'p(p) |
I Fp(u) = J(Au) + H(u) [ ' | Fp(p)=—J*(p) — H*(-ATp) 1
Lo o o ___ J ! Lo o o J
|
ey - - - - - - - - -~ T
|(PD) min, sup, Lpp(u, p) |
I Lpp(u,p) = (p, Au) — J*(p) + H(u) |
L - - - - - _|
__________________ | L
[ 1 I 1
|(SPP) max,, inf,, ., Lp(u,w, p) | : (SPp) max,, inf, , Lp(p, y,u)

I Lp(u,w,p) = J(w) + H(u) + (p,Au—w) | | | Lp(p,y,u)=J"(p) + H*(y) + (u,—ATp—y) |
L - J L - J
¢ | '

AMA PFBS ! PFBS AMA
on |«~—| on : on |«~—| on
(SPy) (D) | (P) (SPp)
|
) |
+agllu — |3 ! +asllp — "3
|
Relaxed AMA | Relaxed AMA
on (SPp) | on (SPp)
+5 [ Au — wlf3 | +51ATp +yll3
|
\ | /
Douglas Primal-Dual Proximal Point on Douglas
ADMM Rachford (PD) Rachford ADMM
on T on = on DS on
SP SP
(8Pe) (D) PDHG (P) (SPp)
! k
+3{u—u®, (5 = 6ATA)(u—ub)) ' e +3(p =", (5 —aAAT)(p - p"))
| 2k — uFt
|
|
Split ! Split
Inexact ! Inexact
U -~—| PDHGMp | PDHGMu |~—
zawa | Uzawa
on (SPp) | on (SPp)
|
Legend: (P): Primal AMA: Alternating Minimization Algorithm (4.2.1)
D): Dual PFBS: Proximal Forward Backward Splitting (4.2.1)
P ADMM: Alternating Direction Method of Multipliers (4.2.2)

(
(
(
(
(

D): Primal-Dual
SPp): Split Primal
SPp): Split Dual

PDHG: Primal Dual Hybrid Gradient (4.2)

PDHGM: Modified PDHG (4.2.3)

Bold: Well Understood Convergence Properties
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Primal Dual Hybrid Gradient (PDHG)

Interpret PDHG as a primal-dual proximal point method fodiiny a saddle
point of

min sup —J(p) + (p, Au) + H(u) (PD)

PDHG iterations:

) 1
p" ! = arg max —J*(p) + (p, Au”) — Ellp — "3

peR™
1
k-+1 _ in H AT k-+1 i k2
u arg min (u) + (A" p" ", u) + 2akHU u” |3

M. ZHuU, AND T. F. CHAN, An Efficient Primal-Dual Hybrid Gradient Algorithm for Total Variation Image
Restoration, UCLA CAM Report [08-34], May 2008.

B. HE AND X. YUAN, Convergence analysis of primal-dual algorithms for total variation image restoration,

2010.
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Proximal Forward Backward Splitting

PFBS alternates a gradient descent step with a proximal step

1
pF 1l = arg min J*(p) + —

k k41v(2
— + 6. A
TR 25, lp— (p rAUTT)]3,

whereu* Tt = VH*(—ATp").

Sinceu*t! = VH* (- ATpF) & —ATp* € OH (uF+1), which is equivalent
to

uF T = arg m%Rn H(u) 4+ (ATpF ),
ueck™

PFBS on (D) can be rewritten as

uF Tl = arg m%&n H(u) + (ATp" u)
uclR™

D 1
p" = arg min J*(p) + (p, —Au*T) + —|Ip — p"||3
pER™ 25k

Converges if we assumé(H*(—A")) is Lipschitz continuous and the
product ofd; and its Lipschitz constant is ifd, 2).

P. COMBETTES AND W. WAJS, Signal Recovery by Proximal Forward-Backward Splitting, 2006. 63



AMA on Split Primal

AMA applied to (SPP) alternately minimizes first the Lagriamgl p (u, w, p)

with respect ta; and then the augmented Lagranglan + % | Au — w|3
with respect tav before updating the Lagrange multiplier

w1 = arg min H(u) 4+ (AT p", )

uecR™
0
Wttt = arg min J(w) = (pF,w) + [ At - w3

pk—l—l _ pk + (Sk(Auk—i_l . wk—l—l)

Can show equivalence to PFBS on (D) by a direct application of
Moreau’s decomposition

P. TSENG, Applications of a Splitting Algorithm to Decomposition in Convex Programming and Variational
Inequalities, SIAM J. Control Optim., Vol. 29, No. 1, 1991, pp. 119-138.
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Equivalence by Moreau Decomposition

AMA applied to (SPP):

uF 1 = arg min H(u) 4+ (AT p", )

UER™M
)
W = arg min J(w) — (pF, w) + = || At — w3
wER™ 2

pk—l—l _ pkz + 5k(Auk+1 . wk—i—l)
The rewritten PFBS on (D) and AMA on (SPP) have the same fiegt st

Combining the last two steps of AMA yields

2
J
PPt = (p* + 6, AuFT) — ), arg min J(w) + é{: w

(p* + SpAukt)
Ok

Y

2

which is equivalent to the second step of PFBS by direct egpdiin of
Moreau’s decomposition.

L e 1
p"t = arg min J*(p) + 5= |lp - (p* + ok Au" )3

20 65



AMA/PFBS Connection to PDHG

PFBS on (D) plus additional proximal penalty is PDHG

1
k+1 in H AT k T k12
U = argurg%&% (u) + (A" p",u) + 20 lu —u”[[3

D 1
pP = arg min J*(p) + (p, —Au*T) + —|p — p"||3
pER™ 25k

AMA on (SPP) with first step relaxed by same proximal penaty DHG

1
k—i_l p— 1 H AT & _ k12
u arg min (u) + (A p™, u) + o lu —u”[3
)
wh = arg min J(w) — (p",w) + — AT — w3
wER™ 2

PP = pF 4 5 (AuhtL — k)

PFBS on (P) and AMA on (SPD) are connected to PDHG analogously
Can think of PDHG as a relaxed version of AMA
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AMA Connection to ADMM

AMA on (SPP) with2 || Au — w"||3 added to first step is ADMM applied to
(SPP):

J
w1 = arg min H(u) + (AT p*, u) + §HAU — w3

ueR™
)
Wit = arg min J(w) — (pF, w) + = [ AuFt — w3
weR™ 2

pk—l—l _ pk + 5(Auk—|—1 L wk—l—l)

ADMM alternately minimizes the augmented Lagrangian

Lp+ g||Au — wl|3 with respect tax andw before updating the
Lagrange multipliep

Equivalent to Split Bregman, a method which combines Bragma

iteration and operator splitting to solve constrained esrmptimization
problems

D. BERTSEKAS AND J. TSITSIKLIS, Parallel and Distributed Computation, 1989.

T. GOLDSTEIN AND S. OSHER, The Split Bregman Algorithm for L1 Regularized Problems, SIIMS, Vol. 2,

No. 2, 2008. 67



Equivalence to Douglas Rachford Splitting

Can apply Moreau decomposition twice along with an appaterchange of

variables to show ADMM on (SPP) or (SPD) is equivalent to Oasg
Rachford Splitting on (D) and (P) resp.

Douglas Rachford splitting on (D):
: « 1
T = argmin H*(=A"q) + 52 llg — (2p° =253 + 2 ="

k+1

D e 1
Pt = argmin J* (p) + —||p — 2|3
p 20

Note: z* = p* + Jw” with p* andw* the same as in ADMM on (SPP)

S. SETZER, Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage, LNCS, 2008.

J. ECKSTEIN, AND D. BERTSEKAS, On the Douglas-Rachford splitting method and the proximal point
algorithm for maximal monotone operators, Math. Program. 55, 1992.
P.L. COMBETTES AND J-C. PESQUET, A Douglas-Rachford Splitting Approach to Nonsmooth Convex

Variational Signal Recovery, IEEE, 2007.
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Split Inexact Uzawa Method

Special case: only linearize thé+! step of ADMM applied to (SPP) by
addings (u — u”, (£ — §AT A)(u — u*)) to the objective function, with
0<a< sy

Split Inexact Uzawa applied to (SPP):

1
w1 = arg min H(u) + (AT p*,u) + %Hu —uF + Sa AT (Au® — w")||3

ueR™
0
wi ! = arg Hel%}% J(w) — (p*, w) + 5\\Auk+1 —wll3

pk+1::Zﬁ:+_5c4uk+l__quk+l)

By only modifying the first step of ADMM, we obtain an intereg
PDHG-like interpretation.
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Modified PDHG (PDHGMp)

Replacep” in first step of PDHG witt2p* — p*~—! to get PDHGMp:

. B 1
u*tt = arg min H(u) + (A" (2p" = p"1) ,u) + = lu — u"[l3
ueR™ 2a

1
k-+1 — . J* . A k-+1 T k2
p arg min J*(p) — (p, Au™"") + o<llp — P73

Can show equivalence to SIU on (SPP) using Moreau’s decahgos

Related Works:

G. CHEN AND M. TEBOULLE, A Proximal-Based Decomposition Method for Convex Minimization

Problems, Mathematical Programming, Vol. 64, 1994.

T. Pock, D. CREMERS, H. BISCHOF, AND A. CHAMBOLLE, An Algorithm for Minimizing the
Mumford-Shah Functional, ICCV, 2009.

A. CHAMBOLLE, V. CASELLES, M. NOVAGA, D. CREMERS AND T. Pock, An introduction to Total

Variation for Image Analysis,

http://hal.archives-ouvertes.fr/docs/00/43/75/8 IFRiDeprint.pdf, 2009.

A. CHAMBOLLE AND T. Pock, A first-order primal-dual algorithm for convex problems with

applications to imaging, 2010.
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Equivalence of PDHGMp and SIU on (SPP)

SIU on (SPP): (the only change from PDHG is addition of blue)e

1
uF Tl = arg min H(u) + (ATp*, u) + %Hu — uF 6o AT (AuF — wh) |2

ueR™
)
w" = arg min J(w) — (p*, w) + [ AT — w3
weER 2

pkz—}—l _ pk 4+ 5(Auk—|—1 . wk—i—l)

Replaced(Au”* — w*) in theu**! update withp* — pF—1.
Combinep**! andw”*! to get

5w 5

k k+1
pkz—i—l _ (pk: + 5Auk—|—1) . 5argmin J(w) 4 0 (p —|—5Au )H2

and apply Moreau’s decomposition.

PDHGMp: (the only change from PDHG is that becamep® — pF—1)

. ) 1
WM = arg min H(u) + (AT (28 —p") )+ o=l — 3
ueR™ 20
1
k+1 _ . * o A k41 T k2
p arg min J*(p) — (p, Au™"") + o<llp — P73 .



Modified PDHG (PDHGMu)

PDHGMu: (the only change from PDHG is that becameu® — u*~1)

1
PP = arg min T (p) — (p, A (26* — 1)) + o flp — b

peR™
1
k41 _ . H AT k+1 k2
u arg min (u) + (A"p" T u) + QE;HU u”®||5

PDHGMu is analogously equivalent to the split inexact Uz&%#J) method
applied to (SPD)

72



oy~~~ -~ -~ -~~~ 7 ! -~~~ - - T~ 7
| P) min,, Fp(u) | | | (D) max, F'p(p) |
I Fp(u) = J(Au) + H(u) [ ' | Fp(p)=—J*(p) — H*(-ATp) 1
Lo o o ___ J ! Lo o o J
|
ey - - - - - - - - -~ T
|(PD) min, sup, Lpp(u, p) |
I Lpp(u,p) = (p, Au) — J*(p) + H(u) |
L - - - - - _|
__________________ | L
[ 1 I 1
|(SPP) max,, inf,, ., Lp(u,w, p) | : (SPp) max,, inf, , Lp(p, y,u)

I Lp(u,w,p) = J(w) + H(u) + (p,Au—w) | | | Lp(p,y,u)=J"(p) + H*(y) + (u,—ATp—y) |
L - J L - J
¢ | '

AMA PFBS ! PFBS AMA
on |«~—| on : on |«~—| on
(SPy) (D) | (P) (SPp)
|
) |
+agllu — |3 ! +asllp — "3
|
Relaxed AMA | Relaxed AMA
on (SPp) | on (SPp)
+5 [ Au — wlf3 | +51ATp +yll3
|
\ | /
Douglas Primal-Dual Proximal Point on Douglas
ADMM Rachford (PD) Rachford ADMM
on T on = on DS on
SP SP
(8Pe) (D) PDHG (P) (SPp)
! k
+3{u—u®, (5 = 6ATA)(u—ub)) ' e +3(p =", (5 —aAAT)(p - p"))
| 2k — uFt
|
|
Split ! Split
Inexact ! Inexact
U -~—| PDHGMp | PDHGMu |~—
zawa | Uzawa
on (SPp) | on (SPp)
|
Legend: (P): Primal AMA: Alternating Minimization Algorithm (4.2.1)
D): Dual PFBS: Proximal Forward Backward Splitting (4.2.1)
P ADMM: Alternating Direction Method of Multipliers (4.2.2)

(
(
(
(
(

D): Primal-Dual
SPp): Split Primal
SPp): Split Dual

PDHG: Primal Dual Hybrid Gradient (4.2)

PDHGM: Modified PDHG (4.2.3)

Bold: Well Understood Convergence Properties
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Comparison of Algorithms

" Assumes
._ | Additional T
Step  size Can d_ecou objective
- smooth ple variables| . -
restrictions IS written
or  strong| coupled
(o and 9 t . as sum of
parameters) convexity by I|_near n terms
assumptions| constraints o
wheren is
MM/Bregman no no no 1
BOS yes no yes arbitrary
ADMM/DR no no no 2
AMA/PEFBS yes yes yes 2
PDHG yes no yes 2
PDHGM/SIU yes no yes 2
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More About Algorithm Connections

S. BoyD, N. PARIKH, E. CHU, B. PELEATO AND J. ECKSTEIN, Distributed Optimization and

Statistical Learning via the Alternating Direction Method of Multipliers, 2010.
P.L. COMBETTES AND J-C. PESQUET, Proximal Splitting Methods in Signal Processing, 2009.

J. ECKSTEIN, Splitting Methods for Monotone Operators with Applications to Parallel Optimization,
Ph. D. Thesis, MIT, Dept. of Civil Engineering, 1989.

E. ESSER, Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split

Bregman, UCLA CAM Report [09-31], 2009.

E. ESSER, X. ZHANG, AND T. F. CHAN, A General Framework for a Class of First Order Primal-Dual
Algorithms for Convex Optimization in Imaging Science, SIAM J. Imaging Sci. Volume 3, Issue
4, pp. 1015-1046, 2010.

R. GLOWINSKI AND P. LE TALLEC, Augmented Lagrangian and Operator-splitting Methods in
Nonlinear Mechanics, SIAM, 1989.

C. Wu AND X.C Tal, Augmented Lagrangian Method, Dual Methods, and Split Bregman Iteration for
ROF, Vectorial TV, and High Order Models, 2009.
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Accelerated Variant of PFBS

FISTA algorithm modifies PFBS on (D).

"t = arg min J*(p) + =|lp - (p" + 0, AVH*(—ATp*))|?

by replacingp® with p¥ + =L (pk — pk—1),

41

14+/144¢32

5 (initialize att; = 1)

wheret; 1 =

Complexity of FISTA isO(+):

C
k2
C'Is independent o, but does depend on the Lipschitz constant and step size.

J(Auk) + H(uk) — J(Au") — H(u™) <

A. BECK, AND M. TEBOULLE, Fast Gradient-Based Algorithms for Constrained Total Variation Image

Denoising and Deblurring Problems, 2009.
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Accelerated Variant of PDHGM

1
k1 _ T A kg2
p arg min J*(p) — (p, Aw"™) + 25, 1 = P71
1
k41 _ H AT k1 k2
u arg min H (u) + (A"p"" u) + 2O%Hu u”|3

Instead ofw* = 2u* — v 1, letw® = u* + G (uF — uF~1)
Well chosery,, accelerates convergence rati:+ ) in general case) () if
J* or H is strongly convex, and linear if both are strongly convex

In particular, in theH strongly convex case, let

1 1
0, = VH* is — Lipschitz
& \/1 —+ 2’}/Oék ( Y p )
Qg1 = Oray
Ok
5 _ 7k
k41 = 9,

WhHL = B+ g, (UL k)

A. CHAMBOLLE AND T. Pock, A first-order primal-dual algorithm for convex problems with applications to
_ _ 77
imaging, 2010.



Other Algorithm Improvements

With a suitable correction step, new alternating directizethods based o
the augmented Lagrangian no longer require the objectivetitonal to be
split into two parts.

Being able to apply more than two alternating steps is adgmuus when
linear constraints couple many variables.

B. HE, Z. PENG AND X. WANG, Proximal alternating direction-based contraction methods for separable
linearly constrained convex optimization, 2010.

B. HE, M. TAO AND X. YUAN, A splitting method for separate convex programming with linking linear
constraints, 2010.

Smart application of Newton-based methods to primal-dpahwality
conditions can achieve superlinear convergence.

R. CHAN, Y. DONG AND M. HINTERMULLER, An Efficient Two-Phase L 1-TV Method for Restoring Blurred

Images with Impulse Noise, 2010.

T. F. CHAN, G. H. GoLuB, AND P. MULET, A nonlinear primal dual method for total variation based image
restoration, 1999.

n
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Outline for Implementation Detalils

Operator splitting
Convex constraints

TV discretization

Easy to handle functions

Examples
PFBS for TVL2 denoising (ROF)
ADMM and BOS for TVL1 minimization
ADMM for sparse/low rank decomposition
PDHGM for constrained deblurring
PDHGM for multiphase segmentation
ADMM for nonnegative matrix factorization
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Operator Splitting for PDHGM

Applying PDHGMp tomin, 37 | J;(A;u) + H(u) yields:

1
w1 = argmin H (u) + —
Uu 2q0

N
U — <uk - ozZAf(Zp,’f —p,’fl)>

1=1

Pt = argmin 7 (po) + 55 [lpi — (o + 4|3 i= 1N

whereJ (Au) = S0 | Ji(Au).

P1
Lettingp = | : |, the decoupling follows frony*(p) = Zf\il J (pi)
_pN_
Thep,; subproblems are decoupled
A
Need) < a < W for stability with A = | :
_AN_

Preconditioning is possible 80



Convex Constraints

We want the algorithms to have simple, explicit solutionghir
minimization subproblems.

A convex constraint: € T can be handled by adding the convex indicator

function
() 0 ifueT
u p—
9T oo otherwise

This leads to a simple update when the orthogonal projection
[I7(z) = arg m&ngT(u) + |lu — 2|)?
IS easy to compute. For example,

z—f
max (H?«:fH 7 1)

T=1{z:\z=fla<ef = r(z) = f +
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TV Discretization (1)

Temporarily thinking ofu as aM,. x M. matrix, discretize|u||ry using
forward differences and assuming Neumann BC by

‘UHTV — ZZ \/ D+urc D_I—ur 0)2

r=1 c=1

VectorizeM, x M. matrixu by stacking columns

Define a discrete gradient matrix and a norni| - || g such that
[Dullg = |lul|rv.

Define a directed grid-shaped graph with= M, M. nodes corresponding to
matrix elementgr, c).

3 x 3 example:

For each edge with endpoint indicegi, j), i < j, define:

—1 fork =1, LD — 1
Dpr=<1 fork=j, By = mh
’ . ’ 0 otherwise 89
0 fork #14,j.

N\




TV Discretization (2)

Can useF to define norm| - ||z onR€ by

lwlz = H\/ET(wQ) = f; ( ET(w2))i = f; [l |2

wherew; Is the vector of edge values for directed edges coming oub@dén

Wl = || /E 02| =max (\ET0%)) = max

Again, p; Is the vector of edge values for directed edges coming oub@dén

For TV regularization,J (Au) = ||Du||g = ||u||7v
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Some Easy Functions to Deal With

The methods discussed are most efficient when the decoumhathization
subproblems can be easily computed. A few examples (themmany more)
of "nice" functions and their Legendre transforms include

7() = o 213 T*(p) = 5 Ipl3

J(2) = |||z J7(P) = 9ipilpll<y

J(2) = 2]l J7(P) = 9ipilipll <1}

J(2) = ||z||g where||Du| g = |lullry  J*(P) = Gip:|ip|| s= <1}

J(2) = ||2]loo J7(P) = 9ipilipli<1y

J(2) = max(2) J*(P) = 9{pp>0and|pl =1}
(2) = )

J(z mfF( )+ H(z —w) J*(p) = F*(p) + H"(p)

Note: All indicator functiongy are for convex sets that are easy to project
onto.

Although there’s no simple formula for projecting a vectatmthel; unit ball
(or its positive face) ilR™, this can be computed with(n log n) complexity.
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Preconditioning

When A is poorly conditioned, the rate of convergence can be poor.
Preconditioning is sometimes a practical necessity.

Example for BOS: Recall that the standard BOS iteration age®
(uFT1, pF+1) as a saddle point of

' 1
rrblnmgx.](u) + (P, b — Au) — —||p p|? + 5”“ —u®||h

with D = 2 — §A" A ande, § > 0 chosen to ensur® is positive definite.

We can precondition by working in a different metric defingdalpositive
definite matrix)/, computing instead

: 1 1
minmax J(u) + (p, M(b = Au)) = o5 llp = b + 5llu— v,

now with Dy, = £ — AT MA.

We can also precondition using a change of variables.Sv, but must be
careful not to overly complicate subproblems by the choic&/oor S. 85



PFBS for TVL2 denoising

TVL2 denoising (ROF modelymin,, [|u||rv + 2 |lu — f|2

Let A= D, J(Au) = || Du| g andH (u) = 5 ||u — f]|3 to write the model in

the form ofmin,, J(Au) + H(u).
The dual form of PFBS yields the following iterations:

w1 = argmin H(u) 4+ (D1p*, )

1

k+1 : k+1 k|2

p"™ =arg min (p,—Du + —|lp—0p
||I?||E*<_1< ) 204, | |

These can be explicitly computed:

ukz—i—l _ f L %DTpk:

p" Tt = (p" + p Dut )

where to simplify notationX = {p : ||p|

pe < 1)
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Gradient Projection Interpretation

From the optimality condition for**t! = arg min, H(u) + (DTp*, u)

—D'pF e 0H (uF) & Wt = VH*(—D1pY)

Therefore
p" Tt =Tx (p* — 6, V(H*(—DTp")))

P
FE max ( ET(p?), 1)

[x(p) = argmin |lq — |3 = (componentwise)
qc

Di
max(||p;|2, 1)

[x(p)i =

wherep; is the vector of edge values for directed edges out of riode
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Original, Noisy and Denoised Images

Use256 x 256 cameraman image.
Add white Gaussian noise having standard devia2ian

Let A = .053.
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ADMM for TVL1

min [[ullpy + Bl Ku = £l

Rewrite as
min || Dullp + B[ Ku — flls

Letz:[w]:[ Du ] B=—I A=
v Ku—f

to put in form min, ,, F'(2) + H(u) St. Bz4+ Au=1"0

whereF'(z) = ||lw||g + B|v||1 andH (u) = 0.

Introduce dual variabla = p] .
q

Assumeker(D) [ ker(K) :_{O}.
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Augmented Lagrangian and ADMM lterations

Ls(2,u,A) =[lwl[g + Blv]l1 + {p, Du = w) + (¢, Ku — f —v)+

0 0
Jjw = Dull? + Sl — Ku + £

The ADMM iterations are given by

5 k
wkz—l—l p_||2

= argmin|Jul|p + & |~ Du ~

k+1 : 0 k q* 2

o = argmin o]y + 5o — Ku® + f - |

ka1 0 k+1 pk 2 0 k+1 qk 2
u+ :argm&n§HDu—w+ +FH —|—§HKU—’U+ _f—i_F”

PPl = pF 4 §(DubT —

qkz—i—l _ qk + 5(Kuk+1 L f . vk—l—l)7

wherep? = ¢° = 0, vV is arbitrary andy > 0.
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Explicit Iterations

The explicit formulas forw*t1, v**+1 andu**! are given by

k

wkﬂ — S’% (Duk + %)
qk
pFtl — Ss (Ku® — f + =)
DT k KT k
uk—l—l _ (DTD _|_KTK)—1 (Dka—l—l L 5p _I_KT(vk+1 4 f) o 5q )
= (D'"D+ K"K)™" (D"w* + KT (0" + ).
where

Se(f) = f —Ilex(f) and S.(f) = f — Wigpqlow<er (F)

are both soft thresholding formulas in vector and scalag&agspectively.
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TVL1 Results () = I case)

f

TV-11 Minimization of 512 x 512 Synthetic Image

Image Size| Iterations| Time
64 x 64 40 1s
128 x 128 | 51 5s
256 x 256 | 136 78s
512 x 512 | 359 836s

lterations untill|u* — u*~1||o < .5, [[DuF — wF||eo < .5 and||vF — uF + flloo < .5
8 =.6,.3,.15and.075, 6 = .02, .01, .005 and.0025



BOS for TVL1

w
I 0 —-D 0
‘ such that =
min w]g + Bllv]s lo , K] v [ ]

Pl — arg min |w||g + %Hw — wk + ad(w® — Du® — p—)||2

0

w

. 1 k
H = argmin o]y + 5o = oF + ad(0F — Kub 4 f = )P

v
1
w1 = argmin 2—Hu —u¥ + ad(—=D'w"* + D' DuF — KTv* + KT Ku”
v 20
DTk KT %
- KT+ —— + =)

PPl = pF 4 §(wF Y — Dyt

¢t = gk 4 (R - KRt g f)
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ADMM for Sparse/Low Rank Decomposition

min ||ul[« + Al|e||1 suchthat f=u+e

) p"
Ls(u,e.p) = llull- + Allells + (p.u+e = f) + Slu+eb = f+ |
. 0 &
u M = argmin ull. + Sllu+e* — f + %n?

. 0 &
e = argmin Allel|s + 5 fle +uf T - f 4+ 52

pkz—i—l _ pk 4+ 5(ukz—i—1 4+ 6k:—i—l . f)
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Explicit Iterations

k k

p p
W= f e = T T a (f — e - )
k+1 k+1 p" k+1 p"
= f o = g ca (f T =)

pk—i—l _ pk + 5(uk—i—1 + ek—i—l . f)

In this context)| - |2 denotes the spectral norm, which is the largest singular
value.

Theu**+! update can be computed by using the singular value decotigposi

to soft threshold the singular values pf- e — %.
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Constrained TV Deblurring Example

min  ||ul|ry
| Ku—fll2<e

can be rewritten as
min || Dul| g + gr(Ku),

wheregr is the indicator function fo” = {z : ||z — f||2 < €}
In order to treat botlD and K explicitly, let

Hu)=0 and  J(Au) = J1(Du) + Jo(Ku),

e

Write the dual variable as = [p1] and apply PDHGMp.
P2

whereA =
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PDHGMp for Constrained TV Deblurring

. _ 1
uF Tt = arg min H(u) + (A" (2p" —p" 1) Ju) + %HU —u®|3

D 1
"t = arg min J*(p) — (p, AuFthy 4 55 17 — "3

Wt =P — o (DT (207 — p{ ) + KT (205 — p5 )
p’fH =TIy (p’f + 5Duk+1)

k
ps Tt =p5 + KU T — 6llp (% + Kuk“) ,

wherell x andIly are defined as before.

Both projections are simple to compute:
ITx is analogous to orthogonal projection ontolgnball
II+ is orthogonal projection onto the e-ball centered af
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Deblurring Parameters

min ||ul|ry suchthat |[[Ku— f|l2 <e
u

K 1s a convolution operator corresponding to a normalizedsSian blur with
a standard deviation gfin a17 x 17 window.

Letting h denote the clean image, the given data f = Kh + n, wheren is
zero mean Gaussian noise with standard deviation 1.

Let e = 256, and choose algorithm parameters- .33 andd = .33.

Original, blurry/noisy and image recovered from 300 itienas
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Multiphase Segmentation Example

Recall the convex approximation we considered for multgghsegmentation.

Goal: Segment a given image.c RM, into W regions where the intensities

in thew™ region are close to given intensities € R and the lengths of the
boundaries between regions are not too long.

w
mingo(©)+ 3 (leullry + 5 ens (b= 2%

1%
C={{c=(c1,...,ecw) : cu ERM,chzl,cw >0}

w=1

This is a convex approximation of the related nonconvextional which
additionally requires the labels, to only take on the values zero and one.
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Application of PDHGMp

>\
Let H(c) = + 5 (e Z XT(h = 24)%),
W
J(Ac) = Ju(DXye),

w=1

o
whereA = : , X,yC = Cy and

DXy

Jw(DXyc) = ||DXwCHE = ||Dcw||E = chHTV-

PDHGMp iterations:

= Il¢ <c —aZXT (DT (2pF —pi= 1) +

w=1

(h — Zw)2)>
Pt =TIx (pff) + 5Dchk+1) forw=1,.. W.
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Segmentation Numerical Result

\ = .0025 z:[75 105 142 178 180]

995
V40

Thresholdc when each|c¥ ! — ¢F || < .01 (150 iterations)

original image segmented image

04:5:

region 3 region 4

Segmentation of Brain Image InfoRegions
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ADMM for Special Case of NMF

Nonnegative matrix factorization (NMF): Given nonnegativeX € R™*4
Find nonnegative matrice$ € R™*" andS € R**4 such thatX ~ AS

NMF is a very ill-posed problem

Additional assumptions:
Assume columns of dictionard come from dataX
Possibly additional assumptions abdufie: sparsity)

Geometric interpretation: Find a small number of columns &f that span a
cone containing most of the data
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Our General Strategy

Let I index the columns oK that cannot be written as nonnegative linear
combinations of the other columns. Any colum in X can be written as

Xj = ZXsz,j for Ti,j >0
el

Our Strategy: Find a nonnegative matrik such thatX’7' = X and as many
rows of T’ as possible are zero.

X T X

\ ~ -

A S
XT = X with the index sef appearing first
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ADMM for Solving Convex Model

Apply ADMM to solve
min ¢ maX(Ti,j)+<UaT>+gH(XT—X)H%’
J

by finding a saddle point of

Ls(T, Z,P) = g>0(T) +szjaX(Tz',j) + (0, T)

5 5
+ S I(XZ = X} +(P.2 = T) + 512 - T3

wheregsq Is an indicator function for th& > 0 constraint and > 0.

E. ESSER, M. MOLLER, S. OSHER, G. SAPIRO, J. XIN, A convex model for non-negative matrix

factorization and dimensionality reduction on physical space, UCLA CAM Report [11-06], 2011.
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Application of ADMM

Initialize T° and P° and then iterate

B

: 0
71 = argmin(PF, 7) + §||<XZ—X>||% + oz - T

Z
0
TR g g20(T) + € 3 Tl + (2.7) = (PR, 1) + 51T = 241
sz—}—l _ Pk + 5(Zkz—i—1 . Tk:—}—l)

This converges for any > 0 if a saddle point exists.
Each minimization step is straightforward to compute.
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Solving for 7" Update

Note that thél’ update can be computed one row at a time.

Let J(TZ) = gzo(TZ) + Cman (Tz,])

J(Q) = SEP(@) T;) — g>0(T3) — ijaX(Tz',j)

= S;lp(m?X(Tz’,j))(H max(Q, 0)[[1 — ()

_ {0 it || max(Q,0)[y < ¢

oo  otherwise

Let C, denote the convex sét: = {Q € R% : || max(Q,0)|; < ¢}
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The Update Formulas

Using the Moreau decomposition, we can write Thapdate in terms of an
orthogonal projection onto the convex get

27 = (BXTX 4+ 61) 7N (BXT X, + 0T} — Py)

Pt Pt
— — — e (Z"M + — — )
5

k41 _ k1 | L
=2t 5 =5 5 3

sz—}—l _ Pk + 5(Zk—|—l L Tk:—}—l)

Note: The projection for each row of tHéupdate can be computed with
complexityO(d log d)
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RGB Visualization (w/o and with sparsity)
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Abundance Matrix Comparison
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Application to Urban Hyperspectral image

20 40 60 a0 100 120 140 150 ST
endmember 4 = "soil/dirt"

getation”
-
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Conclusions

The primal dual methods discussed here are practical foy kime
large scale, non-differentiable convex minimization peots that arise
IN Image processing, computer vision and elsewhere.

They have simple iterations

They converge under minimal assumptions

They can take advantage of separable structure

The large amount of recent work in the imaging science liteeaabout
these and related methods demonstrates their usefulneéss area.

Recent and ongoing work is
Generalizing applicability
Improving convergence rates
Even successfully applying to some nonconvex problems
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