Primovist MRI Evaluation of FNH vs. Hepatocellular Adenoma BODY DIVISION GRAND ROUNDS - JANUARY 14, 2018

DR. SAMUEL XU – PGY3 DR. AASHISH GOELA

Conflicts of Interest

None to declare

Introduction to Primovist

Evaluation of Focal Nodular Hyperplasia

Evaluation of Hepatocellular Adenoma

Comparison of the Two Lesions

Quality Improvement Case

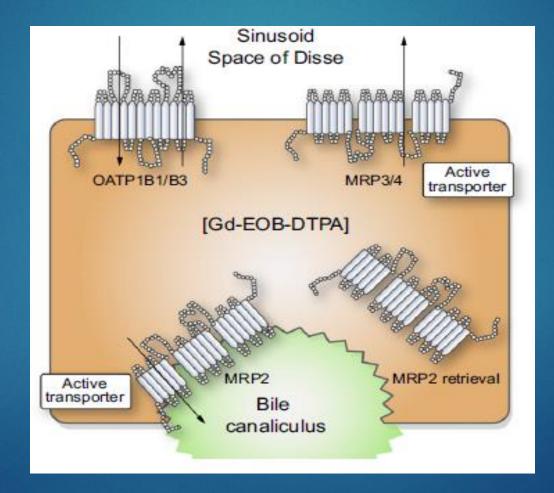
Questions and QA

What is Primovist?

Gadoxetate Disodium OR Gadoxetic Acid OR Gadoxetate Ethoxybenzyl Dimeglumine

- Hepatobiliary Specific Contrast Agent approved in Canada in 2010
- Highest uptake by hepatocytes out of all the agents of 50% in the normal liver

Generic Name	Abbreviated Name	Trade Name	Manufacturer
Mangafodipir trisodium	Mn-DPDP	Teslascan	GE Healthcare
Gadobenate dimeglumine	Gd-BOPTA	MultiHance	Bracco
Gadoxetic acid (or gadoxetate	Gd-EOB-DTPA	Eovist (United States),	Bayer
disodium)		Primovist (EU, Aus-	
		tralia)	


Seale et al, 2009

Review of Microscopic Hepatic Anatomy

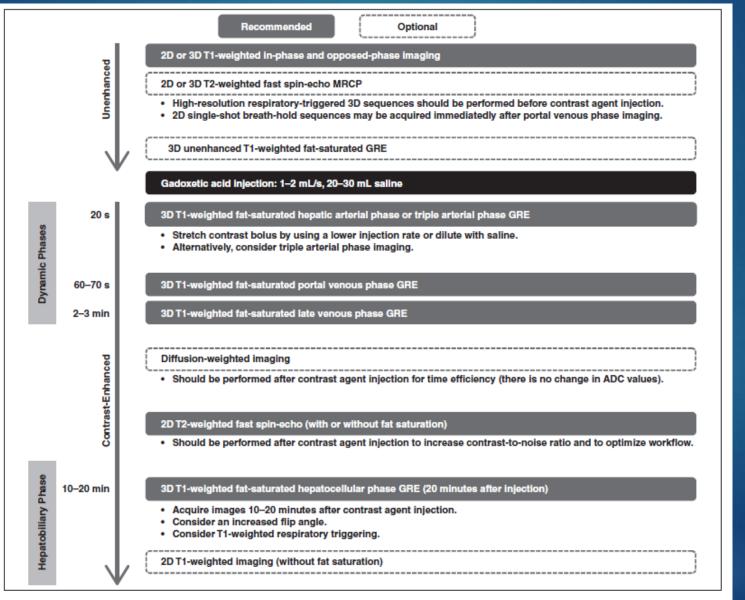
Guyton & Hall, 2006

Biochemical level of function

Due to the absence of normal hepatocytes in many pathologic lesions, there is no uptake of the lesion in the delayed phases

This allows for much higher sensitivity in detection of liver lesions such as HCC or metastatic deposits

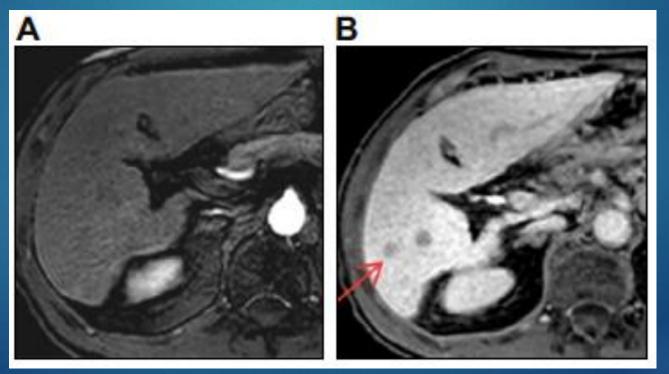
The cost of Primovist is higher than non-specific agents

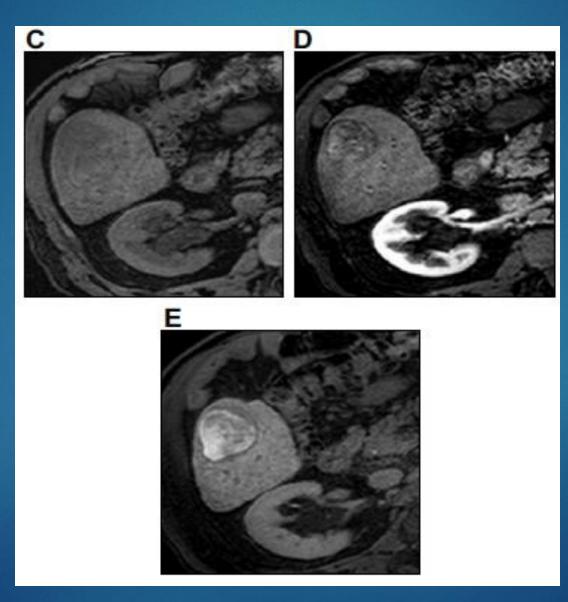

Initial cost analysis though showed overall cost savings with the use of Primovist

Dosage of Primovist is comparably lower compared to non-specific agents – 0.025 mmol/kg vs 0.1 mmol/kg

Leads to some timing challenges, with solutions including

- Dilution of the contrast into normal saline rather than a saline flush immediately following injection
- Doubling the dose to 0.05mmol/kg which can also used in patients with poor liver function


Adverse events similar to non-specific Gadolinium chelates



Jhaveri et al, 2015

Characterization of lesions with Primovist adds the benefit of the hepatobiliary phase

Allows for the detection of smaller, less vascular lesions

Utility Chart Summary

Table 1. Enhancement characteristics of the most frequent liver tumors.

	Arterial phase	Portal venous phase	Equilibrium phase	Hepatobiliary phase
Hemangioma	lso-hypo (peripheral nodular enhancement)	Iso-hypo (peripheral nodular enhancement)	lso-hypo	Нуро
FNH	Hyper	lso	lso	lso-hyper
Adenoma	Variable	Variable	Variable	Hypo or hyper
Metastasis	Hypo (ring enhancement) or hyper	Hypo (ring enhancement)	Нуро	Нуро
HCC	Hyper or iso, hypo	Нуро	Нуро	Hypo or hyper
000	Hypo or hyper	Variable, mostly hypo	Variable, mostly hypo	Нуро

Most common hepatocellular "tumor"

- Although not a true tumor
- Localized liver response to small arterial malformations

Typically found incidentally for other RUQ symptoms

- Population usually young females taking OCPs
- Prevalence of 3%

Diagnosis

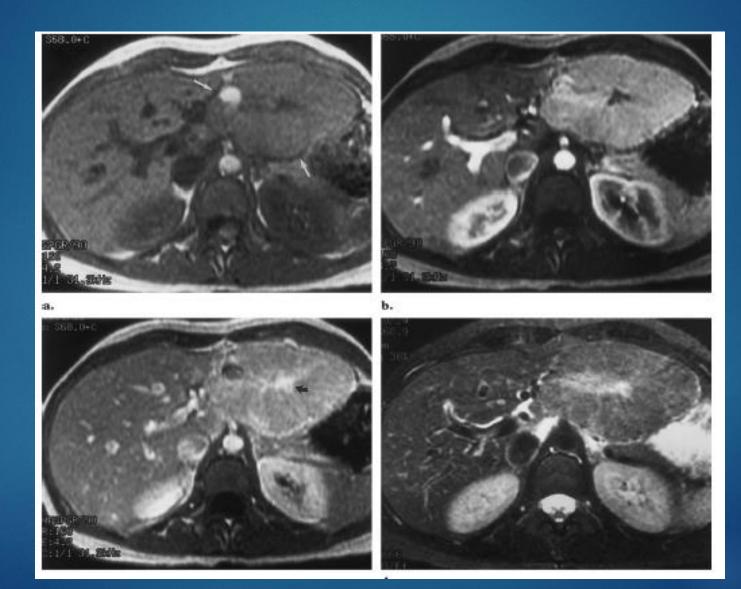
Through imaging, rarely requires biopsy

Treatment

Follow up, no surgical resection unless causing symptomatic mass effect

Appearance on US

Venturi et al, 2007



Venturi et al, 2007

Appearance on CT

Horton et al, 1999

Horton et al, 1999

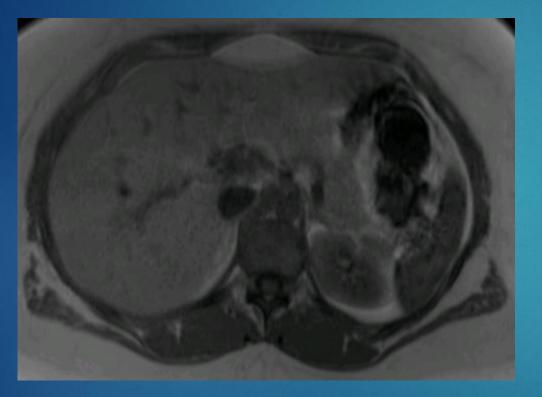
Can also be characterized with Nuclear Medicine

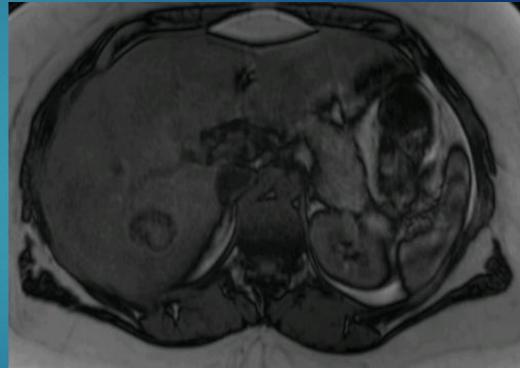
Tc-99m SC study uptakes in Kupffer cells, which are present in FNH and thus will have strong uptake in the lesions

Tc-99m HIDA uptake theoretically similar in hepatocytes as Primovist so will show persistent retention of the radionucleotide with increased uptake in the lesion

However, HIDA scans also has high uptake in other lesions such as adenomas

Second most common benign hepatocellular tumor

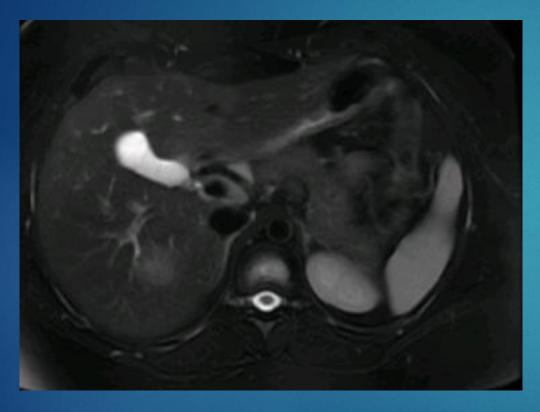

- Estimated incidence of 0.004%
- Commonly found in younger female patients with use of OCPs, but other patient populations also present
- Usually asymptomatic

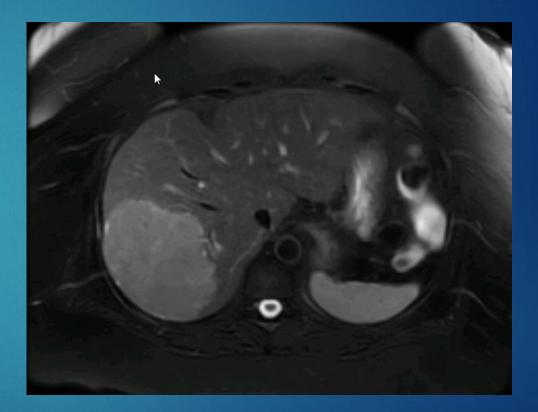

Subtypes include

- Inflammatory
- HFNF1a
- B-catenin activated
- Nonspecified/Noninflammatory

HFNF1a Subtype

- Represents approximately 30-40% of all HCAs
- Usually the more fat containing HCAs
- Imaging features of diffuse and homogenous signal dropout on opposed phase T1




Ax T1 in phase

Ax T1 out-of-phase

Inflammatory Subtype

- Previously identified as telangiectatic FNH, but has been re-classified
- Accounts for roughly 40-55% of HCAs
- Imaging features of strong hyperintense on T2 compared to other HCAs, with persistent enhancement on delayed phase with extracellular agents
 - However, there have been reports of I-HCA mimicking FNH because it can retain contrast on the hepatobiliary phase and remain hyperintense

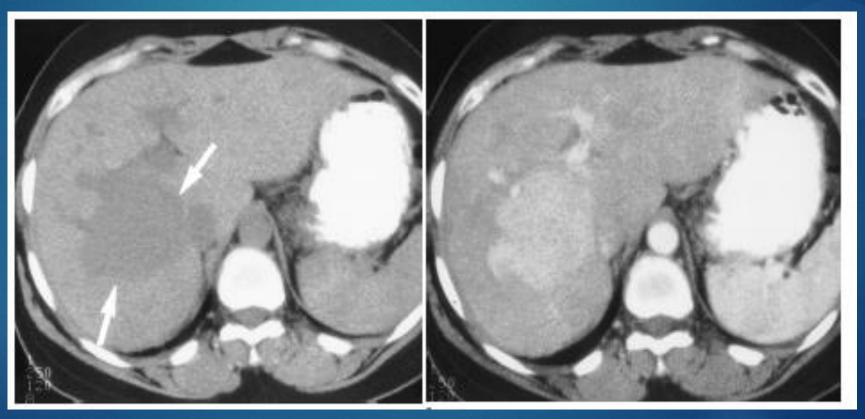
Ax T2 Non I-HCA

Ax T2 Presumed I-HCA

Diagnosis

- Heavily reliant on imaging
- Definitive diagnosis is through biopsy

Treatment


Surgical resection due to the associated complications of hemorrhage/rupture and malignant transformation

Appearance on US


Grazioli et al, 2001

Appearances on CT

Ruppert-Kohlmayr et al, 2000

d.

Seale et al, 2009

Can also be evaluated with Nuclear Medicine

- Due to absence of Kupffer cells, should be photopenic on a Tc-99 sulfur colloid study
 - However, this is not always the case

Table 1

Clinical and Pathologic Findings in Patients with HCA and Those with FNH					
Parameter	Patients with HCA (n = 24)	Patients with FNH (n = 58)			
Age (y)* Male:female ratio	42.4 ± 13.6 (11–75) 1:23	41.7 ± 12.7 (14–78) 7:51			
Lesion diameter (mm)*	29.5 ± 23.0 (8–110)	36.0 ± 23.7 (6-127)			
No. of lesions	15 Solitary, four multiple (three patients with three nodules; one patient with four nodules), five patients with liver adenomatosis	48 Solitary, 10 multiple (10 patients with two nodules)			
Clinical manifestation	Eight lesions resulted in upper quadrant pain,16 were asymptomatic	Five lesions resulted in abdominal pain, 53 were asymptomatic			
Oral contraceptive use ⁺	8 (7) [4–12]	11 (5.7) [3–8]			
Background disorders	Ovarian cancer (n = 1), breast cancer (n = 1), acute lymphatic leukemia (n = 1)	Colon cancer $(n = 5)$, pulmonar cancer $(n = 5)$, breast cancer (n = 1), melanoma $(n = 1)$, ovarian lymphoma $(n = 1)$, acute lymphatic leukemia (n = 1)			
Other associated hepatic lesions	FNH $(n = 7)^{\ddagger}$, hemangioma $(n = 1)$	HCA $(n = 7)^{\ddagger}$, hemangioma $(n = 1)^{\ddagger}$ cyst $(n = 4)$			
Hepatic steatosis	2	9			
Diagnostic confirmation	Surgical resection $(n = 4)$, fine-needle biopsy $(n = 20)$	Fine-needle biopsy (n = 24), follow-up imaging studies (n = 34)			
Histologic subgroups	Steatotic type in 12 patients (23 lesions), inflammatory type in seven patients (12 lesions), and unclassified in five patients (eight lesions)	Intranodule fat component in two patients (two lesions)			

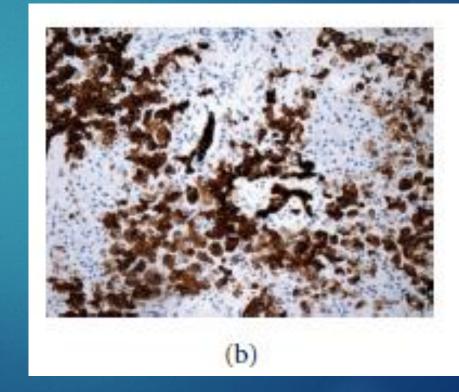
Graziiolo et al, 2012

Table 3

MR Imaging Findings in HCA and FNH

Finding	HCA (<i>n</i> = 43)	FNH (<i>n</i> = 68)	<i>P</i> Value
Central scar	0	23 (33.8)	<.0001
SI dropout on out-of-phase T1-weighted images	23 (53.5)	2 (2.9)	<.0001
Arterial phase enhancement			<.0001*
Mild	30 (69.8)	0	
Moderate	9 (20.9)	7 (10.3)	
Marked	4 (9.3)	61 (89.7)	
Portal venous phase enhancement			<.0001
Hypointense	25 (58.1)	1 (1.5)	
lso- to hyperintense	18 (41.9)	67 (98.5)	
Late dynamic phase enhancement			<.0001
Hypointense	31 (72.1)	2 (2.9)	
Iso- to hyperintense	12 (27.9)	66 (97.1)	
Hepatobiliary phase enhancement [†]			<.0001
Hypointense	40 (93.0) 🧶	6 (8.8)	
Iso- to hyperintense	3 (7.0)	62 (91.2)	

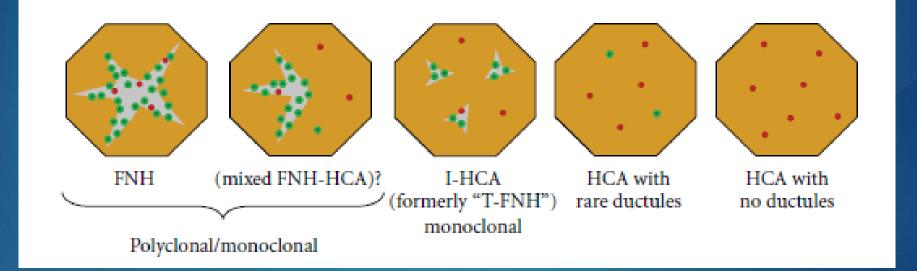
Note.-Data are numbers of nodules, with percentages in parentheses.


* Calculated with Fisher exact test.

⁺ Hepatobiliary phase at 20 minutes.

Graziiolo et al, 2012

Pathology staining appearance in the ideal situation


FNH

HCA

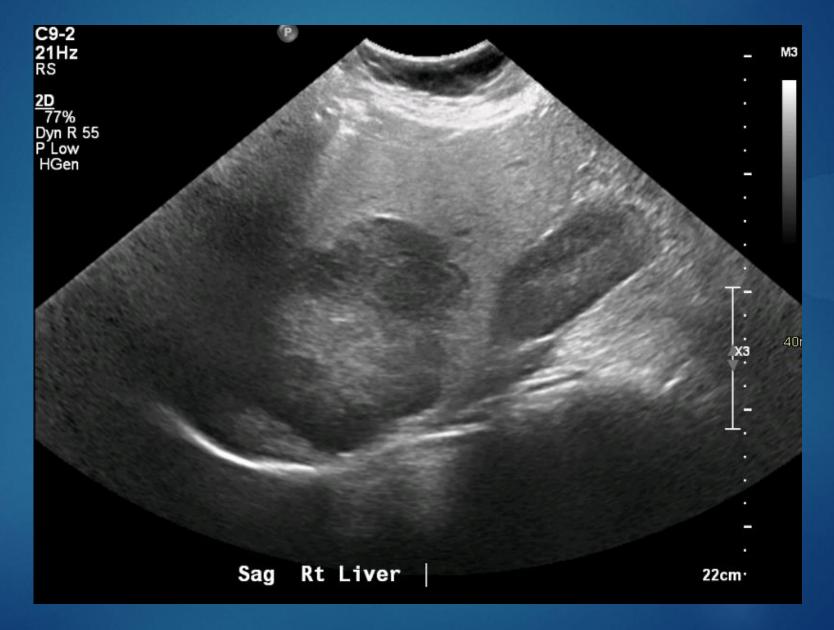
Walther & Jain, 2011

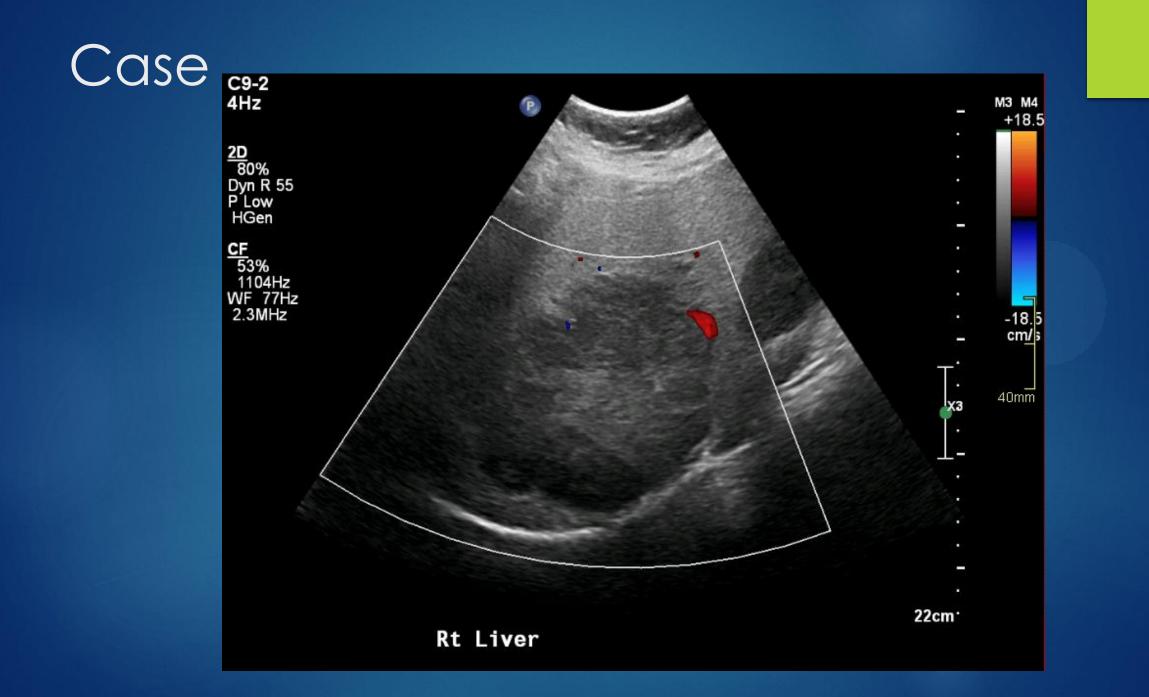
Comparing the Two

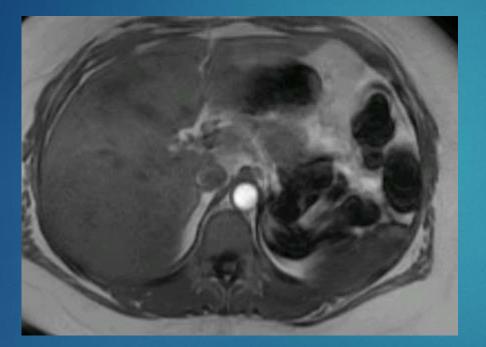
Possibly thought of on a spectrum?

Thus, sometimes may be hard to make a definitive distinction on imaging

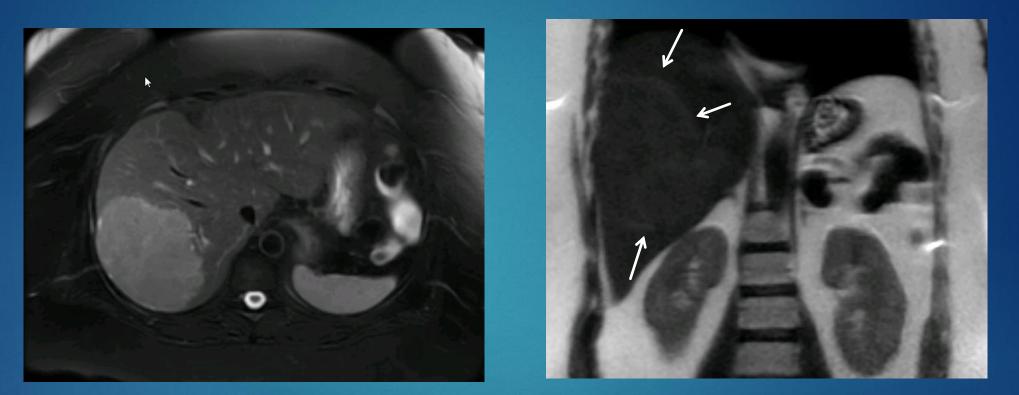
Walther & Jain, 2011


Quality Improvement Case

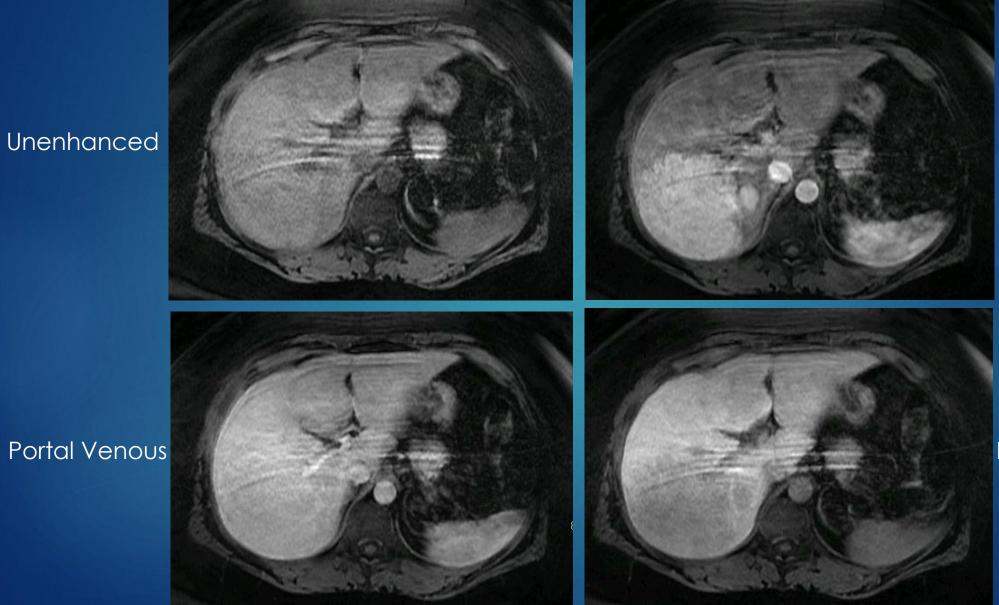

38 yo female presented to emergency department with RUQ pain


PMHx includes:

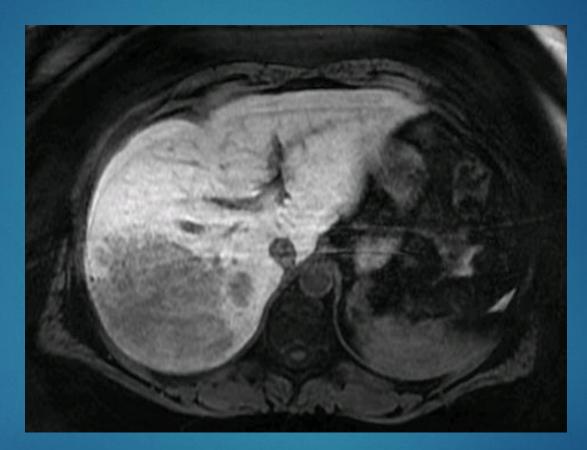
- ► T2DM
- Asthma
- ► Hypothyroidism
- Severe OCD/Anxiety Disorder
- Hepatic Steatosis



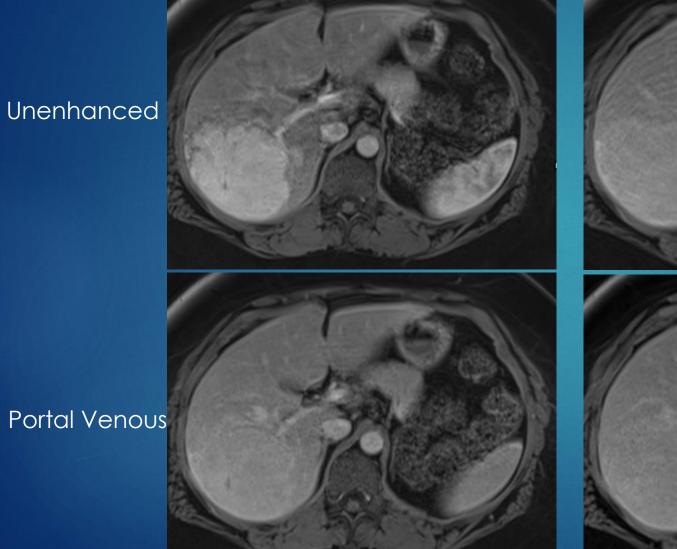
Ax fSPGR in-phase


Ax fSPGR out-of-phase

Ax FRFSE + FS


Cor SSFSE

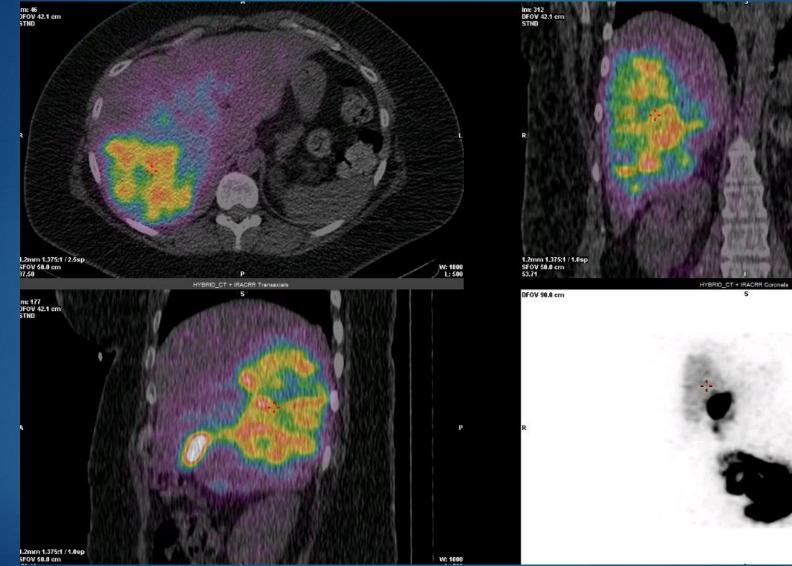
Unenhanced


Arterial

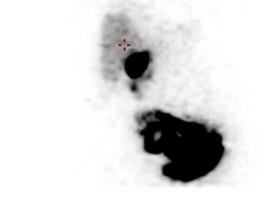
Delayed

Hepatobiliary Phase

Unenhanced


Arterial

Delayed



Given the difference between the two MRI study results, patient's clinical team wanted confirmation study with Nuclear Medicine

W: 1 L::

Probably HCA, inflammatory subtype

Further tests would be warranted

Summary

- Primovist is a hepatobiliary MRI contrast agent helpful in characterization of liver lesions, specifically differentiating FNH from other liver lesions and finding small malignancies
- FNH is a common liver lesion that is benign and does not require surgical resection, whereas HCA has a similar appearance and patient population, but treatment recommendation is surgical resection
- Clear communication with clinical team and clarify any possible misunderstandings where applicable

References

- Van Beers, B.E., Pastor, C.M., & Hussain, H.K. (2012). Primovist, Eovist: What to expect? Journal of Hepatology, 57, 421-429. doi:10.016/j.jhep.2012.01.031
- Jhaveri, K., Cleary, S., Audet, P., Balaa, F., Bhayana, D., Burak, K., Chang, S., Dixon, E., Haider, M., Molinari, M., Reinhold, C., & Sherman, M. (2015). Consensus Statement From a Multidisciplinary Expert Panel on the Utilization and Application of a Liver-Specific MRI Contrast Agent (Gadoxetic Acid). American Journal of Roentgenology, 204, 498-509. doi:10.2214/AJR.13.12399
- Walther, Z., & Jain, D. (2011). Molecular Pathology of Hepatic Neoplasms: Classification and Clinical Significance. Pathology Research International, 2011 (403929), 15 pages. doi:10.4061/2011/403929
- Haimerl, M., Verloh, N., Zeman, F., Fellner, C., Nickel, D., Lang, S.A., Teufel, A., Stroszcynski, C., & Wiggermann, P. (2017). Gd-EOB-DTPA-enhanced MRI for evaluation of liver function: Comparison between signal-intensity-based indices and T1 relaxometry. Nature Scientific Reports, 7(43347). doi:10.1038/srep43347
- Seale, M.K., Catalano, O.A., Saini, S., Hahn, P.F., & Sahani, D.V. (2009). Hepatobiliary-specific MR Contrast Agents: Role in Imaging the Liver and Biliary Tree. RadioGraphics, 29, 1725-1748. doi:10.1148/rg.296095515
- Horton, K.M., Bluemke, D.A., Hruban, R.H., Soyer, P., & Fishman, E.K. (1999). CT and MR Imaging of Benign Hepatic and Biliary Tumors. RadioGraphics, 19, 431-451.
- Venturi, A., Piscaglia, F., Vidili, G., Flori, S., Righini, R., Golferi, R., & Bolondi, L. (2007). Diagnosis and management of hepatic focal nodular hyperplasia. *Journal of Ultrasound*, 10, 116-227. doi:10.1016/j.jus.2007.06.001
- Grazioli, L., Federle, M.P., Brancatelli, G., Ichikawa, T., Olivetti, L., & Blachar, A. (2001). Hepatic Adenomas: Imaging and Pathologic Findings. RadioGraphics, 21, 877-894.
- Graziolo, L., Bondiono, M.P., Haradome, H., Motosugi, U., Tinti, R., Frittoli, B., Gambarini, S., Donato, F., & Colagrande, S. (2012). Hepatocellular Adenoma and Focal Nodular Hyperplasia: Value of Gadoxetic Acid-enhanced MR Imaging in Differential Diagnosis. Radiology, 262(2), 520-529. doi:10.1148/radiol.11101742
- Ruppert-Kohlmayr, A.J., Uggowitzer, M.M., Kugler, C., Zebedin, D., Schaffler, G., & Ruppert, G.S. (2000). Focal Nodular Hyperplasia and Hepatocellular Adenoma of the Liver: Differentiation with Multiphasic Helical CT. American Journal of Roentgenology, 176(6), 1493-1498. doi:10.2214/ajr.176.6.1761493