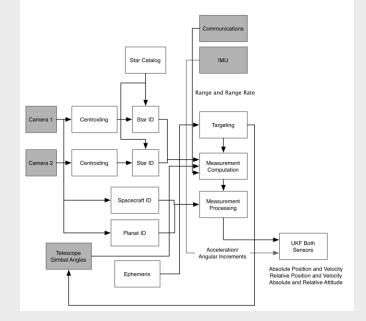
Princeton Satellite Systems

Optical Navigation System (ONS)

Princeton SATELLIT

Summary


- Optical Navigation System SBIR (NASA)
- Precision Attitude Control System SBIR (Army)
- New developments
 - ONS simulations for Cis-Lunar operations
 - New sun sensor for deep space operations
 - ONS simulations for a Pluto Orbiter mission
- Proposed test mission
 - Support Army PACS
 - Demonstrate ONS
 - Host Earth-resources sensors

Optical Navigation System SBIR

- Optical navigation
- Unscented Kalman Filters
 - Employs nonlinear dynamics and measurement models
 - Not necessary to compute derivatives of the dynamics or sensor models
- Two telescopes
 - One articulated to image planets
 - One fixed to measure the star field
 - Simultaneous position and attitude estimation
 - Moog double gimbal
 - Fiber optic IMU

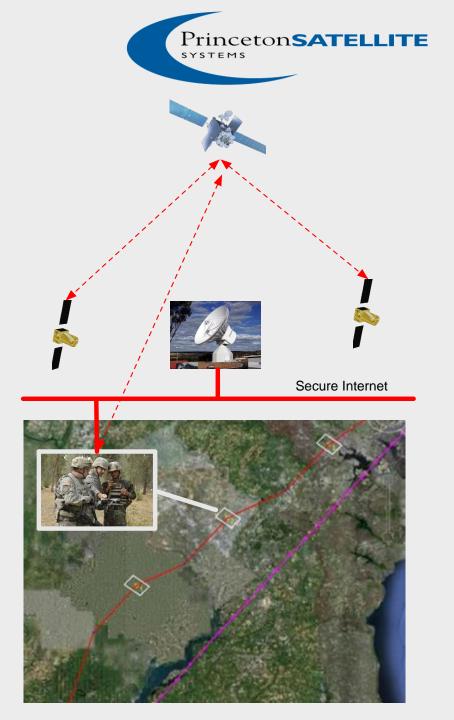

Deep Space Operations

- Focus of Phase II was deep space
 - Replace Deep Space Network
- Simulated Pluto and Mercury missions
 - Major difficulty is using planetary targets
 - Geometry is often poor
 - Ephemeris knowledge is only good for the inner solar system
- Need a new sun sensor
 - Measure distance from the sun accurately
 - Still need planetary sensor for target approaches

Shape detection for chords Red arc shows fit

Precision Attitude Control System

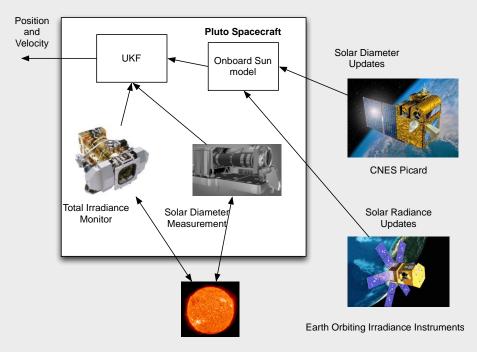
- Army Phase II SBIR
- Precision satellite pointing for small satellites
- Track a target on the ground more accurately than any other system -at the same price point as conventional systems
- Better performance
- Applicable to wide range of military and commercial space applications
- Based on over 35 years spacecraft experience
 - MIT: Electrothermal Hydrazine Thruster research, Hall Thruster research
 - CSDL: Space Shuttle Orbiter On-Orbit Digital Autopilot
 - GE Astro-Space: GPS IIR ADS, Inmarsat-3 ACS, GGS Polar ACS, satellite launch teams
 - PSS: GPS IIR, Indostar-I/BSat 1, 2, TDRS H,I,J, Prisma Rendezvous Robots


PACS CONOPS

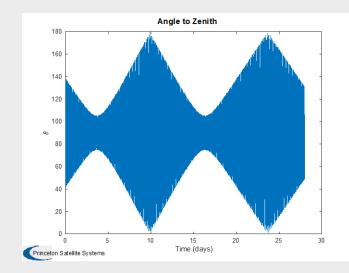
Army Kestrel Eye Concept

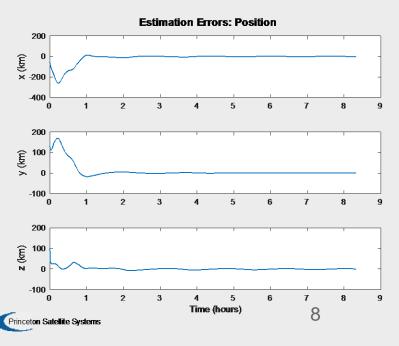
- Microsatellite-class imagery satellite for tasking by the tactical ground component Warfighter
- Requires very high ground location accuracy in a small package
 - Precision pointing and orbit knowledge
- Affordable, persistent presence
- On demand satellite data
- User makes requests through any Internet capable device

"A Kestrel Eye satellite constellation provides dramatically lower unit cost than typical space-based assets. With this low cost, large numbers of satellites can be procured enabling the system to be dedicated to the tactical Warfighter."


-- USASMDC/ARSTRAT

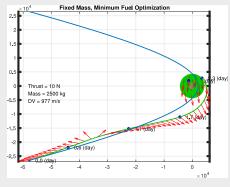
Recent Developments for ONS


- Conceptual design of new sun sensor
 - Bolometer for radiance and CMOS for solar disk
 - Combine as separate measurements in UKF
- Work in India
 - Customer using our MATLAB ONS algorithms for cis-lunar and Earth orbit missions
- Cis-lunar missions
 - Sun synchronous
 - Geo transfer
 - Lunar orbit
- Pluto Orbiter
 - Sun distance sensor
 - Planet measurement sensor



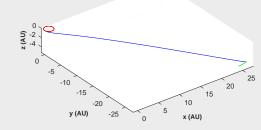
Cis-Lunar

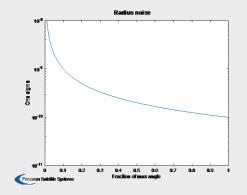
- Simulation in sun-synchronous orbit
 - 600 km altitude, e = 0
- Tracking moon and stars that are near the moon
 - CMOS sensor can see 4th magnitude stars and the moon
- Update measurements when the moon is visible
 - Angle of moon with respect to the boresight shown to the right



Pluto Orbiter

- Nuclear fusion rocket research
 - Supported by two NASA STTRs and a NIAC Phase II
 - Teaming with PPPL and MIT
 - Compact fusion reactor from 1 to 10 MW
 - Provides power and propulsion
- Spacecraft reaches Pluto in 4 years
- Use new sun sensor for interplanetary navigation
- Second camera for Pluto approach
 - Orbit insertion shown on right
 - Landmark tracking for Pluto orbit navigation
 - Landmark corner detection shown on right





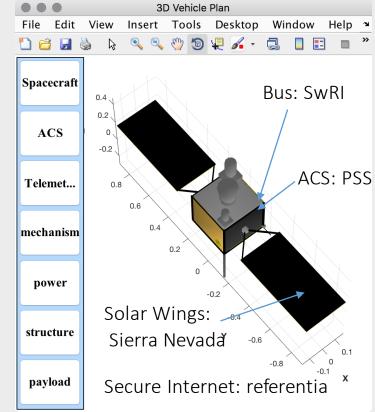
Pluto Orbiter Navigation

- Trajectory found by optimally varying acceleration
- Spacecraft reaches Pluto in 4 years
- Centroiding algorithm noise varies with distance from the target
 - Image spread over fewer pixels
- Sun sensor alone reduces the mean position error by 43%
 - Combines radiance and sun radius measurements
 - 800 km error at Pluto in the heliocentric frame

PACS/ONS Test Mission

This mission will provide on demand multi-spectral imaging from two satellites.

Precision Pointing Agile Satellites


Take multiple images per orbit based on ground user demand Any Internet connected user can request and receive images Visual, near and far infrared images

Two satellites in Sun-Synchronous Orbit

Launch in 2020 on a SpaceX Falcon 9 mission Communications over Ka-band network High data rates for rapid image download 500-600 km altitude Can coordinate imaging from both satellites Secure communications Optical navigation test (NASA)

Applications

Ground water measurements Fire detection (FireSat) Multi-spectral imaging

PrincetonSATELLITE

POC information

- Dr. Gary Pajer
- 6 Market Street, Suite 926
- 609 275-9606
- gpajer@psatellite.com
- www.psatellite.com