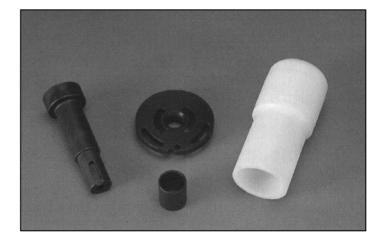

MATERIAIS POLIMÉRICOS

Histórico

1000 A.C	Os chineses descobrem o verniz extraído de uma árvore (<i>Rhus vernicflua</i>), aplicado na forma de revestimentos impermeáveis e duráveis. Ele seria usado em móveis domésticos até a década de 1950.
0 A.C	Descoberta do chifre como material conformável. Ele se comporta como uma chapa de material termoplástico, podendo ser cortado e moldado após ter sido aquecido em água quente.
1550	Primeira menção à borracha natural feita por Valdes após uma expedição à Central América. Os nativos usavam esse material como artigos esportivos e impermeáveis há milhares de anos.
1839	Charles Goodyear (E.U.A.) descobre a vulcanização - Descorberta em laboratório do poliestireno.

1840	Alexander Parkes (Inglaterra) desenvolve a <i>Parkesina</i> , um resina moldável a base de nitrato de celulose , material extremamente inflamável.				
1845	Robert William Thompson inventa o pneu de borracha				
1876	Sementes de seringueiras do Brasil são contrabandeadas por Sir Henry Wickham e mandadas posteriormente à Ásia, onde constituíram a base da indústria mundial de borracha.				
1880	Uma gravadora berlinense começou a usar goma-laca para a fabricação de discos fonográficos, devido à capacidade desse material em reproduzir detalhes finos de formato. De fato, a goma-laca foi usada até 1952 na fabricação de discos fonográficos, quando foi substituído pelo P.V.C.				

	catálise na polimerização do polietileno e polipropileno	
1965	Surgem os copolímeros em bloco de estireno- butadieno, dando origem aos elastômeros termoplásticos.	
1973	A produção mundial de plásticos supera a de aço, tomando como base o volume de material fabricado.	
2000	Novas tendências no desenvolvimento de polímeros. O desenvolvimento de resinas a partir do zero se torna bem mais raro. A ênfase atual está na formulação de polímeros já existentes de forma a se obter materiais com propriedades otimizadas.	
	A preocupação com a reciclagem dos polímeros tornase assunto de máxima importância, uma vez que seu desenvolvimento e uso serão inviáveis caso esse problema não seja adequadamente resolvido. Começa a reciclagem em larga escala de garrafas de 4 poliéster e PEAD.	


Ziegler inicia seus trabalhos sobre química

organometálica e lança os fundamentos para a

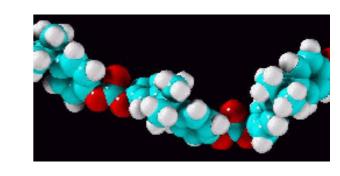
1928

PRINCIPAIS APLICAÇÕES DOS POLÍMEROS

- Embalagens
- Utensílios domésticos
- Eletrodomésticos
- Automóveis
- Indústria de brinquedos
- Material de consumo em geral
- Peças diversas para indústria mecânica, elétrica, química,...

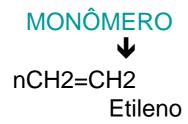
PRINCIPAIS PROPRIEDADES DOS POLÍMEROS

- Baixo custo de produção
- Peso reduzido (3x mais leve que o Al)
- Elevada resistência à corrosão
- Baixa temperatura de processamento
- Possibilidade de seu uso na fabricação de peças nas mais variadas formas, tamanhos e cores.


PRINCIPAL DESVANTAGEM DOS POLÍMEROS

 Levam muito tempo para se degradarem

Necessidade de reciclar


O QUE É UM POLÍMERO?

POLI= MUITOS

MERO=PARTES

- Polímero é um material sintético ou natural
- As moléculas dos polímeros são gigantes (chamadas macromoléculas) e portanto tem peso molecular alto
- Os polímeros tem origem orgânica (H,C)

POLÍMERO •

~CH2=CH2~ Polietileno (PE)

Exemplos de Polímeros

Monômero	Polímero	Aplicação
CH ₂ =CH ₂ etileno	$-CH_2-CH_2-$ polietileno	Sacolas de supermercado
CH ₂ =CH estireno	Poliestireno	Isopor
CH ₂ =CH Cl cloreto de vinila	—{CH₂—CH→ Cl PVC	Tubos, filmes de alimentos
O + HO-CH ₂ -CH ₂ -OH etileno glicol	$ \begin{array}{c c} O \\ \hlineO \\ \end{array} $ $ \begin{array}{c c} O \\ \hline CH_2-CH_2-\frac{1}{n} \end{array} $ PET	Garrafas de refrigerante

ALGUMAS DEFINIÇÕES

- POLÍMEROS → são constituídos de muitos meros
- COPOLÍMEROS → são constituídos de 2 ou mais diferentes meros
- POLIMERIZAÇÃO → é a reação química para obter o polímero
- GRAU DE POLIMERIZAÇÃO (DP- índice n) → representa o números de meros presentes na cadeia polímérica

PROPRIEDADES ESTRUTURAIS DOS POLÍMEROS

- O grau de cristalinidade de um polímero depende da complexidade da sua cadeia molecular
- Quanto mais complexa a cadeia, menos cristalina (mais amorfa) mais rígida e mais resistente será

CLASSIFICAÇÃO DOS POLÍMEROS

- Quanto ao tipo de estrutura química
- Quanto às características de fusibilidade
- Quanto ao comportamento Mecânico
- Quanto à escala de fabricação
- Quanto ao tipo de aplicação

1- CLASSIFICAÇÃO QUANTO AO TIPO DE ESTRUTURA QUÍMICA

- 1.1- Em relação ao número de diferentes meros
- 1.2- Em relação a estrutura química dos meros
- 1.3- Em relação à forma da cadeia polimérica

1- CLASSIFICAÇÃO QUANTO AO TIPO DE ESTRUTURA QUÍMICA

1.1- Em relação ao número de diferentes meros

- Cadeia homogênea
 → apenas um único tipo de mero (homopolímero)
- Cadeia heterogênea → dois ou mais meros (copolímero)

TIPOS DE COPOLÍMEROS

- Aleatórios (ou estatísticos) → os meros estão dispostos de forma de rendom monomers
- Alternados→os meros estão dispostos de forma alternada
- Em bloco > o copolímero é formado por sequênicia de meros iguais de comprimentos variáveis

TIPOS DE COPOLÍMEROS

 Grafitizados → a cadeia principal do copolímero é formada por um tipo de unidade repetida, enquanto o outro mero forma a cadeia lateral.

1- CLASSIFICAÇÃO QUANTO AO TIPO DE ESTRUTURA QUÍMICA

1.2- Em relação a estrutura química dos meros

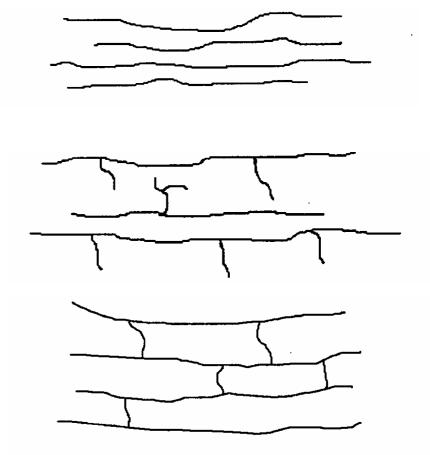
É baseada no grupo funcional a qual pertencem

1- CLASSIFICAÇÃO QUANTO AO TIPO DE ESTRUTURA QUÍMICA

1.2- Em relação a estrutura química dos meros

- Poliolefinas→polipropileno, polibutadieno, poliestireno
- Poliésteres poli(tereftalato de etileno), policarbonato
- Poliéteres → poli(óxido de etileno), poli(óxido de fenileno)

1.2- EM RELAÇÃO ESTRUTURA QUÍMICA DOS MEROS

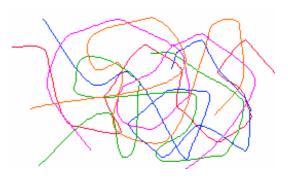

- Poliamidas→nylon, poliimida
- Polímeros celulósicos
 → nitrato de celulose,
 acetato de celulose
- Polímeros acrílicos → poli(metacrilato de metila), poliacrilonitrila
- Polímeros vinílicos poli(acetato de vinila), poli(álcool vinílico)
- Poliuretano
- Resinas formaldeídas

1.3- EM RELAÇÃO A FORMA DA CADEIA POLIMÉRICA

Lineares

Ramificadas

Reticulados

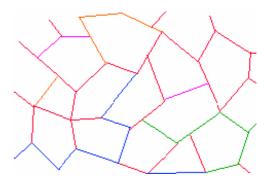

2- CLASSIFICAÇÃO QUANTO A FUSIBILIDADE

Refere-se ao comportamento ao serem aquecidos

- Termoplásticos
- Termorígidos

TERMOPLÁSTICOS

- São polímeros que fundem ao serem aquecidos e que solidificam ao serem resfriados
- Apresentam cadeia flexível e entrelaçada (tipo spagetti)
- Polietileno
- Nylon,...



tem boa ductilidade e formabilidade, SÃO MENOS RESISTENTES

Nome	Tensão cedência [MPa]	Elonga. [%]	Rigidez [GPa]	Dens. [ton/m ³]	APLICAÇÕES / OBSERVAÇÕES
PE	13	600	0.16	0.92	Usado em folha e em garrafas de plástico
PVC	44.8	6	2.6	1.44	Usado em pavimentos, tecidos, filmas e tubagens
PP	34	200	1.3	0.90	Usado em revestimentos e tubagens
PS	51.7	1.5	3.3	1.05	Usado em contentores e espumas
PET	80	2.5	4.0	1.20	Usado em fita magnética, fibras e filmes. Na forma termo-endurecível é usado em revestimentos e resina em compósitos
PMM A	72	5	2.93	1.19	Também conhecidos como acrílicos. Usado em janelas e decoração
PA	62	27	2.75	1.10	Também conhecidos como acrílicos. Usado em janelas e decoração Usado em tecidos, cordas, engrenagens e órgãos de máquinas Usado em malas de viagem e
ABS	55	12	2.30	1.05	Usado em malas de viagem e telefones
PC	62	110	2.28	1.21	Usado em hélices e órgãos de máquinas
POM	68.9	35	3.6	1.425	Usado em engrenagens
PTFE	31	300	0.35	2.20	Usado em armazenamento de produtos químicos, vedantes, apoios, juntas e revestimentos anti-aderentes

TERMORÍGIDOS OU TERMOFIXOS

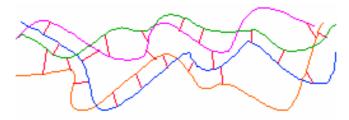
- São polímeros que formam ligações cruzadas ao serem aquecidos, tornando-se infusíveis e insolúveis
- Resina fenol-formol
- Resina uréia-formol,...

termofixos são normalmente mais resistêntes, porém, podem apresentar-se quebradiços pela sua cadeia molecular ser de forte conexão

Nome	Tensão cedência [MPa]	Elonga. [%]	Rigidez [GPa]	Dens. [ton/m ³]	APLICAÇÕES / OBSERVAÇÕES	
PUR	30	100	1.20	1.10	Usado em espumas, elastómeros, fibras, folhas e tubagens	
PEEK	90	50	4.0	1.30	Usado em adesivos e resinas de compósitos	
PF	69	<1	7.3	1.40	fibras, folhas e tubagens Usado em adesivos e resinas de compósitos Usado em equipamento eléctrico. Neste grupo encontra-se a bakelite Usado em adesivos, revestimentos e resinas de compósitos	
EP	72	4	3.1	1.15	Usado em adesivos, revestimentos e resinas de compósitos	
SI	35		2.2	1.10	Usado em juntas e adesivos	

3- CLASSIFICAÇÃO QUANTO AO COMPORTAMENTO MECÂNICO

- Plásticos
- Elastômeros (ou borrachas)
- Fibras


PLÁSTICOS DO GREGO= ADEQUADO À MOLDAGEM

 São materiais em que algum estágio da fabricação são fluídos, podendo ser moldados por aquecimento, pressão, ou ambos

Ex: polietileno, polipropileno, poliestireno

ELASTÔMEROS OU BORRACHAS

- São materiais de origem natural ou sintética que, após sofrerem deformação sob ação de uma força, retornam a sua forma original quando esta força é removida
- Apresentam cadeia linear ramificada

Ex: Polibutadieno, borracha nitrílica, poliestireno-cobutadieno

FIBRAS

- São corpos em que a razão entre comprimento e as dimensões laterais são muito elevadas
- Geralmente são formadas macromoléculas lineares orientadas longitudinalmente

4- CLASSIFICAÇÃO QUANTO À ESCALA DE PRODUÇÃO

- Plásticos de Comodidade (commodieties)
- Plásticos de Especialidade

PLÁSTICOS DE COMODIDADE

 Constituem a maioria dos plásticos fabricados no mundo

Ex: Polietileno, ploipropileno, poliestireno,...

PLÁSTICOS DE ESPECIALIDADE

- São plásticos que possuem um conjunto incomum de propriedades
- São produzidos em menor escala

Ex: Poli(óxido de metileno,...

5- CLASSIFICAÇÃO QUANTO AO TIPO DE APLICAÇÃO

- Plásticos de uso geral→são para os mais diversos fins
- Plásticos de engenharia → são polímeros empregados em substituição de materiais clássicos usados em engenharia

RESISTÊNCIA ÁO ATAQUE QUÍMICOS DOS PRINCIPAIS POLÍMEROS

	Weak Acid	Strong Acid	Weak Base	Strong Base	Organic Solvent	Ozone
Fluorocarbons	Resistant	Resistant	Resistant	Resistant	Resistant	Resistant
PMMA	Resistant	Attacked	Resistant	Attacked	Attacked	Resistant
Nylon	Resistant	Attacked	Resistant	Resistant	Resistant	Attacked
Low Density PE	Resistant	Attacked	Resistant	Resistant	Resistant	Attacked
High Density PE	Resistant	Attacked	Resistant	Resistant	Resistant	Attacked
Polypropylene	Resistant	Attacked	Resistant	Resistant	Resistant	Attacked
Polystyrene	Resistant	Attacked	Resistant	Resistant	Attacked	Attacked
Polyvinyl Chloride	Resistant	Resistant	Resistant	Resistant	Attacked	Resistant
Ероху	Resistant	Attacked	Resistant	Resistant		Attacked
Phenolics	Attacked	Attacked	Attacked	Attacked	Attacked	
Polyesters	Attacked	Attacked	Attacked	Attacked	Attacked	Attacked

RESISTÊNCIA ÁO ATAQUE QUÍMICOS DOS PRINCIPAIS ELASTÔMEROS

Polyisoprene Neoprene Nitrile Styrene-Butadiene Silicone Rubber

	Dilute	Oxid-	Bases	Oils	Water	Ozone
	Acid	ants	L			
	Good	Poor	Fair	Poor	Good	Fair
	Good	Poor	Good	Good	Fair	Excellent
	Good	Poor	Fair	Excellent	Excellent	Fair
E	Good	Poor	Fair	Poor	Good	Fair
				Good	Fair	Excellent

TEMPERATURAS DE FUSÃO E VITRIFICAÇÃO

Melting and Glass Transition Temperatures for Some of the More Common Polymeric Materials

Material	Glass Transition Temperature [°C (°F)]	Melting Temperature [°C (°F)]
Polyethylene (low density)	-110 (-165)	115 (240)
Polytetrafluoroethylene	-97 (-140)	327 (620)
Polyethylene (high density)	-90 (-130)	137 (279)
Polypropylene	-18 (0)	175 (347)
Nylon 6,6	57 (135)	265 (510)
Polyester (PET)	69 (155)	265 (510)
Polyvinyl chloride	87 (190)	212 (415)
Polystyrene	100 (212)	240 (465)
Polycarbonate	150 (300)	265 (510)

6- PANORAMA SOBRE PROCESSOS DE FABRICAÇÃO

Támiga do	TOTA NO.		
<u>Técnicas de</u> <u>Moldagem</u>	rígido	<u>ESTADO</u> termoelástico	termoplástico
Moldagem			Extrusão
			Fundição
			Calandragem
			Injeção
!			Prensagem
:			Sinterização
Termoformagem		Chanfro/dobra	
		Estampo	
		Repuxo	
		Repuxo profundo	
	•	Processos combinad	los
Separação	Furação		
	Torneamento	•	
	Fresagem		i •
	Aplainamento	•	
	Serra		
	Corte		•
	Retificação		
União	Parafusagem		Soldagem
	Rebitagem		
	Colagem		

Técnicas de Acabamento Superficial de Polímeros

- Gravação
- Pintura
- Soldagem
- Colagem
- Usinagem e corte
- Metalização à vácuo
- Eletrodeposição

 A superfície do material a ser recoberto tem que ser revestida com uma camada condutora de corrente

39

Nome: poli (estireno-butadieno-acrilonitrila) - ABS – ALTO IMPACTO Composição: (CH₂-CH-C₆H₄)_n

Aplicações: Gabinetes e caixas domésticas, caixas de televisão, telefones,

batedeiras e liquidificadores, aspiradores de pó,

box para chuveiros.

Processos: injeção, usinagem, outros.

Propriedades Mecânicas

Ductilidade: 0.06 - 0.09

Coeficiente de Poisson: 0.38 - 0.42 Coeficiente de Atrito: 0.47 - 0.52

Dureza: 70 - 140 (MPa)

Módulo de Elasticidade: 1.8 - 2.7 (GPa)

Resistência ao Impacto: 200 - 400 (J/m, notação Izod

Limite Elástico: 27 - 55 (MPa)

Temperatura de Transição Vítrea: 370 - 375 (K)

Temperatura Máxima de Serviço: 340 - 350 (K)

Temperatura Mínima de Serviço: 150 - 200 (K)

Propriedades Físicas

Absorção de água: 0.3 - 0.32 (%) Densidade: 1.02 - 1.1 (Mg/m³)

Flamabilidade: regular

Nome: poli (estireno-butadieno-acrilonitrila)

ABS - médio impacto

Composição: (CH₂-CH-C₆H₄)_n

Aplicações: gabinetes e caixas para objetos domésticos, caixas de TV, telefones, aspiradores de pó, banheiros, contenedores.

Processos: injeção, usinagem, outros.

Propriedades Mecânicas

PROPRIEDADES MECÂNICAS

Ductilidade: 0.07 - 0.12

Coeficiente de Poisson: 0.38 - 0.42 Coeficiente de Atrito: 0.48 - 0.52

Dureza: 100 - 150 (MPa)

Módulo de Elasticidade: 2.5 - 2.9 (GPa) Resistência ao Impacto: 70 - 80 (J/m)

Limite Elástico: 40 - 45 (MPa)

Tensão de ruptura por tração: 45 - 48 (MPa)

Temperatura de Transição Vítrea: 350 - 360 (K)

Temperatura Máxima de Serviço: 358 - 370 (K)

Temperatura Mínima de Serviço: 150 - 200 (K)

Absorção de água: 0.2 - 0.3 (%) Densidade: 1.04 - 1.06 (Mg/m³)

ABS MÉDIO IMPACTO

Copolímero de Etileno Acetato de Vinil - EVA

Processos: injeção, extrusão, outros.

Nome: Fenólicas

Composição: ((CH₂)₂-C₆H₂OH-CH₂)_n

Processos: moldagem química, usinagem, outros. Aplicações: Condensadores eletrolíticos, terminais

para lâmpadas fluorescente, soldas eletrônicas,

equipamentos elétricos e mecânicos.

Nome: ISOPRENO Processos: vulcanização, injeção, outros.

Nome: Poli cloroprene - NEOPRENE Processos: injeção, outros.

Nome: NYLON 6 (Poliamida)

Processos: injeção, extrusão, termoformagem,

usinagem, outros.

Nome: Policarbonato - PC

Composição: $(O-C_6H_4-C-(CH_3)_2-C_6H_4-O-CO)_n$

Aplicações: Compact Disc, garrafas de água, recipientes para filtros, componentes de interiores de aviões, coberturas translúcidas, divisórias, vitrines, etc.

Processos: injeção, extrusão, termoformagem, usinagem, outros.

Nome: Polietileno de Alta Densidade - PEAD

Composição: (CH₂)_n

Aplicações: embalagens finas, cabos e cordas para empacotamento, moldes para injeção canos e tubos, tanques de combustível para veículos automotores, etc.

Processos: injeção, extrusão, termoformagem, sopro, usinagem,

outros.

Nome: Polietileno de Baixa Densidade - PEBD

Composição: (CH₂)_n

Aplicações: embalagens de alimentos e de produtos de limpeza, sacos de lixo, sacolas plásticas, plasticultura. Processos: injeção, sopro, laminação, outros.

Nome: Poli etileno tereftalato - PET

Composição: (OOC-C₆H₄-COO-(CH₂)₂)_n

Aplicações: garrafas de refrigerante, escovas.

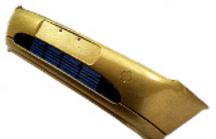
Processos: injeção, extrusão, termoformagem, sopro,

spray, outros

Nome: Polipropileno - PP

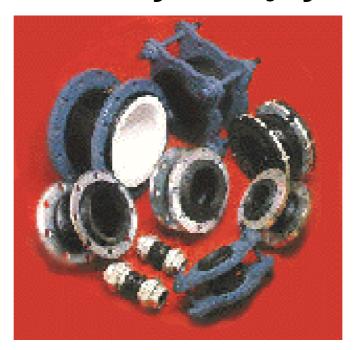
Composição: (CH₂-CH-CH₃)_n

Classificação: Polímeros

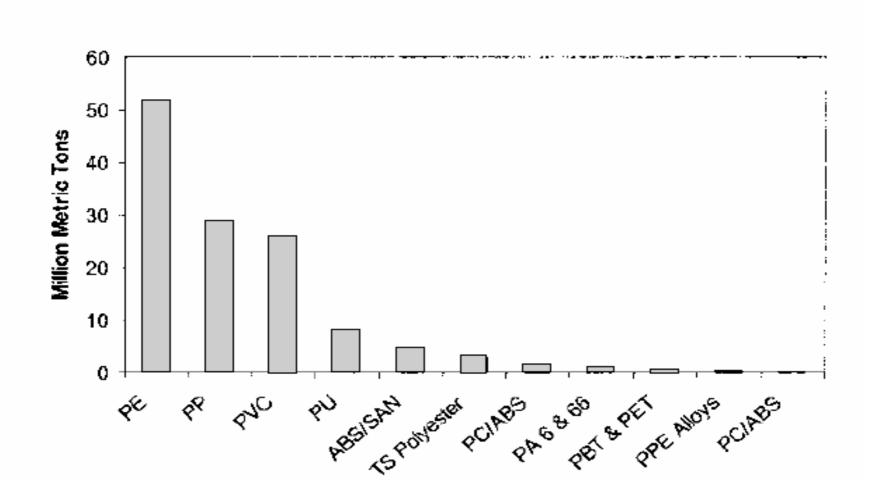

Aplicações: fibras para tapetes, tecidos, embalagens, sacolas, garrafas, pás de ventiladores, cabos de ferramentas e talheres, cadeiras de piscinas, pedais de aceleradores, componentes automotivos.

Processos: injeção, extrusão, termoformagem, so

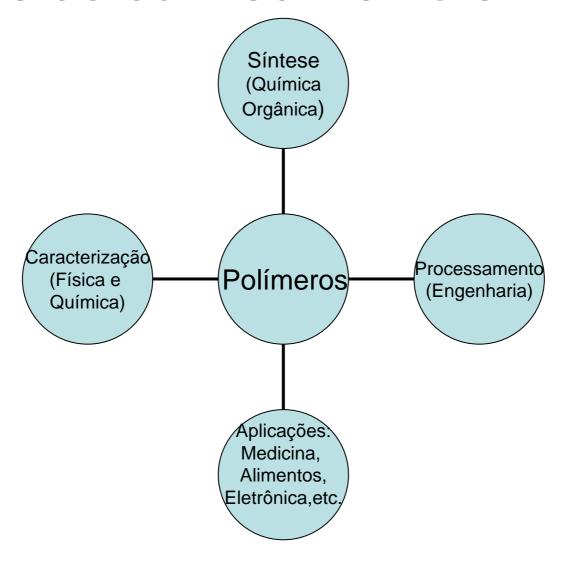
usinagem, outros.



Nome: Copolímero de Etileno Propileno - EPDM


Composição: (CH₂-CH₂-CH(CH₃))_n

Aplicações: mancais, isolantes vibratórios


Processos: vulcanização, injeção, outros.

Consumo

Áreas de conhecimento envolvidas

Processamento

Extrusora Injetora

sopradora

termoformadora