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ABSTRACT 

Have you used or thought of using Principal Component Analysis (PCA) as a feature 

extraction method in your machine learning pipelines, but wished for a better understanding 

of what a principal component is and how it’s obtained? We take a deep dive into a small 

dimensional data set, present a visual explanation of the role played by eigenvalues and 

eigenvectors when PCA is applied, and illustrate how what you start with leads to what you 

end with, what the advantages are, and what could get lost along the way. 

INTRODUCTION 

Principal Component Analysis (PCA), a dimensionality reduction technique, has become a 

widely used feature extraction method in machine learning pipelines.  PCA provides a means 

of transforming an existing feature set into a set of new, linearly uncorrelated features.  

These new features are obtained via linear transformation of the original features, and are 

referred to as principal components.  Standard PCA output includes a metric for assessing 

which principal components can be removed to reduce the dimensionality of the data set 

while maximizing the amount of information retained. Often this reduction is done 

automatically, as part of the procedure output.   

VISUALIZING PCA 

In practice, PCA is typically applied to data sets with many features and yields greatest 

benefit when there is redundancy in the form of linear correlation between some or all of 

those features.  Such high dimensional data sets do not lend themselves well to 

visualization.  With the aim of developing an intuitive understanding of the mechanisms of 

PCA we will work with an example data set consisting of just two features, F1 and F2, with 

high linear correlation1.   

Figure 1 shows our small example data set plotted 

with respect to the two features F1 and F2.  As the 

plot illustrates, these features have a positive 

linear correlation.  It will be useful for our later 

discussions to note the variance of these original 

features. Feature F1 has variance 1.468 and 

feature F2 has variance 0.716, making the total 

variance present in this feature set 2.184.   

Since this is a two-dimensional data set, our aim 

in performing PCA will be to reduce the data set to 

just one dimension.  We seek a single new feature 

which captures as much of the total variation from 

the original feature set as possible- we can think 

of this as maximizing the amount of information 

that will be retained by the new feature.  

1 Note the values of both features have been mean centered. 

Figure 1. 
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Graphically, we can visualize any potential new feature as a line in the F1-F2 space.  In 

Figure 2A, line A illustrates one such candidate feature, let’s call this feature A.  Projecting 

the data points from the two-dimensional F1-F2 space onto this line, as shown in Figures 2B 

and 2C, illustrates the values feature A will yield for each of the existing points in the data 

set.   

For any potential new feature, if the projected points are closely clustered along the new 

feature line, then the new feature has not captured much of the information from the 

original data set and the transformation provided by the new feature will not differentiate 

well between data points.  That is the case with feature A.   

Let’s see if we can find a feature that performs better than A.  Figures 3A-3C show another 

potential new feature, feature B.  The line representing feature B is a much better trend line 

for the F1-F2 data points, and consequently the points projected onto this line are more 

dispersed than we saw with feature A.   

Figure 4 compares the transformed data values provided by features A and B.  The values of 

feature A have variance 0.328.  Recall our original feature set had total variance 2.184, so 

feature A has captured roughly 15% of the variability from our original feature set.  This is 

   Figure 2A.         Figure 2B.          Figure 2C.  

 

   Figure 3A.         Figure 3B.          Figure 3C.  
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not particularly good.  We could capture more variance in a single dimension by simply 

dropping either of our original 

features, rather than replacing 

both with feature A. 

In contrast, the values of 

feature B have variance 1.869.  

Feature B has captured 

roughly 86% of the variability 

that was present in our 

original data set.  As a single 

feature, feature B provides a 

better means of discriminating 

between data points than 

either feature F1 or F2 alone.  But is feature B the best feature possible, or can we do 

better?  Fortunately we do not need to rely on trial and error to find the answer.   

EIGENVECTORS, EIGENVALUES, AND THE SEARCH FOR THE 

BEST NEW FEATURE 

PCA identifies the optimal solution2 via the steps below: 

1. Calculate the covariance3 matrix of the original feature set. 

2. Find the eigenvectors and eigenvalues of this covariance matrix. 

3. Order the eigenvectors according the magnitude of their associated eigenvalues.  For 

notational convenience, call the largest eigenvalue λ1, the next largest eigenvalue λ2, 

etc.  The eigenvectors associated with these eigenvalues will be called v1, v2, etc. 

4. The eigenvector v1 will show the direction of maximum variance within the data set. 

 

Why does this work?  The covariance matrix provides a summary of how the values of the 

features relate across different observations in the data set.  This matrix captures important 

(though not complete) information about the shape of the data cloud in the feature space.  

Specifically, the first eigenvector of this matrix identifies the direction of greatest ‘stretch’ 

within the feature set, and the eigenvalue describes the magnitude of that stretch. When 

the data points are projected onto the span of this vector, the variance of the projected 

points will be maximized.     

 

Returning to our example data set from Figure 1, we can implement this method to find the 

best new feature for our data- the first principal component.   

 

The covariance matrix for features F1 and F2 is: 

 

[
1.468 0.868
0.868 0.716

] 

 

The eigenvectors of this matrix, though not always explicitly stated in the output of PCA 

algorithms, can be obtained via standard linear algebra software.  They are also included in 

the output when running the PRINCOMP procedure in SAS® 9.4.  Expressed as unit vectors, 

they are shown with their corresponding eigenvalues in 5.2 below.   

 

 

 
2  Mathematical proofs can be found in [1], [2], and [3]. 
3 In some circumstances use of the correlation matrix may be preferable, see [1]. 

(5.1) 
) 

Figure 4. 
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[
0.836
0.549

] 𝜆1 = 2.038 

 

 

[
−0.549
0.836

] 𝜆2 = 0.146 

 

 

Figure 6 shows these eigenvectors plotted in the F1-F2 

feature space.  Vector v1 indicates the direction of 

maximum variance for our data set.  Projecting the 

data points onto the line defined by this vector will 

give us the new feature we are looking for, the feature 

which maximizes the variance of the transformed data 

points.  This feature is the first principal component.   

 

In Figure 7 we can see the line defined by this first 

principal component (PC1) and the projection of the 

data onto that line.  As expected, these values are 

widely dispersed.  They have variance 2.038.  This 

single feature has captured roughly 93% of the 

variance from the original two-dimensional data set.   

 

Notice that the variance captured by this first principal 

component (2.038) is the same as the value of the 

first eigenvalue (shown in 5.2).  This is not a 

coincidence.  For each eigenvector of the covariance 

matrix, the eigenvalue indicates the variance of the data along that dimension.  In other 

words, the eigenvalue tells us how much additional variance will be captured by the new 

feature set if the principal component described by that vector is retained. This fact 

becomes quite useful when performing PCA on data sets in higher dimensions.   

  

Figure 6.  

(5.2) 
) 

   Figure 7A.         Figure 7B.          Figure 7C.  
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PCA IN HIGHER DIMENSIONS 

The process we have illustrated here in two dimensions can easily be extended to higher 

dimensions.  In those cases, we begin with a set of n features and our goal is to replace 

them with a set of m new, linearly uncorrelated, features, where n > m.  The new features 

selected will be the principal components described by the first m eigenvectors of the 

covariance matrix.  When choosing a value for m, it can be helpful to look at the 

eigenvalues of the correlation matrix to determine how much variance each principal 

component would contribute to the new feature set. 

The plot in Figure 8 shows the values of the eigenvalues ordered from largest to smallest for 

a ten-dimensional feature set.  Sharp elbows in plots such as these indicate points where 

the inclusion of additional new features (principal components) yield sharply diminished 

returns.   

A similarly useful plot, shown in Figure 9 organizes the same information in a slightly 

different way.  Here the vertical axis shows the fraction of the original variance that will be 

captured by the new feature set, based on the number of principal components retained.   

Figure 8. 

Figure 9. 
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From these two plots we can tell that the first two principal components capture 

considerably more variation than any of the subsequent principal components, and that 

retaining three principal components in the reduced feature set will capture around 90% of 

the data’s original variance.   

Most implementations of PCA provide users with flexible options for controlling the number 

of principal components retained.  At the start, the user may specify a desired number of 

components, a desired percent variance to achieve, or allow the algorithm to identify the 

optimal number based on various other stopping criteria.  

RECONSTRUCTION ERROR 

Before concluding our discussion of PCA it is worth taking a moment to examine not just 

what was accomplished via PCA but also what was potentially lost.  We have reduced the 

dimensionality of our data set by replacing our original features with a smaller set of new 

features.  Although we sought features which maximized the total variance retained, some 

variance was eliminated, and also, possibly, some information.   

For the two-dimensional example we considered, we can visualize the potential information 

lost by returning to the plot from Figure7C, reproduced here for convenience (Figure 10).  It 

is clear that two points in particular are not as well represented by the new feature PC1, 

these are the two red points that lie farthest from the line PC1.  The blue lines connecting 

these points to PC1 are a measure of the error associated with the one-dimensional 

representation of these points in PC1.   

In this context, we are measuring error as the perpendicular distance between the points 

and the line, as compared to a regression context where error is measured in terms of 

vertical distance.  The error we are interested in here is the information lost when the 

values of F1 and F2 are reconstructed from PC1.  The reconstructed values will lie on the 

line PC1, while the actual values of F1 and F2 are (in most cases) some distance from the 

line.  We need to capture the error in both the F1 and F2 directions and so the perpendicular 

distance is appropriate.  The term reconstruction error is used to refer to the mean 

square of these error distances over all points in the data set.  It is a measure of how much 

information may potentially be lost when the dimensionality reduction is applied. 

How concerned should we be about the information 

loss represented by this reconstruction error?  The 

hope of PCA is that the variance exhibited in these 

error directions can safely be considered noise, not 

information, and that removing it from the data set 

via dimensionality reduction will not hurt (and may 

in fact improve) the quality of the model results. 

It should also be reassuring to know that, through a 

lovely mathematical symmetry, selecting the feature 

set which maximizes the variance retained is 

equivalent to selecting the set that minimizes the 

reconstruction error.  The two goals are one in the 

same, and so PCA achieves them both4. 

4 Proof provided in [3]. 

Figure 10. 
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DISCUSSION & CONCLUSION  

In considering the use of PCA it is important to keep in mind that this single method of 

dimensionality reduction is by no means a panacea.  See Shlens [2] for an interesting 

example of a data set in which PCA would fail.  PCA achieves optimality subject to a few key 

constraints: the features in the new feature set are linear combinations of the original 

features, they are linearly uncorrelated with one another, and they are defined with the aim 

of capturing maximal variance from the original data. These criteria will not be ideal for 

every application.  Still, examples abound in which dimensionality reduction via PCA 

achieves exciting results (for those unfamiliar with ‘eigenfaces’, the subject is worth a look 

[4]).  

In this brief presentation we have touched upon some main ideas important to PCA, but we 

certainly have not covered all that is worth examining on the topic.  Hopefully this 

introduction may provide a useful foundation upon which to build further understanding.  

For readers interested in exploring PCA more deeply Joliffe [1], Shlens [2], and Wiskott [3] 

provide varied, and far more in depth, perspectives on the topic.    
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RECOMMENDED RESOURCES 

• “Principal Component Analysis Explained Visually” by Victor Powell and Lewis Lehe 

offers an interactive visualization of PCA in both 2D and 3D.  

http://setosa.io/ev/principal-component-analysis/ 
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