

Properties of an Equilibrium

Equilibrium systems are • DYNAMIC (in constant

- motion)
 REVERSIBLE
- can be approached from either direction

Pink to blue $Co(H_2O)_6Cl_2 + 2 Cl^{-1} ---> Co(H_2O)_2Cl_4^{2-} + 4 H_2O$

Blue to pink $Co(H_2O)_2CI_4^{2-} + 4H_2O ---> Co(H_2O)_6CI_2 + 2CI^{-1}$

Chemical Equilibrium

Fe³⁺ + SCN⁻
→ FeSCN²⁺

After a period of time, the concentrations of

reactants and products are constant. The forward and reverse reactions continue after

equilibrium is attained.

SCN

NCS SCN

NCS

MAR

MAR

Phase changes: $H_2O(s) \rightleftharpoons H_2O(liq)$

Examples of Chemical Equilibria

Formation of stalactites and stalagmites: CaCO₃(s) + H₂O(liq) + CO₂(g) ← Ca²+(aq) + 2 HCO₃·(aq)

MAR

MAR

The Equilibrium Constant

For any type of chemical equilibrium of the type a A + b B \rightleftharpoons c C + d D

the following is a CONSTANT (at a *given T*)

$$\mathbf{K} = \frac{[\mathbf{C}]^{\mathbf{c}} [\mathbf{D}]^{\mathbf{d}}}{[\mathbf{A}]^{\mathbf{a}} [\mathbf{B}]^{\mathbf{b}}}$$

conc. of reactants

equilibrium constant

I

If K is known, we can predict concentrations of products or reactants. The Equilibrium Constant: Example

Equilibrium constants, K, come from *kinetic* rate constants, k

Example: For 2 $NO_{2(g)} \rightleftharpoons N_2O_{4(g)}$,

 $rate_f = k_f[NO_2]^2$

 $rate_r = k_r[N_2O_4]$

When rates equal, rate_f = rate_r, and

 $\mathbf{k}_{\mathbf{f}}[\mathbf{NO}_2]^2 = \mathbf{k}_{\mathbf{f}}[\mathbf{N}_2\mathbf{O}_4]$

 $[N_2O_4]/[NO_2]^2 = k_f/k_r = K$ (equilibrium)

Product of two constants (k_f & k_r) is itself a constant (K)!

The Equilibrium Constant: Example

The Equilibrium Constant: Example

MAR

Determining K

2 NOCI(g) 🛁	≥ 2 NO(g) +	⊦ Cl₂(g)	
Place 2.00 mo equilibrium Calculate K.	l of NOCI is you find 0.6	a 1.00 L fl 6 mol/L of	ask. At NO.
Solution			
Set of a table	of concentr	ations (ICE	=)
	[NOCI]	[NO]	[Cl ₂]
Initial	2.00	0	0
Change			
Equilibrium		0.66	

Determining K

2 NOCI(g) ← 2 NO(g) + Cl₂(g) Place 2.00 mol of NOCI is a 1.00 L flask. At equilibrium you find 0.66 mol/L of NO. Calculate K. Solution

Set of a table of concentrations (ICE)

	[NOCI]	[NO]	[Cl ₂]
Initial	2.00	0	0
Change	-0.66	+0.66	+0.33
Equilibrium	1.34	0.66	0.33

How to remember ICE:

Writing and Manipulating K **Expressions**

MAR

Writing and Manipulating K **Expressions**

Changing coefficients

$$S(s) + 3/2 O_2(g) \iff SO_3(g) \qquad K_{old} = \frac{[SO_3]}{[O_2]^{3/2}}$$

$$2 S(s) + 3 O_2(g) \iff 2 SO_3(g)$$

$$K_{new} = \frac{[SO_3]^2}{[O_2]^3}$$

$$K_{new} = \frac{[SO_3]^2}{[O_2]^3} = (K_{old})^2$$

Writing and Manipulating K Expressions

Changing direction

$$\mathbf{S}(\mathbf{s}) + \mathbf{O}_2(\mathbf{g}) \rightleftharpoons \mathbf{SO}_2(\mathbf{g}) \qquad K = \frac{[\mathbf{SO}_2]}{[\mathbf{O}_2]}$$

 $\mathbf{SO}_2(\mathbf{g}) \rightleftharpoons \mathbf{S}(\mathbf{s}) + \mathbf{O}_2(\mathbf{g}) \qquad K_{new} = \frac{[\mathbf{O}_2]}{[\mathbf{SO}_2]}$
and: $K_{new} = \frac{[\mathbf{O}_2]}{[\mathbf{SO}_2]} = \frac{1}{\mathbf{K}_{old}}$

See Manipulating Equilibrium Constant Expressions

Page III-13-3 / Chapter Thirteen Lecture Notes

MAR

MAR

Kp Expressions

We have been writing K in terms of M (mol/L),

designated by K_c

Equilibrium constants expressed in terms of gases designated K_p where all pressures in atm (760 mm Hg = 1 atm)

For: $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$

$$K_{c} = \frac{[NH_{3}]^{2}}{[N_{2}][H_{2}]^{3}}$$
 $K_{p} = \frac{P_{NH_{3}}^{2}}{P_{N_{2}}P_{H_{2}}^{3}}$

MAR

Converting K_c Into K_p

 $K_{p} = K_{c}(RT)^{\Delta n}$ T = Temperature (K) $R = 0.082057 \text{ L atm mol}^{-1} \text{ K}^{-1}$ $\Delta n = \text{change in moles of gas}$ Example: $N_{2}(g) + 3 H_{2}(g) \rightleftharpoons 2 \text{ NH}_{3}(g)$ $\Delta n = 2 - 4 = -2$ see: Types of Equilibrium Constants

MAR

MAR

The Meaning of K

If K>>1, the reaction is product-favored; product predominates at equilibrium.

If K<<1, the reaction is reactant-favored; reactant predominates at equilibrium.

The Meaning of K

 $\begin{array}{ll} \mbox{Can tell if a reaction is product-favored or}\\ \mbox{reactant-favored.}\\ \mbox{For:} \quad N_2(g) \ + \ 3 \ H_2(g) \rightleftharpoons 2 \ NH_3(g) \end{array}$

$$K_c = \frac{[\mathrm{NH}_3]^2}{[\mathrm{N}_2][\mathrm{H}_2]^3} = 3.5 \text{ x } 10^8$$

Conc. of products is **much greater** than that of reactants at equilibrium. The reaction is strongly **productfavored**.

MAR

The Meaning of K

For: AgCl(s) → Ag⁺(aq) + Cl⁻(aq)

 $K_{\rm c} = [{\rm Ag}^+] [{\rm CI}^-] = 1.8 \times 10^{-5}$

Conc. of products is **much less** than that of reactants at equilibrium.

The reaction is strongly reactant-favored.

The reverse reaction
Ag⁺(aq) + Cl·(aq) ⇒ AgCl(s)
is product-favored,

 $K_{\rm rev} = 1/1.8 \times 10^{-5} = 5.6 \times 10^{4}$

MAR

The Reaction Quotient, Q

All reacting chemical systems can be characterized by their **REACTION** QUOTIENT, Q.

For: $aA + bB \rightleftharpoons cC + dD$

Under Any Reaction Conditions

Reaction quotient =
$$Q = \frac{[C]^c[D]^d}{[A]^a[B]^b}$$

Reaction concentrations

If Q = K, then system is at equilibrium. If $Q \neq K$, then system is not at equilibrium

MAR

The Reaction Quotient, Q

The Reaction Quotient, Q

Comparing Q and K:

Q < K, reaction shifts to the products (right)

Q > K, reaction shifts to the reactants (left)

Q = K, reaction is at equilibrium

MAR

are at equilibrium

The Reaction Quotient, Q

We can use Q to tell if a reaction is at equilibrium. If not at equilibrium, we can predict which way the reaction will move to approach equilibrium.

see Understanding K and Q Handout

The Reaction Quotient, Q

To [iso]! Q = 2.3, Q < K, reaction will shift to "right" (product side, or [iso])

MAR

Typical Calculations

Place 1.00 mol each of H₂ and I₂ in a 1.00 L flask. Calc. equilibrium concentrations.

 $H_2(g) + I_2(g) \implies 2 HI(g), K_c = 55.3$

Step 1. Set up ICE table to define EQUILIBRIUM concentrations.

[H₂] [I₂] [HI]

Initial

Change

Equilib

where \mathbf{x} is defined as am't of H_2 and I_2 consumed on approaching equilibrium.

MAR

 $H_2(g) + I_2(g) \implies 2 HI(g), K_c = 55.3$

Step 2. Put equilibrium concentrations into K_c expression.

$$K_c = \frac{[2x]^2}{[1.00-x][1.00-x]} = 55.3$$

MAR

MAR

Nitrogen Dioxide
Equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$ $\mathcal{O}_4(g) \rightleftharpoons \mathcal{O}_4(g)$ $\mathcal{O}_4(g) \rightleftharpoons \mathcal{O}_4(g)$ $\mathcal{O}_4(g) \rightleftharpoons \mathcal{O}_4(g)$ $\mathcal{O}_4(g) \multimap \mathcal{O}_4(g)$ $\mathcal{O}_4(g) \multimap \mathcal{O}_4(g)$

Step 3. Solve K_c expression - take square root of both sides. $7.44 = \frac{2x}{1.00 - x}$ 7.44 (1.00 - x) = 2x

 $H_2(g) + I_2(g) \implies 2 HI(g), K_c = 55.3$

7.44 - 7.44 x = 2x x = 7.44 / 9.44 = 0.788 Therefore, at equilibrium $[H_2] = [I_2] = 1.00 - x = 0.21 M$ [HI] = 2x = 1.58 M

MAR

Nitrogen Dioxide Equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$ $[NO_4]^2$

$$K_c = \frac{[NO_2]^2}{[N_2O_4]} = 0.0059 \text{ at } 298 \text{ K}$$

If initial concentration of N₂O₄ is 0.50 M, what are the equilibrium concentrations? Step 1. Set up an equilibrium table

Step 1.	Set up an equilibrium table	
	[N ₂ O ₄]	[NO ₂]
Initial	0.50	0
Change		
Equilib		

Nitrogen Dioxide Equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$ $K_c = \frac{[NO_2]^2}{[N_2O_4]} = 0.0059 \text{ at } 298 \text{ K}$

If initial concentration of N₂O₄ is 0.50 M, what are the equilibrium concentrations? Step 1. Set up an equilibrium table

	[N ₂ O ₄]	[NO ₂]
Initial	0.50	0
Change	-X	+2x
Equilib	0.50 - x	2x

Nitrogen Dioxide Equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$

$$\begin{split} \text{Step 2. Substitute into } & \text{K}_c \text{ expression and solve.} \\ & K_c = 0.0059 = \frac{[\text{NO}_2]^2}{[\text{N}_2\text{O}_4]} = \frac{(2\text{x})^2}{(0.50 - \text{x})} \\ \text{Rearrange:} \quad 0.0059 \ (0.50 - \text{x}) = 4\text{x}^2 \\ & 0.0029 - 0.0059\text{x} = 4\text{x}^2 \\ & 4\text{x}^2 + 0.0059\text{x} - 0.0029 = 0 \end{split}$$
 This is a **QUADRATIC EQUATION** ax² + bx + c = 0 a = 4 b = 0.0059 c = -0.0029 \end{split}

MAR

Nitrogen Dioxide Equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$

Solve the quadratic equation for x. $ax^2 + bx + c = 0$ a = 4 b = 0.0059 c = -0.0029 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-0.0059 \pm \sqrt{(0.0059)^2 - 4(4)(-0.0029)}}{2(4)}$ $x = -0.00074 \pm 1/8(0.046)^{1/2} = -0.00074 \pm 0.027$

MAR

Nitrogen Dioxide Equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$

$$x = \frac{-0.0059 \pm \sqrt{(0.0059)^2 - 4(4)(-0.0029)}}{2(4)}$$

0.027

$$= -0.00074 \pm 1/8(0.046)^{1/2} = -0.00074 \pm$$

x = 0.026 or -0.028 But a *negative* value is not reasonable.

Conclusion: x = 0.026[N₂O₄] = 0.50 - x = 0.47 M [NO₂] = 2x = 0.052 M

MAR

х

Le Chatelier's Principle

Temperature, catalysts, changes in volume, changes in pressure and changes in concentration affect equilibria.

The outcome is governed by LE CHATELIER'S PRINCIPLE

"...if a system at equilibrium is disturbed, the system tends to shift its equilibrium position to counter the effect of the disturbance."

MAR

EQUILIBRIUM AND EXTERNAL EFFECTS

Temperature effects change the numeric value of K Consider the fizz in a soft drink

 $CO_2(g) + H_2O(liq) \rightleftharpoons CO_2(aq) + heat$ Decrease T. What happens to equilibrium position? To value of K?

 $\mathbf{K} = [\mathbf{CO}_2] / \mathbf{P} (\mathbf{CO}_2)$

K increases as T goes down because [CO₂] increases and P(CO₂) decreases.

Increase T. Now what?

Equilibrium shifts left and K decreases. see: <u>Le Chatelier's Guide</u>

Temperature Effects on Equilibrium N₂O₄ (colorless) + heat ⇐ 2 NO₂ (brown)

 $\Delta H^{\circ} = + 57.2 \text{ kJ (endothermic)}$ $INO \ 1^{2}$

$$K_c = \frac{[110_2]}{[N_2O_4]}$$

 $K_c = 0.00077 \text{ at } 273 \text{ K}$

$$K_c = 0.00077$$
 at 273 K
 $K_c = 0.0059$ at 298 K

K changes with temperature

MAR

EQUILIBRIUM AND EXTERNAL EFFECTS

Add catalyst ---> no change in K A catalyst only affects the *RATE* of approach to equilibrium.

Catalytic exhaust system

MAR

Adding a "product" to a chemical system.

 $\begin{array}{ll} \mbox{Haber-Frisch reaction: adding NH_3,} \\ \mbox{reaction moves to left} & $N_2(g) + 3 \ H_2(g) \rightleftharpoons 2 \ NH_3(g)$ \end{array}$

Removing a "product" from a chemical system.

Haber-Frisch reaction: removing NH₃, reaction moves to right $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$

MAR

Butane < Isobutane

Assume you are at equilibrium with [iso] = 1.25 M and [butane] = 0.50 M. Now add 1.50 M butane. When the system comes to equilibrium again, what are [iso] and [butane]? K = 2.50

MAR

Butane < Isobutane

Assume you are at equilibrium with [iso] = 1.25 M and [butane] = 0.50 M. Now add 1.50 M butane. When the system comes to equilibrium again, what are [iso] and [butane]? K = 2.50

Solution

Calculate Q immediately after adding more butane and compare with K.

$$Q = \frac{[\text{isobutane}]}{[\text{butane}]} = \frac{1.25}{0.50 + 1.50} = 0.625$$

Q is *LESS THAN* K. Therefore, the reaction will shift to the _____.

Butane ⇒ Isobutane

You are at equilibrium with [iso] = 1.25 M and [butane] = 0.50 M. Now add 1.50 M butane. Solution

Q is less than K, so equilibrium shifts right away from butane and toward isobutane. Set up concentration (ICE) table

[butane]

[isobutane]

Initial Change Equilibrium

MAR

Butane 辛 Isobutane

You are at equilibrium with [iso] = 1.25 M and [butane] = 0.50 M. Now add 1.50 M butane. Solution

$$K = 2.50 = \frac{[\text{isobutane}]}{[\text{butane}]} = \frac{1.25 + x}{2.00 - x}$$

x = 1.07 M

At the new equilibrium position,

[butane] = 0.93 M and [isobutane] = 2.32 M

Equilibrium has shifted toward isobutane.

Le Chatelier's Principle -**Overview**

Change T

- change in K
- therefore change in P, V or concentrations at eauilibrium
- Use a catalyst:
- -reaction comes more quickly to equilibrium. K not changed.
- Add or take away reactant or product:
- -K does not change
- -Reaction adjusts to new equilibrium "position"

MAR

End of Chapter 13

See:

- Chapter Thirteen Study Guide
- <u>Chapter Thirteen Concept Guide</u>
- Types of Equilibrium Constants
- · Important Equations (following this slide)
- · End of Chapter Problems (following this slide)

Important Equations, Constants, and Handouts from this Chapter:

Handouts.

2. 3.

4. 5.

 Manipulating Equilibrium Constant Expressions · Types of Equilibrium Constants

End of Chapter Problems: Answers

[l₂] = 0.00614 M, [l] = 0.00480 M

a. right b. left c. right d. left

 K_c = [CO]² / [CO2] or K_p = P_{CO}^2 / P_{CO2} No, Q < K, reaction will proceed to the right (more products) K = 1.2

MAR

Le Chatelier's Principle

End of Chapter Problems: Test Yourself

- 1. Write an equilibrium constant expression for the following reaction: C(s) + $CO_2(g) \rightleftarrows 2 \ CO(g)$
- 2. K = 5.6 x 10⁻¹² at 500 K for the dissociation of iodine molecules to iodine atoms: $I_2(g)\rightleftarrows 2\ I(g)$ A mixture has [I_2] = 0.020 mol/L and [I] = 2.0 x 10^{-8} mol/ L. Is the reaction at equilibrium (at 500 K)? If not, which way must the reaction proceed to reach equilibrium?
- 3. The reaction: $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ was examined at 250 °C. At equilibrium, $[PCl_5] = 4.2 \times 10^{-5}$ mol/L, $[PCl_3] = 1.3 \times 10^{-2}$ mol/L, and $[Cl_2] = 3.9 \times 10^{-3}$ mol/L. Calculate K for the reaction. 4. The equilibrium constant for the dissociation of iodine molecules to iodine
- atoms: $I_2(g) \rightleftharpoons 2 I(g)$ is 3.76 x 10-3 at 1000 K. Suppose 0.105 mol of I_2 is placed in a 12.3 L flask at 1000 K. What are the concentrations of I_2 and I
- block and 120 model to equilibrium? Dinitrogen trioxide decomposes to NO and NO₂ in an endothermic process $(\Delta H = 40.5 \text{ kJ/mol}): N_2O_3(g) \approx NO(g) + NO_2(g)$ Predict the effect of the 5. following changes on the position of the equilibrium (left, right, or no change): a. adding more N₂O₃(g) b. adding more NO₂(g)
 - c. increasing the volume of the reaction flask

d. lowering the temperature

MAR