

CHEMICAL EQUILIBRIUM

$\rightleftharpoons=$ Bi-directional arrow

Properties of an Equilibrium

Pink to blue
$\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{Cl}_{2}+2 \mathrm{Cl}^{-1}-->\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}_{4}{ }^{2-}+4 \mathrm{H}_{2} \mathrm{O}$
Blue to pink
$\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}_{4}{ }^{2-}+4 \mathrm{H}_{2} \mathrm{O}--\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{Cl}_{2}+2 \mathrm{Cl}-1$

Chemical Equilibrium

$$
\mathrm{Fe}^{3+}+\mathrm{SCN}^{-} \rightleftharpoons \mathrm{FeSCN}^{2+}
$$

After a period of time, the concentrations of reactants and products are constant.
The forward and reverse reactions continue after equilibrium is attained.

Phase changes:

$$
\mathrm{H}_{\mathbf{2}} \mathrm{O}(\mathrm{~s}) \rightleftharpoons \mathrm{H}_{\mathbf{2}} \mathrm{O}(\mathrm{liq})
$$

Examples of Chemical Equilibria

Formation of stalactites
and stalagmites:
$\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{liq})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons$
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{HCO}_{3}-(\mathrm{aq})$

The Equilibrium Constant

For any type of chemical equilibrium of the type

$$
\mathbf{a} A+b \mathbf{b} \rightleftharpoons c \mathbf{c}+\mathbf{d} \mathbf{D}
$$

the following is a CONSTANT (at a given T)

If K is known, we can predict concentrations of products or reactants.

Determining K

$2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$

Place 2.00 mol of NOCI is a 1.00 L flask. At equilibrium you find $0.66 \mathrm{~mol} / \mathrm{L}$ of NO . Calculate K.			
Solution			
Set of a table of concentrations (ICE)			
	[NOCl$]$	[NO]	[Cl_{2}]
Initial	2.00	0	0
Change			
Equilibrium		0.66	

The Equilibrium Constant: Example

The Equilibrium Constant: Example

Equilibrium constants, K, come from kinetic rate constants, k

Example: For $2 \mathbf{N O}_{2(\mathrm{~g})} \rightleftharpoons \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{4 (\mathrm { g })}}$,
rate $_{f}=\mathrm{k}_{\mathrm{f}}\left[\mathrm{NO}_{2}\right]^{\mathbf{2}}$
rate $_{\mathrm{r}}=\mathrm{k}_{\mathrm{r}}\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$
When rates equal, rate $_{f}=$ rate $_{r}$, and
$\mathrm{k}_{\mathrm{f}}\left[\mathrm{NO}_{2}\right]^{2}=\mathrm{k}_{\mathrm{r}}\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$

$$
\left[\mathrm{N}_{2} \mathrm{O}_{4}\right] /\left[\mathrm{NO}_{2}\right]^{2}=\mathrm{k}_{\mathrm{f}} / \mathrm{k}_{\mathrm{r}}=\mathrm{K} \text { (equilibrium) }
$$

Product of two constants ($k_{f} \& k_{r}$) is itself a constant (K)!

The Equilibrium Constant: Example

$$
\begin{aligned}
& \text { Determining K } \\
& \mathrm{K}=\frac{[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]}{[\mathrm{NOCl}]^{2}} \\
& \mathrm{~K}=\frac{[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]}{[\mathrm{NOCl}]^{2}}=\frac{(0.66)^{2}(0.33)}{(1.34)^{2}}=0.080
\end{aligned}
$$

Writing and Manipulating K
 Expressions

MAR

Writing and Manipulating K
 Expressions

$$
\begin{aligned}
& \text { Changing coefficients } \\
& \begin{aligned}
& \mathbf{S}(\mathbf{s})+\mathbf{3 / 2} \mathbf{O}_{2}(\mathbf{g}) \rightleftharpoons \mathbf{S O}_{3}(\mathbf{g}) \quad \mathrm{K}_{\text {old }}=\frac{\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{O}_{2}\right]^{3 / 2}} \\
& \mathbf{2 \mathbf { S } (\mathbf { s }) + \mathbf { 3 } \mathbf { O } _ { 2 } (\mathbf { g })} \rightleftharpoons 2 \mathbf{S O}_{3}(\mathbf{g}) \\
& \mathrm{K}_{\text {new }}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{O}_{2}\right]^{3}} \\
& \mathrm{~K}_{\text {new }}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{O}_{2}\right]^{3}}=\left(\mathrm{K}_{\text {old }}\right)^{2}
\end{aligned}
\end{aligned}
$$

Writing and Manipulating K

 Expressions$$
\begin{aligned}
& \text { Changing direction } \\
& \begin{array}{l}
\mathbf{S}(\mathbf{s})+\mathbf{O}_{2}(\mathbf{g}) \rightleftharpoons \mathbf{S O}_{2}(\mathbf{g}) \quad K=\frac{\left[\mathrm{SO}_{2}\right]}{\left[\mathrm{O}_{2}\right]} \\
\mathbf{S O}_{2}(\mathbf{g}) \rightleftharpoons \mathbf{S}(\mathbf{s})+\mathbf{O}_{2}(\mathbf{g}) \quad K_{\text {new }}=\frac{\left[\mathrm{O}_{2}\right]}{\left[\mathrm{SO}_{2}\right]} \\
\text { and: } \quad K_{\text {new }}=\frac{\left[\mathrm{O}_{2}\right]}{\left[\mathrm{SO}_{2}\right]}=\frac{1}{\mathrm{~K}_{\text {old }}}
\end{array}
\end{aligned}
$$

Writing and Manipulating K Expressions

Adding equations for reactions

$$
\begin{aligned}
& \mathbf{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g}) \quad \mathrm{K}_{1}=\left[\mathrm{SO}_{2}\right] /\left[\mathrm{O}_{2}\right] \\
& \mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \\
& \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g}) \\
& \mathrm{K}_{2}=\left[\mathrm{SO}_{3}\right] /\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]^{1 / 2}
\end{aligned}
$$

NET EQUATION

$$
\mathbf{S}(\mathrm{s})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})
$$

$$
\mathrm{K}_{\text {net }}=\frac{\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{O}_{2}\right]^{3 / 2}}=\mathrm{K}_{1} \cdot \mathrm{~K}_{2}
$$

Kp Expressions

We have been writing K in terms of M ($\mathrm{mol} / \mathrm{L}$), designated by K_{C}
Equilibrium constants expressed in terms of gases designated K_{p} where all pressures in atm ($760 \mathrm{~mm} \mathrm{Hg}=1 \mathrm{~atm}$)
For: $\mathbf{N}_{\mathbf{2}}(\mathrm{g})+\mathbf{3} \mathbf{H}_{\mathbf{2}}(\mathrm{g}) \rightleftharpoons \mathbf{2} \mathbf{N H}_{\mathbf{3}}(\mathrm{g})$

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}} \quad \mathrm{~K}_{\mathrm{p}}=\frac{\mathrm{P}_{N H_{3}}^{2}}{\mathrm{P}_{N_{2}} \mathrm{P}_{H_{2}}^{3}}
$$

MAR

The Meaning of K

Converting K_{c} Into K_{p}
$K_{p}=K_{c}(R T)^{\Delta n}$
$\mathrm{T}=$ Temperature (K)
$R=0.082057 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$\Delta \mathbf{n}=$ change in moles of gas
Example:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\Delta n=2-4=-2$
see: Types of Equilibrium Constants
MAR

The Meaning of K
Can tell if a reaction is product-favored or reactant-favored.
For: $\quad \mathbf{N}_{\mathbf{2}}(\mathrm{g})+3 \mathrm{H}_{\mathbf{2}}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$

$$
K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}=3.5 \times 10^{8}
$$

Conc. of products is much greater than that of reactants at equilibrium.
The reaction is strongly product= favored.

MAR

The reverse reaction
$\mathbf{A g}+(\mathrm{aq})+\mathrm{Cl}-(\mathrm{aq}) \rightleftharpoons \mathrm{AgCl}(\mathrm{s})$
is product-favored,
Product- or Reactant Favored

$$
K_{\mathrm{rev}}=1 / 1.8 \times 10^{-5}=5.6 \times 10^{4}
$$

The Reaction Quotient, Q

All reacting chemical systems can be characterized by their REACTION QUOTIENT, Q.
For: $\quad \mathbf{a} \mathbf{A}+\mathbf{b} \mathbf{B} \rightleftharpoons \mathbf{c} \mathbf{C}+\mathbf{d} \mathbf{D}$
Under Any Reaction Conditions
Product concentrations
$\begin{aligned} & \text { Product concentrations } \\ & \text { Reaction quotient }=Q=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}} \\ & \text { Reactant concentrations }\end{aligned}$
If $\mathbf{Q}=\mathrm{K}$, then system is at equilibrium.
If $Q \neq K$, then system is not at equilibrium

The Reaction Quotient, Q

$$
\begin{aligned}
& \mathrm{Q}=\frac{\text { conc. of iso }}{\text { conc. of } \mathrm{n}}=\frac{0.35}{0.15}=2.3 \\
& \begin{array}{l}
\text { To [iso]! } \quad \begin{array}{l}
\text { Q = 2.3, Q }<K, ~ r e a c t i o n ~ w i l l ~ s h i f t ~ t o ~
\end{array} \\
\text { "right" (product side, or [iso]) }
\end{array} \\
& \text { "right" (product side, or [iso]) }
\end{aligned}
$$

The Reaction Quotient, Q

The Reaction Quotient, Q

Comparing Q and K :

$\mathrm{Q}<\mathrm{K}$, reaction shifts to the products (right)
$Q>K$, reaction shifts to the reactants (left)
$Q=K$, reaction is at equilibrium

MAR

see Understanding K and Q Handout

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=55.3
$$

Step 1. Set up ICE table to define

 EQUILIBRIUM concentrations.$$
\left[\begin{array}{lll}
{\left[\mathrm{H}_{2}\right]} & {\left[\mathrm{I}_{2}\right]} & {[\mathrm{HI}]}
\end{array}\right.
$$

Initial
Change
Equilib
where x is defined as am't of H_{2} and I_{2} consumed on approaching equilibrium.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=55.3
$$

Step 3. Solve K_{c} expression - take square root of both sides.

$$
\begin{aligned}
& 7.44=\frac{2 \mathrm{x}}{1.00-\mathrm{x}} \\
& 7.44(1.00-\mathrm{x})=2 \mathrm{x} \\
& 7.44-7.44 \mathrm{x}=2 \mathrm{x} \\
& \mathrm{x}=7.44 / 9.44=0.788
\end{aligned}
$$

Therefore, at equilibrium

$$
\begin{aligned}
& {\left[\mathrm{H}_{2}\right]=\left[\mathrm{I}_{2}\right]=1.00-x=0.21 \mathrm{M}} \\
& {[\mathrm{HI}]=2 x=1.58 \mathrm{M}}
\end{aligned}
$$

Nitrogen Dioxide Equilibrium $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
$K_{c}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=0.0059$ at 298 K
If initial concentration of $\mathbf{N}_{2} \mathrm{O}_{\mathbf{4}}$ is $\mathbf{0 . 5 0 \mathrm { M } \text { , what are }}$ the equilibrium concentrations?

Step 1. Set up an equilibrium table		
	$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$	$\left[\mathrm{NO}_{2}\right]$
Initial	0.50	0

Change
Equilib

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=55.3
$$

Step 2. Put equilibrium concentrations into K_{c} expression.

$$
K_{c}=\frac{[2 \mathrm{x}]^{2}}{[1.00-\mathrm{x}][1.00-\mathrm{x}]}=55.3
$$

Nitrogen Dioxide Equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$

$$
\begin{gathered}
\begin{array}{c}
\text { Nitrogen Dioxide Equilibrium } \\
\mathbf{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
\end{array} 2 \mathrm{NO}_{2}(\mathrm{~g})
\end{gathered} K_{c}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=0.0059 \text { at } 298 \mathrm{~K} .
$$

If initial concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 0.50 M , what are the equilibrium concentrations?
Step 1. Set up an equilibrium table

$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$	$\left[\mathrm{NO}_{2}\right]$
0.50	0
$-x$	$+2 x$
$0.50-x$	$2 x$

Nitrogen Dioxide Equilibrium
 $$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

Step 2. Substitute into K_{c} expression and solve.

$$
\begin{aligned}
& \qquad K_{c}=0.0059=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{(2 \mathrm{x})^{2}}{(0.50-\mathrm{x})} \\
& \text { Rearrange: } \quad 0.0059(0.50-\mathrm{x})=4 \mathrm{x}^{2} \\
& \\
& \qquad \begin{array}{l}
0.0029-0.0059 \mathrm{x}=4 \mathrm{x}^{2} \\
4 \mathbf{x}^{2}+0.0059 \mathrm{x}-0.0029=0
\end{array} \\
& \text { This is a QUADRATIC EQUATION } \\
& \begin{array}{l}
\mathrm{ax}{ }^{2}+\mathrm{bx}+\mathrm{c}=0 \\
\mathrm{a}=4 \quad \mathrm{~b}=0.0059 \quad \mathrm{c}=-0.0029
\end{array}
\end{aligned}
$$

EQUILIBRIUM AND EXTERNAL EFFECTS

Temperature effects change the numeric value of K
Consider the fizz in a soft drink
$\mathrm{CO}_{\mathbf{2}}(\mathrm{g})+\mathrm{H}_{\mathbf{2}} \mathrm{O}$ (liq) $\rightleftharpoons \mathrm{CO}_{\mathbf{2}}(\mathrm{aq})+$ heat
Decrease T. What happens to equilibrium position? To value of K ?
$\mathrm{K}=\left[\mathrm{CO}_{2}\right] / \mathrm{P}\left(\mathrm{CO}_{2}\right)$
K increases as T goes down because
$\left[\mathrm{CO}_{2}\right]$ increases and $\mathrm{P}\left(\mathrm{CO}_{2}\right)$ decreases.
Increase T. Now what?
Equilibrium shifts left and K decreases.
see: Le Chatelier's Guide

Nitrogen Dioxide Equilibrium $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$

Solve the quadratic equation for x.
$a x^{2}+b x+c=0$
$a=4 \quad b=0.0059 \quad c=-0.0029$
$x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$x=\frac{-0.0059 \pm \sqrt{(0.0059)^{2}-4(4)(-0.0029)}}{2(4)}$
$x=-0.00074 \pm 1 / 8(0.046)^{1 / 2}=-0.00074 \pm 0.027$
MAR

Le Chatelier's Principle

Temperature, catalysts, changes in volume, changes in pressure and changes in concentration affect equilibria.
The outcome is governed by LE CHATELIER'S PRINCIPLE
"...if a system at equilibrium is disturbed, the system tends to shift its equilibrium position to counter the effect of the disturbance."

Temperature Effects on Equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4}$ (colorless) + heat \rightleftharpoons $2 \mathrm{NO}_{2}$ (brown)
$\Delta \mathrm{H}^{\circ}=+57.2 \mathrm{~kJ}$ (endothermic)

$$
K_{c}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}
$$

$\mathrm{K}_{\mathrm{c}}=0.00077$ at 273 K
$\mathrm{K}_{\mathrm{c}}=0.0059$ at 298 K
K changes with temperature

Haber-Frisch reaction is mostly Fe with some KOH
$\mathbf{N}_{2}(\mathrm{~g})+\mathbf{3} \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$

$$
K=3.5 \times 10^{8} \text { at } 298 \mathrm{~K}
$$

Adding a "reactant" to a chemical system.
Haber-Frisch reaction: adding N_{2} or H_{2}
reaction moves to right

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

EQUILIBRIUM AND EXTERNAL EFFECTS
Add catalyst ---> no change in K
A catalyst only affects the RATE of approach to equilibrium.

Catalytic exhaust system
MAR

EQUILIBRIUM AND EXTERNAL EFFECTS
Concentration changes ---> no change in K - only the position of equilibrium changes.
We can use the "water U-tube" to demonstrate this phenomena (and connect to Haber-Frisch)

Haber-Frisch reaction:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$

Water U-tube

Removing a "reactant" from a chemical system.
Haber-Frisch reaction: removing N_{2} or H_{2},
reaction moves to left

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Le Chatelier's Principle

Adding a "product" to a chemical system.
$\begin{aligned} & \text { Haber-Frisch reaction: adding } \mathrm{NH}_{3}, \\ & \text { reaction moves to left } \\ & \\ & \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})\end{aligned}$

Butane \rightleftharpoons Isobutane

Assume you are at equilibrium with [iso] $=1.25 \mathrm{M}$ and [butane] $=0.50 \mathrm{M}$. Now add 1.50 M butane. When the system comes to equilibrium again, what are [iso] and [butane]? K = 2.50

Solution

Calculate \mathbf{Q} immediately after adding more butane and compare with K .

$$
\mathrm{Q}=\frac{[\text { isobutane }]}{[\text { butane }]}=\frac{1.25}{0.50+1.50}=0.625
$$

Q is LESS THAN K . Therefore, the reaction will shift to the \qquad -.

Le Chatelier's Principle

Removing a "product" from a chemical system.

Haber-Frisch reaction: removing NH_{3}, reaction moves to right $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ $2 \mathrm{NH}_{3}(\mathrm{~g})$

$$
\text { Butane } \rightleftharpoons \text { Isobutane }
$$

Assume you are at equilibrium with [iso] $=1.25$ M and [butane] $=0.50 \mathrm{M}$. Now add 1.50 M butane. When the system comes to equilibrium again, what are [iso] and [butane]? $\mathrm{K}=2.50$

MAR

Butane \rightleftharpoons Isobutane

You are at equilibrium with [iso] $=1.25 \mathrm{M}$ and [butane] $=0.50 \mathrm{M}$. Now add 1.50 M butane . Solution
Q is less than K, so equilibrium shifts right away from butane and toward isobutane.
Set up concentration (ICE) table
[butane]
[isobutane]
Initial
Change
Equilibrium

Butane \rightleftharpoons Isobutane

You are at equilibrium with [iso] $=1.25 \mathbf{M}$ and [butane] = 0.50 M . Now add 1.50 M butane.
Solution

$$
K=2.50=\frac{[\text { isobutane }]}{[\text { butane }]}=\frac{1.25+\mathrm{x}}{2.00-\mathrm{x}}
$$

$x=1.07 \mathrm{M}$
At the new equilibrium position,
[butane] $=0.93 \mathrm{M}$ and [isobutane] $=2.32 \mathrm{M}$
Equilibrium has shifted toward isobutane.

End of Chapter 13

See:

- Chapter Thirteen Study Guide
- Chapter Thirteen Concept Guide
- Types of Equilibrium Constants
- Important Equations (following this slide)
- End of Chapter Problems (following this slide)

End of Chapter Problems: Test Yourself

1. Write an equilibrium constant expression for the following reaction: $C(s)+$ $\mathrm{CO}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{CO}(\mathrm{g})$
2. $\mathrm{K}=5.6 \times 10^{-12}$ at 500 K for the dissociation of iodine molecules to iodine atoms: $\mathbf{l}_{\mathbf{2}}(\mathrm{g}) \rightleftarrows \mathbf{2} \mathbf{I}(\mathrm{g})$ A mixture has $\left[\mathrm{I}_{2}\right]=0.020 \mathrm{~mol} / \mathrm{L}$ and $[\mathrm{l}]=2.0 \times 10^{-8} \mathrm{~mol} /$ L . Is the reaction at equilibrium (at 500 K)? If not, which way must the reaction proceed to reach equilibrium?
3. The reaction: $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftarrows \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ was examined at $250^{\circ} \mathrm{C}$. At equilibrium, $\left[\mathrm{PCl}_{5}\right]=4.2 \times 10^{-5} \mathrm{~mol} / \mathrm{L},\left[\mathrm{PCl}_{3}\right]=1.3 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$, and $\left[\mathrm{Cl}_{2}\right]=3.9$ $\times 10^{-3} \mathrm{~mol} / \mathrm{L}$. Calculate K for the reaction.
4. The equilibrium constant for the dissociation of iodine molecules to iodine atoms: $\mathrm{I}_{\mathbf{2}}(\mathrm{g}) \rightleftarrows \mathbf{2} \mathbf{~}(\mathrm{g})$ is 3.76×10^{-3} at 1000 K . Suppose 0.105 mol of I_{2} is placed in a 12.3 L flask at 1000 K . What are the concentrations of I_{2} and I when the system comes to equilibrium?
5. Dinitrogen trioxide decomposes to NO and NO_{2} in an endothermic process $(\Delta \mathrm{H}=40.5 \mathrm{~kJ} / \mathrm{mol}): \mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g}) \rightleftarrows \mathbf{N O}(\mathrm{g})+\mathrm{NO}_{2}(\mathrm{~g})$ Predict the effect of the following changes on the position of the equilibrium (left, right, or no change): a. adding more $\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})$
b. adding more $\mathrm{NO}_{2}(\mathrm{~g})$
c. increasing the volume of the reaction flask
d. lowering the temperature

Le Chatelier's Principle Overview

- Change T
- change in K
- therefore change in P, V or concentrations at equilibrium
- Use a catalyst:
-reaction comes more quickly to equilibrium. K not changed.
- Add or take away reactant or product:
-K does not change
-Reaction adjusts to new equilibrium "position"

Important Equations, Constants, and Handouts from this Chapter:

Handouts:

- Manipulating Equilibrium Constant Expressions
- Types of Equilibrium Constants

MAR
$K_{p}=K_{c}(R T)^{\triangle n}$

Le Chatelier's Principle

End of Chapter Problems: Answers

[^0]
[^0]: 1. $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CO}^{2} /\left[\mathrm{CO}_{2}\right]\right.$ or $\mathrm{K}_{\mathrm{p}}=\mathrm{P}_{\mathrm{CO}^{2}} / \mathrm{P}_{\mathrm{CO} 2}$
 2. $\mathrm{No}, \mathrm{Q}<\mathrm{K}$, reaction will proceed to the right (more products)
 3. $K=1.2$
 4. $\left[\mathrm{I}_{2}\right]=0.00614 \mathrm{M},[\mathrm{I}]=0.00480 \mathrm{M}$
 5. a. right b. left c. right d. left
