Principles of Corporate Finance Professor James J. Barkocy

Chapter 11

Introduction to Risk, Return and the Cost of Capital

"In the business world, the rearview mirror is always clearer than the windshield"

Warren Buffet

Risk

Risk presents both danger and opportunity

Rates of Return

Percentage Return $=\frac{\text { Dividend }+ \text { CapitalGain }}{\text { InitialSharePrice }}$

Percertage Retum $.40+2.82$
 12.61

$=.255$ or 25.5%

Rates of Return

Percentage Return = Div. Yield + Cap. Gain Yield

Dividend Yield $=\frac{\text { Dividend }}{\text { Initial Share Price }}$

Capital Gain Yield =
 Capital Gain
 Initial Share Price

Rates of Return

$$
\begin{aligned}
\text { Dividend Yield } & =\frac{.40}{12.61} \\
& =.032 \text { or } 3.2 \%
\end{aligned}
$$

$$
\begin{aligned}
\text { Capital Gain Yield } & =\frac{2.82}{12.61} \\
& =.224 \text { or } 22.4 \%
\end{aligned}
$$

Market Indexes

Dow Jones Industrial Average (The Dow)

Value of a portfolio holding one share in each of 30 large industrial firms.

Standard \& Poor's Composite Index (The S\&P 500)

Value of a portfolio holding shares in 500 firms. Holdings are proportional to the number of shares in the issues.

The Value of a \$1 Investment in 1900

(100,000

Rates of Return Common Stocks (1900-2017)

Expected Return

Instrument	Avg ROR	
T.Bill $\left(r_{f}\right)$	$3.8 g$ Risk Prem.	
T. Bond	5.3	---
Common Stock $\left(r_{m}\right)$	11.5	
		1.5
	$7.7\left(r_{m}-r_{f}\right)$	

$\left.\begin{array}{cccc}\begin{array}{c}\text { Expected } \\ \text { market return }\end{array} & =\begin{array}{c}\text { interest rate on } \\ \text { Treasury bills }\end{array} & +\begin{array}{c}\text { normal risk } \\ \text { premium }\end{array} \\ (1981) 21.7 \% & = & 14 & +\end{array}\right] 7.7$

Measuring Risk

Variance - Average value of squared deviations from mean. A measure of volatility.

Standard Deviation -

Square root of the average value of squared deviations from mean. A measure of volatility.

Distribution for BFI and AMC Returns

While both stocks have the same expected return, AMC's return has a higher variance and standard deviation.

Risk and Diversification

Year	Rate of Return, \%	Deviation from Average Return, \%	Squared Deviation
2008	-37.23	-46.96	$2,204.88$
2009	28.30	18.58	345.31
2010	17.16	7.44	55.40
2011	0.98	-8.74	76.47
2012	16.06	6.34	40.14
2013	33.06	23.34	$\frac{544.74}{3,266.95}$
Total	58.33		
Average return $=58.33 / 6=9.72 \%$			
Variance $=$ average of squared deviations $=3,266.95 / 6=544.49$			
Standard deviation $=$ square root of variance $=23.33 \%$			

Note: Returns shown in the table are rounded to 2 decimal places. The squared deviation in the last column uses the actual returns, without rounding.

Measuring Risk

Percent Rate of Return	Probability of Return	Deviation from Mean	Squared Deviation
+40	.25	+30	$.25 \times 900=225$
+10	.50	0	$.50 \times 0=0$
-20	.25	-30	$.25 \times 900=225$
Expected Return $=(.25 \times 40)+(.50 \times 10)+(.25 \times-20)=10$			

Variance $=$ weighted avg. of squared deviations $=225+0+225=450$
Standard deviation $=$ square of root variance $=\sqrt{450}=21.2 \%$

Expected Return

Instrument	$\underline{\text { Avg ROR }}$	Risk Prem.	Std. Dev.
T.Bill	3.8	---	2.9
T. Bond	5.3	1.5	9.0
Common Stock	11.5	7.7	19.7

Historical Returns, 1926-2002

Risk and Diversification

Diversification - Strategy designed to reduce risk by spreading the portfolio across many investments.

Unique Risk - Risk factors affecting only that firm. Also called "diversifiable risk."

Market Risk - Economy-wide sources of risk that affect the overall stock market. Also called "systematic risk."

Portfolio Variance

Auto Stock

Scenario	Deviation from		
	Rate of	Expected	Squared
Recession	-8	-13	169
Normal	+5	0	0
Boom	+18	13	169

Expected Return $=(-8+5+18) / 3=5 \%$
Variance $=(169+0+169) / \mathbf{3}=112.7$
Standard Deviation = 10.6\%

Gold Stock

	Deviation from	
Rate of Return	Expected Return	Squared Deviation
+20	+19	361
+3	+2	4
-20	-21	441
$(+20+3-20) / 3=1 \%$		
$(361+4+441) / 3=268.7$		
16.4\%		

Risk and Diversification

Portfolio Worksheet

Consider the following:								
			Returns					
Scenario Probability			Auto	Gold	Portfolio (75\% auto, 25\% gold)			
Recession	1/3		-8	+20	. $75(-8)+.25(20)=-1.0 \%$			
Normal	1/3		+5	+3	. $75(5)+.25(3)=+4.5 \%$			
Boom	1/3		+18	-20	. $75(18)+.25(-20)=+8.5 \%$			
Expected Return								
Auto	(-8+5+18)/3 = 5\%							
Gold	$(+20+3-20) / 3=1 \%$							
Portfolio	$(-1+4.5+8.5) / 3=4 \%$							
Variance								
Auto	$(169+0+169) / 3=112.7$ (std. 10.6\%)							
Gold	$(361+4+441) / 3=268.7$ (std. 16.4\%)							
Portfolio	$(25+.25+20.25) / 3=15.2$ (std 3.9\%)							

Risk and Diversification

