
PRINCIPLES OF EFFECTIVE DATABASE DESIGN

Table of Contents

 Page

LESSON 1: WHAT IS A DATABASE? ...1

LESSON 2: IDENTIFYING REQUIREMENTS ..3

LESSON 3: CONCEPTUAL DESIGN - THE STORYBOARD ..5

LESSON 4: CONCEPTUAL DESIGN - CONSTRUCTING TABLES6

♦ Fields..6
♦ Primary Key ...6
♦ Normalization of Data..7
♦ First Normal Form ...7
♦ Second Normal Form...8
♦ Third Normal Form..9
♦ A Common Sense Approach..10

LESSON 5: CONCEPTUAL DESIGN - FIELD PROPERTIES ...12

♦ Naming Conventions ...12
♦ Data Types and Field Sizes..12
♦ Default Values ...14
♦ Data Validation ..14
♦ Formulas ..15

LESSON 6: CONCEPTUAL DESIGN - RELATIONSHIPS AND MODELING................16

♦ Relationship Modeling...16
♦ One to One (1:1) Relationship ...17
♦ One to Many (1:M or M:1) Relationship..17
♦ Many to Many (M:M) Relationship...17
♦ Foreign Key ...18
♦ Joins ...18

LESSON 7: DATABASE QUALITIES ..21

♦ Performance ...21
♦ Maintainability...21
♦ User Friendliness ...21
♦ Models Real World Situation ..22

LESSON 8: TESTING YOUR DESIGN...23

LESSON 9: OTHER DATABASE TOPICS ..24

♦ Databases on Mainframes ..24
♦ Object-Oriented Databases ..24

GLOSSARY..25

ANSWERS TO EXERCISES ...28

This workbook may be reproduced in whole or in part by an employee of the Department of Health and Human
Services. All other reproduction is prohibited unless written permission is obtained from the Training Institute.

Last updated: July 29, 2004

Database Design Page 1

NOTES

LESSON 1: WHAT IS A DATABASE?

OVERVIEW

A database is simply a computerized record-keeping system; a set of
structured, interrelated data. Databases are maintained to make information
available on demand to one or more users or applications. A database is also
something created using a database software application or tool. It differs
from a spreadsheet primarily in terms of purpose (although there is an
increasing blur between these two types of applications, due to the continual
refinement of both database and spreadsheet application software).

Databases can store large amounts of text data and typically display ‘one
record’s worth’ at a time. Spreadsheets, by contrast, are used to perform
calculations quickly and display large amounts of numeric data, although
many people use them to keep lists of information. When debating on whether
to use a database or spreadsheet for a particular task, it’s best to examine the
purpose of your task. Are you dealing with lists of numeric data requiring
calculations or do you need to track multiple occurrences of data such as
names and addresses? If the latter is the case, perhaps a database is what you
need.

A database can be small, containing only a few types of data such as Name,
Rank and Serial Number, or enormous such as those used by State and
Federal Agencies or large corporations. Regardless of size, all databases share
certain basic qualities. For instance, every database:

 Had to be ‘built’.
 Required some degree of forethought (i.e., design).
 Has at least two table components for the purpose of storing data.
 Allows for the creation, deletion, or reading of table data via

records.

Beyond these basic similarities, databases can range tremendously in terms of
purpose, design, and interface.

Some examples of databases in wide use today are:

 Airline reservations
 University student records
 Human Resource databases
 Product Inventories
 Medical records
 Computerized library

Page 2 Database Design

NOTES

 Personal address book, appointment calendar
 Computerized map
 Expert system for medication interaction advice

In fact, the dissimilarities are the very reasons why we address issues such as
how to design a database or which database tool should I use. These issues
are important to us because we all wish to do it ‘right’ the first time. The best
strategy for gaining experience in creating databases, however, is just to
create one!

There are definite phases in developing a database that you should consider.
The first stage is the Requirements stage where content, usage and
performance are scoped out. You will want to interview users to find out their
needs, to get a clear picture of the purpose of the database, what kind of data
needs to be stored and for how long, etc.

The second phase is the Conceptual design stage where you will draw a
schematic of your database design. In other words, you will create a model
showing the different field names and how they relate to each other.

Database Design Page 3

NOTES

LESSON 2: IDENTIFYING
REQUIREMENTS

OVERVIEW

We will create a database to help the Maine Widget Company. Maine Widget
has lots of different products that it sells to many different companies in
Maine and throughout the Northeast. They are a high volume supplier to
other woodworking companies. Most of their products are parts which are
ordered by furniture companies who use them to make finished pieces. Maine
Widget also buys their raw lumber from a handful of wood harvesters, mostly
in-state operations, although they also buy wood from New Brunswick,
Canada. They have enjoyed a lot of growth over the years.

Maine Widget called us to help with a problem. They are experiencing
difficulties tracking their inventory and what they sell to customers. They
would like us to create reports from a database so that they can tell who is
buying what product, and what raw material they need to order to supply the
demand for widgets.

GOALS:

1. Create a database to track sales of widgets by customer.
2. Produce reports to give Maine Widget status on all customer

accounts.

STEPS:

1. Brainstorm a list of questions about the problem. The answers to these

questions should help you define the requirements for the database.

a. What’s the purpose of the database?
b. What subjects must be covered?
c. How are the subjects related to each other?
d. What descriptive information about each subject must be captured?
e. Who will be using the database?
f. What kinds of reports must be generated?

Detailed lists and answers to these questions will help define the data to be
stored in the database.

2. Start from the desired output and work backwards. Design reports that
will give the information needed to answer the questions thought of in step
#1.

3. Design the screen layouts for entering information to your database.

Page 4 Database Design

NOTES

EXERCISE 1:

1) Make a list of the questions that you think Maine Widget will need

answers for in order to straighten out their problem: they need to
know which customers are buying what products.

2) Design a report for customer information, product information, and

sales by customer on a word processor of your choice or on a piece
of paper. Think of all the information you would like to display and
that Maine Widget needs in order to make decisions about the
questions you thought of in step #1.

Page 5

NOTES

LESSON 3: CONCEPTUAL DESIGN -
THE STORYBOARD

OVERVIEW

Using the questions, reports, and screens you have, compose a storyboard
describing the problem. This is a short narrative explaining Maine Widget’s
problem. When you are done, you will want to:

1. Italicize the adjectives.

2. Underline the nouns.

3. Bold the verbs.

The nouns will become tables. The verbs become the relationships between
the tables. The adjectives will become fields.

Arrange words in the following order: adjectives (fields), nouns (tables), and
verbs (relationships).

EXERCISE 2:

1) Compose a storyboard and identify adjectives, nouns, and verbs.

Complete the table below.

Adjectives (fields) Nouns (tables) Verbs (Joins)

Page 6 Database Design

NOTES

LESSON 4: CONCEPTUAL DESIGN -
CONSTRUCTING TABLES

OVERVIEW

Now that you’ve got your questions asked, reports and screens designed, and
a storyboard, the next step is to construct tables which will hold pieces of the
information you need -- fields.

♦ Fields

Using the questions asked, reports, screens, and storyboard list the field names
you will need.

♦ Primary Key

Primary keys are fields that identify each record uniquely in the database.
Each primary key must be chosen for its ability to be unique for every record
that will eventually populate the table. For example, in a Person table, one
might first designate the field, Last Name as the Primary key, because people
are usually referred to by their last names, instead of other descriptors such as
hair color or age. However, in a database (as in real life) it is very likely that
more than one person will share the same last name. Instead let’s use the
Social Security Number to uniquely represent a person. Unfortunately, in
recent years, this too has fallen short in its ability to be unique due to the
‘recycling’ of Social Security Numbers within the fifty states.

To resolve this issue, we may wish to create an artificial primary key,
essentially a computer generated numbering system that will automatically
enter a unique number for each record. In the database world, such primary
key fields are oftentimes referred to as artificial or counter primary keys.
Once you decide to create an artificial primary key, a new attribute must be
created and should be given a name such as Person ID, for ease of
recognition.

Another option is to use more than one field as a primary key. This is called a
compound key. For example, the combination of the field, Social Security
Number and the field, Date of Birth would uniquely identify a person.

Generally speaking, it is best to find a natural (not artificial) field that you can
always be assured is unique, and designate it as the primary key. But if you
cannot be 100% certain that the natural field will contain unique information
for each record over time, then an artificial key is the best solution.

Page 7

NOTES

♦ Normalization of Data

One of the most important aspects of relational database design theory is Data
Normalization.

Benefits when you ‘normalize’ your data:

 Eliminate redundant information.
 Make searches for information efficient and easy to build.
 Make updating, adding, and deleting information easy and accurate.
 Create an overall design that will be easy to maintain over time.

Cost when you ‘normalize’ your data:

 Slows down application.

Unfortunately, an in-depth discussion of all the normal forms is far beyond the
scope of this class. However, this is a good time to gain a basic understanding
of at least the first three normal forms. These are the most critical in
nonscientific information management systems, the basic information
database.

♦ First Normal Form

First Normal Form is when each field contains the smallest meaningful value
and the table does not contain repeating groups of fields. For instance, a field
called Name, which contains both the last name and first name can be further
broken down into two more succinct fields, Last Name and First Name.

EXERCISE 3:

1) Using the questions asked, reports, and storyboard list the field

names you will need.

2) Identify or create primary keys.

3) Using the list of fields, separate them into tables so that they are in

first normal form.

Page 8 Database Design

NOTES

♦ Second Normal Form

Second Normal Form is important only when you’re dealing with Compound
Keys. In this situation, each field must depend on the entire Key including all
fields which comprise the Compound Key.

For example, the following Compound Key consists of Student ID and Class
ID. This is because each record pertains to a particular Student’s School
Attendance, and both fields are necessary to uniquely identify each record. In
other words, each student can attend more than one class and each class can
have more than one student. We have to ‘match up’ the individual student
with the individual class.

Let’s examine the table below:

Student / Class

Student ID

Home Phone

Class ID
Semester Grade

*
*

Does Home Phone pertain to the Whole Key? The answer is No. Home Phone
pertains only to the Student ID, not the Student ID and the Class ID.
Therefore, Home Phone should not be in the Student / Class table.

EXERCISE 4:

1) Are there any compound keys in our work for Maine Widget? If so,

identify them and make sure they’re in 2nd normal form.

Page 9

NOTES

♦ Third Normal Form

Third Normal Form involves examining each field in your design and asking
the question, “Is this field dependent on the key?” For example, if you plan to
use the Social Security Number as the key field, then every other field in the
Person table should be dependent on the Social Security Number. Such fields
might include, hair color or eye color, because each Person (identified by his
Social Security Number) has his own hair color and eye color.

Third Normal Form applies to tables with single key fields. To check for
Third Normal Form, ask yourself, “Does every other non-key field describe
the key field, or does it describe another field?” Let’s examine the following
table:

Student

Last Name
Age
Subject Major
Major Advisor

Student ID*

In this example, Major Advisor is dependent on Subject Major, not Student
ID. Therefore, we can conclude that the Student entity is not in Third Normal
Form. To remedy this situation, we could move both fields, Subject Major and
Major Advisor to a new table called Major.

EXERCISE 5:

1) Are your tables in third normal form? If not, make sure they’re in

third normal form.

Page 10 Database Design

NOTES

 The “Myth”

Every good database is at least third normal form.

Now that we’ve discussed data normalization, let’s do a ‘reality check’.

It would be comforting to believe that once you achieve third normal form
with your design, you’re home free. Unfortunately, this is almost never true.
Why? Because a perfectly normalized database may not be practical in terms
of screen design and performance and also because your database software
may not react well to a true third normal form design. However, you should
strive to attain third normal form with your design, then selectively
‘denormalize’ to achieve your required performance standards.

EXERCISE 6:

1) Think about your needs, and ‘denormalize’ the tables if necessary.

♦ A Common Sense Approach

After analyzing the recommended data normalization methods to achieve third
normal form, this is the last check to make sure your database is designed
properly.
First, make a list of tables and fields. Once you’ve accomplished this, go back
and review your decisions. Try a substitution game using this phrase:

“The Field Name of the Table Name is”

and see if it makes sense. For example: In a Person table, you may have
assigned a field called Car Color. Using substitution, ask yourself if this
phrase makes good sense: “The Car Color of the Person is...

Perso

Nam
Ag
Telephon

Car
Ca

Person

Attribute Example

Page 11

NOTES

Clearly, the answer is “No” because car color is a way to describe a car, not a
person. Therefore, you probably need a Car table as well.

A similar check is to go through your field list and ask yourself, does this field
describe the table or another field. Let’s revisit our original example:

Question: “ Does Car Color describe the table Person or the field Car?

Answer: Car Color describes Car, not Person. So, make a second table called
Car [or should we use the more generic noun, Vehicle, since some employees
may have trucks or RV’s...?] and move the field Color to the Vehicle table.

EXERCISE 7:

1) In the Maine Widget database, look at the tables and ask the “The

Field Name of the Table Name is...”question for each field.

Person

Name
Age
Telephone

Car Color

Person ID

Car

Perso

Nam
Ag
Telephon

Colo

Vehicl

Attribute Example

Person Vehicle

Attribute Example

Page 12 Database Design

NOTES

LESSON 5: CONCEPTUAL DESIGN -
FIELD PROPERTIES

♦ Naming Conventions

All database components (tables, fields, queries, forms, and reports) should be
given meaningful names. Granted, it is more time consuming than just
arbitrarily assigning names such as “Table1”, “Query5” or “Report3a” which
is usually done automatically by the database tool you use to design your
database. The few extra seconds it takes to assign meaningful names is well
worth the effort!

You may wish to use a singular noun to name tables. For example, use
“Person” instead of “People”. This makes it easier to use sentences such as
“Each Person may own one or more Vehicles”.

Do not give objects names you have to change. For example, if you name a
screen, “Training for 1996,” you may have to change the name of the form
after December 31, 1996. Name the form, “Training for This Year.”

♦ Data Types and Field Sizes

OVERVIEW

Good News! Selecting a data type for each field is a relatively easy task, as
the newest database products such as Lotus Approach and MSAccess have
done most of the work for you. Certain data types have become industry
standards as well, so you’ll find many of the same data types in most database
products. For example, Lotus Approach has a separate data type for each of
the following commonly used data types: Date, Time, Text, and Memo.
Microsoft Access varies only slightly in its offering, combining Date and
Time into Date/Time.

Page 13

NOTES

Other Issues:

1. Use Text when none of the other types will work.

2. The data type memo is good for descriptions and comments. On
an 8 ½ by 11 inch piece of paper about 80 characters can fit across
the page horizontally (in portrait mode). If you consider left and
right margins, you actually have 60 to 65 characters. The same
thing is true with your screen. In a normal font style and size,
about 80 characters fit across the screen. Again, if you consider
margins, the number of characters decreases to between 60 and
65. If your data can be held in 65 characters or less, use text,
otherwise use memo.

3. Use numeric when you need to perform mathematical
calculations. Think about the data carefully. Sometimes the
numeric data type is very tempting to use, however it is not
appropriate. Even though zip codes and phone numbers contain
numbers, you will never perform any type of mathematical
operation on them. Using the data type, numeric, for zip codes and
phone numbers actually causes problems. The zip code 04330
would be changed to 4330 because the leading zero would be
dropped. The phone number 626-1234 may be changed to -608
(because 626 minus 1,234 is equal to negative 608) or an error
message may appear. Basically, if you’re unsure as to whether a
particular data item contains ‘only numbers’ or ‘numbers and
letters’, select text. In Lotus Approach, the default size for a
numeric data type is 10.2. This means 10 numbers can be stored to
the left of the decimal, and 2 numbers to the right of the decimal.
MSAccess uses byte, integer, etc. for number field sizes. See
help in MSAccess for further information.

4. Try to determine the maximum length of each text field, but don’t
quibble over a ‘character or two’. For instance, if you’re not sure
whether to allocate 23 or 24 spaces for a particular name, go ahead
and select 25 or 30.

5. The field size for calculated, memo, Boolean, pictureplus, time,
and date data types are fixed in Lotus Approach. In MSAccess,
the fixed field sizes are memo, date/time, OLE object and
yes/no.

(We go over this information in depth in our database I and II
courses.)

Page 14 Database Design

NOTES

♦ Default Values

OVERVIEW

In some cases, it may be useful for you to have information entered in a field
automatically. For instance, you might be constructing a database of names
and addresses of coworkers. Since probably everyone lives in Maine, it
would make sense to have the field STATE filled automatically by a default
value of ME. It saves data entry time.

(We go over this information in depth in our database I and II courses.)

EXERCISE 8:
1) Name the tables and reports. For the fields in the tables you’ve

created, determine the data type, field sizes, and default values you
will need in your database.

♦ Data Validation

OVERVIEW

To ensure that data entry is correct, it is helpful to have the computer check
for the right information in a field before the data is committed or written to
the database. For instance, you might want to make sure that you write a
constraint for the field SALARY if salary ranges are between $10,000 and
$100,000. That way, no one could accidentally enter a salary of $200,000.
Or, if a field is formatted for social security numbers, you might want to have
the computer check to make sure that entries conform to 999-99-9999 where 9
stands for any digit and the hyphen stands for itself. In both cases, if what is
entered is incorrect information, the computer will not allow the person to
leave the field during data entry until the correct information is typed in.

EXERCISE 9:

1) Think about the fields in the tables for Maine Widget and decide if

data validation is useful or even necessary in any field.

2) If so, write the formula or constraint.

Page 15

NOTES

♦ Formulas

OVERVIEW

It is relatively easy in most database packages to have a computed field. You
can set up a formula to produce information in another field very easily. For
instance, you might want to see a field Product Total Cost. If your database
contains the fields Unit Price and Quantity Sold, you can multiply them
together to produce Product Total Cost. Another example is to use a formula
to count the number of records in your query, or as you add records during
data entry, have the computer increment by an interval each time a record is
entered.

(We go over this information in depth in our database II course.)

EXERCISE 10:

1) Construct the formulas for any computed fields in your tables.

Page 16 Database Design

NOTES

LESSON 6: CONCEPTUAL DESIGN -
RELATIONSHIPS AND
MODELING

♦ Relationship Modeling

OVERVIEW

Entity Relationship Modeling (E-R Modeling or E-R Diagramming) is the act
of designing a relational database using our knowledge of data normalization.
E-R Models can be drawn on paper or with the use of an automated drawing
tool. There are many special software tools available for this task on the
market today.

In the database industry, there are many methodologies for ‘drawing’ a
relational database design, all which are valid and basically convey the same
information. The following methodology is a simple one, which borrows
heavily from the ORACLE Case Methodology.

Basic Concepts

 Each prospective table is an entity represented by a ‘soft box’
 Each prospective database column is a field and is listed within its

respective table.
 The asterisk (*) designates the primary key field.

Relationships are designated by lines with optional ‘crow’s feet’ at either or
both ends, depending on whether or not the side is a ‘Many’.

Person

Name
Age
Telephone Color

AutomobilRelationship

Field

One To Many (1:M)
Person ID

Automobile ID*

*
Table

*Primary Key
Entity Relationship Model

Page 17

NOTES

♦ One to One (1:1) Relationship

A 1:1 relationship although valid, is rare. In a 1:1 relationship, each record in
the first table is related to one and only one record in the second table. In
many cases, you may wish to consolidate both tables into one, unless:

 Each table has a long list of fields.
 The subjects of the two tables are clearly distinguishable.
 Your forms will access the tables separately, more often than not.

♦ One to Many (1:M or M:1) Relationship

The most common of all relationships, the (1:M) or many to one relationship
implies that each record on the “1” side may be related to one or more records
on the “M” side.

♦ Many to Many (M:M) Relationship

The complex many to many (M:M) relationship is quite common, and before
implementation (the actual building of your application using a database tool)
requires further resolution in the design phase. Let’s examine the following
diagram:

In the above illustration, as in real life, each Student can attend more than one
Class; likewise, each Class can have more than one Student. Unfortunately,
most database tools cannot accept this relationship as is. So, we will create
another table (basically, a cross-reference table) called Student/Class.

Student

Name
Age
Telephone

Subject

Class

Instructor
Room #

Student ID Class ID

Many to Many

Page 18 Database Design

NOTES

By combining the names of each of the original M:M fields, we create a
meaningful name for the new table. Forever more, this naming convention
will remind us of the table’s purpose. Also note: the Date field was added to
further describe the Student / Class table.

♦ Foreign Key

Although not specifically noted in the previous diagram, foreign keys are
implied whenever a join occurs. A foreign key in a table is actually the
primary key of the table on the other side of the join. It serves as the ‘pointer’
that links two specific records (one in each of the related tables) to each other.
In a 1:M relationship, the foreign key generally is created in the table on the
many side of the join. In a 1:1 relationship, the foreign key can go with either
of the joined tables.

♦ Joins

A join is when data is retrieved from more than one table. This feature of
joining two or more tables is what sets relational database systems apart from
other types of databases. By having one field, the primary key, appear in
different tables, the user has a way to join two tables together. So rather than
having to look at tables separately, you can join them with the primary key
and see the fields of both tables together. It is possible to join many tables
together as long as there is a common field (primary key) among them.

A relationship in which a single table is related to itself is called an Alias Join
or a Self Join. For example, in the following table, the Supervisor field
contains the same type of information as the Person ID field, effectively
‘pointing’ to a different Person ID. This allows two persons to be ‘linked’ to

Studen

Last
Ag
Telephon

Subjec

Clas

Instructo
Room

Student /
Student

Student Class

Class
Dat

* *

*
*

Page 19

NOTES

each other in a subordinate/supervisor relationship. Other times when a self
join might be appropriate are the Parent/Child or Instructor/Student scenarios.

NOTE: A Self Join may be 1:1, 1:M or M:M.

STEPS:

1. Open Access.

2. Create a new database and name it.

3. Create all the tables needed and add the fields to each table as
required.

4. Remember to define the primary keys.

5. Choose EDIT, RELATIONSHIPS from the menu.

6. Add all the tables needed to perform the join.

7. Click on a field name that is common in two or more tables. Select
the field in one table and join from the one side of the relationship
to the many side of the join by clicking and dragging to connect
the tables. A line will connect the two field names between the
tables.

8. Click on the SAVE icon.

Person

Name
Age
Telephone
Supervisor

Person ID*

Alias (Self)

Page 20 Database Design

NOTES

EXERCISE 11:

1) Open Access. Build the tables as outlined in previous exercises.

2) Using the tables of the Maine Widget database, model the join so

that you can find the fields, customer name, customer contact
name, product name, and product description on the sales by
customer report (exercise 1).

Page 21

NOTES

LESSON 7: DATABASE QUALITIES

Regardless of the size and purpose of a new database application, there are
certain qualities we should consider when designing it.

♦ Performance

Our database should respond well for the intended users. This means that
when selected, either via a ‘button’ or menu selection, a form should appear as
quickly as possible on the computer screen. Likewise, data retrieval time
should be minimal and calculations expedient.

♦ Maintainability

Our database design should be as ‘near normalized’ as possible. This makes
for easier modifications should ‘bugs’ occur or the need for enhancements
arise. Likewise, when records are added, modified, or deleted, this process
should be easy and fast.

♦ User Friendliness

A much overused (but not overrated) phrase, “user friendly” refers to the
interface the user ‘experiences’, the ‘glitz and glitter’ if you will. To
elaborate, the forms should be appealing, yet not too cluttered. Color and
special effects should be used carefully, creating a professional, yet attractive
visual effect. Fonts should be an acceptable size and type for ease of reading.

In addition to aesthetics, functionality is part of the user-friendly challenge.
Key strokes and mouse clicks should be minimized as much as possible
creating less work for the user. Movement among the forms and reports
should be easily accomplished and somewhat intuitive, and, if possible, online
context specific help should be available. Forms should fit on one screen to
eliminate scrolling.

Page 22 Database Design

NOTES

♦ Models Real World Situation

Above all, your database should reflect the users’ requirements. For the
developer, this means involving the users in every step of the development
process. At a minimum, you should:

 Conduct a personal interview to gather all data requirements.
 Explain and verify the E-R Model.
 Conduct a visual presentation of all form and report designs.
 Once the application is completed, provide users with a version of the

application for the purpose of acceptance testing.

Page 23

NOTES

LESSON 8: TESTING YOUR DESIGN

OVERVIEW

As you might expect, testing your design is extremely important. Make sure
you dedicate some time in the development phase for testing purposes.

1. If your design consists of one table you will be better off to use a
spreadsheet program for your data.

2. Test each Form:

 Tab through each field.
 Enter data where appropriate.
 Ensure that several records are added to each table.

3. View each table to ensure the correct information was inserted into the

records.

4. ‘Run’ each report.

Following testing, it’s time to distribute your new database. And
keep in mind:

 There will always be enhancements.
Users have great imaginations (and many ideas too)! Welcome their
ideas and continue to perfect your product. Remember, with each
enhancement comes a new learning opportunity.

 The true test comes during everyday usage.
Regardless of how thorough your testing scenario, no testing
procedures are a true match against ‘real world testing’. Expect at
least a few ‘bugs’ to turn up.

EXERCISE 12:

1) Build forms, reports, and queries as needed for Maine Widget

Company.

Page 24 Database Design

NOTES

LESSON 9: OTHER DATABASE TOPICS

♦ Databases on Mainframes

OVERVIEW

Downloading information from a database that resides on a mainframe is
becoming a very common activity. If tasked to do so, be sure to involve all the
right individuals: the ‘caretaker’ of the mainframe and programmers who
understand how to interface with the mainframe database application. Also,
read the help information provided in your database tool, specifically the
“Importing” sections. Above all, talk with other developers who have
accomplished downloads.

It may be very important to remember that unless the download is a live link,
you will soon have outdated information in your smaller database. Figure out
how you will deal with this. What should the “refresh” interval be?

♦ Object-Oriented Databases

OVERVIEW

As data structures become more complex, programmers are turning to a new
database technology that can deliver more power without sacrificing ease of
maintenance. Object-oriented databases are filling this need. Dubbed
OODBMS (Object-oriented Database Management Systems), queries are
performed on objects stored in the database. These objects are entities, which
have certain attributes that can be cloned and used in other applications.
These objects have subtypes and attributes, which set them apart from other
entities. You can achieve more levels of abstraction with better performance.
Expert or rule-based systems make great use of this technology.

Page 25

NOTES

GLOSSARY

 Attribute / Column / Field

A field is a single piece of information about a particular subject. Basically,
these words are synonymous.

 Database Application

A database application is a collection of one or more of the following
components: tables, queries, forms, reports (minimally, a database application
has two tables), providing a series of data storage/display functions for end
users.

 Database / Table

A table is a collection of individual pieces of information which should be
related to the same general topic. Note: These two words may or may not be
synonymous, depending upon the database tool used. For instance, Microsoft
Access uses the word “database” to refer to the database application, which
may contain one or more tables, queries ... By contrast, Lotus Approach refers
to a single table as a “database”.

 Join

When two databases are related, they are said to be “joined”. Joins possess
their own properties and can yield varying results when retrieving information
from the joined tables.

 Key Attribute / Primary Key / Key

An attribute/field is what you designate as the unique identifier for a single
row in a database. Typically, the Key field is used as the ‘join’ field when
databases are related to each other. The Primary Key can be complex
(compound), artificial (a counter field which consists of serialized numbers),
or natural (a unique field that exits in your table like a birth date).

 Normal Form: First

First Normal Form is when each field contains the smallest meaningful value
and the table does not contain repeating groups of fields.

 Normal Form: Second

Second Normal Form is important only when you’re dealing with Compound
Keys. In this situation, each field must depend on the entire Key including all
fields which comprise the Compound Key.

Page 26 Database Design

NOTES

 Normal Form: Third

Third Normal Form involves examining each field in your design and asking
the question, “Is this field dependent on the key?”

 Relationship: Alias (Self) Join

A relationship in which a single table is related to itself. For example, in the
following table, the Supervisor field contains the same type of information as
the Person ID field, effectively ‘pointing’ to a different Person ID. This
allows two persons to be ‘linked’ to each other in a subordinate/supervisor
relationship. Other times when a self join might be appropriate are the
Parent/Child or Instructor/Student scenarios. Note: a Self Join may be 1:1,
1:M or M:M.

Person

Name
Age
Telephone
Supervisor

Person ID*

Alias (Self) Join

 Relationship: One-to-One (1:1)

A One-to-One relationship is when a single record in each of the joined tables
may be related to one and only one record in the other table.

 Relationship: One-to-Many (1:M or M:1)

A One-to-Many relationship is when a single record in the table on the one
side of the join may be related to one or more records in the table on the many
side of the join.

 Relationship: Many-to-Many (M:M)

A Many-to-Many relationship is when a single record in either table of the
join may be related to one or more records in the other table of the join. M:M
relationships must be resolved before the application can be created in a
database tool.

 Row / Record

Page 27

NOTES

A record is a collection of information (in a table) consisting of one
occurrence of each field. For example, in a Person table comprised of the
following fields: Last Name, First Name, Age and SSN, a typical row might
contain the following information: Brown, Sam, 45, 007-55-1234.

Page 28 Database Design

ANSWERS TO EXERCISES

EXERCISE 1

1.

How many vendors do they have?
How many customers do they have?
What products are they selling the most of?
What efforts have been made to manage the inventory so far?
Who is involved in the inventory process?
Who is involved in tracking sales?
Where are most of the customers located?
What is the most popular product?
How much of it have they sold by customer?
Are they buying enough raw materials for our most popular product?

Database Design Page 29

2.

DATE: 99/99/99 MAINE WIDGET COMPANY PAGE: 99
TIME: 99:99:99 SALES BY CUSTOMER

CUSTOMER CUSTOMER PRODUCT PRODUCT QUANTITY
NAME CONTACT NAME NAME DESCRIPTION SOLD
!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!! 999.99

DATE: 99/99/99 MAINE WIDGET COMPANY PAGE 99
TIME: 99:99:99 CUSTOMER INFORMATION

NAME ADDRESS CITY STATE ZIP PHONE CONTACT
NAME
!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!! !! !!!!!! 999-999-9999
 !!!!!!!!!!!!!!!!!!!!!!!!

DATE: 99/99/99 MAINE WIDGET COMPANY PAGE 99
TIME: 99:99:99 PRODUCT INFORMATION - BEGINNING OF MONTH

 BIN IN
NAME DESCRIPTION COLOR SIZE LOCATION STOCK
!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!! !! !!!!!! 9999.99

Page 30 Database Design

EXERCISE 2

Storyboard:

Maine Widget has found themselves unable to track sales on many of their customers’ invoices. In
order to straighten out this problem, Maine Widget would like to know which customers are buying
which product. It would also be helpful for Maine Widget to know what raw material to buy to supply
the demand.

Adjective Noun Verb
 Maine Widget has found
 sales to track
customer’s invoices
 problem to straighten
 Maine Widget would like
which customers are buying
which product
 It would be helpful to

know
raw material to buy
 demand to supply

Database Design Page 31

EXERCISE 3

1.

customer name
customer address
customer city
customer state
customer zip
customer phone
customer contact name
product name
product description
product in stock beginning of month
product bin location
product size
product color
customer product quantity sold

Page 32 Database Design

2 and 3.

*customer Id
customer name
customer address
customer city
customer state
customer zip
customer phone
customer contact first name
customer contact last name
*product Id
product name
product description
product in stock beginning of month
product size
product color
*sales Id
customer Id
product Id
customer product quantity sold

* Primary key

EXERCISE 4:

There are no compound keys.

Database Design Page 33

EXERCISE 5

*customer Id *product Id *Sales Id
customer name product name customer Id
customer address product description product Id
customer city product in stock beginning of month customer product quantity sold
customer state product size
customer zip product color
customer phone
customer contact first name
customer contact last name

 *Primary Key

EXERCISE 6

*customer Id *product Id *sales Id
customer name product name customer Id
customer address product description product Id
customer city product in stock beginning of month customer product quantity sold
customer state product size
customer zip product color
customer phone
customer contact name

 *Primary Key

Page 34 Database Design

EXERCISE 7

Customer Id of Customer table is...
Customer Name of Customer table is...
Customer Address of Customer table is...
Customer City of Customer table is...
Product Id of Product table is...
Product Name of Product table is...

Database Design Page 35

 EXERCISE 8

Report names: Sales by Customer, Customer Information, and Product Information
Customer Table Data Type Size Default Value
*customer Id Counter
customer name Text 20
customer address Text 20
customer city Text 20
customer state Text 2 ME
customer zip Text 9
customer phone Text 10
customer contact name Text 20

Product Table Data Type Size Default Value
*product Id Counter
product name Text 20
product description Text 20
product in stock beginning
of month

Number Double

product color Text 10
product size Text 5
product bin location Text 5

Sales Table Data Type Size Default Value
*sales Id Counter
customer Id Number Double
product Id Number Double
customer product quantity
sold

Number Double

 *Primary Key

EXERCISE 9

Page 36 Database Design

There are no validation checks needed. However, there may be a special reason to include one.

EXERCISE 10
The entry, “In Stock,” on the report, “Product Information - Beginning of Month,” will be equal to the
previous month’s number MINUS the total for each product of the entry, “Quantity Sold,” on the report,
“Sales by Customer.” For this example, we will not add the number of items purchased during the month,
but, of course, we would have to in the “real world.”

Database Design Page 37

EXERCISE 11

Page 38 Database Design

EXERCISE 12

Database Design Page 39

Page 40 Database Design

