

Principles Of Engineering

Final Examination
Part A

Fall 2006-07

Student Name:

\qquad
Date: \qquad
Class Period:

Total Points:	140
Converted Score:	
	150

Directions: Circle the letter of the response that best answers the question or completes the statement. Then fill in the separate Part A Answer Sheet.

Reference Tables are available on Pages 9 \& 10.

1. Orville and Wilbur Wright's first successful flight of a heavier-than-air powered aircraft took place during which century?
A. $18^{\text {th }}$ century
B. $19^{\text {th }}$ century
C. $20^{\text {th }}$ century
D. $21^{\text {st }}$ century
2. An engineering technician would generally be more involved in \qquad than would an engineer.
A. researching a product idea
C. servicing and maintaining equipment
B. the initial design of a product
D. conducting complex analysis

Figure 1a

Figure 1b

Figure 1a represents $a(n)$ \qquad drawing and Figure 1b represents $a(n)$
3.
\qquad drawing.
A. isometric, orthographic
C. cabinet oblique, orthographic
B. orthographic, isometric
D. isometric, cavalier oblique
\qquad would be an effective means of documenting the development of a 4. manufacturing process. It would include sections such as a title page, table of contents and appendices.
A. An abstract
C. A technical report
B. A resume
D. A design brief
5. The image shown in Figure 2 represents a \qquad .
A. line graph.
C. bar chart.
B. spreadsheet.
D. pie chart.

Figure 2
6. An effective presentation \qquad .
A. would not include visual aids.
C. has text that will be read word for word by the presenter.
B. contains a few graphics and large amounts of text.
D. lists major points rather than lengthy details.
7. In the design process, a constraint would be defined as \qquad .
A. a restriction or guideline.
C. the introduction of a new idea.
B. a procedure or plan.
D. an old idea being reintroduced.
8. Study the gear train in Figure 3. What is the purpose of the center gear?
A. To increase the
rotational output
B. To maintain the direction of rotation from the input to the output gear
C. To decrease the rotational output
D. To change the direction of rotation from the input to the output gear

9. The stapler in Figure 4 is an example of what class of lever?
A. $1^{\text {st }}$ class
B. $2^{\text {nd }}$ class
C. $3^{\text {rd }}$ class
D. $4^{\text {th }}$ class

10. A CD is used as a wheel on a mouse trap powered vehicle, and has a diameter of 7.45 ". If the mouse trap powered vehicle must travel exactly 144 ", how many revolutions would the wheel make? Assume that no sliding or slipping occurs between the wheel and the track surface.
A. 615
B. 6.15
C. 615
D. 12.3
11. If a simple machine requires more effort force than resistance force, the mechanical advantage would be a value that is \qquad .
A. one.
C. less than one.
B. greater than one.
D. zero.
12. A screwdriver functions as $a(n)$ when used to pry open a can of paint, as illustrated in Figure 5.
A. wedge
C. screw
B. lever
D. inclined plane

Figure
13. What is the resistive force of the pulley system in Figure 6 if it is in static equilibrium, has a mechanical advantage of 5 , and requires 20 lbs . of effort force?
A. 4 lbs .
B. 100 lbs .
C. 400 lbs .
D. 80 lbs .

Figure 6
14. The sun heating the earth is an example of which type of energy transfer?
A. Convection
C. Radiation
B. Conduction
D. R-value
15. What type of fluid is most commonly used in industrial hydraulic systems?
A. Water
C. Tree sap
B. Gas
D. Oil
16. According to Pascal's Law, a force that is exerted on a fluid will be transferred
\qquad against the walls of that fluid's container.
A. equally
C. partially
B. inversely
D. fluidly
17. If one light bulb burns out in a string of lights, and the rest stay lit, it is reasonable to assume that the lights are wired in \qquad .
A. series.
C. order.
B. line.
D. parallel.
18. If the motor in Figure 7 draws 0.15 Amps and provides 80 Ohms of resistance, how many Volts should the multimeter read?
A. 0.12 VDC
B. 12 VDC
C. 120 VDC
D. 1200 VDC

Figure 7

19. Which of the following is used to take information from input devices, process it according to a program, and control output devices?
A. microswitch
C. microprocessor
B. micromachine
D. microwave
20. If electrical wires are connected to ports 1 and 3 on the limit switch in Figure 8, then the switch will be wired normally-
\qquad -
A. common.
C. closed.
B. open.
D. neutral.

Figure 8
21. A characteristic of a closed-loop system that differentiates it from an open-loop system is that a closed-loop system has \qquad -.
A. input.
C. feedback.
B. process.
D. output.
22. Which of the following input device is controlled by a magnetic field?
A. Reed Switch
C. Electromagnet
B. Photoresistor
D. Lamp
23. What is the condition required for the truss system in Figure 9 to be in static equilibrium?

A. $F_{1}+F_{2} \operatorname{Sin} \theta=R_{1 Y}+R_{2 Y}$
B. $\mathrm{F}_{2} \operatorname{Cos} \theta=\mathrm{R}_{2 \mathrm{Y}}$
C. $F_{1}+F_{2}=R_{1 Y}+R_{2 Y}$
D. $F_{1}=R_{1 Y}$

Figure 9
24. What force should the rope be able to withstand at Point C in order for the beam in Figure 10 to be in static equilibrium?
A. 5 lbs .
B. 20 lbs .
C. 10 lbs .
D. 15 lbs .

Figure 10
25. Which of the following is a scalar quantity?
A. Force
C. Acceleration
B. Mass
D. Velocity
26. Based on the truss shown in Figure 11, what is the value R_{AY} ?
A. 20 lbs .
B. 15 lbs .
C. $\quad 10 \mathrm{lbs}$.
D. 5 lbs .

Figure 11
27. If an engineer knows the moment of inertia (also referred to as second moment of area) of a structural beam's cross-section, then he or she can use that information to calculate the \qquad .
A. deflection in the beam.
C. mass of the beam.
B. standard deviation of the
D. centroid of the beam. beam.
28. What do points A, B and C represent in Figure 12 ?

A. Centroids
C. Mid Points
B. Medians
D. Yield Points

Figure 12
29. All materials are composed of \qquad that are joined together to form molecules.
A. alloys
C. compounds
B. elastomers
D. atoms
30. \qquad of materials include: chemical, physical, mechanical, electrical, thermal, and dimensional.
A. Resistance
C. Toughness
B. Phases
D. Properties
31. Which of the following manufacturing tools is used to create parts from heated plastic?
A. Drill Press
C. Lathe
B. Injection Molder
D. Milling Machine
32. Which of the following manufacturing processes is used to machine a long piece of metal into a cylindrical form?
A. Turning
C. Annealing
B. Forging
D. Threading
33. \qquad is used to ensure that a manufactured product conforms to standards at various points during its manufacture.
A. Variance
C. Standard deviation
B. Quality control
D. Normal distribution
34. The dial caliper in Figure 13 is set to a measurement of \qquad inches.
A. 0.010
B. 1.010
C. 0.001
D. 0.101

35. If an object is stressed beyond its elastic region, it will \qquad when the stress is removed.
A. break
C. be permanently deformed
B. return to its original size and
D. cool down shape
36. A material that experiences very little plastic deformation prior to rupture or fracture would be referred to as a \qquad material.
A. brittle
C. tensile
B. polymer
D. ductile
37. What is the strain value of a 10 inch long rod that has a cross-sectional area of $0.2 \mathrm{in}^{2}$, and that has elongated 0.05 inches?
A. 0.005
B. 0.02
C. 0.5
D. 2
38. If an engineer created an evaluation report that describes why a levy failed during a hurricane, it would likely be presented as a(an) \qquad .
A. abstract.
C. case study.
B. design brief.
D. essay.
39. The phenomenon that allows any projectile in motion to come back to rest on the ground is \qquad .
A. moment of inertia.
C. initial velocity.
B. displacement of projectile.
D. acceleration due to gravity.
40. When a projectile is thrown, the \qquad component of its velocity will remain constant throughout its flight.
A. horizontal
C. vertical
B. Y
D. Z

POE Exam Reference Tables

Circular Shapes

Formulas	Variables
	$C=$ circumference
$A=\pi D$	$\pi=p i$
	$D=$ diameter
	$A=$ area
	$r=$ radius

Electrical Systems

Formulas	Variables
$E=I R$	$E=$ voltage
$I=$ current	
$R=$ resistance	

Mechanisms

Formulas	Variables
	MA = Mechanical Advantage
$M A=R \div E$	$\mathrm{R}=$ resistance force
Lever MA = LE \div LR	$E=$ effort force
Wheel and Axle MA = LE \div LR	LE = distance to effort
Pulley MA = Total number of strands supporting the load	LR = distance to resistance
Inclined Plane or Wedge MA $=\mathrm{L} \div \mathrm{H}$	L = slope length
Screw MA = C \div SP	$\mathrm{H}=$ slope height or width thickness
$\mathrm{SP}=1 \div \mathrm{TPI}$	$C=$ circumference
	SP = screw pitch TPI = threads per inch

Statics

Formulas	Variables
$\mathrm{M}=\mathrm{FD}$	$\mathrm{M}=$ moment
	about a point
	$F=$ force
	$D=$ perpendicular
distance	

Static Equilibrium

Formulas	Variables
$\Sigma \mathrm{F}_{X}=0=\mathrm{X}$ (right) -X (left)	$\sum=$ sum
$\Sigma \mathrm{F}_{\mathrm{Y}}=0=\mathrm{force}$	
	M (up) $-\mathrm{Y}($ down $)$
$\Sigma \mathrm{M}=0=$ moment	
	about a point
	CCW = counter-
	clockwise
	CW = Clockwise

Properties of Materials

Formulas	Variables
	$\delta=$ total deformation
$\sigma=\mathrm{P} \div \mathrm{A}$	$\sigma=$ stress
$\in=\delta \div \mathrm{L}$	$\epsilon=$ strain
$\delta=\mathrm{PL} \div \mathrm{AE}$	$\mathrm{E}=$ modulus of elasticity, Young's Modulus
$\mathrm{E}=\sigma \div \epsilon$	$\mathrm{P}=$ axial force
$\mathrm{E}=\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right) \mathrm{L}_{0} /\left(\delta_{1}-\delta_{2}\right) \mathrm{A}$	$\mathrm{A}=$ area

Right Triangle Ratios

Formulas	Variables
$\sin \theta=$ opposite $/$ hypotenuse $\cos \theta=$ adjacent $/$ hypotenuse $\tan \theta=$ opposite $/$ adjacent	$\theta=$ angle

Gear Ratios

Formulas	Variables
	GR = gear ratio
	N in = number of teeth on driver gear
GR = Input Rate / Output Rate	N out = number of teeth on driven gear
D in = driver gear diameter, in	
SR = Win / Wout	D out = driven gear diameter, in
Win / Wout = Dout / Din	W in = driver gear speed, rpm
Tin / Tout = Din / Dout	W out = driven gear speed, rpm
	T in = torque of driver gear, ft lbs.
	T out = torque of driven gear, ft lbs.
	SR = speed ratio

Kinematics

Formulas	Variables
$\mathrm{x}=\frac{\mathrm{V}_{\mathrm{i}}^{2} \sin 2 \theta}{\mathrm{~g}}$	$\mathrm{v}_{\mathrm{i}}=$ initial velocity $\theta=$ angle $g=$ gravity $\mathrm{x}=$ range

