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Abstract 

 

 

In designing and constructing heat exchangers with transverse finned tubes in cross-
flow, it is necessary to know correlations for calculating heat transfer and pressure 
drop. In addition to the common use of the Reynolds and Nusselt groups of 
dimensionless numbers, heat conduction in the fins also has to be accounted for in 
calculating heat transfer. A reduction coefficient termed “fin efficiency” is therefore 
introduced, by which the actual heat transfer coefficient is multiplied in order to get the 
apparent heat transfer coefficient. “Fin efficiency” is computed according to the laws of 
heat conduction under the assumption that the actual heat transfer coefficient is 
uniformly distributed across the fin surface.  
 
Introducing geometrical constants for the fins, that is fin height, fin pitch, and fin 
thickness, into the equations for heat transfer and pressure drop makes these equations 
more bulky than the one for bare tube heat exchangers. Moreover, there is no self-
evident characteristic dimension for a finned tube, as is the case 
with tube diameter for bare tubes, therefore many different proposals for the 
characteristic dimensions exist, which are in turn needed for setting the Reynolds and 
Nusselt dimensionless number groups. Some authors even use different characteristic 
dimensions for the Reynolds number and for the calculation of heat transfer and 
pressure loss. 
 
Due to the complex geometry of finned tube designs, equations for heat transfer and 
pressure loss are derived mostly from experiments. When using for design purposes the 
equations obtained, a thorough knowledge of the condition of the tested finned tubes is 
necessary, i.e. of the materials and shape of fins, tubes and mode of attachment. For 
steam boilers and high pressure heat exchangers in the process industry, spiral finned 
tubes are commonly used today; here a ribbon of steel is wound spirally around a boiler 
tube and welded to it. For these finned tubes, coefficients of heat transfer and pressure 
loss are higher than for tubes with circumferential fins. Finned tubes are mostly 
arranged in bundles, which may be arranged staggered or in line. The later coefficients 
of heat transfer are in fact approximately only two thirds compared to staggered arrays. 
Therefore, many more staggered finned tube bundles have been tested. The equations 
for heat transfer in finned tube bundles give the results for a certain number of rows in 
longitudinal direction. For a smaller number of rows in staggered bundles, heat transfer 
is lower, while for in-line bundles it is higher. 
 
With air coolers and heaters, tube bundles often have continuous fins, which may be 
easier to manufacture as long as fin pitch and the tube diameter are small. The 
equations for heat transfer and pressure loss are somewhat different for such tube 
bundles with continuous fins as compared to serrated finned tubes. In order to achieve 
a very small air-side pressure loss, extended tubes of various shapes may be used in the 
place of circular tubes, when fluid pressure in the tubes permits non-circular tubes. In 
some cases, corrugated or wavy fins are used, whereas corrugated fins increase heat 
transfer and wavy fins have a better ratio of heat transfer to pressure loss. 
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3

1 Introduction

Heat exchangers with extended surfaces are widely used whenever heat is to be
exchanged between a medium that transports heat well (e.g. liquid, liquid with
phase transition) and one that does not (e.g. gas with small density). On the side
of the medium transporting heat poorly, the heat-transferring surface is enlarged
by an arrangement of fins or other elements such as pins or needles. These
elements for enlarging the surface can be attached up to a relatively great height
to the surface, or they can be small and formed from the tube material itself.
Fins can be arranged in tubes on both the outside and the inside and mainly
transversely or along the sleeve shaft axis. From among the great abundance of
possible arrangements, only tubes with outside fins, arranged in an approximately
orthogonal direction to the sleeve shaft, will be considered here.

2 Fundamentals of heat transfer

2.1 Design of finned tubes

Figure 1: Finned tube with annular fins

Depending on their intended purpose, finned tubes are manufactured in numerous
designs from many materials or fin/tube material combinations. As an initial
design, cast finned tubes for economizers were used. Only a small number of
finned tubes were manufactured from solid materials for testing purposes. Both
were made with annular fins (figure (1)).
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Today, spiral tubes in chemical engineering installations and steam boilers pre-
vail. Fins in the form of steel strips are wound around a boiler tube and affixed
to the core tube either by means of resistance or by laser welding (figure (2)).

Figure 2: Finned tube with spiral fins

In cases of reduced requirements upon heat transfer and not too high gas tem-
peratures, finned tubes with fins wound around the tube only by pressure are
also used (figure (3)). These fins are often zinc-plated after production to be
more resistant against corrosion. This additionally results in a tighter connection
between fin and tube that conducts heat better.

Figure 3: Finned tubes with spiral fins mounted by pressure

In ventilation and air conditioning (HVAC) engineering, finned tubes with
mounted fins are also used; these are either copper (Cu) tubes with Cu or alu-
minium fins or steel tubes with steel fins. Fins can also be soldered to the tube
(Cu tube with Cu fins) or zinc-plated (steel tube with steel fins).

For improved conduction at the tube base, mounted fins which are often only
wound by pressure around the tube are fitted with a T-shaped (figure (4)) or
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L-shaped base (figure (5)). Coiled fins can also have an L-shaped base.

Mounted fins can also be attached to tubes with a non-circular cross-section, for
example oval or flat tubes; the latter are used to reduce gas-side pressure drop. In
HVAC as well as refrigeration engineering, fins which pass through several tubes
are also used. Mounted fins also can have wavy form orthogonal to the direction
of the flow to improve heat transfer.

2.2 Fin efficiency

For heat exchange between a medium transporting heat well (e.g. liquid, liquid
with phase transition) and a medium transporting heat poorly (e.g. gas with a
low density), finned tube heat exchangers are often used. The heat-exchanging
surface on the side of the medium transporting heat poorly is enlarged by an
arrangement of fins. The external surface per m tube is increased by up to 15
times by the fin arrangement, the transferable amount of heat does not, however,
increase to the same extent. This is due to heat conduction through the fins,
whereby the external fin sections reach a different temperature from the tube
base, i.e. one that is closer to the gas temperature, and therefore the effective
temperature difference of the heat transfer is reduced.

Figure 4: Fins with t-shaped fin base

The amount of heat conduction through simply shaped fins, e.g. fins on a flat
plate or annular fins of constant thickness around a core tube, may be calculated
strictly by mathematical means.

It is common practice to consider heat conduction through the fin in terms of
the so-called fin efficiency, which results from the following consideration: the
heat transferred at the surface element is proportional to the difference in each
case between the fin temperature and the gas temperature integrated over the fin
surface. It equals the temperature difference between the gas and the core tube
multiplied by the fin efficiency.
The heat transfer of a tube with an enlarged surface would be calculated in the
same way as for a normal tube if the fins or pins, which are arranged for enlarge-
ment of the surface, display an infinitely high amount of thermal conductivity.
Since this is not the case, the finite conduction through the fin element causes
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Figure 5: Fins with l-shaped fin base

an approximation of the temperature to that of the heat-transferring medium.
The effective temperature difference for the heat transfer between the fin surface
and the ambient medium is thus lowered and reduces in this way the amount of
heat transferred. This process is taken into consideration by the introduction of
the concept of fin efficiency, which represents neither a quality criterion nor one
of economic efficiency. Heat exchangers with low fin efficiency can be technically
and economically comparable to those with high fin efficiency.

Q =
ARo + ARiηR

Atot

(1)

Fin efficiency is of course only applied to those parts of the entire surface which
are in contact with elements for enlarging the surface or with the fin.

2.2.1 Plain geometry

The differential equation for the temperature change in the straight and flat fin
with a constant cross-section is given here in order to derive relationships for fin
efficiency.

d2ϑ

dx2
− 2α

λRisR
ϑ = 0 (2)

The heat transfer coefficient α is assumed in this case as constant and indepen-
dent of location. From equation (2) the temperature change in the fin can be
calculated; this is dependent on the parameter

m =

√
2α

λRi sR
. (3)

When considering boundary conditions, and depending on the distance x from
the fin base ϑ(x), the temperature is given by:
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ϑ = ϑRF
cosh(m(h− x))

cosh(mh)
(4)

The fin efficiency is the ratio of the effective heat flow emitted by the fin to the
heat flow the fin would emit if it had the same temperature overall as the fin base
ϑF instead of the lower average temperature ϑRi, (figure (6)).

ηR =
Aα(ϑRi − ϑF )

Aα(ϑRF − ϑF )
=

(ϑRi − ϑF )

(ϑRF − ϑF )
(5)
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Figure 6: Definition of fin efficiency

In this case ϑF is the constant temperature of the fluid surrounding the fin. The
effective heat flow emitted by the fin equals the heat flow which is achieved by
conduction from the fin base into the fin and can be calculated by:

QR = −λRi b sR
dϑ

dxx=0
(6)

This leads to the known equation for the fin efficiency of flat fins of constant
cross-section.

ηR =
tanh(mh)

mh
(7)

Fins do not however necessarily have a constant cross-section (rectangular pro-
file). For example, a parabolic profile with a spike at the end results from the heat
conduction-equation for a fin with the lowest weight at a certain thermal output.
A triangular profile, or because of easier manufacturing and handling, a trape-
zoidal profile best represents this solution. A closed solution for the triangular
profile exists, however only by using Bessel functions.

ηR =
1

mh

I1(2mh)

I0(2mh)
(8)
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A calculation with Bessel functions can be avoided by means of an approximation.
In this case the formula (7) is used, however φmh is inserted in place of mh.
According to [34] the following formula is should be used for φ, which yields a
approximation for ηR with an accuracy of 0.1%.

φ = 0.99101 + 0.31484
tanh(0.74485mh)

mh
(9)

In most cases, a much rougher approximation is sufficient for the calculation of a
triangular fin. With this method a corrected fin thickness is used in the equation
for a rectangular fin (7):

sR =
3

4
s
′
R (10)

In this case the thickness of the triangular fin at the base is s
′
R. For this formula

a generalization exists, whereby the triangular fin is considered as a special case
of the trapezoidal fin; for the latter one

sR =
3

4
s
′
R +

1

4
s
′′
R (11)

is valid, where s
′′
R is the thickness of the trapezoidal fin at the top. To simplify

more complex fin cross-sections, sR
2
can be replaced by A

U
in equation (3). Here A

is the mean heat-conducting cross-section of the fin and U the mean circumference
at which heat is transferred. Thus:

m∗ =

√
αU

λRiA
(12)

Closed solutions exist for the calculation of fin efficiency of flat fins. In this case
the relation

s =
s
′
R

2
(1− hx

h
)
1
2 , (13)

for the fin profile of fins with parabolic cross-section results in an efficiency value
as follows:

ηR =
1

mh

I 2
3
(4/3mh)

I−1
3
(4/3mh)

. (14)

This fin geometry is hardly used because it does not offer any thermal advantages
in comparison with others. An existing closed solution for fin efficiency ηR is not
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a sufficient reason for an application. The other kind of parabolic fin, with the
vertex of the parabola at the fin top, results in a fin with a sharp spike at the top
which is a disadvantage for production and handling. This profile is, according
to Th. E. Schmidt [1], the one with the smallest volume and weight for a given
transferable amount of heat. The fin profile is given by:

s =
s
′
R

2
(1− hx

h
)2 (15)

In this way fin efficiency is calculated as:

ηR =
2√

(2mh)2 + 1 + 1
(16)

Needles or pins can also be attached to enlarge the surface. Needle fins with
cylindrical cross-section are commonly used. Fin efficiency here can be calculated
as

ηR =
tanh(

√
2mh)√

2mh
(17)

wherem is derived from the diameter of the needles. This relationship is identical
to equation (7) if the equivalent fin thickness is half the diameter of the needle
fin.

2.2.2 Finned tubes

Fins are used to enlarge the flat surfaces of any kind of tube. The basic consid-
erations about fin efficiency are also valid for cylindrical geometry. Solutions of
the differential equation in cylindrical polar coordinates are of a different nature
than solutions in Cartesian coordinates.

s(r)
d2θ

dr2
+

(
s(r)

r
+
ds(r)

dr

)
dθ

dr
− α

λRi

θ = 0 (18)

s(r) in this case is one-half the fin thickness depending on the radius r. The
solution has to satisfy the boundary conditions at the fin base

r = r0 θ = θ0 (19)

and at the fin top
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r = r0 + h
dθ

dr
= 0. (20)

As is to be expected for the differential equation in cylindrical polar coordinates
above, an expression with modified Bessel functions results for fin efficiency.

ηR =
2

mh( R
rA

+ 1)

[
I1(mrA)K1(mR)− I1(mR)K1(mrA)

I0(mrA)K1(mR) + I1(mR)K0(mrA)

]
(21)

rA in this case is the radius of the core tube, R the radius above the fins.

Not long ago the detection and interpolation of Bessel functions in mathematical
tables was still arduous and laborious. Thus approximations were introduced
to replace this activity. The approximation by Brandt [9] is the most precise
equation.

ηR =
2rA tanhmh

(2rA + h)mh

[
1 +

tanhmh

2mrA
− 0.71882

[tanhmh]3.7482

[mh]1.481

]
(22)

Much simpler, yet still precise enough, is the approximation equation by Th. E.
Schmidt [1]. The maximum error for ηR > 0.5 is approx. 1%.

ηR =
tanh (mhϕ)

mhϕ
(23)

ϕ = 1 + 0.35 ln (1 +
h

rA
) (24)

With annular fins, only a closed solution exists for rectangular fins and hyperbolic
fins with the profile s = s

′′
R

rA
2 r

[11]. Finned tubes with triangular or trapezoidal
fins are calculated with a corrected fin thickness. This is the arithmetic mean of
fin thickness at the fin base and at the fin top.

The heat transfer at the fin top is not considered in the mathematical solutions
for heat conduction in annular fins shown above. To take this into account,
according to Th. E. Schmidt [1] the fin height should be increased by one-half
the fin thickness at the fin top:

h′ = h+
sR
2

(25)

Equation (23) thus becomes:

ηR =
tanh (mh′ϕ)

mh′ϕ
(26)
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Tubes with mounted rectangular fins are frequently used. Rectangular or hexag-
onal fin forms result in particular when fins are made to pass over several tubes.
Whether fins are calculated as square, rectangular or hexagonal only depends
on the arrangement of tubes as well as the transverse and longitudinal pitch.
The fins of tubes arranged in line should be considered rectangular while those
of tubes in staggered arrangement as hexagonal. The equivalent fin height for
rectangular fins can be calculated according to the following equation:

h = 0.565 bw

√
aw
bw

− rA (27)

bw in this case represents the longer side of the rectangle, aw the shorter one.
According to [15] a similar formula which provides more precise results is valid:

h = 0.64 bw

√
aw
bw

− 0.2− rA (28)

The difference between the simple formula and the more precise one is particu-
larly important in the case of smaller aspect ratios aw

bw
. According to the VDI

Waermeatlas [15], equation (7) is to be written as:

ηR =
tanh (ϕA

dA
2
m)

ϕA
dA
2
m

(29)

h is thus related to the tube radius dA/2 = rA using a shape factor ϕA: h =
ϕA dA/2. If fins are attached to separately the each individual tube, the reduced
fin height h′ of rectangular fins is determined according to equation (25) to take
into account heat transfer at the fin top. This is more vividly demonstrated
by using this notation than that used in VDI Waermeatlas [15]. If fins pass over
several tubes, the heat transfer at the fin top is taken into account less or dropped
completely. For a fin with a regular hexagon, the equivalent fin height becomes:

h = 0.551 sW − rA (30)

sW in this case is the width across flats of the hexagon. The fin height h for an
irregular hexagon is calculated as:

h = 0.635 s
′
W

√√√√s
′′
W

s
′
W

− 0.3− rA (31)

In this case s
′′
W is the larger width across flats, which is obtained by s

′′
W =√

t2l + t2q/4. s
′
W becomes s

′
W = tq if tl ≥ tq/2. If tl < tq/2 then s

′
W = 2 tl.
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A short remark should be made here concerning the selection of fin height and
fin thickness in dependence of the thermal conductivity of the material of the fin
and the heat transfer number.

According to [34], for flat fins with a height h and a thickness sR a condition for
the maximum of transferred heat results from:

m.h =

√
2α

λRi sR
h = 1.4192 (32)

Hence a dependency results between the fin height, on the one hand, and the
square root of the fin thickness as well as the square root of the heat conduction
coefficient and, reciprocally, the square root of the heat transfer number on the
other. Thus, in those few cases when one is free in the choice of fin dimensions,
it is possible to get a reasonable specification using the simple equation showed
above.

2.3 Special consideration in the calculation of heat trans-
fer

The external surface per m tube is enlarged by up to 15 times through the fin
arrangements. The transferable amount of heat does not increase to the same
extent, however. The reason for this is the conduction through the fins, which
results in the external fin sections adopting a different temperature from the
core tube, one that is closer to the gas temperature, thus reducing the effective
temperature difference of the heat transfer.

With the aid of fin efficiency, the apparent heat transfer coefficient α is calculated
from the actual or real heat transfer coefficient α0 (occurring at the surface) using
the equation:

α = α0
ARi ηR + ARo

ARi + ARo

(33)

For a further calculation of a overall heat transfer coefficient for finned tube
bundles, one has to take into account in particular the different surfaces on the
gas side (fins) and on the liquid side (internal tube surface). It is for example
possible to calculate this using the well known equation:

k =
1

1

α
+
Atot

AR

(
dA
2λRo

ln
dA
di

+
dA
diαi

)
(34)
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αi is the heat transfer coefficient for the tube medium while the preceding ex-
pression dA

2λRo
ln dA

di
accounts for conduction through the tube wall. The quotient

Atot

AR
represents the different surfaces which are available on the gas side and on

the tube side for heat transfer to the tube interior. AR in this case is the entire
external surface of the plain tube per m tube, that is AR = dAπ (figure (7)).

Figure 7: Heat conduction through the finned tube

The thermal conductivity λRo of the tube material is not in general the same
as for the fin material λRi; thus, both thermal properties have to be known and
inserted at the correct place in each case.
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3 Equations for the external heat transfer coef-

ficient

The external heat transfer coefficient α0 is calculated from the common dimen-
sionless numbers for heat transfer, Re and Pr, as a dimensionless groups for heat
transfer Nu. In this case the resulting dimensionless number Nu0 is set in the
formulas in place of α0.

Nu0 =
α0 l

′

λG
(35)

Selection of the characteristic dimension l′ for finned tubes in the dimensionless
numbers Nu and Re poses a problem; unlike the internal diameter di (for the
heat transfer in a tube) or the outer tube diameter dA (in the case of the heat
transfer upon smooth tubes in cross-flow) an obvious choice for a characteristic
length is missing in this case. According to the calculation method of Th. E.
Schmidt [1], Stasiulevicius et al. [3] and other authors, the diameter of the core
tube dA is used for l′. Yet the choice of dA = l′ does not exactly describe the
physical processes of heat transfer at finned tubes, hence additional parameters
are adopted.

3.1 Staggered tube arrangements

3.1.1 Overview of equations

1. Calculation according to Th. E. Schmidt (abbr.: MM)

For the evaluation of heat transfer in finned tubes, measurements were
performed by Th. E. Schmidt[1] on behalf of the tube manufacturer Man-
nesmann. From these measurements equations have been developed which
are associated with his name. According to Th. E. Schmidt, adoption of
the bare tube diameter in terms of significance as a variable for determin-
ing heat transfer at finned tubes is compensated by the addition of the area
ratio Atot/AR.

Nu0 = CRe0.625Pr1/3(
Atot

AR

)−0.375 (36)

This equation can also be expressed as:

Nu0 = C(
ReAtot

AR

)0.625
Atot

AR

Pr
1
3 (37)
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The expression within the brackets can also be seen as Reynolds number,
calculated with a characteristic length l′:

l′ = dA
Atot

AR

(38)

In this case Atot is the entire gas-side heating surface per m tube and AR

is the heating surface of the smooth bare tube per m. The constant C,
according to Th. E. Schmidt, is C = 0.45 for staggered tube arrangements
and C = 0.30 for in-line arrangements. Schmidt does not mention this
to dependent on the tube pitch in the tube bundles. The values of the
constants are average values resulting from many test cases, mostly with
annularly fins, which offer lower heat transfer coefficients than spiral fins.
For the latter, the constants might be increased around approx. 10%.

2. Calculation according to Mannesmann-Carnoy (MC)

The fact that heat transfer for welded spiral finned tubes is a little higher
than for annular finned tubes is taken in account by replacing the constant
of 0.45 in the formula of Th. E. Schmidt by an expression depending on
the fin pitch.

Nu0 = (0.491 + 6.10−4nR − 4.10−7n2
R)Re

0.625Pr1/3(
Atot

AR

)−0.375 (39)

nR in this case is the number of fins per m tube and thus nR = 1
tR
. This

formula was not published officially but rather developed by users according
to the specifications of the manufacturer Mannesmann-Carnoy.

3. Calculation according to Stasiulevicius et al. and HEDH (HE)

According to Stasiulevicius et al.[3] and HEDH [2], other geometrical pa-
rameters of finned tube are taken into account with the help of additional
terms, e.g. fin height, fin thickness, fin pitch. Since finned tubes are mostly
used in form of tube bundles, certain parameters have to be added, such as
the transverse pitch and the longitudinal pitch as well as the specification
of tube arrangement, i.e. staggered or in-line. The common equation for
the heat transfer on the air side of finned tube bundles is basically:

Nu0 = C ReC1PrC2(
h

dA
)C3(

tR
dA

)C4(
sR
dA

)C5(
tq
dA

)C6(
tl
dA

)C7 (40)

In the calculation formula forNu0, it is necessary to separate the parameters
related to the finned tube from those for the tube bundle; the influence of
h, tR, sR is represented by additional terms or by the characteristic length l′.
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The additional factors of tq/dA and tl/dA are introduced for the transversal
and the longitudinal pitch.

The specific form of the equation, which was discovered by [3] and then
taken over by HEDH [2], is as follows for a staggered tube arrangement:

Nu0 = CReC1Pr1/3(
tq
tl
)0.2(

tR − sR
dA

)0.18(
h

dA
)−0.14 (41)

For the constant C and the exponent C1 of Re the following holds:

102 < Re < 2.104 C = 0.19 C1 = 0.65
2.104 < Re < 2.105 C = 0.05 C1 = 0.80
2.105 < Re < C = 0.008 C1 = 0.95

The slope of the function for the Nusselt number increases with the
Reynolds number.

4. Mirkovics’ equation (MI)

Mirkovics [5] also suggests a similar equation which uses a characteristic
length l′ in the place of dA for the calculation of heat transfer. The remain-
ing parameters are similar to [3] and [2].

l′ =
2Atot

πlk
(42)

The length lk is expressed as follows

lk =
2h+ tR
tR

(43)

as one-half the circumference of the flow channel.

Nu0 = 0.224 (
tq − dA
dA

)0.1(
tl − dA
dA

)−0.15(
tR − sR

h
)0.25Re0.662Pr0.33 (44)

The velocity, which influences the dimensionless number Re, is generally
the velocity at the narrowest cross-section. In staggered tube arrangements,
this does not necessarily have to be arranged absolutely orthogonal to the
flow direction.

5. Brandts equation (BA)

Pursuing another course, Brandt [9] uses as a characteristic length

l′ =
π

2

√
d2A + h2 (45)
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In addition to this, termed flooding length, an arrangement factor has to
be calculated, which is determined by the remaining geometrical data.

Brandt[9] calculates Nu0 according to the equations of Gnielinski [23]:

Nu0 = 0.3 +
√
(Nulam)2 + (KNuturb)2 (46)

Nulam in this case is:

Nulam = 0.664
√
Rel Pr

1/3 (47)

and for Nuturb follows:

Nuturb =
0.037Re0.8l Pr

1 + 2.443Re−0.1
l (Pr2/3 − 1)

(48)

The turbulent Nusselt number is multiplied by the factor K, which is derived
from the fin height and the tube diameter.

K = 1− 0.15 e
−10 h

dA (49)

The factor K includes the fin height with the term h/dA. Yet, another
arrangement factor KAn exists which considers all geometrical data of the
finned tube bundle. A selection of the constants for the calculation of KAn

also takes into account the staggered or in-line arrangement of finned tube
bundles. The longitudinal pitch tl is used, it hardly has any influence,
however. The factor K is used in the formula above because Brandt [9]
tried to develop a generally valid equation which takes into account all
conceivable variants of finned tubes with fin height ”zero”, that is a bundle
of smooth tubes in cross-flow up to a tube diameter of ”zero” or a group of
plates in longitudinal flow.

The arrangement factor KAn for the finned tube bundle is supposed to
satisfy the boundary conditions for dA = 0 and for h = 0.

KAn = (A+ (1− A)xm + (nA − A)(exp(−E x)− exp(−E)x)) fN (50)

In this case nA is the arrangement factor for a smooth tube bundle, whereas
x = 2h/D is the related fin height as well as the following factors are related
to the diameter above the fins D = dA + 2h.

xs = sR/D
xa = (tR − sR)/D
xq = tq/D
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Table 1: Constants in the formula of Brandt

- staggered in-line
A1 -8.584 -6.863
A2 0.4177 7.473
ma 0.832 0.0393
ms -1.030 -0.0233
m 1.112 1.1785
E 0.0127 13.75
fn1 0.87 0.951
z1 0.0465
z2 2.22
z3 1.6
z4 0.13
z5 5.346

E and m are constant values and/or exponents depending on in-line or
staggered tube arrangement. fN is a factor for less than 8 tube rows. Brandt
[9] assumes that only the first tube row of a bundle shows a differing amount
of heat transfer with the factor fn1. Under this assumption the reduction
coefficient for a few tube rows is:

fN = (fn1 + (nR − 1))/nR. (51)

The variable A, furthermore, is:

A = (A1 + A2 x
ma
a xms

s )zq (52)

ma and ms depend on the tube arrangement; zq is a factor developed by
Wehle [40] which takes into account the transverse pitch.

zq = 1 + z1(tanh(z2(xq − z3)) + 1) + z4 exp(−z5 (xq − z3)
2) (53)

The factors z1 to z5 are constant. All factors are listed in table 1, which is
taken from a summary in 1998 by Brandt and not from [9].

Finally, the arrangement factor for the smooth tube bundles has to be
defined; this of course depends on the tube arrangement. For in-line tube
arrangement the distinction is made whether el = tl/dA > 1.25, in which
case the following holds:

nA = 1 + 0.2369 exp(−0.1 (ln(z) + 0.6)2) (54)
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In the other case, when el is < 1.25, this holds:

nA = 0.5 + 0.4 exp(−0.42 (ln(z) + 0.6)2) (55)

The parameter z depends on the derived transverse and longitudinal pitch;
the former is eq = tq/dA

z =
4

π
eq − 1

el
(56)

The following equation is to be used for a staggered tube arrangement:

nA = (1 + 0.2973 exp(−0.05 (ln(z) + 0.6)2))zv (57)

and for the factor zv it follows that

zv = 1 + dv exp(−2.422 (log(x)− 0.5)2) (58)

The factor dv is dv = 0.1685 for el > 1, otherwise dv = 0.0562.

6. Equation of FDBR (FD)

FDBR [10] selects for the characteristic length the equivalent in area diam-
eter according to Schmidt [1].

l′ =
Atot

π
(59)

The equation of FDBR [10] seems to be different from Th. E. Schmidt’s[1],
but a closer comparison with [1] reveals that FDBR just uses another no-
tation.

7. Biery’s equation (BI)

Among calculations of heat transfer, Biery’s equation [7] is a special case, as
it reduces every finned tube bundle to a smooth tube bundle in equilateral
triangular pitch.

8. Equation of ESCOA (EG)

Further equations for external heat transfer at finned tubes are defined by
ESCOA (Extended Surface Corporation of America) [12] as well as Man-
nesmann, a finned tube manufacturer.

ESCOA’s equation for staggered arrangements of tubes with smooth fins is
given, after transformation from American notation, by:
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Figure 8: Free-flow cross-section and free-flow cross-section within the
outline of the finned tube

Nu = 0.25Re0.65Pr1/3(
ϑgm + 273.2

ϑrm + 273.2
)1/4(

D

dA
)0.5C3C5 (60)

In this case ϑgm is the mean gas temperature, ϑrm is the mean fin temper-
ature, D the diameter above the fins, i.e. D = dA + 2h and C3 is a factor
which specifies the influence of the fin height and the fin distance:

C3 = 0.35 + 0.65 exp (−0.25h/(tR − sR)) (61)

C5 accounts for the influence of the transversal and the longitudinal pitch
in the fin bundle as well as the number of consecutive tubes in cross-flow.

C5 = 0.7 + (0.7− 0.8 exp (−0.15n2
R)) exp (−tl/tq) (62)

ESCOA also defines an equation for finned tubes with serrated fins [17]:
(abbr.: ES). The formula for Nu in this case is identical with equation (60)
and the coefficient C5 also remains constant. The following holds only for
the coefficient C3 with serrated fins:

C3 = 0.55 + 0.45 exp (−0.35h/(tR − sR)) (63)

9. Equation of the VDI Waermeatlas, 7th edition (WA)

A further equation for heat transfer at staggered finned tube bundles is
specified in the VDI Waermeatlas, 7th edition, pages Mb1-Mb4 [15]. This
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equation is very similar to Schmidt’s but uses other coefficients and expo-
nents; dA is also used as the characteristic length.

Nu = 0.38Re0.6Pr1/3(
Atot

AR

)−0.15 (64)

This equation is valid for 4 or more consecutive tube rows. The constant is
0.36 for 3 tube rows and 0.33 for 2 tube rows.

10. Nir’s equation (NI)

Nir’s approach [18] uses the hydraulic diameter, which is determined with
the help of the flow cross-section at the profile of the finned tube as related
to the heating surface and the diameter above the fins.

dh = 4 dF/W (65)

The quotient W = Atot/A0f is be found once again in the equation for Nu.

Nu = 1.745Re(dh)
0.60Pr1/3W−2/3R−0.40

b Kz (66)

The related free-flow cross-section A0f can be written in this way:

A0f = tq − dA − 2h
sR
tR

(67)

Rb is the quotient of the total free-flow cross-section (\\\) divided by the
free-flow cross-section within the perimeter of the tube (///), as shown in
figure (8), and thus can be expressed as:

Rb =
tq − dA − 2h sR

tR

2h (1− sR
tR
)

(68)

Kz is a reduction factor for less than 4 consecutive tubes in cross-flow.

11. Vampola’s equation (VA)

The J. Vampola’s equation [14] for staggered finned tube bundles is not
well known in this country. The original work, written in Czech, uses a
characteristic length which is derived from the tube diameter dA and an

equivalent fin diameter
√
ARipp tR 1/2 with a weighted average value for the

bare tube surface and the fin surface.

dh =
ARohrdA + ARipp

√
ARipp tR 1/2

ARohr + ARipp

(69)
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During calculation of heat transfer, a distinction is made between whether
the diagonal pitch td is greater or smaller than the transverse pitch.

td =

√
(
tq
2
)2 + t2l (70)

If it is smaller, i.e. td < tq, the following holds:

Nu = 0.251Re0.67dh (
tq − dA
dA

)−0.2 (
tq − dA
tR − sR

+ 1)−0.2 (
tq − dA
td − dA

)0.4 (71)

Otherwise, i.e. td > tq, the following holds:

Nu = 0.251Re0.67dh (
tq − dA
dA

)−0.2 (
tq − dA
tR − sR

+ 1)−0.2 (72)

For td = tq the last term in equation (71) becomes 1. In this case the two
formulas for td = tq result in identical values. The formula specified above
is valid for smooth fins. Vampola also defines formulas for wavy fins and for
pin fins. In his equations for heat transfer, Vampola does not include the
term with the Prandtl number. The formulas are valid for air as the flow
gas because, as Vampola mentions, the test cases were carried out with air.

If the Prandtl number differs considerably from the value for air, the formula
has to be multiplied by (Pr/PrL)

1/3.

3.1.2 Equations for a single tube row

The equations mentioned above are valid in general for several consecutive tube
rows in cross-flow. Yet there is no agreement between individual authors on
the tube row number at which the heat transfer coefficient remains constant.
Equations for one tube row are required, since two or even only one tube row
occur sometimes in heat recovery boilers.

1. Equation for one tube row according to VDI Waermeatlas 4th edition (1R)

There is no specification in [15] for only one tube row, however in the older
4th edition (1984) of VDI Waermeatlas [4] instructions can be found for
calculating only one finned tube row. (On the other hand, this suggestion
for calculation of heat transfer at finned tube bundles cannot be recom-
mended). The calculation of heat transfer at only one finned tube row in
[4] is based on the calculation of heat transfer at the body surrounded by
the flow and is similar to Brandt [9] and draws on Gnielinski [23]. The

20

Principles of Finned-Tube Heat Exchanger Design for Enhanced Heat Transfer - 2nd Edition



23

flooding length l is used in this case as the characteristic length. For finned
tubes this is determined as:

l =
π

2

√
d2A + h2 (73)

For the calculation of the Reynolds number, the average velocity in the
tube bundles has to be used as the standard velocity wR in the case of the
following calculation method:

wR = wm =
1

2
(w0 + wE) (74)

This holds if the fin edges almost touch each other. This is the case when
(tq−dA−2h)/tq < 0.1 is valid. On the other hand, if (tq−dA−2h)/tq > 0.2,
then wR is calculated according to the following equation:

w′′
R = wm

1− (0.31Re−0.04 [h/(tR − sR)]
0.5 (dA/h)

0.25

1− sR/tR
(75)

If the distance between the fin edges lies between the two criteria, linear
interpolation must be done; in this case aq = (tq − dA − 2h)/tq.

w′
R =

aq − 0.1

0.1
w′′

R +
0.2− aq

0.1
wm (76)

Once Re is ascertained using l and wR and/or w′
R, calculation continues

according to the formulas for tubes given in the Waermeatlas [15], page Ge
1.

According to Gnielinski [23], the following holds:

Nu0 = 0.3 +
√
(Nulam)2 + (Nuturb)2 (77)

The laminar Nusselt number Nulam in this case is

Nulam = 0.664
√
Rel Pr

1/3 (78)

while the turbulent Nusselt number Nuturb is:

Nuturb =
0.037Re0.8l Pr

1 + 2.443Re−0.1
l (Pr2/3 − 1)

(79)
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2. ESCOA Equations

According to the ESCOA equation, heat transfer may be calculated even
for one tube row, for both staggered tube arrangements (using the relation
stated above) and for in-line tube arrangements (according to the method
described below). Since it makes no sense to specify staggered or in-line
arrangement for one tube row, both relations have to show the same result
for nR = 1. Verification shows that this indeed holds for large values for
h/(tR − sR), while for small values for h/(tR − sR) the formula for in-line
arrangement results in as much as 15% higher heat transfer values compared
with the formula for staggered arrangement.

Test cases with only one tube row, as well as with a second row in both
in-line and staggered arrangement, are found in the work of Kearney and
Jacobi [22]. In this publication, the geometrical data of finned tubes as
well as pitches were unfortunately not varied. The pitches are chosen in
such a way that in both arrangements (in-line and staggered) the fin edges
touch each other. The data presented may therefore be used only as mea-
surement values. At the ITE it was only possible to carry out one series
of measurements with a one-tube row arrangement. For more information
refer to section 3.5.2.
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Figure 9: Influence of tube diameter on heat transfer with unmodified
fin geometry and fin pitches

3.1.3 Influence of geometrical dimensions of the finned tube and of
bundle geometry

The influence of the geometrical dimensions of a single finned tube is first to
be considered without the factors which characterize the finned tube bundle.
For comparison, the dimensional heat transfer coefficient α can be used; the
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dimensionless Nusselt number provides no useful basis of comparison since the
characteristic lengths are defined differently, i.e. as hydraulic diameters. Alter-
natively, the Nusselt numbers derived from differing characteristic lengths can
be converted to one characteristic length, which in our case would be the tube
diameter dA. The comparable calculations are performed for a finned tube with
a basic configuration as follows: a diameter of 38 mm and a fin height of 16 mm,
fin thickness of 1 mm and a fin pitch of 6.67 mm (150 fins per m tube). For the
finned tube bundle, assumptions are made as follows: a transverse pitch of 85
mm and a longitudinal pitch of 75 mm for 8 consecutive tube rows in staggered
arrangement.

Tube diameter: All equations for the calculation of the heat transfer coefficient
show that the heat transfer coefficient α declines with an increase in tube
diameter; only the magnitude varies. The decline is smallest with BA and
MI and still small with FD, 1 R and MC, and even with NI, somewhat
greater with WA and HE, and the greatest with EG, ES and BI, as seen in
figure (9).

The characterization stated above is only valid for variations in tube diam-
eter with constant fin geometry and fixed transverse and longitudinal pitch.
These pitches have to be designed with consideration to the largest tube
diameter and are therefore, with respect to space requirements and heat
transfer, unfavorable for smaller tube diameters. Factors affecting variation
of the tube diameter with unchanged fin geometry and adapted transverse
pitch were also examined. Modification was done in such a way that the
transverse distance between the fin edges remained constant and the longi-
tudinal pitch was not changed.

The lowest variation of heat transfer results at 1 R, the highest at ES,
whereas, similar to a constant transverse pitch, the heat transfer coefficient
declines with an increasing tube diameter. The only exception is the VA
equation, which results in a heat transfer coefficient that even rises a little
with tube diameter; refer to figure (10).
All statements made above are valid for the case that the velocity in the
narrowest cross-section remains constant (wE = const.). In this case the
Reynolds number rises with the tube diameter. If the Reynolds number Re,
and not the velocity wE, is kept constant, figure (11) is the result for an
identical transverse pitch. The Nusselt number declines consistently with
increasing diameter. Only equation 1R results in an initial decline and a
subsequent rise in the middle range from 38 mm to 44.5 mm.
When varying the transverse pitch with the tube diameter, figure (12) re-
sults for a constant Reynolds number. In this figure, without exception all
Nusselt numbers decline consistently with an increasing tube diameter.
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Figure 10: Influence of tube diameter on heat transfer with unmodified
fin geometry and adapted transverse pitch (staggered arrangement)

Tube diameter mm

Figure 11: Influence of tube diameter on heat transfer with unmodified
fin geometry and transverse pitch (staggered arrangement) at constant
Reynolds number
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Tube diameter mm

Figure 12: Influence of tube diameter on heat transfer with unmodi-
fied Reynolds number and fin geometry and adapted transverse pitch
(staggered arrangement)

Fin pitch: With an increasing fin pitch, the heat transfer coefficient α0 also in-
creases, yet not proportionally, so that the decreasing heating surface per
m tube is not completely compensated. As narrow a fin pitch as possible
is still advantageous for a compact heat exchanger design if dirt deposits
are not a great problem. Except for BA, all relations show an unequivo-
cal tendency. The heat transfer coefficient α0 increases more strongly with
smaller pitches, with greater pitches, on the other hand, it increases only
weakly, as follows from figure (13).
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Figure 13: Influence of fin pitch on heat transfer (staggered arrange-
ment)

Fin height: First of all, it was examined what effect a variation of the fin height
with constant transverse pitch has, whereas the pitch had to be determined
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at the greatest fin height. As expected, the heat transfer coefficient declines
with increasing fin height, however only weakly. There is a gain from the
heating surface, which increases with h. This observation was made with-
out considering conduction in the fin. Since fin efficiency is not considered
here, only α0 (or Nu0), i.e. heat transfer with infinite thermal conductivity
of the fin, is discussed. Heat transfer declines somewhat with ES and EG.
In contrast to this, with 1 R heat transfer declines a little at first, then,
from a fin height of 16 mm to 19 mm, a small increase takes place, and
after that another decline is found (this is valid for a tube diameter of 38
mm). A maximum fin height results furthermore from limitations placed
by finned tube production, i.e. by manufacturing methods as well as by the
need to avoid fouling. There is, however, another exception among these
equations: the NI calculation predicts at first a very small increase for small
fin heights, then however a very small decrease of α0 with the fin height.
This leads to the result that the heat transfer coefficient does not depend
on fin height. There are further differences in the curves for the remaining
equations. The functions show linear dependence as well as progressive and
digressive characteristics, as seen in figure (14).
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Figure 14: Influence of fin height on heat transfer (staggered arrange-
ment)

Afterwards, it was examined what effect occurs as a result of a variation
of the fin height with a simultaneous variation of the transverse pitch. In
this case the transverse pitch was adapted in such a way that the distance
between the fin edges remains constant at 5 mm for a tube diameter of 38
mm. In figure (15) the decline of the heat transfer resulting from increasing
fin height is shown. This decline is above average with MC, however only in
comparison with other equations. The curve of the heat transfer coefficient
is identical with the previous one in figure (14), since transverse pitch does
not occur in the MC equation at all. A similarly strong decline is observed
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with VA, whereas with EG and ES an insignificant increase occurs. With 1
R an insignificant increase can be seen for fin heights less than 10 mm; the
same decline can be seen for fin heights greater than 15 mm.
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Figure 15: Influence of fin height on heat transfer at adapted transverse
pitch (staggered arrangement)

Fin thickness: Fin thickness sR hardly influences the heat transfer coefficient
at all; its influence becomes noticeable in the case of fin efficiency. With
increasing fin thickness, an insignificant decline in α0 is detectable with the
equations EG, ES and VA. With the equations MC, BA, HE and 1 R, a
small increase is seen, while with one (FD) no influence at all is observed;
figure (16).
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Figure 16: Influence of fin thickness on heat transfer (staggered arrange-
ment)

Gas velocity: The influence of gas velocity is represented by the Reynolds num-
ber; yet the characteristic length is variously defined in the different for-
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mulas, making an immediate comparison impossible. The resulting Nusselt
and Reynolds numbers are standardized with the tube diameter dA for all
equations. The velocity in the narrowest cross-section is regarded as the
standard gas velocity.
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Figure 17: Influence of gas velocity on heat transfer (staggered arrange-
ment)

The influence is basically represented by the exponent of Re. Deviations
from this are only insignificant: in 1R, Nu is estimated as the square root
of the sum of Nulam squared and Nuturb squared. In a double-logarithmic
diagram, a curve that more strongly rises with wE results for α0 instead
of a straight line; see figure (17). With HE, three different exponents for
Re are given for three different ranges of Reynolds numbers, whereas larger
exponents are valid for higher Reynolds numbers; refer to the HE formulas
of [2].

Influence of bundle geometry:

The influence of the geometry of the finned tube bundle with a completely stag-
gered tube arrangement is presented in this section. The tubes in a single row in
direction of flow are arranged in the middle between the positions of the tubes
of the preceding tube row. The equations MC, WA and FD consider neither any
influence of transverse pitch nor of longitudinal pitch. The formulas BA and NI
do not recognize any influence of longitudinal pitch. Several equations do not
consider the influence of the number of the tube rows consecutively arranged in
direction of flow; this is treated in a seperate section.

Transverse pitch: The influence of transverse pitch on the heat transfer coeffi-
cient is evaluated to various degrees. Several relations result in a moderate
increase in the heat transfer coefficient with transverse pitch; see figure (18).
This increase is somewhat greater with EG and ES, and somewhat smaller
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with MI and HE. According to BI, heat transfer increases in the case of
small transverse pitches then, however, reaches a final value. A decrease of
α0 with the transverse pitch is found by NI, and even a strong decrease is
found with VA. 1 R indicates an initial increase, in cases of smaller trans-
verse pitches up to tq = 78mm, but then a moderate decrease, and a very
small increase from tq = 90mm on. All of these results were obtained with
the standard geometry defined above. In the relations MM, MC, FD and
WA, transverse pitch does not occur.
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Figure 18: Influence of transverse pitch on heat transfer (staggered ar-
rangement)

Longitudinal pitch: The majority of the equations ascertain a decrease in the
heat transfer coefficient with a rising longitudinal pitch. With MI, ES and
EG the decrease is greatest, with HE it is quite small and with VA large for
small longitudinal pitches up to 75mm. Heat transfer does not vary after
that for greater longitudinal pitches. This is only valid for the underlying
example. BI represents an exception, predicting an increase in α0 for small
longitudinal pitches. In the equations MM, MC, WA, NI and FD, longi-
tudinal pitch does not occur. With BA it does not show any noticeable
influence; see figure (19).

Triangular pitch: For staggered tube arrangements, a so-called triangular pitch
is frequently chosen. In this case three tubes are arranged in an equilateral
triangle. This is the arrangement with the best use of space, in which the
greatest heating surface per volume unit is achieved for a specified distance
between the finned tubes. If one examines the different relations with re-
spect to the influence of the size of the triangular pitch on heat transfer, one
ascertains that many equations do not take into account such an influence.
Among these are also equations which explicitly consider the influence of
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Figure 19: Influence of longitudinal pitch on heat transfer (staggered
arrangement)

transverse and longitudinal pitch, as can be seen in figure (20). An example
of this is the HE equation, in which this influence results from the quotient
of the transverse and longitudinal pitch, tq/tl, which is independent of the
size of the triangular pitch. Among the exceptions is the BI equation, which
results in an increase in heat transfer with the pitch, as well as the rela-
tions MI, with an almost imperceptible decline, NI with insignificant and
VA with a noticeable decline with increasing pitch.

50

55

60

65

70

75

80

85

70 75 80 85 90

Transverse pitch mm

N
u

MC

BA

BI

HE

FD

MI

EG

ES

NI

VA

WA

Figure 20: Influence of triangular pitch on heat transfer

3.1.4 Evaluation of different calculation formulas

If one considers only the range of application in industrial use, one will (in Euro-
pean countries) use either the Schmidt’s formula [1] or the FDBR [10] or HEDH
formula [2]; see figure (6). The equations proposed by ESCOA [12] are also very
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suitable. These are, however, mostly used in the United States. Referring to the
formula of Schmidt by way of example, a weakness will be pointed out, without
wishing to detract from the achievements of this scientific work.

Formula (36) is very useful if it is applied to those tubes it was created for, i.e.
welded spiral finned tubes for steam generators and cast finned tubes for econ-
omizers. Yet limitations to the validity of this formula may be seen in the case
of a fictitious finned tube with the same ratio of Atot/AR, yet with fins having
twice as large a surface and double the fin pitch. The equation predicts two equal
heat transfer coefficients for these two different finned tube geometries with the
same heating surface per meter; this does not correspond with the facts, as later
measurements reveal.

Figure 21: Experimental results by Mirkovics showing the characteristic
diameter dMi

For the calculation of heat transfer at finned tube bundles, various formulas are
presented above whose range of validity is mostly not indicated or somewhat dif-
fuse. The achievable results are therefore not of the required accuracy, not least
due to the complex geometry; this holds in particular when considering the con-
struction design of finned tubes, i.e. annular fins, spiral finned tubes or others.
This section intends to develop a calculation equation for spiral finned tubes by
using our own and other published measurements. The most important decision
in this case is the characteristic length of the single finned tube. On the one
hand, there is the diameter of the bare tube, for example in the equations of
Mannesmann (established by Schmidt [1]) and HEDH (established by Zukauskas
et al. [3]), as well as the equations by ESCOA [12] with the disadvantages and
advantages already discussed above. On the other hand, custom-made character-
istic diameters are used, as in the case of Mirkovics [5] or Brandt [9]. The system
of equations by Mirkovics describes our own measurements very well, as seen in
figure (21). Yet, in our view, the characteristic diameter used is hardly evident.
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For this reason, improvements are to be developed in two directions:

Firstly: by supplementing the Mannesmann equations with expressions that ac-
count for the dependence of the heat transfer coefficient on the geometry of the
tube bundles.

Secondly: by considering the flow between the fins as a channel flow and deter-
mining a hydraulic diameter on this basis.

Test runs carried out by Mirkovics are used for the first point to investigate the
dependence of the heat transfer on transverse and longitudinal pitch, while the
remaining parameters, in particular the tube diameter, are left unchanged. The
dimensionless parameter tq−dA

2h
, through which the distance between two tubes

is put in relation to the double fin height, is used for the investigation of the
influence of the transverse pitch. Mirkovics uses the parameter tq−dA

dA
. The same

method follows for the longitudinal pitch, in which case a dimensionless parameter
tl
tq

is used. Here Mirkovics uses the expression tl−dA
dA

.

The factor Kft thus indicates the influence of bundle geometry on heat transfer
as:

Kft = (
tq − dA
2h

)−0.21(
tl
tq
)0.239 (80)

The exponents for tq−dA
2h

and tl
tq

were determined using the experimental results

of Mirkovics. The Mannesmann formula could be supplemented with the factor
Kft to indicate an influence of transverse pitch and longitudinal pitch. With a
further additional factor Cz(nR), for a smaller number of tube rows than 8, the
formula appears as follows:

Nu0 = CRe0.625Pr(1/3)(
Atot

AR

)−0.375KftCz (81)

The exponent of the Reynolds number is approx. 0.67, instead of 0.625 as with
Mannesmann, based on measurements in the range of Reynolds numbers from
4000 to 32000 carried out by the ITE on spiral finned tubes. The complete
formula for spiral finned tubes is therefore:

Nu0 = 0.338Re0.67Pr(1/3)(
Atot

AR

)−0.375KftCz (82)

The expression Atot/AR may, however, be replaced by the simpler expression
h/(tR − sR), which is not less accurate. Then the equation becomes:

Nu0 = 0.22Re0.67Pr(1/3)(
h

tR − sR
)−0.35KftCz (83)
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Figure 22: Heat transfer measurements by Mirkovics and ITE on stag-
gered finned tube arrangements evaluated with Mirkovics’ formulas

A comparison between the measurements of Mirkovics and the test cases of the
ITE is also of interest. The experimental facilities are comparable in their fun-
damental design and both use spiral finned tubes in staggered arrangement.

The direction of the heat transfer corresponds too. In both experimental facilities
the direction of heat transfer is from the hot gas to the finned tubes. Yet Mirkovics
heats the air by means of a heat exchanger, supplied by steam, up to temperatures
of 130oC. At the test facility of the ITE, air is heated up to a temperature of
maximum 400 oC by means of combustion of natural gas in a duct burner and
the flue gases are then conducted through the finned tube heater exchanger.

Like the ITE measurement series, Mirkovics uses 8 consecutive tube rows, but
only 5 or 6 parallel tube rows. In every second tube row a semi-tube is mounted
on the channel wall. The publication does not, however, specify whether these
semi-tubes are cooled or not. At the experimental facility of the ITE, 10, 11 or
12 tube rows are arranged in parallel, according to their diameter. A semi-tube
assembly was rejected, however, because of the difficulties in producing cooled
semi-tubes and their differing water-side flow characteristics and heat transfer
properties. Hence the semi-tubes were simply left out. Instead of this, cooling
water temperatures are measured at the inlet and the outlet of every single tube
row. It is thus possible to exclude the tube row on the channel wall during cal-
culation, so that the influence of the wall and of the missing semi-tubes can be
eliminated. At the ITE test facility, a cross counter-flow heat exchanger is used,
whereas Mirkovics used a two-row cross counter-flow heat exchanger, in which
case cooling water temperatures were only measured in the header.
A comparison of the results of measurements was carried out for different systems
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Figure 23: Heat transfer measurements by Mirkovics and ITE on stag-
gered finned tube arrangements evaluated with formula (85)

of formulas during evaluation. Since neither the dimensions of the finned tubes
nor the pitches agree exactly, a comparison was carried out by means of a ”uni-
versal” dimensionless number. Test cases with different finned tubes in different
arrangements can also be compared by using this dimensionless number. For the
evaluation according to Mirkovics, this universal dimensionless number is:

KuMi = NuMi Pr
(−1/3)(

tq − dA
dA

)−0.1(
tl − dA
dA

)0.15(
tR − sR

h
)0.25 (84)

This number is calculated depending on the Reynolds numberReMi (derived using
the characteristic diameter according to Mirkovics) and represented in a double-
logarithmic diagram. In figure (22), the evaluation, according to the Mirkovics
method, of the test cases by Mirkovics and by ITE can be seen.

In each case a set of points result which are gathered approximately around
a straight line. The results obtained through evaluation using the Mirkovics
method, of the test cases by ITE, are approx. 21 % higher than the results of
Mirkovics. This is a relatively large difference which demands an explanation.
Before that, however, comparison is to be made according to other evaluation
formulas, equation (82) or equation (83) for example. The universal dimensionless
number obtained through evaluation according to the former formula is:

KuDa2 = NuDa2Pr
(−1/3)(

Atot

AR

)0.375Kf−1
t (85)

A comparison of the measurements by Mirkovics with those of ITE using equation
(85) results in higher values for the measurements made by ITE. Especially the
values for KuDa2 higher, by approx. 57% at ReDa = 4000 are approx. 28% at
ReDa = 40000. An evaluation according to equation (85) shows that the exponent
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of Re is noticeably higher at 0.75 in the case of Mirkovics than in the case of ITE
at 0.67, while it is almost identical to an evaluation according to Mirkovics; see
figure (23).
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Figure 24: Heat transfer measurements by Mirkovics and ITE on stag-
gered finned tube arrangements evaluated using formula (86)

A comparison of the measurements by Mirkovics with those of ITE using equation
(83) yields the following universal dimensionless number where the tube row
number is greater than or equal to 8, as in the previous comparisons, and thus
Kz is 1.

KuDa4 = NuDa4Pr
(−1/3)(

h

tR − sR
)0.35Kf−1

t (86)

A similar figure to that of the preceding equation results. The ITE measurement
values are approx. 51% higher at ReDa = 4000 than those of Mirkovics and
approx. 21% higher at ReDa = 40000; refer to figure (24).
Lastly, a comparison should be done according to a completely different equation.
Here the finned tube bundle is regarded as a sequence of flow channels between
the fins with a width of (tR − sR) and a height of (tq − dA). Because of the
circular outline of the channel walls the hydraulic diameter is derived based on
the general formula

dch = 4
V

O
, (87)

in which V is the volume of the flow channel and O its heat transferring surface.
Both are defined per length unit of finned tube.

V = ((dA + 2h)2 − d2A)
π

4
(tR − sR) (88)
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Figure 25:
Heat transfer measurements by Mirkovics and ITE on staggered finned
tube arrangements evaluated using formula (91)

O = 2((dA + 2h)2 − d2A)
π

4
+ dA π(tR − sR) + (dA + 2h)πsR (89)

Since another characteristic length for a different geometrical finned tube requires
a conversion of the Nusselt numbers and the Reynolds numbers, the terms for the
determination for the influence of the geometrical data of the finned tubes now
have to be specified anew.

Particularly the exponents for a determination of the influence of tR−sR
h

need to
be specified again. In the case of equations (85) and (86) the diameter dA is the
same for all finned tubes examined, not however the characteristic diameter dMi

used by Mirkovics. The characteristic diameters dch are different for every finned
tube, and therefore the exponent has to be determined again.

In the case of measurements for the determination of any dependence from char-
acteristic sizes tq and tl of the finned tube bundle, identical finned tubes were
used. Thus, no new determination of the exponents was necessary. For identical
finned tubes all characteristic lengths are the same as long as tq and tl do not
occur, which is the case here. In the case of the conversion stated above, one has
to pay attention to the determination of the exponent of tR−sR

h
, which according

to Mirkovics was done at a constant Reynolds number which is no longer constant
after conversion.

ReMi = const. = ReDa
dMi

dA
(90)

as is obvious from the equation above for different dMi, even if dA are all identical.
The termsNuPr(1/3) are converted to the same Reynolds number using ( ReDa

ReDai
)0.67
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for Dai = Da2, Da3, Da4, etc. The same method is used for Rech, in which the
diameters dMi and dch are different. 0.29 is the resulting exponent of tR−sR

h
at

KuDa4 and 0.48 for the calculation with dch to. For Kuch this results in:

Kuch2 = Nuch2Pr
(−1/3)(

h

tR − sR
)0.48Kf−1

t (91)

The measurement values of ITE and of Mirkovics are presented in the form of
Kuch2 above Rech in a double-logarithmic diagram, as seen in figure (25). From
this, 0.75 is resulting exponent of Rech. In the representation of Kuch as well, the
measurement values of ITE are approx. 26% higher than those of Mirkovics. The
difference increases with Reynolds numbers higher than Rech = 1000. A relation
generated from the measurement values of ITE for heat transfer using dch would
therefore result in:

Nuch = 0.0845Re0.75ch Pr(1/3)(
h

tR − sR
)−0.48Kft (92)

From the explanations above it can clearly be seen that an analysis of the heat
transfer at finned tube bundles with different characteristic lengths is possible and
worthwhile. Depending on the selection of the characteristic length, the exponent
generated with this Reynolds number in general differs in value, as do exponents
in other terms from geometrical factors, as for example (tR−sR)/h or tl/tq, which
occur in the formulas for the calculation of heat transfer. When comparing figures
(22), (23), (24) and (25), it may be observed that in those figures in which the
measurement values of Mirkovics are plotted above ReDa (i.e. figure (23) and
figure (24)), Mirkovics’ scatter plot disintegrates into two parts. These scatter
plots show to a large extent the same gradient but different heights. The single
scatters lie like roofing tiles on top of each other. The upper scatter plot seems to
be closer than the lower one to the measurement values of ITE, and thereafter the
difference is only approx. 14%. This phenomenon does not occur when plotted
above ReMi or ReCh. One can assume that between these two scatter plots a
hardly negligible change occurred in the experimental geometry.

3.2 In-line tube arrangements

3.2.1 Enumeration of equations

Much fewer test series have been carried out for in-line tube arrangements than for
staggered tube arrangements, and therefore fewer relations for heat transfer have
been published. According to detailed information from Schmidt [1], heat transfer
at in-line tube arrangements is around 1/3 less than at staggered arrangements.
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Figure 26: In-line finned tube arrangement

Nevertheless, in-line tube arrangements have to be chosen sometimes for design
reasons.

1. Th. E. Schmidt’s formula [1] (MM)

The formula by Schmidt and Mannesmann for in-line tube arrangement is,
except for the factor in front of the equation, identical with the formula for
staggered arrangement. This factor is around 1/3 lower than for a staggered
arrangement:

Nu = 0.30Re0.625 Pr
1
3 (
Atot

AR

)−0.375. (93)

With respect to the addition of the surface relation Atot/AR, the same
applies here as was mentioned above in the case of the formula for staggered
tube arrangement.

2. Mannesmann Carnoy Formula (MC)

The finned tube manufacturer Mannesmann adopted all of Schmidt’s for-
mulas, but in the course of the technical development finned tubes with
welded spiral-fins arose, so that Mannesmann carried out their own heat
transfer measurements on such tubes. From these measurements, the for-
mula known as the Mannesmann Carnoy formula arose, which differs from
Schmidt’s formula through the constant coefficient of 0.387 instead of 0.30.

3. Formula from the VDI-Waermeatlas, 6th Edition 1991 [26] (WA)

This formula is similar to the formulas presented above, however, it shows
other numerical values for the constants.
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Nu = 0.22Re0.60 Pr
1
3 (
Atot

AR

)−0.15 (94)

The constant 0.22 is valid for more than four consecutive tube rows. Up
to three tube rows, a reduction of the constants is recommended to 0.20.
Ebeling and Schmidt [35] set the constant at 0.23 for annular fins in more
than three tube rows, but no information is given about spiral fins.

4. Brandt’s formula [9] (BA)

Brandt’s formula is structured differently from the other equations pre-
sented and also pursues different objectives, inasmuch as, by applying h = 0
as the fin height, it results in the heat transfer value for a bare tube bundle.
Accordingly, the expression

l′ =
π

2

√
d2A + h2 (95)

is used for the characteristic length. Defining dA = 0 should result in
heat transfer for a flow along a group of longitudinal plates. Brandt’s
formula system is presented in section (3.1) for staggered tube bundles.
The calculation for in-line tube bundles differs from this only through the
use of the constants which are valid for in-line tube arrangements. These
are also presented in section (3.1).

5. Calculation according to ESCOA [12] (EG)

The ESCOA equation for in-line arrangements of tubes with solid fins is:

Nu = 0.25Re0.65Pr1/3(
ϑgm + 273.2

ϑrm + 273.2
)1/4 (

D

dA
)0.5C3C5 (96)

Here all factors are declared as in section 3.1.1. C3 is a factor which repre-
sents the influence of fin height and fin pitch.

C3 = 0.20 + 0.65 exp (−0.25h/(tR − sR)) (97)

C5 accounts for the influence of transverse and longitudinal pitch in the fin
bundle as well as the number of consecutive tube rows in the direction of
flow.

C5 = 1.1− (0.75− 1.5 exp (−0.70nR)) exp (−2.0
tl
tq
) (98)

ESCOA also specifies a formula for finned tubes with serrated fins arranged
in line: (ES)
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Figure 27: Influence of tube diameter on heat transfer with constant
Reynolds number (in-line arrangement)

The formula for Nu with serrated fins is in this case identical with equation
(96), and also the coefficient C5 remains unchanged, while another term
applies for the coefficient C3 with serrated fins:

C3 = 0.35 + 0.50 exp (−0.35h/(tR − sR)) (99)

3.2.2 Evaluation of the influence of fin parameters with in-line tube
arrangement

The influence of geometrical fin parameters on the external heat transfer co-
efficient is discussed here, also in comparison with staggered tube arrangement.
Observations are made by referring to the example of an in-line tube arrangement
with the parameters dA = 0.038m, tR = 0.00667m, sR = 0.001m, h = 0.016m
and the pitches tq = tl = 0.075m.

1. Influence of tube diameter at a constant Reynolds number: The influence
is represented in figure (27) for constant fin geometry. This factor varies
for the different equations. The heat transfer coefficient decreases with the
diameter of the bare tube according to EG and ES, while for the other
equations it increases; with MM, MC and WA it increases only slightly,
with BA on the other hand considerably.

2. Influence of tube diameter at constant velocity wE in the narrowest cross-
section: See figure (28). Since the Reynolds number increases with dA, an
increase in the heat transfer coefficient with the tube diameter results for
all equations; with BA this is particularly strong and positive.
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Figure 28: Influence of tube diameter on heat transfer at constant gas
velocity (in-line arrangement)

3. Influence of tube diameter with tq and tl at Re = const.: If the tube diame-
ter changes at constant fin geometry, transverse and longitudinal pitch each
have to be adjusted so that there is enough space between each tube row.
Alternatively, pitch values can be dimensioned according to the largest tube
diameter and kept constant afterwards (this was done for the two preceding
items). If one adapts the pitch in such a way that the distance between the
fin edges remains constant (for example 5 mm), figure (29), similar to the
first item, results: the heat transfer coefficient increases only moderately
according to MM, MC and WA; with BA it increases strongly at first and
remains constant afterwards; according to EG and ES it declines.
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Figure 29: Influence of tube diameter on heat transfer at constant
Reynolds number and with adapted tube pitches (in-line arrangement)
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4. Influence of tube diameter with adapted pitches and with wE = const.: If
the pitches, but not the Reynolds number, are altered according to the tube
diameter and the velocity in the narrowest cross-section is kept constant,
then figure (30) results. Here the Nusselt number increases consistently for
all relations with an increase in tube diameter.
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Figure 30: Influence of tube diameter on heat transfer at constant gas
velocity and with adapted tube pitches (in-line arrangement)

5. Fin pitch: According to all relations, the heat transfer coefficient increases
with the fin pitch, sharply at first and then more moderately, whereas the
increase is small according to WA, moderate with MM, MC and BA, and
strong according to EG and ES; see figure (31). The increase is not, how-
ever, strong enough to compensate for the decrease in the heating surface
per m tube. For a compact heat exchanger, it would be preferable to select
as a small fin pitch as possible while avoiding conditions leading to fouling.
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Figure 31: Influence of fin pitch on heat transfer (in-line arrangement)
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6. Fin thickness: The influence of fin thickness is first examined without con-
sidering fin efficiency. According to EG, ES and BA, a decrease in the heat
transfer coefficient is predicted with increasing fin thickness; according to
MM, MC and WA, the decrease is hardly perceptible, meaning it remains
virtually constant; see figure (32).
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Figure 32: Influence of fin thickness on heat transfer (in-line arrange-
ment)

If, instead of Nu0, the apparent heat transfer coefficient α is included, a dif-
ferent scenario results. α can be derived from fin efficiency ηR and the real
heat transfer coefficient α0 (equation (35))using equation (33). In this case
the apparent heat transfer coefficient α at first increases with fin thickness
and achieves a maximum value. It then decreases according to some cal-
culation equations, revealing an optimal fin thickness value. The resulting
value for optimal fin thickness is not uniform among the different calcula-
tion equations, as figure (33) shows.
Furthermore, the value is considerably dependent on the thermal conduc-
tivity of the fin material. With a poor heat conductor as fin material, e.g.
Austenite, the optimal fin thickness tends to be a higher value in compari-
son to e.g. St35.8, figure (34).
Optimal fin thickness values may similarly be obtained for staggered finned
tube arrangements, but with differing numerical values, since fin efficiency
ηR depends on the real heat transfer coefficient α0.

7. Fin height: For examining the influence of fin height, transverse and longi-
tudinal pitch have to be dimensioned in a such way that the tallest fins still
have enough space, which is, however, a waste of space with shorter fins
and therefore not realistic. If one carries out an analysis, a decrease in heat
transfer with rising fin height results for all equations with the exception of
BA, for which the heat transfer rises with h; see figure (35). Measurements
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Figure 33: Optimum fin thickness with respect to heat transfer for St35.8
fins (in-line arrangement)
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Figure 34: Optimum fin thickness with respect to heat transfer for
Austenite fins (in-line arrangement)
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by Stasiulevicius [3] and Mirkovics [5] on staggered arrangements revealed
a decrease in heat transfer with increasing fin height. Brandt [9] also ascer-
tains this for staggered tube arrangements. The same might also be valid
then for in-line tube arrangements.
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Figure 35: Influence of fin height on heat transfer (in-line arrangement)

8. Influence of fin height with varying transverse pitch: The transverse pitch is
varied with the fin height so that the distance between the fin edges remains
constant. The longitudinal pitch also remains constant and is dimensioned
in such a way that the tallest fins still have enough space. Based on this
assumption, heat transfer decreases more or less with increasing fin height,
according to all equations, very moderately with WA, a little more strongly
according to EG, ES and BA and by the greatest amount with MC and
MM; this is presented in figure (36).

9. Influence of fin height with varying transverse and longitudinal pitch: If
the longitudinal pitch as well as transverse pitch is increased with increas-
ing fin height, heat transfer decreases. The decrease is quite similar for all
equations, except for MM and MC, where the heat transfer decreases only
moderately, as figure (37) shows.

10. Transverse pitch: In the equations MM, MC and WA, the influence of trans-
verse pitch is not accounted for. According to EG and ES, heat transfer
decreases with increasing transverse pitch. According to BA, heat transfer
first declines strongly, then increases again. This occurs at a transverse
pitch of tq > 100 mm at dA+2h = 70 mm, which is very large and therefore
hardly used; see figure (38).
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Figure 36: Influence of fin height on heat transfer at adapted transverse
pitch (in-line arrangement)
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Figure 37: Influence of fin height on heat transfer at adapted tube
pitches (in-line arrangement)
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Figure 38: Influence of transverse pitch on heat transfer (in-line arrange-
ment)
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11. Longitudinal pitch: Only the equations EG and ES ascertain an influence
of longitudinal pitch, whereby the heat transfer increases with increasing
longitudinal pitch. This result matches the predictions that heat trans-
fer decreases with the number of tube rows. This means that for greater
longitudinal pitches every tube row appears to be a ”first” tube row. In
measurements done at ITE it also was possible to examine the influence of
longitudinal pitch, at least for a single geometry. The observation stated
above was confirmed, as figure (39) shows. According to our measurements,
this dependence can be represented using the expression ( tl

tq
)0.4.

Figure 39: Influence of the longitudinal pitch on heat transfer based on
measurements by ITE (in-line arrangement) (tube diameter 38 mm, 150 fins

per m, 16x1 mm, transverse pitch 80 mm)

12. Influence of the Reynolds number: This influence is practically equal for
all equations and lies in the range of the exponent of the Reynolds number
between 0.60 to 0.65; figure (40). Measurements by ITE on spiral finned
tube bundles revealed at 0.75 a somewhat higher exponent of the Reynolds
number, however.

3.2.3 Proposal for an enhanced calculation formula

Based on measurements performed at ITE, an enhanced version of Schmidt’s for-
mula [1] is proposed as a calculation for predicting heat transfer at in-line finned
tube bundles. The additions account for the influence of transverse and longitu-
dinal pitch. It is valid for in-line bundles of spiral finned tubes with Reynolds
numbers ranging between > 10000 and < 40000.
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Figure 40: Influence of the Reynolds number on heat transfer at in-line
arrangement

Nu = 0.1306Re0.75 Pr
1
3 (
Atot

AR

)−0.375 (
tq − dA
2h

)0.21 (
tl
tq
)0.4 (100)

As figure (41) shows, the results of this equation (abbr. EM) lie within those for
the other equations developed for spiral finned tubes. In line with measurements,
the exponent of Re is somewhat greater.
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Figure 41: Results of the proposed equation (100) in comparison with
available equations for heat transfer at in-line finned tube bundles

3.3 Selection method for finned tubes

If one poses the question as to the most preferable finned tube in general, no sim-
ple answer can be given. Rather, precise limiting conditions need to be specified.
The requirement may be for the finned tube heat exchanger with the smallest
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construction volume, with the lowest total cost (purchase price plus operating
costs) for a given amount of heat or for the finned tube heat exchanger with the
lowest material expense (mass) etc.... The answer will be different in each case.
When the finned tubes are joined in a bundle, further variables arise in the way
of longitudinal and transverse pitch as well as in-line or staggered arrangement.
The influence of longitudinal and transverse pitch is not that great so as to favor
a certain arrangement to the extent that this arrangement would achieve greater
efficiency in relation to the construction volume than would be the case with the
greatest possible packing density of finned tubes in that case. When designing a
finned tube heat exchanger, especially for high pressures, longitudinal and trans-
verse pitch need to accommodate available or producible U-bends. It must be
pointed out that the design of a finned tube heat exchanger, especially with short
single tube lengths, has to be done in such a way that the free space which arises
around the connection bends without fins does not produce a harmful bypass
flow. It would be best to place the connection bends of the single tubes on the
outside of the flue gas channel. Such a design is, however, expensive to produce
and very complicated to assemble. For this reason cheaper and simpler construc-
tions are often chosen which do not achieve complete elimination of bypass flow
at the connection bends.

According to Schmidt, a difference of 1.5 exists between in-line and staggered
finned tubes arrangements. More recent research by the tube manufacturer Man-
nesmann Carnoy, as well as our measurements [6], reveal this difference to be a
little smaller. Many studies have limited themselves to staggered arrangements
because of the great advantage they have over in-line arrangements (so for exam-
ple Mirkovics [5], Stasiulevicius [3]). Yet, in-line tube arrangements often have
to be chosen, for example because of the cleaning capability provided by soot
blowers or for design reasons (e.g. support structures for suspended tubes).

There is hardly ever a free choice of the most suitable finned tube, since this
is often restricted more or less by the choice of a certain construction design
or manufacturer. However, customers should become familiar with their own
requirements as well as with the properties of the product offered in order to be
certain of having selected the most suitable finned tube.

1. Finned tube design type

A selection of finned tube construction design should be made based on the
type of installation as well as on operating conditions:

(a) Steam tube with welded spiral fins: suitable for high fluid pressures
in the tube and, depending on the material of the fins, also for gas
temperatures up to about 600 oC. Preferred area of application: steam
generators and heat recovery boilers. The steel ribbon for the fins can
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also be twisted into a U shape, then wound around the tube and welded
together, so that two fins are produced in a single working cycle.

(b) Steam tube with fins separately welded to the tube, mostly with larger
fin pitch for solid fuel furnace.

(c) Steam tube with fins wound and mounted only by pressure: suitable
for gas temperatures up to approx. 350 oC. An improvement of heat
transfer is achieved by subsequent hot-dip galvanization. Application:
heat exchanger in plant engineering.

(d) High-alloyed steel tube with laser-welded spiral fins of high-alloyed
steel: High-grade heat exchangers in process and refrigeration engi-
neering, also suitable for high temperatures depending on materials
used.

(e) Steel tube with forced-on, mounted fins of sheet steel: thinner fins,
possibly also wavy in form, with small fin pitches can also be mounted
by pressing i.e. flat tubes or oval tubes. For better heat conduction
the fin base is often designed in an L- or T-shape and/or the finish
of the finned tube is zinc-plated. For air-covered coolers and steam
condensers up to approx. 30 bars for oval tubes.

(f) Copper tubes with copper fins (pressed on, can also be soldered) or
aluminium fins (only pressed on) in ventilation and air conditioning
installations, copper pipe with soldered copper fins also in refrigeration
engineering.

(g) Copper tubes with one-piece pressed fins (rarely also of high-alloyed
steel) have the advantage that the finned tubes can be twisted. These
tubes can be manufactured in one piece as helical coils for heat ex-
changers.

(h) Finned tubes with continuous fins are often manufactured for cooler
units in automotive engineering, for refrigeration installations and pro-
cess engineering. The tubes are pushed through the fins and joined
mostly only by force fit. Cu tubes and Cu fins can also be soldered.
The fins can be also by wavy in form, both with angular and rounded
waves.

(i) If requirements demand minimal gas-side pressure drop, elliptical
tubes or flat tubes or even flat tubes with wing profiles may also be
used as a base for fins.

(j) Finned tube elements with continuous fins for cooler units can be man-
ufactured in one piece by plastic injection molding. With this appli-
cation, temperatures and pressures are restricted, but it is corrosion-
resistant.
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2. Fin pitch

Fin pitch, or actually the clearance between the fins tR − sR, depends on
the fouling factor of the gas which flows between the fins, and the minimum
value is recommended as follows according to [25]:

Pure air 1.8-3 mm
Flue gas: Natural gas 3-4.2 mm

Low viscosity oil 4.2-6.3 mm
Heavy oil 5-8.5 mm
Solid fuels 12-25 mm

3. Fin thickness

Fin thickness is not so much dimensioned based on fin efficiency but rather
on other criteria such manufacturing feasibility and strength of the fin ma-
terials during installation and operation. Standard fin thickness values:

Spiral fins 0.9-1.0-1.3 mm
Fins for solid fuels 1.6-2.5 mm
Fins for ventilation and air conditioning engineering
also of Cu and Al 0.3-0.7 mm

4. Fin height

For compact and economic heat exchangers it is preferable to design fins as
tall as possible, however other factors place restrictions.

(a) Fin efficiency decreases with increasing fin height.

(b) In manufacturing spiral fins, the exterior fibers of the fin band are
subject to considerable strain, restricting the fin height.

(c) The tendency toward flow displacement out of the channels between
the fins occurs especially with tall fins having a small distance be-
tween them, particularly when a large transverse pitch is involved.
The result is reduced heat transfer at this point, while the flow around
the outside of the finned tubes hardly participates in heat transfer.
This is particularly important for only a single tube row or a few
tube rows. According to [4] almost no flow displacement occurs when
a = (tq − (dA + 2h))/tq < 0.1, while on the other hand considerable
displacement occurs in the range of 0.1 < (tq − (dA + 2h))/tq < 0.2,
depending on the relative distance between the fin edges a; for even
higher values of (tq− (dA+2h))/tq, flow displacement does not further
increase, as seen in figure (42). The quotient of the velocity between
the fins wR divided by mean velocity wM = 1/2(w0 +wE) is used as a
measure of flow displacement; this is calculated according to equation
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Figure 42: Flow displacement in dependence of relative transverse pitch
a (a = (tq − (dA + 2h))/tq)

(75) and equation (76).
The two restricting influences mentioned can be partly avoided by the
application of serrated fins, since there is practically no elongation of
the outside fibers when cuts are made in the fin band; flow displace-
ment is also considerably reduced by the spaces between individual
segments.

3.4 Substitution of fluid properties

The dimensionless groups Re, Nu, Pr include fluid properties that are generally
temperature-dependent. For precise application of the calculation equations, it is
necessary to define at which temperatures these fluid properties are to be applied.
This especially holds true in the evaluation of test series.

Flue gas properties are calculated using the mean of wall temperature and average
gas temperature in Schmidt’s procedure [1]; this is also approximately the average
boundary layer temperature.

ϑBm = (ϑWa + (ϑg1 + ϑg2)/2)/2 (101)

The wall temperature of finned tubes differs above the surface of the fins. A
mean wall temperature of the fin is calculated from the temperature at the fin
base ϑRF and the fin efficiency.

ϑmR = ϑRF +
k

α
(1− ηR)(ϑgm − ϑwm) (102)

The average wall temperature is, in analogy to equation (6), therefore:
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ϑWa =
(ϑmRARi + ϑRFARo)

ARi + ARo

(103)

For the temperature at the fin base, the FDBR formula [10] may be used:

ϑRF = ϑwm +
Atot

AR

(
k dA
αi di

+
k dA
2λRo

ln
dA
di

)(ϑgm − ϑwm) (104)

When determining the Reynolds number in heat transfer calculations, the viscos-
ity value at the temperature ϑBm is used, yet the velocity value at the mean gas
temperature ϑgm is used. Attention has to be paid to this, especially if in the
place of the formula

Re =
w d

ν
, (105)

the following expression is used:

Re =
ṁ d

η
(106)

In this formula, the rule given above for the calculation of Re is not implemented
and has to be supplemented by a multiplicative factor (ϑBm+273.2)/(ϑgm+273.2)
when the dynamic viscosity η at the mean boundary-layer temperature is used.
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Figure 43: Reduction coefficient for heat transfer with a small number
of consecutive tube rows (staggered arrangement)
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3.5 Heat exchanger with a small number of consecutive
tube rows

The formulas for heat transfer at finned tubes are generally valid for a certain
minimum number of consecutive tube rows. This number varies according to the
authors from 4 to 12 in the literature for staggered tube arrangements and from 4
to 20 for in-line tube arrangements. A reduction of heat transfer at staggered tube
arrangements is generally assumed for smaller tube row numbers (see [2],[3],[5]);
for in-line tube arrangements no such agreement exists; see [2],[3],[6]. The ap-
proaches and difficulties will be presented first by referring to the staggered tube
arrangement because more papers exist for this problem case.

3.5.1 Reduction methods for staggered tube arrangements as pre-
sented in tables and diagrams

Diagrams are presented for staggered tube arrangements in [6]. There the reduc-
tion of the heat transfer coefficient for a small tube row number in relation to the
value α∞ (heat transfer coefficient for more than 8 tube rows) is shown; figure
(43).
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Figure 44: Heat transfer with 8, 6, 4 and 2 consecutive tube rows with
dCh as characteristic dimension (staggered arrangement)

Depending on the longitudinal pitch tl, the heat transfer coefficient differs for
various tube bundles, thus different values are obtained for a heat exchanger
with only a single tube row by using the reduction coefficients in figure (43),
even though one tube row is only characterized by the transverse pitch tq and
can therefore show just one value for α. This is a fundamental deficiency of this
concept which can be avoided by other methods of calculation, i.e. according
to Weierman [8], who states the reduction coefficients in dependence of tl/tq, or
according to ESCOA, where the coefficients are calculated using the equations.
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Table 2: Function E(nR)

nR 1 2 3 4 5 6 7 8
E(nR 1.0 0.48 0.28 0.17 0.10 0.045 0.015 0.0

This method takes into account the considerations mentioned above, but cannot
be added to other calculation formulas than the one given. In order to be able to
include the considerations mentioned above, it is necessary to have a calculation
method for heat transfer at a single finned tube row. This is the case with the
1984 edition of VDI Waermeatlas, pages Mb 1-5 [9], however, this method is less
suitable for the calculation of finned tube bundles. In order to enable comparison
of the results of the calculation with those of Mannesmann, a matching coefficient
of 0.9 is introduced. For the dimensioning of a heat exchanger with less than eight
consecutive tube rows, a correction factor Kz is proposed, which is substituted
as a multiplier into the equation for heat transfer.

Kz = (
Nu0,∞
Nu0,1

)−E(nR) (107)

With this function, a reduction characteristic of the same amount is introduced
for all heat transfer coefficients. For E(nR) a value chart (table 2) is given, which
is calculated from the heat transfer measurements by ITE with 1, 2, 4 and 6 tube
rows and compared to 8 tube rows (see figure (6) in [6] on this).

The Nusselt number for nR consecutive tube rows, with nR less than 8, is calcu-
lated as:

Nu0,nR
= Nu0,∞Kz (108)

3.5.2 Calculations according to measurements on staggered finned
tube bundles with less than 8 tube rows

The heat transfer measurements at finned tubes were almost always carried out
at ITE on 8 consecutive tube rows. Afterwards, additional measurements were
usually performed on 6, 4 and 2 tube rows. In one case, even measurements for
a single tube row were performed, which was only possible through manipulation
of the test rig, because the system is only designed for an even number of tube
rows.
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Figure 45: Heat transfer with 8, 6, 4 and 2 consecutive tube rows with
dA as characteristic dimension (staggered arrangement)

The experimental data of the measurements with a reduced number of tube rows
was also evaluated. The results are presented in figures (44), (45) and (46). The
evaluation was done according to different approaches with respect to the char-
acteristic dimensions of the finned tube, i.e. using the outside tube diameter dA,
the hydraulic diameter of the flow channel between the fins dCh and the charac-
teristic diameter according to Mirkovics dMi.
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Figure 46: Heat transfer with 8, 6, 4 and 2 consecutive tube rows with
dMi as characteristic dimension (staggered arrangement)

This has proven to be useful, since, depending on the approach, various mea-
surement criteria became evident in each case. In figure (44) for example, where
KuCh according to equation (91) is plotted above ReCh, it is apparent that, in
the range of Reynolds numbers 1000 to 2000, the difference between the mea-
sured values with 8 and 4 and/or 2 tube rows is relatively small, in any case
considerably smaller than anywhere else in the figure. A comparison of the table
of measured values with figure (44) shows that these values are for finned tubes
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with a fin pitch of 3.62 mm, whereas the remaining measurement points are for
finned tubes with a fin pitch of 6.67 mm. One can draw the conclusion that the
reduction of heat transfer with a small number of tube rows is dependent on the
fin pitch. This reduction would be low for small fin pitches while higher for large
fin pitches. This hypothesis has to be verified, however, by further test series.

Figure 47: Averages for heat transfer with 8, 6, 4 and 2 consecutive tube
rows with dA as characteristic dimension (staggered arrangement)

In figures (45) and (46) it can be seen that the measurement points with 2 tube
rows are clustered around a lower constant ratio than those with 8 and 6 tube
rows. The values for measurements with 4 tube rows with low Reynolds numbers
(approx. 5000) are closer to those with 2 tube rows, while for higher Reynolds
numbers (approx. 50000)they near those for 8 and 6 tube rows. For a better vi-
sualization of this tendency, the linear mean values of measurements with 8, 6, 4
or 2 tube rows are plotted in figure (47). This tendency can be clearly seen there.
Heat transfer with a small number of tube rows would therefore depend on both
the number of tube rows and the Reynolds number. This fact is revealed again
in a different manner in figure (48), whereas the measurement data for a single
tube row has also been added. It in this case a reduction coefficient is plotted
which indicates the decrease in heat transfer for a certain number of consecutive
tube rows smaller than 8.

Kz = 0.82− 0.3464z − 0.1736z2 + (0.045 + 0.4144z + 0.3889z2)y′ + (0.025

−0.0523z − 0.2677z2)y′2 + (0.01− 0.0158z + 0.0525z2)y′3 (109)

From this diagram an equation was generated which characterizes this diagram
in an arithmetic form. For Kz a polynomial of the variable y′ is given, which
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Figure 48: Reduction coefficient Kz for heat transfer with 8, 4, 2 and 1
consecutive tube rows (staggered arrangement)

depends on the number of tube rows nR (y′ = lognR

log 2
) and on the variable z, which

in turn depends on the Reynolds number (z = log Re
5000

).

Figure 49: Heat transfer with small number of consecutive tube rows
and in-line arrangement

3.5.3 Heat exchanger with small number of consecutive tube rows in
in-line arrangement

A small number of consecutive tube rows influences heat transfer differently in
in-line arrangements than in staggered arrangements. The first tube row shows
the highest heat transfer coefficient in in-line arrangements, whereas it decreases
for the following tube rows, since these are in the wake area of the previously
arranged tube rows. Heat transfer decreases therefore up to the fourth tube row,
behind this the asymptotic range is reached, according to [3]. This is represented
in figure (49). According to [12], the asymptotic range is not reached before
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the 5th tube row, the decline in heat transfer depends, however, additionally on
the ratio of longitudinal to transverse pitch. For tl/tq > 1.1 there is virtually
no dependence of heat transfer on the number of the tube rows, but there is a
noticeable dependence for tl/tq < 1.0 which increases further with declining tl/tq.
The diagram in figure (49) is misleading: the heat transfer coefficient cannot de-
pend on the parameter tl/tq for a single tube row because no longitudinal pitch
exists for a single tube row. The following figure (50) reveals this fact even more
clearly.

Figure 50: Reduction coefficient for heat transfer with a small number
of consecutive tube rows in in-line and staggered arrangement

Figure (50) takes advantage of the fact that a single tube row shows a certain
amount of heat transfer which is valid for both in-line and staggered tube arrange-
ments. Thus, the curves, which characterize the dependence of heat transfer on
the number of the tube rows for both geometrical arrangements, start from the
same point. The reduction curve derived by Mirkovics [5] is thus plotted in figure
(50) for staggered tube arrangements, as well as those from Stasiulevicius [3] and
ESCOA [12] for in-line tube arrangements. In addition to this, the asymptotic
value according to the Mannesmann formula [1], which results from the com-
parison of the constants for in-line and staggered tube arrangements to 2/3, is
plotted.

3.6 Serrated fins

For the manufacturing of spiral finned tubes, an initially straight steel strip, which
forms the fins, needs to be bent around its larger axis and formed into a helical
winding, whereby it is stretched on the outside and compressed or shaped on
the inside in a wave-like manner as in figure (3). Therefore, the choice of the
material for the fins is restricted to very ductile materials. (For example deep-
drawing sheets among other things must sometimes be used, in spite of their
unfavorable properties high temperatures.)
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An alternative to this is to partially cut the steel strips (up to half the width)
in short intervals on the outside before winding to generate a finned tube with
serrated fins (figure (51)). Permanent elongation of the material is thus reduced.
Hence materials with better high-temperature strength and better scaling resis-
tance, yet less ductility, can be used for the fins.

Figure 51: Sectional view of a finned tube with serrated fins

Finned tubes with serrated (also named segmented) fins show somewhat higher
heat transfer coefficients than those with smooth fins because the boundary layer
is built up anew at each segment, which results in better heat transfer. On the
other hand, the pressure drop is a somewhat greater. Weierman [8] specifies ref-
erence values in graphical form for the calculation of such finned tubes. It follows
from this that heat transfer in staggered tube arrangements increases only little
for small values of h/(tR − sR) at and is considerably greater at h/(tR − sR) ≥ 4;
see figure (52).
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Figure 52: Comparison of Nusselt numbers for finned tubes with ser-
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The pressure drop coefficient is noticeably greater for small values of h/(tR − sR)
(figure (53)), so that for h/(tR−sR) < 4 no advantage in general is to be expected
for finned tubes with serrated fins (no reduction of the heating surface at a large
pressure drop).

For h/(tR−sR) > 6, heat transfer is around 20% better for a greater pressure drop
of around 18% as related to common spiral finned tubes in staggered arrangement.
An insignificant gain would be realized at the heating surface. With in-line tube
arrangements, the increase in pressure drop for serrated fins is greater than the
increase in heat transfer, which is seen in figure (52) and figure (53). It follows
from this that in-line finned tube bundles with serrated fins are hardly to be
preferred. The amount of loss, due to the serrated fins, at the heat-transferring
surface depends on the width of the remaining fin volume and amounts to 7÷14%
when 1/4 steel strip is retained, as given in the relation h/dA.

A gain in specific power of the heat exchanger can therefore only be achieved with
tall fins and a staggered tube arrangement. Equations for the determination of
finned tubes with serrated fins were also developed by ESCOA (Extended Surface
Corporation of America [17], a manufacturer of finned tubes with smooth fins and
serrated fins; see the corresponding chapters) as well as by Nir [18].
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Figure 53: Comparison of pressure drop coefficients for finned tubes
with serrated and annular fins

3.7 Geometrical arrangement of tubes in a bundle

The geometrical arrangement of tubes within a bundle noticeably influences heat
transfer and pressure drop in finned tube arrangements. This fact is not always
as obvious as in the heat transfer formulas by Schmidt [1], in which a factor of
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0.45 appears for staggered arrangement and of 0.30 for in-line arrangements in
otherwise identical equations.

8
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Figure 54: Staggered finned tube arrangement with semi-tubes on the
channel wall

One has to distinguish between in-line and staggered tube arrangement, as pre-
sented in figure (26) and figure (54). In [26] a partly staggered arrangement is
presented which differs from the staggered arrangement in that the following tube
row is offset from the center of the transverse pitch of the preceding tube row;
figure (56).

Semi-tubes should be arranged on the channel wall, especially in staggered tube
arrangements, and with few parallel tube rows, in order to prevent a detrimental
bypass flow through the otherwise empty space. In order to fully achieve this
effect, these semi-tubes should also participate in heat transfer, which requires a
very complicated design for the water side. The simpler construction design, as
seen in figure (55), is usually chosen therefore.
A more general approach is to be attempted here, whereby a staggered arrange-
ment is not achieved in the same way as the partly staggered arrangement, i.e. by
transversely shifting every second tube row of an originally in-line arrangement,
but rather by a slight shift in longitudinal direction; see figure (57). Strictly
speaking, this alignment concept is no longer an in-line tube arrangement but
rather a staggered tube arrangement.
A conceptual discrepancy arises here which does not exist physically, therefore
another point of view is justified: the angle α is used to characterize the arrange-
ment, whereas it follows that:

tanα =
t′l
t′q

(110)

The pitches tq and tl are the distances between the tube centers, whereas the
pitches t′q and t

′
l are the distances between one tube center and an intersection of
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Figure 55: Staggered finned tube arrangement

Figure 56: Partly staggered finned tube arrangement
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Figure 57: Transition from an in-line to a staggered finned tube arrange-
ment

sleeve axes. With in-line arrangements α is 0 and t′l is also 0, and bundle geometry
is determined by the specification tl and t′q. With staggered arrangements this
is determined by the specification tq and t′l, where it often (but not necessarily)
holds that: 2 t′l = tl. Except for partly staggered bundles, 2 t′q = tq is otherwise
valid.

The characteristics of the dimensionless heat transfer coefficient Nu and the di-
mensionless pressure drop coefficient ξ in dependence on the angle α could be
determined through a series of experiments using the same finned tubes at a
fixed transverse pitch but with a variable angle α. Hence a relationship between
in-line and staggered tube bundles would arise. Unfortunately, such a series of
measurements has to date not been made. The function curve can be only par-
tially plotted. In particular, no measurements are known for the determination
of the area of angles α smaller than 30 to 0 degrees.
Stasiulevicius and Skrinska [3] have done some measurements with the same
finned tubes for α = 35 to 57 degrees, but unfortunately not for a smaller angle
or for 0 degrees (in-line tube arrangement). The measurement series by [3] is
presented in figure (58) with the angle α from figure (57).
In the measurement series by ITE on staggered arrangements, still only a small
interval for the angle α was considered, while one measurement value for an in-
line arrangement could be added using α = 0 for two different finned tubes with
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Figure 58: Heat transfer measurements of Stasiulevicius in dependence
of the angle α according to figure (57)

Figure 59: Heat transfer measurements by ITE in dependence of the
angle α according to figure (57). Tube diameter 31.8 mm
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diameters of 31.8 mm and 38 mm; see figure (59) and figure (60) on this.

Figure 60: Heat transfer measurements by ITE in dependence of the
angle α according to figure (57). Tube diameter 38 mm

It is also interesting to produce the same diagram by means of a calculation
equation. In this case calculation according to ESCOA would suggest itself, since
first of all a relationship between transverse and longitudinal pitch exists and
furthermore calculation can also be performed for in-line arrangements using a
consistent equation. The result is presented in figure (61) and the curve matches
the measurement values in the previous figures.

Figure 61: Heat transfer calculated according to ESCOA in dependence
of the angle α according to figure (57)

The test series by Stenin and Kuntysh [36] should also be mentioned. The tube
rows in the direction of flow, originally in in-line arrangement (position I), are
rotated by a certain angle, i.e. approx. 7o (position II), 16o (position III), 24o

(position IV) and 30o (position V). The last arrangement represents equilateral
triangular pitch, when a suitable longitudinal pitch is chosen; figure (62).
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Figure 62: Schematic representation of the experimental setup by Stenin
and Kuntysh [36]

The results of this test series are presented in figure (63). It can be seen that
heat transfer shows a maximum for an angle of 24o and then decreases again by
approx. 4% up to an angle of 30o (which is an equilateral triangular pitch).
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Figure 63: Experimental results of Stenin and Kuntysh [36]

3.8 Summary of heat transfer

Finned tubes with fins attached orthogonally to the sleeve axis on the outside
are used for heat exchange between a gas with relatively unfavorable heat trans-
portation properties and a liquid. The gas-side heating surface per m tube is
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extended by the fins, so that a heat exchanger of smaller construction volume is
attained than with smooth tubes. As a result of thermal conduction resistance in
the fins, a reduction factor, so-called fin efficiency, is adopted for the calculation
of heat transfer at finned tubes. This is derived from the geometrical dimensions
and the thermal conductivity coefficient of the fin material as well as the gas-side
heat transfer coefficient.

In the formulas for calculating heat transfer, the dimensionless Reynolds and
Nusselt groups must be calculated using a characteristic length. This length is
not as naturally evident as with the diameter of smooth tubes. In addition to
more complex expressions, the base diameter of the finned tube has become the
established measure of characteristic length in spite of some obvious deficiencies.
The formulas consist of more terms than formulas for smooth tubes as a result
of the greater number of characteristic dimensions of finned tubes. Attention
has to be paid to the choice of the temperature value at which the thermal
properties of the fluid are applied. According to Schmidt’s equations, this could
for example be the mean boundary temperature. Finned tube heat exchangers
with few consecutive tube rows in a gas flow require a correction of the heat
transfer coefficient.
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4 Finned tube bundles with continuous fins

Particularly in air-conditioning and refrigeration engineering as well as for cool-
ing units, but sometimes also in the case of general applications, finned tube
bundles with continuous fins (also termed louvers- tube bundle) are used. In this
case, the fins have the dimensions of a whole heat exchanger or a heat exchanger
package. The tubes are inserted into the fins in adapted holes, whereby the heat-
conducting connection between fin and tube is achieved by pressing the tubes
onto the fins, expanding the tubes or by means of soldering or welding. In this
case, the fins are often made of a different material from the tubes, for example
aluminum fins with steel or copper tubes, or copper fins with steel tubes. In order
to achieve a further improvement of heat transfer, the fins may also be wavy and
approximately orthogonal to the gas flow direction. Apart from circular tubes,
elliptical or flat tubes are also used to reduce gas-side pressure drop in particular;
figure (64).

Gas

Liquid

Figure 64: Circular tubes with continuous fins
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4.1 Finned tube bundles with continuous smooth fins and
circular tubes

For finned tube bundles with continuous smooth fins and circular tubes, calcula-
tion equations exist for both staggered and in-line tube arrangements.

1. In-line tube arrangement: the calculation equations use a characteristic
length which is calculated as a hydraulic diameter of the single flow channel.

dae =
4.V.Ψ

Atot

(111)

The individual terms here are: porosity Ψ which represents the void fraction
in relation to the total volume:

Ψ = 1− sR
tR

− π d2A(tR − sR)

4tq tl tR
(112)

The effective heating surface Atot is expressed as:

Atot = 2 (tq tl − d2A
π

4
) + dAπ(tR − sR) (113)

The volume V is the product resulting from transverse pitch, longitudinal
pitch and fin pitch tq tl (tR−sR). For heat transfer at an in-line arrangement,
the following relationship is given in dimensionless notation by Kaminski
and Gross [19], however it also agrees with Haaf [20]:

Nu(dae) = C1Re(dae)
0.625Pr

1
3 (
dae
tl

)
1
3 (114)

The dimensionless number Re(dae) in this case is calculated using the hy-
draulic diameter dae, already defined, and, deviating from common proce-
dure, calculated using the mean gas velocity in the bundle wm:

wm = w0/Ψ (115)

where w0 is the velocity of the free fluid flow.

Kaminski and Gross [19] and Haaf, in the handbook of refrigeration en-
gineering Vol. 6A [20], present the same values for the constant C1 in an
in-line tube arrangement: C1 = 0.20 for more than 5 consecutive tube rows,
while Kaminski and Gross [19] present a table for C1 for fewer than 5 tube
rows. Haaf [20], on the other hand, states that fewer than 5 tube rows do
not often occur and therefore no such specification is necessary.
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2. Staggered tube arrangement: The equation shown (114) is also used for a
staggered tube arrangement, however the specifications given for the con-
stant C1 by the two sources above do not agree: Kaminski and Gross [19]
specify the constant at C1 = 0.24 for staggered tube arrangements with a
tube row number > 4, yet for Haaf [20] C1 = 0.31. For a tube row number
smaller than 4, a table for the constant C1 is specified in [19].

It is worthy of note that heat transfer is best for both in-line and staggered tube
arrangements with only one tube row and decreases for several consecutive tube
rows, until an asymptotic value is reached at 5 tube rows in in-line arrangement
and/or 4 tube rows in staggered arrangement. On the other hand, for finned
tube bundles with fins which are separately attached to the tubes in staggered
arrangement, heat transfer increases with the number of the tube rows, until an
asymptotic value is reached at 6-8 consecutive tube rows; see section 3.5.1 and
3.5.2 on this.

Pressure drop is calculated according to Kaminski and Gross [19] using the fol-
lowing formula,

Δp = ξKGnR
tl
dae

ρGw
2
m

2
(116)

which is adopted by Haaf [20] and based on Ward and Young [37].

The additional expression tl
dae

and the use of the ‘mean velocity wm is a departure
from prevalent notation for pressure drop in this field. Similar to the case of heat
transfer, equivalent formulas are proposed for in-line and staggered tube arrange-
ments. Only the pressure drop coefficients ξKG are different. The equations for
the calculation of the pressure drop coefficients are identical, only the constant
C2 varies according to the tube arrangement.

ξKG = C2Re(dae)
− 1

3 (
dae
tl

)0.6 (117)

The specifications for the constant C2 given by different sources resemble each
other for in-line tube arrangement, while considerable differences exist for stag-
gered tube arrangement. Kaminski and Gross [19] set the constant C2 at 6.3
for in-line tube arrangements, while Haaf [20] specifies 6.0; i.e. only an insignifi-
cant difference of 5% exists between the two specifications. According to [19] the
asymptotic value is C2 = 8.1 for 6 or more tube rows in staggered tube arrange-
ment, while [20] specifies the value at C2 = 10.5 without stating any dependence
on the tube row number. Similar to heat transfer, a difference of approx. 30 %
exists. According to [19], a pressure drop table exists for C2 with fewer than 6
consecutive tube rows.
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Table 3: C1 and C2 for few tube rows according to [19]

nR C1 C2 C1 C2

- in-line staggered
1 0.31 12.9 0.31 12.9
2 0.25 8.8 0.28 10.5
3 0.22 7.5 0.26 9.4
4 0.21 6.9 0.24 8.7
5 0.20 6.5 0.24 8.4
6 0.20 6.3 0.24 8.1

4.2 Finned tube bundles with continuous wavy fins and
circular tubes

Industrially manufactured heat exchangers often use finned tubes with wavy fins.
These waves have two different designs, canted waves and round waves; see figure
(65).

Figure 65: Wavy fins: corrugated or wavy form

The terms ”corrugated fin” and ”wavy fin” have also become established in Ger-
man. The equations of Kaminski and Gross [19] are valid for round tubes and
angular corrugation with wavelengths of 6.25 mm, in in-line tube arrangement,
and 5.5 mm, in staggered tube arrangement, and an amplitude of 1.38 mm in
each case. For in-line tube arrangements these equations are:
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Nu(dae) = 1.28Re(dae)
0.329Pr(

1
3
)(
dae
tl

)0.214 (118)

The same notation applies as in the preceding section. The following equation
holds for the pressure drop coefficient in this arrangement:

ξKG = 24Re(dae)
−0.52(

dae
tl

)0.63 (119)
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Nu, in-line, wavy fins

Nu, staggered, wavy fins

Figure 66: Comparison of Nusselt numbers for circular tubes with con-
tinuous smooth or wavy fins

Similar equations are valid for staggered tube arrangement, however with other
constants. First, the one for heat transfer:

Nu(dae) = 0.597Re(dae)
0.466 Pr(

1
3
)(
dae
tl

)0.214 (120)

The following is valid for the pressure drop coefficient:

ξKG = 7.8Re(dae)
−0.32(

dae
tl

)0.63. (121)

A comparison of Nusselt numbers in these equations with the equations for
smooth fins in figure (66) shows that, with in-line tube arrangements, heat trans-
fer is only better for wavy fins than for smooth fins in the Reynolds number range
< 1000.

The pressure drop coefficient for Re < 1000 is also a little higher, and wavy fins
therefore provide a somewhat more compact heating surface; see figure (67).
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Figure 67: Comparison of pressure drop coefficients at circular tubes
with continuous smooth or wavy fins

For higher Reynolds numbers, wavy fins are not as good as smooth fins both for
in-line tube as well as for staggered tube arrangements, even though staggered are
better than in-line arrangements, as can be seen by comparing the performance
numbers (Pn) for circular finned tubes according to equation (132) in figure (68).
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Figure 68: Comparison of performance numbers according to equation
(132) for circular tubes with continuous smooth or wavy fins

Sparrow and Hossfeld [27] examined the influence of rounding the angular waves
and discovered that for a small rounding radius (see figure (65) for the terms),
i.e. when R/B < 0.55, Nu decreases by about 3%, while for a larger radius, i.e.
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0.55 < R/B < 0.972, Nu decreases by about 8%. The pressure drop coefficient
decreases in the first case by about 21%, however, and in the second case by as
much as 44%, so that the rounded wavy fins are obviously to be preferred.

4.3 Finned tube bundles with non-circular tubes and con-
tinuous smooth fins

Finned tube bundles with continuous fins as well as single tubes with fins are
often manufactured from elliptical or flat tubes in order to reduce the gas-side
pressure drop. Yet these tubes show considerably less strength against internal
and external overpressure, particularly flat tubes, which consist of two semicircles
with straight lines joining them in the cross-section; see figure (69). For these
finned tube bundles only few measurement values are available, those by Kays
and London [21] for flat tubes and those by Geiser [30] for flat tubes and other
tube designs, while no suitable calculation equations exist.

Gas

Liquid

Figure 69: Flat tubes with continuous fins

The task of developing calculation equations mainly from the above-mentioned
measurements by Kays and London [21] is even more difficult when flat tubes
with a very small axial ratio of 0.138 to 0.136 (small to big axis) are used and
this relation is not varied. Thus, the difference in geometry compared to a circular
tube is considerable. When merely the design of the tubes used is considered,
a comparison between measurements on flat tubes with the measurements on
circular tubes does not seem to be possible. However, the equivalent diameters
dae of the different tube bundles are not that far apart (4.9 mm to 5.2 mm). A
comparison for staggered arrangement according to the diagrams of Kays and
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London [21] can be nevertheless done if one accepts a greater uncertainty of the
resulting equations.

This comparison shows that heat transfer is a little smaller for flat tubes than
for cylindrical tubes. No statement can be made about a possible influence of
the axial ratio a/b of the flat tubes. The following approximate equation for heat
transfer may be specified based on the explanations given above for flat tubes in
staggered arrangement with continuous smooth fins by drawing on the equation
for cylindrical tubes by [19]:

Nu(dae) = 0.438Re(dae)
0.531Pr

1
3 (
dae
tl

)
1
3 (122)

According to the information in [21], the Reynolds number was also determined
using dae, but with the velocity in the narrowest cross-section wE = w0/Af , at
which the proportional free cross-section results as:

Af = (
tq − a

tq
)(
tR − sR
tR

) (123)

The hydraulic diameter of the fluid channel is ascertained using dae = dh = 4V/F :

dae =
4((tR − sR)(tqtl − (a(b− a))− a2 π

4
))

AFtot

(124)

AFtot in this case is the heating surface:

AFtot = 2(tqtl − a(b− a)− a2
π

4
) + (2(b− a) + aπ)(tR − sR) (125)

For the development of a calculation equation for flat tubes with staggered tube
arrangement, measurement values are available from cylindrical tubes for com-
parison. Such measurements are not available for in-line tube arrangements. Heat
transfer equations for in-line flat tube bundles may only be determined based on
measurement values and will therefore show a greater uncertainty. A comparable
approximate equation representing heat transfer for flat tubes with continuous
smooth fins arranged in line is thus as follows:

Nu(dae) = 0.0842Re(dae)
0.7Pr(

1
3
)(
dae
tl

)
1
3 (126)

A comparison shows that heat transfer for lower Reynolds numbers is considerably
better in staggered arrangement. For higher Reynolds numbers, on the other
hand, a smaller difference exists. The representation of the Nusselt number,
depending on Re and Pr in the formulation of the equations given above is,
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however, a simplification, since the measurement values do not form a straight line
in the double-logarithmic diagram of the measured values as the above formula
would demand, instead they show a curved characteristic. Strictly speaking,
the formulas are only valid in the range between 1000 < Re < 10000, that is,
approximately for air at ambient temperatures with a velocity from 3 m/s up to
30 m/s. The gas-side pressure drop for a flat tube bundle with continuous fins
could be estimated with the measured pressure drop coefficients provided by Kays
and London [21]. Relations of the same variety as for circular tube bundle with
continuous fins can according to [19] be expressed for smaller ranges of Reynolds
numbers. Such an equation for in-line flat tube arrangement with smooth fins
in the same range of Reynolds number as above (103 < Re < 104) would be as
follows:

ξ = 0.70Re(dae)
−0.339(

dae
tl

)0.6 (127)

For a staggered or partially staggered arrangement the equation reads as follows:

ξ = 1.523Re(dae)
−0.414(

dae
tl

)0.6 (128)

In contrast to the section on circular tubes, the pressure drop coefficients ξ in
this case are defined for nR tube rows according to the following relationship:

ξ =
Δ p

nR ρG
w2

E

2

(129)

using the velocity in the narrowest cross-section wE and without the expression
tl
dae

.

The equations specified above are, however, only applicable for tube arrangements
which do not differ geometrically too much from the examined tube bundles. In
particular, the aspect ratio a/b of the flat tubes seems to be worthy of note. An
immediate comparison of the pressure drop coefficients of in-line and staggered
arrangements is not helpful, since the free flow cross-section is not identical. A
comparison of the quotient ξ/Af

2 in each case better expresses the relationship
between in-line and staggered arrangements, where Af is the fraction of the free
cross-section of the tube arrangement. To answer the question as to whether flat
tube bundles show a lower effective pressure drop than circular tube bundles, the
velocity occurring in the respective free cross-section needs to be considered. In
this case, comparable conditions should be assumed, for example the available
flow cross-section ought to be identical for the medium in the tubes.

A more complex calculation would result if it is assumed that the pressure drop
for the medium in the tubes is identical in both geometries. When for example
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Table 4: Flat tubes with differing profiles according to Geiser [30]

Profile type Profile-length Nu ζ Performance
[mm] (for Re=1000) coefficient

R4K 300 11.8 7.4 222
PRSK-V 300 11.8 5.4 304
PRSK-H 300 11.8 7.7 213
PKSK 300 11.8 5.2 316
GEK 300 11.9 5.3 318
GSK-V 300 11.3 5.8 249
837KK-V 320.5 10.8 6.7 188
479K-V 253 11.8 4.8 342

the calculation is performed under the first condition for flat tube bundles of 5 x
20 x 1 mm (equivalent circular tube 9.4 x 1 mm), only approx. a quarter of the
pressure drop of the circular tubes results for the flat tubes. In this respect the
usage of flat tube bundles is certainly advantageous when thermodynamic and/or
economic and/or design advantages can be achieved through the smaller pressure
drop on the gas-side, as long as the strength of the flat tubes allows them to be
used in the face of the internal pressure of the medium.

The flat tubes examined by Kays and London [21] all consist of two semicircles
joined by straight lines. Investigations of flat tubes with other profiles also exist,
revealing even less pressure loss. Geiser [30] investigated, through experiments
and calculations, tubes of different profiles with rectangular mounted fins. The
pressure drop was measured directly on the models manufactured of metal and
plastic. Heat transfer on the other hand was determined via the analogy between
mass and heat transfer using a small amount of ammonia in the gas and the
discoloration of test papers at the fins.

Here only those profiles are presented for which both pressure drop values and
heat transfer numbers are available. These include 8 different profiles starting
from the simple flat tube. All profile tubes are 60 mm thick, the length is mostly
300 mm. Only a few are shorter or longer. The fins are 150 mm wide and
357 mm long. The clearance between the fins is 12 mm and the transverse
pitch tq is therefore 150 mm. The flat tubes were analyzed on an enlarged scale
and are presented in figure (70) with the most important data and performance
coefficients (table (4)).

For the evaluation of different profiles of tubes, as well as in general for different
geometrical arrangements of heat exchangers, heat output is related to blower
power, which is necessary for the processing of the gas-side pressure drop. As a
standard for efficiency, the criterion suggested by Stephan and Mitrovic [31] can
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Figure 70: Flat tubes with differing profiles according to Geiser [30]

be used.

St3

ξ
(130)

According to Geiser [30], for finned tubes the Stanton number has to be multiplied
by fin efficiency.

(St ηR)
3

ξ
(131)

Since in this comparison Re and Pr remain constant and fin efficiency will also
be almost constant, the expression for the performance number, which is easier
to determine, can be used for the comparison as an approximation.

Pn =
Nu3

ξ
(132)

The profile R4K (see figure (70)) is the familiar flat tube with two semicircles
and straight lines joining them. Here the length-to-width ratio is about 5 (with
Kays and London [21] somewhat higher than 7). The next profile PRSK−V has

79

Principles of Finned-Tube Heat Exchanger Design for Enhanced Heat Transfer - 2nd Edition



82

Table 5: Circumference and surface of profile flat tubes

Profile type F(m210−4) U(m)
R4K 172.27 0.669
PRSK-V 158.07 0.647
PRSK-H 158.07 0.647
PKSK 143.86 0.626
GEK 148.05 0.644
GSK-V 132.42 0.651
837KK-V 139.09 0.67
479K-V 118.32 0.528

a spike on the downstream side and is therefore more advantageous with regard
to pressure drop because of the smaller vortex in the wake region. The reverse
profile PRSK − H with the spike at the upstream side is not advantageous,
the symmetrical profile PKSK with two tips downstream and upstream is again
very advantageous, even more than the profile PRSK − V . The profile GEK
is an elliptical profile, approximated by circular arcs. GSK − V is a spheroid
profile with moderate performance; the profile 837KK − V is supposed to be
advantageous from a fluid mechanical point of view, but actually considered not
efficient due to its excess length, whereas the shorter profile 479K − V seems to
be the best of all. The Reynolds number, according to Geiser [30], is determined
using the mean velocity in the bundle as well as the hydraulic diameter of the flow
channel. For the calculation of dae, the circumference (U) and the cross-section
area (F) of the profiled flat tubes is given in table (5).

4.4 Finned tube bundles with flat tubes and continuous
wavy fins

Finned tube bundles consisting of flat tubes with continuous wavy fins are some-
times used. Yet also single finned tubes with wavy fins are employed. In this
way the heat transfer coefficients according to Kays and London [21] may be in-
creased. For in-line tube arrangements of flat tubes, the Nusselt number increases
with Reynolds numbers between 300 and 3000 by around 38% at a wave height
of 0.635 mm and a wavelength of 6.35 mm. For continuous wavy fins only the
experimental values of Kays and London [21] exist. They used flat tubes for their
investigations. For circular tubes, investigations of corrugated fins by Kaminski
and Gross [28] exist. The wavy fins examined by Kays and London have all the
same wave geometry, with a wave height of 0.635 mm and a wavelength of 6.35
mm. There is only little information for converting this result to other wave
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geometries. According to Mirth and Ramadhyani [29], heat transfer and pres-
sure drop depend on the geometry of the waves, however the use of additional
parameters like wave height and wavelength does not improve the adaptation of
the equations to the measured values, so that it can therefore be assumed that
the influence is small. Should any influence of the corrugation parameters never-
theless be considered, this could be attempted for the flow in tubes and channels
with wavy walls with the help of equations (11.1) and (11.2) on page 11.12 of the
Handbook of Heat Transfer, 3rd edition 1998 [39]. According to the restrictions
mentioned above, the approximate relationship is valid for heat transfer in in-line
flat tube bundles with rounded wavy and continuous fins:

Nu(dae) = 0.1452Re(dae)
0.6576Pr

1
3 (
dae
tl

)
1
3 (133)

For the pressure drop coefficient of the arrangement listed above, the following
results from the diagrams of measurements:

ξ = 0.56Re(dae)
−0.261(

dae
tl

)0.6 (134)

For the corresponding flat tube bundles in staggered arrangement with wavy fins,
an equation the heat transfer would be:

Nu(dae) = 0.164Re(dae)
0.678Pr

1
3 (
dae
tl

)
1
3 (135)

The pressure drop coefficient for a staggered arrangement of flat tubes with wavy
fins results as:

ξ = 0.9094Re(dae)
−0.313(

dae
tl

)0.6 (136)

For the example listed above, the pressure drop coefficients are presented in figure
(71).
The equations for heat transfer and pressure drop are valid with sufficient accu-
racy for staggered flat tube arrangement with wavy fins in the case of different
fin pitches. This may be considered as evidence that an approach using the
equivalent hydraulic diameter dae is in principle correct.

The following may be stated with regard to the selection of finned flat tubes:
in view of the Nusselt numbers in figure (72), the staggered tube arrangement
is invariably better than the in-line tube arrangement. For in-line arrangement,
wavy fins are always better, but for staggered arrangements and Reynolds num-
bers < 1000 not as preferable as smooth fins, while for higher Reynolds numbers
slightly better. For comparison the performance numbers for flat tubes according
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Xi, in-line, smooth fin
Xi, in-line, wavy fin
Xi, staggered, smooth fin
Xi, staggered, wavy fin

Figure 71: Pressure drop coefficients of flat tubes with continuous fins

to equation (132) are presented in figure (73). These display same behavior as
described for the Nusselt numbers.
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Nu, in-line, smooth fin
Nu, in-line, wavy fin
Nu, staggered, smooth fin
Nu, staggered, wavy fin

Figure 72: Nusselt-numbers at flat tubes with continuous fins
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Figure 73: Performance numbers according to equation (132) for flat
tubes with continuous fins
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5 Pressure drop

5.1 Fundamentals for the determination of pressure drop
at finned tubes

For the design and construction of finned tube heating surfaces, knowledge of
the gas-side pressure drop is just as important as knowledge of the heat transfer
coefficient. For fossil-heated steam generators it does not make a great differ-
ence whether the pressure drop of a heating surface differs from the design value,
because the flue gas blowers are almost always amply designed. The arrange-
ment of finned tube heating surfaces in heat recovery boilers behind gas turbines
results in a pressure drop which directly influences the capacity, the efficiency
and the performance of the machine, whereas the entirety or almost the entirety
of the heating surface often consists of finned tubes. In combination with smoke
gas scrubbers, finned tube heater exchangers are often arranged as a heat-shifting
system, for example for reheating flue gases in front of a flue. In this case the avail-
able pressure drop is often minimal and the pressure drop of the heat exchanger
has to be able to be calculated exactly. The number of useful measurement values
for the pressure drop coefficient of finned tubes is, however, much smaller than
those for the heat transfer coefficients, and thus the reliability of the calculation
equations is lower. Furthermore, discrepancies may be observed between specific
pressure drop measurements, which are carried out mostly at ambient tempera-
tures, and the pressure drop measurements, which are taken in the course of a
heat transfer test run. The following considerations are intended to contribute
toward a solution of the problems that occur.

5.2 Problems with test result evaluation

Both heat transfer and pressure drop measurements were carried out at the same
time on spiral finned tube bundles by ITE. The pressure drop coefficients were
obtained not only at different Reynolds numbers, but also at different tempera-
tures within the gas stream, the boundary layer region and at the wall. When the
pressure drop coefficients were plotted above the Reynolds number in a diagram,
another curve often resulted than the one described in the literature [1,2,3] or a
scatter-plot, without any recognizable ordering principle, was obtained. Accord-
ing to the literature cited, pressure drop coefficients decrease by Re−0.25 with a
rising Reynolds number. For measurements with heat transfer they either rise
with the Reynolds number or remain constant. It should be mentioned that in
our tests of variation of the Reynolds number not only gas velocity but also gas
temperature was changed. Specifically, gas temperature had to be increased to
obtain low Reynolds numbers in order to avoid measuring instrumentation error
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and for precise measurement of small gas flow and small pressure differences.
Whenever these discrepancies were identified, pressure drop measurements were
repeated without cooling of the tubes, which means without heat transfer and at
a little above ambient temperature. In this case a typical curve for pressure drop
coefficient was obtained comparable to the literature, however with a quantita-
tively changed value of the pressure drop coefficient. After this, a measurement
series with heat transfer was carried out for the last tube arrangement, which in
this case substantiated previous results for pressure drop. Gross measurement er-
rors can therefore be ruled out. The question thus arises as to how pressure drop
measurements with heat transfer can be correlated with such measurements with-
out heat transfer. In order to consider the phenomenon described, the available
literature was reviewed and the following was ascertained:

1. In Zukauskas’ book about finned tubes [3] it is noted that pressure drop
coefficients were measured at ambient temperature or a little above this
and without any heat transfer. The equations which were developed from
this attained further publicity through inclusion in the HEDH [2], which
was created in cooperation with Zukauskas.

2. In the case of pressure drop at smooth pipe bundles, HEDH [2] distinguishes
between a fluid flow with the same temperature in the boundary layer region
as in the free flow and one with a different temperature, as occurs during
heat transfer. In the latter case, a correction factor for the pressure drop
coefficient is introduced, by taking the ratio of dynamic viscosity at mean
flow temperature to the viscosity at boundary layer temperature to the
power of n.

ξa
ξW

= (ηϑgm)/(ηϑGr
)n (137)

The exponent n, according to HEDH [2], depends on the Reynolds number
in that n for a small Reynolds number of 500 is approx. 0.4 and at Re =
5.103 becomes almost 0.

3. Mirkovich [5] also reports that pressure drop measurements were taken at
ambient temperature or a little above (this minor heating was apparently
caused by the fans).

If test runs with same geometrical arrangement and same Reynolds number exist
for both cases, i.e. with heat transfer and such without heat transfer, the exponent
n can be determined according to following equation:

ξa/ξW = (ηϑgm/ηϑGr
)n (138)
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If one carries out the evaluation above with the values measured by ITE, one ob-
tains exponents for n which are almost always > 1 and reach values of 0.9− 4.5;
see figure(74).
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Figure 74: Exponent n according to equation (138), tube diameter 38
mm, 150 fins per m (16 x 1 mm), tq=85mm

Since this method is thus not satisfactory, Scholand’s [13] was tested. Scholand
postulates that those pressure drop coefficients measured during adiabatic exper-
iments and those with heat transfer are equal, if the ones with heat transfer are
calculated with the density at gas inlet temperature.

Up to now pressure drop coefficients ξm have been calculated with the density ρm
at the mean gas temperature and wE using ρm in the narrowest cross-section:

ξm = 2Δp/(ρmw
2
E) (139)

ϑgm = (ϑg1 + ϑg2)/2 (140)

ρm = ρ0 273.2/(273.2 + ϑgm) (141)

When the gas cools ρ1 < ρm, thus ξ > ξm:

ρ1 = ρm(273.2 + ϑgm)/(273.2 + ϑ1) (142)

See purpose figure (75) on this: measurement values converted according to
Scholand’s method [13] are signified by the symbol +. The conversion does not
completely result in the pressure drop coefficients measured without heat trans-
fer, rather it tends to reveal only values in the middle between those with and
without heat transfer.
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After converting the values, by using (273.2 + ϑgm)/(273.2 + ϑWa), i.e. with
the ratio of the absolute average gas temperature to the absolute average wall
temperature, pressure drop coefficients without heat transfer are obtained; see
figure (75).
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Figure 75: Pressure drop measurements with and without heat transfer.
Tube diameter 38 mm , fins 16 x 1 mm, tq=85 mm. Eq.(7) in the figure
is identical with equation (143)

If the density ρ (referred to as ρm in equation (141)) is calculated with the mean
wall temperature ϑWa of the finned tubes, often a good correspondence is obtained
between the pressure drop measurements with and without heat transfer; figure
(76). The results of measurement with heat transfer, calculated with ρ(ϑgm), are
represented by the symbols + and x. These values, which have been converted
according to equation (143), are represented by � and �. These fit together well
with the measurement values without heat transfer to produce a curve.
The correction factor, according to HEDH [2], Eq.(1) ηϑgm/ηϑGr

can also be ap-
proximately replaced by the factor ϑgm/ϑGr, since the dynamic viscosity η is
almost a linear function of the gas temperature. This relates the proposals for
the conversion of the pressure drop coefficients for smooth pipe bundles made
by HEDH to Scholand’s for finned tube bundles. According to our own test
cases, however, better correspondence can be observed by using the tempera-
tures ϑgm and ϑWa. It is therefore suggested to convert the pressure drop co-
efficient, which is determined from tests with heat transfer, using the factor
(ϑWa + 273.2)/(ϑgm + 273.2). The pressure drop coefficients from calculation
equations, which are based on tests without heat transfer, would have to be con-
verted using the reciprocal.
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Figure 76: Correlation of pressure drop measurements at different gas
temperatures. Tube diameter 31.8 mm, 200 fins per m, 15 x 1 mm.
Eq.(7) in the figure is identical with equation (143)

ξW/ξa = (ϑWa + 273.2)/(ϑgm + 273.2) (143)

5.3 Evaluation of pressure drop for staggered finned tube
bundles

The pressure drop for finned tube bundles is calculated in a manner similar to
that for smooth tube bundles according to the equation

Δp = ξ
ρ

2
w2

E, (144)

which specifies the pressure drop per tube row. For the evaluation of pressure
drop in a tube bundle, equation (144) has to be multiplied by the number of
consecutive tube rows. The pressure drop is calculated using the velocity wE in
the narrowest cross-section, the mean density of the gas in the bundle and the
pressure drop coefficient ξ. The pressure drop coefficient ξ depends on both the
Reynolds number of the gas flow in the tube bundle and on the geometry of the
finned tube bundle. The coefficient can be ascertained using equations derived
from test cases done on finned tubes. Although many heat transfer measurements
for finned tubes have been performed, only few pressure drop measurements have
been recorded.
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5.3.1 Equations for pressure drop in staggered finned tube bundles

While 12 different equations were able to be found for heat transfer with staggered
arrays, only 8 different relations can be presented for the pressure drop coefficient.

1. FDBR Handbuch 1980 [10]. First of all, a hydraulic diameter is determined:

dh = (aRi dq + aKo(dA + 2h) + aRo dA)/(aRi + aKo + aRo) (145)

where

dq =
√
tR aRi/2 (146)

aRiis the surface area per m tube of the fin flanks, aKo of the fin tops and
aRo of the bare tube. The geometrical measurements of the fin tube bundle
are accounted for in the factors E1 and E2. Any effect on the pressure drop
coefficient is attributed to the transverse tube pitch, while the longitudinal
pitch has no effect and therefore does not occur in E1 and E2.

E1 = (tq − dA)/(tR − sR) (147)

E2 = dh/(tq − dA) (148)

The Reynolds number Re is derived from the hydraulic diameter dh as well
as from the velocity in the narrowest cross-section wE.

Re =
wE dh
ν(ϑgm)

(149)

The kinematic viscosity ν ist to be selected at the mean gas temperature
ϑgm according to calculation procedures. The pressure drop coefficient is
then calculated for a single tube row.

ξ = 1.463 (E1 + 1)0.7E20.9Re−0.245 (150)

According to FDBR, it is assumed that the pressure drop coefficient is
independent of the number of consecutive tube rows. The pressure drop for
nR tube rows is calculated by multiplying equation (150) with nR.
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2. HEDH(Heat Exchanger Design Handbook [2])

The Reynolds number is derived using the diameter of the bare tube.

Re =
wE dA
ν(ϑgm)

(151)

The pressure drop coefficient for Reynolds numbers in the range of 104 <
Re < 105 is

ξ = 13.1 (1− tR
dA

)1.8Re−0.25(
tq
dA

)−0.55(
tl
dA

)−0.50(1− h

dA
)−1.4 (152)

Attention has to be paid in applying the formula, since in HEDH [2] the
constant is given with 13.1, in Stasiulevicius [3], however, misleadingly with
half the value, i.e. 6.55! In addition, the equation above indicates the
pressure drop coefficient for only a single tube row. The influence of the
tube row number is mentioned in the previous section. For higher Reynolds
numbers (105 < Re < 106) the following holds:

ξ = 0.74 (1− tR
dA

)1.8(
tq
dA

)−0.55(
tl
dA

)−0.50(1− h

dA
)−1.4 (153)

The pressure drop coefficient for this range of Re is independent of the
Reynolds number. A determination of an intersection point for the equation
given above with equation (152) results in a fixed and geometry-independent
value for the Reynolds number at Re = 0.982 105. It must be mentioned
that in reality no sharp bend occurs when the pressure drop coefficient is
plotted above the Reynolds number, rather all values gradually converge in a
constant. The sharp bend only appears because a relatively simply equation
for the pressure drop coefficient intersects a horizontal axis-parallel straight
line.

3. Mirkovics [5]

The Reynold number for the calculation of pressure drop is derived accord-
ing to Mirkovics’ method using an hydraulic diameter which is calculated
using the free volume in the tube bundle and the heating surface, per meter
tube in both cases.

dhMi = 4
tq tl − d2A

π
4
− (dA + h)hπ sR/tR
Atot

(154)

ReMi =
wE dhMi

ν(ϑgm)
(155)
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The pressure drop coefficient is then:

ξ = 3.96 (
tq − dA
dA

)0.14(
tl − dA
dA

)−0.18((1− sR
tR

)
tR
h
)−0.20Re−0.31

Mi (156)

4. ESCOA Spiro Gills [12]

The pressure drop coefficient has been converted from the relation given
in[12], in American notation, for the Fanning friction factor into the more
well known European notation. The Fanning friction factor ff is generally
known as:

ff =
ξ

4
(157)

For ξ, the equation

ξ = 4C2C4C6 (
D

dA
)0.5 (158)

is obtained. D in this case represents the diameter above the fins, which
is dA + 2h. The constants C2, C4 and C6 account for the influence of the
Reynolds number and the finned tube geometry.

C2 = 0.07 + 8.0Re−0.45 (159)

Re also is derived using dA

C4 = 0.11 (0.15
tq
dA

)
(−0.7( h

tR−sR
)0.20)

(160)

C6 = 1.1 + (1.8− 2.1 e−0.15n2
R)(e

−2
tl
tq )− (0.7− 0.8 e−0.15n2

R)(e
−0.6

tl
tq ) (161)

The coefficient C4 represents the influence of tq
dA

and of tR−sR
h

, whereas the

influence of tq
dA

upon pressure drop is higher with small fin pitches and vice
versa.

The coefficient C6 accounts for the influence of transverse and longitudinal
tube pitch, as seen in tl

tq
, and of the number of tube rows nR.

5. M. Brockmann: Druckverlust bei Stroemungen quer zu Rippenrohrbuen-
deln. VDI Progress Report, Series 6, No. 431 [38]
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More recent, extensive measurements of pressure drop in finned tube bun-
dles for both in-line and staggered arrangements are presented. The mea-
surements were carried out in a channel with a cross-section of approx. 0.45
m x 0.45 m, with 6 or 7 tube rows in consecutive order. The channel was
operated at ambient temperature and the air is sucked in through the test
apparatus by a fan. Only tubes with a diameter of 25 mm and spiral fins
of different pitches and heights were used. The fins were not welded to the
tubes but merely pressure-wound around them. The pitches of the tubes
in the bundle were varied, both for in-line and staggered arrangement. The
results of the measurement series have been presented in form of equations:

For Reynolds numbers 1000 < Re < 8000

ξ = z0

√
(
1600

Re
)2 + (

Re

1600
)m0 (162)

and for Reynolds numbers 10000 < Re < 105

ξ = z1 (
Re

10000
)m (163)

For Reynolds numbers ranging from 8000 to 10000, the pressure drop co-
efficients ξ are interpolated linearly between equation (162) and equation
(163). For this equation the Reynolds number is derived using the flood-

ing length l = π
2

√
d2A + h2 and the velocity of free flow w0. m0 and m are

constants, while z0 and z1 are related in a complex manner to up to 24
constants which are different for in-line and staggered arrangements. For
the purpose of varying any geometrical value of the finned tube bundle, this
system of equations is not readily transparent. However, it supplies compa-
rable values for pressure drop in comparison with other relationships. Yet
one major exception exists: the pressure drop coefficient according to VDI
431 [38], which depends on fin height h, has at h ≈ 0.36 dA a distinct mini-
mum in each case which amounts to only approx. 1/3 to 1/4 of neighboring
pressure drop coefficient values, as seen in figure (77).
A comparable progression of pressure drop coefficient values appears nei-
ther in any other pressure drop equation cited here nor could one be found
through our own measurements. These also include a finned tube with a
diameter of 44.5 mm and fins with 16 mm height, which is h = 0.36 dA. A
comparison of the experimental values for the 44.5 mm tube with finned
tube diameters of 38 mm and 31.8 mm and fin height of 15 mm shows
no decrease in pressure drop coefficient. Care should thus be taken when
using this low pressure drop coefficient in the case of finned tubes with
h ≈ 0.36 dA.
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Figure 77: Pressure drop coefficient in dependence of fin height accord-
ing to VDI 431 [38]. Tube diameter 38 mm, 150 fins per m, tq = 85mm,
tl = 75mm, staggered arrangement

6. Pressure drop for finned tubes (with smooth fins) in staggered arrangement,
according to J. Vampola [14]

Vampola specifies the following equation for the pressure drop coefficient
for finned tube bundles (with smooth fins) in staggered arrangement:

ξ = 1.463Re−0.245
h (

tq − dA
tR − sR

+ 1)0.7(
tq − dA
dA

)−0.9(
dh
dA

)0.9 (164)

Here the Reynolds number is also derived using the hydraulic diameter
according to Vampola, equation (69). Vampola’s formula is very similar
to the equation for the pressure drop coefficient according to FDBR (150)
and only written differently. Yet Vampola’s equation (69) for hydraulic
diameter is different from that of FDBR (145). The underlying difference
is that, in the case of FDBR, the heating surface of the fin is accounted for
separately, using the particular diameter dA + 2h, in the equation for dh,
while Vampola includes it in the heating surface ARipp with its diameter.
The difference in pressure drop coefficient is insignificant.

7. Pressure drop calculation according to A. Nir [18]

Nir applies the usual approach for pressure drop using Re−0.25. He expresses
the relationship of finned tube and bundle geometry using the parameterW
as well as Rd, which were already used for heat transfer (see the equation
(65)).

ξ = 2.12Re−0.25
d W 0.45(2.08− 0.83Rd) (165)
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The parameter Rd indicates the ratio of the diagonal flow cross-section to
the frontal flow cross-section.

8. Pressure drop calculation for finned tube bundles in cross-flow, according
to VDI Waermeatlas, 8th Edition 1997, Bl.Ldb1-4 [33]

These formulas are similar to the HEDH equations [2]. They also make use
of the diameter of the bare tube and the velocity in the narrowest cross-
section for calculation of the Reynolds number.

The formula is valid for a Reynolds number within the range of 102 < Re <
103:

ξ = 290Re−0.7
d e−0.55

q e−0.5
l (1− tR

dA
)1.8(1− h

dA
)−1.4 (166)

For a Reynolds number in the range of 103 < Re < 105 the following then
applies:

ξ = 13Re−0.25
d e−0.55

q e−0.5
l (1− tR

dA
)1.8(1− h

dA
)−1.4 (167)

For even higher Reynolds numbers, i.e. 105 < Re < 1.4106, the pressure
drop coefficient becomes constant and independent of the Reynolds number:

ξ = 0.74e−0.55
q e−0.5

l (1− tR
dA

)1.8(1− h

dA
)−1.4 (168)

eq in this case is eq =
tq
dA

and el is el =
tl
dA
. As one can see, the formulas for

higher Reynolds numbers are virtually identical with the HEDH formulas,
only the range of validity has been altered partially.

5.3.2 Discussion of cited pressure drop equations

Among all of the arrangements considered, the pressure drop coefficients cal-
culated according to FDBR, HEDH and ESCOA are situated relatively closely
together as compared to the Mirkovics’ values. These values are only about half
as high. Dependence is calculated for the individual factors using the data listed
below by way of example and discussed:
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Tube diameter dA = 38 mm
Fin thickness sR = 1 mm
Fin pitch tR = 6.67 mm
Transverse pitch tq = 85 mm
Longitudinal pitch tl = 75 mm
No. of tube rows nR = 8
Velocity of gas in the
narrowest cross-section wE = 8 m/s
Temperature of gas ϑG = 100 ◦C

1. Influence of tube diameter dA: When considering the influence of the tube
diameter on the pressure drop coefficient, two cases need to be distinguished:
first, the tube diameter is varied at constant gas velocity in the narrowest
cross-section, in which case the Reynolds number also varies since it is
based on dA; or second, examination is done using a constant Reynolds
number. As seen by comparing figure (78) (wE = const.) and figure (79),
the difference between these two cases is not very significant. The pressure
drop coefficient generally increases with tube diameter. Only with HE and
WA does the pressure drop coefficient initially decline somewhat, for small
diameters less than 32 mm, and then increases. In the case of constant
velocity wE, the increase in pressure drop coefficient proportional to diame-
ter dA coincides with a decrease in pressure drop coefficient with increasing
Reynolds number, resulting in a smaller increase. Among Brockmann’s val-
ues, an anomaly is evident at h = 0.36 dA.
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Figure 78: Influence of tube diameter upon the pressure drop coefficient
at constant velocity in the narrowest cross-section (staggered arrange-
ment)
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Figure 79: Influence of tube diameter upon the pressure drop coefficient
at constant Reynolds number (staggered arrangement)

2. Influence of tube diameter with varying transverse pitch:

When analyzing different tube diameters, transverse pitch should be dimen-
sioned according to the largest tube diameter. This should be done in a
such way that there is enough space between the fins, whereas the trans-
verse pitch is too great for smaller tubes and heat transfer is not optimal.
It is helpful to choose a transverse pitch value ensuring a constant distance
between fin flanges, for example 5 mm. In figure (80), the influence of tube
diameter is shown under this condition and for wE = const. The pressure
drop coefficient rises only very little with tube diameter. According to the
HE equation, it declines at diameters smaller than 38 mm and then remains
constant. The pressure drop coefficient according to Brockmann declines
with increasing tube diameter, with an anomaly at h = 0.36 dA.

The pressure drop coefficient increases slightly with tube diameter at con-
stant Reynolds numbers. With HE, the pressure drop coefficient declines
first and then increases again. With Brockmann, the pressure drop coeffi-
cient increases somewhat, while displaying the anomaly already mentioned
in between (figure (81)).

3. Influence of fin thickness sR:

According to FD and MI, as well as EG and ES, the pressure drop coef-
ficient increases moderately with fin thickness. According to HE, on the
other hand, it remains constant. However, this increase in fin thickness of
0.7 mm to 1.0 mm or 1.0 mm to 1.3 mm is only approx. 3% of the pressure
drop coefficient for FD and only 2% for other relations. The latent uncer-
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Figure 80: Influence of tube diameter upon the pressure drop coefficient
at constant velocity in the narrowest cross-section and adapted varied
transverse pitch (staggered arrangement)
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Figure 81: Influence of tube diameter upon the pressure drop coefficient
at constant Reynolds number and varied traverse pitch (staggered ar-
rangement)
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tainty of pressure drop coefficients is at least +-15%. Thus, the amount of
error seen with HE, resulting from neglecting the influence of sR, would still
be acceptable. The influence of fin thickness is more distinct according to
Brockmann [38]. The pressure drop coefficient increases by approximately
4% with an increase in fin thickness from 1 mm to 1.3 mm, according to
figure (82).
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Figure 82: Influence of fin thickness upon the pressure drop coefficient
(staggered arrangement)

It should be mentioned that the calculation equations with regard to the
influence of fin thickness are based only on measurements by Mirkovics. In
these tests, fin thickness was varied from 1.27 mm to 1.57 and up to 2.03
mm for otherwise identical finned tube geometries. From these three mea-
surement points (Symbol �), shown in figure (83) it becomes apparent that
the pressure drop coefficient declines with greater fin thickness. A diagram
with pressure drop coefficient plotted above the parameter tR−sR

h
shows that

this variation is too small for any clear result; figure (83). A sufficiently
wide margin was achieved for the parameter stated above by the addition
of further measurement points (Symbol �), whereby tR and h also change,
and a different result was obtained. In the case of other measurements, the
fin thickness was not changed or this was not documented, except for the
new measurements by Brockmann [38] mentioned above.

4. Influence of the fin pitch tR:

Decreasing for small fin pitches, the influence of tR upon pressure drop
seems to be better captured by HE than by FD, EG and ES. Pressure drop
declines with increasing fin pitch more or less according to the shape of a
hyperbola. For FD, EG and ES, the decline continues in a linear way and
in the same way for Mirkovics, as seen in figure (84). The Brockmann’s
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Figure 83: Influence of fin thickness upon the pressure drop coefficient
according to measurements by Mirkovics

relation [38] does not correlate well with the others, because the pressure
drop coefficient first rises and then starts to decline again(through chang-
ing the fin pitch from 3.6 mm to 5 mm), whereas the slope increases even
further for a greater fin pitch.
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Figure 84: Influence of fin pitch upon the pressure drop coefficient (stag-
gered arrangement)

5. Influence of fin height h:

The pressure drop coefficient increases with h according to all relations men-
tioned above. According to the HE equation, the increase for fin heights
> 16 mm becomes so steep so as to assume that the range of validity of
the equation has been exceeded. See figure (85) on this, which shows that
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the pressure drop coefficient according to Brockmann, in contrast, [38] rises
more with fin height than with the remaining formulas. On the other hand
it also shows a very distinct minimum at h ≈ 0.36 dA, which does not occur
with any other relation.
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Figure 85: Influence of fin height upon the pressure drop coefficient
(staggered arrangement)

6. Influence of fin height h and transverse pitch tq:

When only the influence of fin height is considered, transverse pitch should
be chosen in such a way that even the tallest fins can be accommodated.
Such an arrangement is, however, unrealistic for shorter fins, since free
space is wasted in this case. The influence of a changing fin height is exam-
ined, whereby the transverse pitch is varied so that the distance between
fin flanges is constant, e.g. at tq = dA+2h+5mm. The result in figure (86)
shows that, in comparison with figure (85), the pressure drop coefficient
increases with smaller fin heights, with the increase becoming less sharp
with decreasing fin height h.

7. Influence of transverse pitch tq:

For staggered finned tube arrangements, the pressure drop coefficient de-
creases with increasing transverse pitch for all equations. This decline is
very small according to the Mirkovics’ relationship and is almost impercep-
tible, as figure (87) shows. Brockmann’s equation [38], on the other yields
an above-average decline.

8. Influence of longitudinal pitch tl:
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Figure 86: Influence of fin height and varied transverse pitch upon the
pressure drop coefficient (staggered arrangement)
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Figure 87: Influence of transverse pitch upon the pressure drop coeffi-
cient (staggered arrangement)
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According to FD [10] and Nir [18], there is no influence of longitudinal
pitch on the pressure drop coefficient. According to other relations it de-
clines with increasing longitudinal pitch, as emerges from figure (88). This
confirms the measurement values obtained by ITE in figure (91) and figure
(92).
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Figure 88: Influence of longitudinal pitch upon the pressure drop coef-
ficient (staggered arrangement)

9. Influence of the number nR of consecutive tube rows:

Except for EG and ES [12] and Brockmann [38], all relationships concur
that no influence of the tube row number on the pressure drop coefficient
exists for staggered tube arrangements. According to EG and ES, the pres-
sure drop coefficient, as seen in equations and diagrams, is clearly influenced
by the number of tube rows ≤ 4: the pressure drop coefficient increases with
a decreasing number of tube rows by about 20% for tl

tq
> 0.68, but declines

by about 20% for tl
tq
< 0.68. According to Brockmann, the pressure drop

coefficient decreases with fewer tube rows. Several series of experiments
with 8, 6, 4 and 2 tube rows have been carried out at ITE, a definite influ-
ence of the number of tube rows on the pressure drop coefficient could not,
however, be observed.

10. Triangular pitches:

The pressure drop coefficient for triangular pitches decreases with increas-
ing pitch according to all cited formulas; see figure (89). Since heat transfer
remains approximately constant according to most of the formulas, no dis-
advantage is incurred when, due to construction reasons (e.g. feasible tube
bending radii), the pitch is somewhat greater than the minimum value. In
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Figure 89: Influence of magnitude of triangular pitch upon the pressure
drop coefficient

this way the quotient of pressure drop through heat transfer improves, while
the specific power of the heat exchanger decreases slightly.

Comparison with the measurements performed by ITE: Our own measurements
do not exhaustively cover all influences listed above since they mainly concern
the use of finned tubes in steam generator construction. Measurements exist only
for the influence of tR, tl and nR.

�
P

re
s
s
u
re

d
ro

p
c
o
e
ff
ic

ie
n
t

120

1/t fins/mR

0.6

0.7

0.8

0.9

1.0

1.1

140 160 180 200 220 240 260 280110

HEDH
FDBR
MI
FF
ESCOA
Measurement values at Re = 15000
Measurement values at Re = 8000

Figure 90: Influence of fin pitch upon the pressure drop coefficient:
comparison of measured values and calculation. Tube diameter dA=38
mm, fins 16x1mm

For a variation of fin pitch tR, an influence of the same type as described in the
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equations can be seen in figure (90) and even of approximately the same amount
as predicted. Three different fin pitch values of 110, 150 and 276 fins per m, with
the same geometrical measurement of bare tubes, were analyzed by ITE. The
influence of longitudinal pitch could be examined for: a tube diameter of 31.8
mm with a constant transverse pitch of 75 mm and three different longitudinal
pitches of 60, 70 and 80 mm; as well as for bare tubes with a diameter of 38 mm,
a transverse pitch of 85 mm and three longitudinal pitches of 70, 80 and 90 mm.
The results, presented in figures (91) and (92), do not confirm the FDBR equa-
tion [10], assuming that longitudinal pitch has no influence on pressure drop, nor
do they entirely concur with the assumption that pressure drop decreases with
increasing longitudinal pitch (HE [2], Mirkovics [5] and EG [12]). The pressure
drop coefficients calculated according to the equations given above are presented
in figure (88).
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Figure 91: Influence of longitudinal pitch upon the pressure drop coef-
ficient. Comparison of measured values and calculation for dA=31.8
mm

In figure (93), the pressure drop coefficient is plotted in dependence of the
Reynolds number. The results of the calculation, according to HE, FD and
EG, lie quite close together, whereas the results according to MI are considerably
lower. The results according to Brockmann [38] meanwhile, represent the highest
values by far.

It is to be noted for the characteristics of the pressure drop coefficient in depen-
dence of the Reynolds number that the relationships of FD, MI and EG assume
a constant decline in pressure drop coefficient with an increase in Reynolds num-
ber. HE and Stasiulevicius [3] predict a constant pressure drop coefficient above
a certain Reynolds number of approx. 105. This point of discontinuity in the
characteristics of the pressure drop coefficient depends on the geometrical data
of the finned tube bundle (see on this the diagrams of the measurement results
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by Zukauskas [3]). Some of our own pressure drop measurements indicate such a
discontinuity, as do measurements by Scholz [16].

5.3.3 Recommendation for a calculation to predict pressure drop at
staggered finned tube bundles in cross-flow

The explanations given above reveal weak points in each of the four most suitable
equations, i.e. HE, FD, EG and MI. With HE, the influence of fin thickness,
which is not very significant, is not considered. In the FD equation the influence
of longitudinal pitch is neglected. In the case of EG, the influence of the number
of tube rows is apparently somewhat overestimated. While these criticisms do
not apply to Mirkovics’ formula, in this case the influence of transverse pitch is
not appropriately described.
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Figure 92: Influence of longitudinal pitch upon the pressure drop coeffi-
cient. Comparison of measured values and calculation for dA=38 mm

Furthermore, since it is not yet certain how the design of the finned tubes or
the way they are manufactured affects the pressure drop coefficient, one should
exercise caution when using the formulas.

The FDBR formula, based on the work of Vampola [14], represents an average
for a large number of different finned tube designs. The HEDH formula arose
from the work of Stasiulevicius and Skrinska [3], where only tubes with annularly
milled fins of trapezoid cross-section are used. It cannot be presupposed that
these finned tubes behave in the same way as finned tubes with welded spiral
fins. While Mirkovics [5] also used spiral fins, he does not mention anything in
regard to the way they were manufactured.
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For an equation with a higher degree of accuracy for the pressure drop coefficient
in finned tube bundles, one would presumably have to alter or supplement each
of the formulas.

In the HEDH formula, the influence of fin thickness could be accounted for by
an additional term for instance, whereas the constant would have to be adjusted
accordingly.

The fact that no influence of fin thickness sR upon the pressure drop coefficient is
mentioned in the HEDH formula may probably be attributed to the experiments
by Stasiulevicius and Skrinska, which used annular fins with a homogeneous,
trapezoid-shaped cross-section with a fin thickness of 2 mm at the foot and 1
mm at the top but with variable height. Apparently no influence of fin thickness
upon the pressure drop coefficient was assumed a priori. If the formula is to be
supplemented by accounting for the influence of fin thickness, this could only by
done using measurements by another author. It would then have to be taken into
account that the measurements, for example those by Mirkovics, were of finned
tubes of other designs.
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Figure 93: Influence of the Reynolds number upon the pressure drop
coefficient (staggered arrangement)

In order to be able to compare the values measured by Mirkovics with those by
ITE, the values must be taken from the diagram and converted to the Reynolds
number derived using the hydraulic diameter dh to Re(dA). These converted
measured values, originating with Mirkovics, were then evaluated in order to
obtain a formula for the pressure drop coefficient similar in terms to the HEDH
formula but with other coefficients. The result is as follows:

ξ = C Re(dA)
−0.31(

tq
dA

)0.05 (
tl
dA

)−0.71 (1− h

dA
)−2.0 (

tR
dA

)0.75 (
sR
dA

)−0.16 (169)
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Departing from HE with (1 − tR
dA
), the influence of tR was changed to the term

tR
dA

because the expression (1− tR
dA
) would result in a huge exponent which would

magnify inaccuracies too much. A comparison of the coefficients in the formula
given above with the HE equation (152) indicates that these are nevertheless
similar in range but different in amount. On the other hand, evaluations of our
own measurements show an exponent of 1.21 for (1 − tR

dA
) and an exponent of

0.56 for tl
dA
. Our own measurements confirm the HE function at tR, yet at tl they

do not confirm this function, whereas the values converted according to HE by
Mirkovics [5] and the results of Stasiulevicius and Skrinska [3] lie close together.

When the pressure drop equations for smooth tube bundles in cross-flow are con-
sidered in comparison, a different question arises. For both FDBR 1980 [10] and
VDI Waermeatlas 1994 [15] the pressure drop coefficient declines with increasing
tq, whereas in FDBR the pressure drop coefficient also declines with increasing
tl, but in VDI-Waermeatlas it increases.

With regard to the influence of transverse pitch tq, the number tq/dA would seem
to reflect the experimental values better than the dimensionless number tq/dE.
dE is the diameter with equal area in the profile of the finned tube.

dE = dA +
2h sR
tR

(170)

This is because with few short and thin fins, almost no flow influence occurs;
with many thick and long fins, however, a strong displacement of the flow from
fin spacing takes place. Unexpectedly, a better correlation for tq

dA
is obtained for

tq
dE

after evaluation of the data. In conclusion, it is suggested to use a modified
form of the equation of Stasiulevicius and Skrinska (also defined in HEDH) [3] for
a calculation of the pressure drop coefficient for spiral finned tubes because of its
clarity. The equation could be supplemented on the one hand by an expression
for the influence of fin thickness, and on the other hand by adapting constants to
measured values for spiral finned tubes. The suggested formula would then be:

ξ = KonstRe(dA)
−0.25 (

tq
dA

)−0.50 (
tl
dA

)−0.55 (1− tR
dA

)1.8 (1− h

dA
)−1.4 (

sR
dA

)−0.16

(171)

The constant adapted to existing pressure drop measurements on spiral finned
tubes results as Konst. = 7.07. Figure (94) results from a comparison of cal-
culations according to this equation (SP denomination) with the results of the
most important equations from the literature. The pressure drop coefficients ac-
cording to equation (171) are situated among the other evaluated pressure drop
coefficients, yet rather in the upper range. This could result from their origin in
test cases with welded spiral finned tubes.
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Figure 94: Comparison of the pressure drop coefficient calculated ac-
cording to equation (171) with the results of equations from the liter-
ature

5.4 Calculation of pressure drop for finned tubes arranged
in line

The pressure drop for finned tube bundles arranged in line is calculated in part
with formulas similar to those for staggered arrangements, while only the co-
efficients show other values, or also with completely different equations. The
basis of calculation for in-line arrangement, as in other cases too, is equation
(139), whereas the task at hand is to determine the pressure drop coefficient ξ in
dependence of the Reynolds number and geometrical characteristics.

5.4.1 Presentation of equations

1. FDBR equation [10]

The FDBR equation for finned tubes arranged in line is quite similar to
that for staggered tube arrangements.

ξ = 0.72 (E1 + 2)0.9E20.9E30.1Re−0.245 (172)

The Reynolds number is determined using the hydraulic diameter dh as
defined in section 5.3.1 for the staggered arranged finned tubes. The ge-
ometrical dimensions of the finned tube bundle are accounted for in the
factors E1,E2 and E3 where:
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E1 = (tq − dA)/(tR − sR) (173)

E2 = dh/(tq − dA) (174)

E3 = (tl − dA)/(tq − dA) (175)

E3 also accounts for longitudinal pitch, which is not included in the equation
for staggered tube arrangement. The Reynolds number Re is derived using
the velocity wE in the narrowest cross-section, as well as using the hydraulic
diameter dh.

Re =
wE dh
ν(ϑgm)

(176)

The kinematic viscosity ν has to be determined using the mean gas tem-
perature ϑgm according to calculation procedures.

2. HEDH equation [2]

This equation was developed on the basis of test cases with squared fins
and annular fins and should therefore be used only with caution for spiral
finned tubes.

ξ = 0.52 (
d′

dA
)0.3Re−0.08(

( tl
dA

− 1)

( tq
dA

− 1)
)0.68Cz (177)

d′ here is an equivalent diameter which is calculated using the surfaces of
the fins, the fin tops and the bare tube per m tube:

d′ =
π dA

2 + (aRi + aKo)
√

aRitR
2

aRo + aRi + aKo

(178)

The Reynolds number in equation (177) for the pressure drop coefficient ξ
is calculated meanwhile using the diameter de, which is obtained according
to the following equation:

de =
2(tR(tq − dA)− 2h sR)

2h+ tR
(179)

The expression Cz is introduced to account for the increased pressure drop
in the first five tube rows and depends on the number of the tube rows nR

as a sum for 1 to nR over the items in cz as a function of nR.
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Cz =
1

nR

nR∑
1

cz (180)

Wherein cz is:

cz = 0.738
1.509

nR − 0.25
(181)

3. ESCOA equation [12]

The ESCOA pressure drop equation for finned tubes arranged in line is
very similar to that for staggered arrangements. Only the functions C4 and
C6 are different, which are responsible for the influence of geometry. This
equation is valid for spiral finned tubes with smooth fins and was adapted
from American syntax to European notation.

ξ = 4 (0.07 + 8.0Re−0.45)
D

dA
C4C6 (182)

For C4 and C6 is valid

C4 = 0.08 (0.15
tq
dA

)
−1.1( h

tR−sR
)0.15

(183)

C6 = 1.6− (0.75− 1.5 e−0.7nR) e
−0.2(

tl
tq

)2
(184)

The influence of the number of consecutively arranged tube rows in this
equation is implied within the coefficient C6.

4. Equation according to VDI-Waermeatlas, 9th edition, Blatt Lda 1-4[33]

The equation of the VDI-Waermeatlas is valid for annular fins and spiral
fins with approximately the same transverse and longitudinal pitches. Here
the Reynolds number is also calculated using the diameter of the bare tube
dA and the velocity in the narrowest cross-section. For the range 3000 <
Re < 40000 the following holds:

ξ = 5.5Re−0.30(
tq
dA

)−0.5(
tR
dA

)−0.7(
h

dA
)0.5 (185)

For higher Reynolds numbers, i.e. 40000 < Re < 1400000, the pressure
drop coefficient no longer changes with the Reynolds number and is thus:

ξ = 0.23 (
tq
dA

)−0.5(
tR
dA

)−0.7(
h

dA
)0.5 (186)
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5. ESCOA equation for serrated fins [17]

The equation of ESCOA for in-line finned tube arrangements with serrated
fins is very similar to that for smooth fins, whereas the factor C4 is different.
The factor C4 differs only in the exponent of h

tR−sR
, which increases from

0.15 for smooth fins up to 0.20 for serrated fins.

C4 = 0.08 (0.15
tq
dA

)
−1.1( h

tR−sR
)0.20

(187)
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Figure 95: Influence of tube diameter upon the pressure drop coefficient
with constant velocity in the narrowest cross-section (in-line arrange-
ment)

6. According to M. Brockmann: Druckverlust bei Stroemungen quer zu Rip-
penrohrbuendeln, Progress Report VDI, Series 6, No. 431[38]

See also section 5.3.1, pressure drop for staggered finned tube arrangements,
where the test cases and calculation equations of Brockmann are presented
in details.

The results of the test series were depicted in the form of equations:

At Reynolds numbers 1000 < Re < 8000, the following holds for the pres-
sure drop coefficient ξ:

ξ = z0

√
(
1600

Re
)2 + (

Re

1600
)m0 (188)

and for Reynolds numbers 10000 < Re < 100000

ξ = z1(
Re

10000
)m (189)
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Between Reynolds numbers of 8000 and 10000, the pressure drop coefficient
values ξ are linearly interpolated according to equations (188) and (189).
The Reynolds number for this equation is derived, in contrast to all other

authors, using the flooding length l = π
2

√
d2A + h2 and the free superficial

velocity w0. m0 and m are constants, z0 and z1 are dependent in a complex
way on approx. 24 further constants, whereby one set of the constants
mentioned is valid for in-line tube arrangement. All of the observations
in section 5.3.1 concerning the extremely low pressure drop coefficients for
h ≈ 0.36 dA are also valid here for in-line tube arrangements.
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Figure 96: Influence of tube diameter upon the pressure drop coefficient
with constant Reynolds number (in-line arrangement)

5.4.2 Discussion of pressure drop equations for in-line tube bundle
arrangements

1. Influence of tube diameter

The influence of tube diameter on the pressure drop coefficient has to be
considered for two different cases. First, it can be assumed that the velocity
in the narrowest cross-section remains constant, then the Reynolds number
increases with the diameter and, since the pressure drop coefficient decreases
at about Re−0.25, it increases only little in total if fin geometry is unaltered;
see figure (95).

In the second case, in which the Reynolds number remains constant, the
pressure drop coefficient increases more strongly with tube diameter; see
figure (96).

2. Influence of tube diameter with transverse pitch and longitudinal pitch
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When changing tube diameter at a constant fin height, transverse and lon-
gitudinal pitch should also be altered for an optimal use of space. This
has to be varied in such a way that the distance between fin edges remains
constant. If the velocity in the narrowest cross-section is constant in this
case, figure (97), the pressure drop coefficient increases for HE, FD, WA
and BR, but for the other equations (EG and ES) it declines.
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Figure 97: Influence of tube diameter upon the pressure drop coeffi-
cient with constant velocity in the narrowest cross-section and adapted
transverse and longitudinal pitch (in-line arrangement)

For a constant Reynolds number, figure (98), the pressure drop coefficient
increases slightly with the tube diameter with all formulas except BR.
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Figure 98: Influence of tube diameter upon the pressure drop coeffi-
cient with constant Reynolds number and at adapted transverse and
longitudinal pitch (in-line arrangement)

3. Influence of fin thickness
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With increasing fin thickness, the pressure drop coefficient generally in-
creases for in-line tube arrangements; only the WA relation does not include
any influence of fin thickness. For a change of the fin thickness from 1 mm
to 1.3 mm, the pressure drop coefficient according to HE climbs by about
1.3 %, according to FD, however, by 4.5 %; figure (99).
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Figure 99: Influence of fin thickness upon the pressure drop coefficient
(in-line arrangement)

4. Influence of fin pitch

The pressure drop increases more strongly with a decreasing fin pitch,
whereas the increase for fin pitches tR < 5mm occurs almost exponen-
tially. Only Brockmann [38] detects a small influence, in which case the
pressure drop coefficient declines slightly for an increase in fin pitch from 3
mm to 7 mm; see figure (100).
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Figure 100: Influence of fin pitch upon the pressure drop coefficient
(in-line arrangement)
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5. Influence of fin height

With regard to the influence of fin height, almost all formulas consistently
ascertain an increase in the pressure drop coefficient with fin height. The
slope is almost identical for all of the equations. Only Brockmann’s equa-
tions [38], which otherwise indicate a direct increase in pressure drop coeffi-
cient with fin height, show the anomaly at h = 0.36 dA, already mentioned
above in the form of a very distinct relative minimum (figure (101)).

6. Influence of fin height with transverse and longitudinal pitch

For determining the influence of fin height, the observed transverse and lon-
gitudinal pitch should be designed in such a way that even the tallest fins
have enough space. If shorter fins are used, much space is lost. It is there-
fore helpful to choose pitch values with this in mind, so that the distance
between the fins conforms to a certain dimension. Under this condition as
well, the pressure drop coefficient increases with the fin height according to
almost all of the equations; see figure (102). The only exception is Brock-
mann [38], where irregular curve results with a drop in the middle.
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Figure 101: Influence of fin height upon the pressure drop coefficient
(in-line arrangement)

When only transverse pitch is altered with fin height, a decline in the pres-
sure drop coefficient is obtained with a increasing fin height, according to
HE and Brockmann [38]. For FD, a decrease exists for fin heights smaller
than 10 mm, whereas with FD the pressure drop coefficient is almost con-
stant in total. The remaining formulas show an insignificant increase in the
pressure drop coefficient with fin height, as can be seen in figure (103).

7. Influence of the Reynolds number
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Figure 102: Influence of fin height upon the pressure drop coefficient at
adapted transverse and longitudinal pitch (in-line arrangement)

One might suppose that at least the influence of the Reynolds number upon
the pressure drop coefficient shows a uniform tendency according to the dif-
ferent formulas. This is not the case, as only the equations of FD, EG, ES
and WA result in the expected decline of the pressure drop coefficient zeta
at approx. Re−0.30. For the HE equation, the exponent of Reynolds is only
approx. −0.08, and for BR even a very slight rise is ascertained for smaller
values of the Reynolds number, i.e. less than Re = 14000, followed by a
similarly insignificant decrease in zeta for even higher Reynolds numbers;
see figure (104).
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Figure 103: Influence of fin height upon the pressure drop coefficient
with adapted transverse pitch (in-line arrangement)

8. Influence of transverse pitch

The pressure drop coefficient decreases with increasing transverse pitch in
all equations. According to FD and WA, the decline is insignificant and
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rather linear. In other equations, the pressure drop coefficient on the other
hand is digressive, i.e. for a greater transverse pitch the pressure drop co-
efficient changes only little; see figure (105). This behavior does confirm
expectations, however.
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Figure 104: Influence of the Reynolds number upon the pressure drop
coefficient (in-line arrangement)

9. Influence of the longitudinal pitch

Except for the WA formula, where the pressure drop coefficient does not
depend on longitudinal pitch, this variable with an increasing longitudinal
pitch increases in all of the equations. This increase is moderate for FD,
EG and ES, bur considerable in the HE and BR equations; see figure (106)
on this. We also found a small increase of the pressure drop coefficient with
increasing longitudinal pitch through our own measurements.
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Figure 105: Influence of transverse pitch upon the pressure drop coeffi-
cient (in-line arrangement)
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10. Influence of the number of consecutive tube rows

The pressure drop coefficient decreases with an increasing number of con-
secutive tube rows, at least according to the HE, EG and ES equations.
The others do not show any such influence at all. According to BR, for an
increasing number of tube rows up to a number of 8, zeta rises very little
and then remains constant; see figure (107).
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Figure 106: Influence of longitudinal pitch upon the pressure drop coef-
ficient (in-line arrangement)

In our own test cases with in-line tube arrangements (unfortunately only 3
different geometries were analyzed, but each with 8, 6, 4 and 2 tube rows)
it was found that, for Reynolds numbers of ≈ 7000 to ≈ 25000, the pressure
drop coefficient per tube row is slightly smaller for 6 tube rows than for 8,
still a little smaller for 4 tube rows and apparently increases again slightly
for 2 tube rows. Thus, the observation may not be entirely incorrect that
the pressure drop coefficient does not dependon the number of consecutive
in-line tube rows; see figure (108) on this.
It is however possible to draw a regression line through the four points which
represent measurement values, as figure (108) shows. Thus, for 2 tube rows
the pressure drop coefficient per tube row is approx. 90% of the value for 8
tube rows. This could also be accounted for through a reduction factor for
a certain number of consecutive tube rows less than 8 as follows:

Kz = 1− 0.1
8− nR

6
(190)

The relationship for the calculation of pressure drop in in-line tube arrangements
shown below can be derived from our own measurement values. In this case
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Figure 107: Influence of the number of consecutive tube rows upon the
pressure drop coefficient (in-line arrangement)

the equation from the Waermeatlas [33] is taken as a basis and supplemented
by a term that represents the influence of longitudinal pitch on the pressure
drop coefficient. This expression is made dimensionless by multiplying it with
tl/dA. The exponent has been determined as 0.40 from our own measurements.
The exponent of the Reynolds number also results from measurements at ITE
and is specified at about −0.34 when all measurement points are averaged. The
following equation for the pressure drop coefficient in in-line spiral finned tube
arrangements results therefore:

ξ = 4.534Re−0.34(
tq
dA

)−0.5(
tR
dA

)−0.7(
h

dA
)0.5(

tl
dA

)0.4 (191)

The pressure drop coefficient values that were determined using this equation are
labeled with EM in figure (109); these values are distributed among those calcu-
lated according to the other equations from the literature. For higher Reynolds
numbers they display a tendency towards the lower boundary of the range.
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ues of the pressure drop coefficient in dependence of the number of
tube rows (in-line arrangement)

0.1

1

1000 10000 100000

Reynolds-number Re

P
re

s
s
u

re
d

ro
p

c
o

e
ff

ic
ie

n
t

Z
e
ta

HE

FD

WA

EG

ES

BR

EM

Figure 109: Pressure drop coefficient values according to equation (191)
in comparison with the values for in-line arrangements from the liter-
ature
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6Conclusion and recommendations

Heat exchangers with finned tubes in cross-flow are used to exchange heat be-
tween a gas with relatively poor heat transfer properties and a fluid with better
heat transfer properties. The fluid used is usually a liquid but sometimes also a
gas under high pressure. The goal is to minimize size or mass requirements in
designing the recuperator as well as the pumping power required for the gaseous
medium. The current state of scientific and technical knowledge allows such heat
exchangers to be designed well in accord with their purpose. Yet one cannot be
content with the particular state of knowledge, so that further research in this
sector is worthwhile and appropriate.

While research into certain problem areas might result in further improvements to
design safety, the following list makes no claim to being complete. The influence
of the real local heat transfer coefficient at the surface of the fins, as a function
of the radius and the angle of flow direction, on overall fin performance ought
to be investigated for different tube arrangements as well as fin height and pitch
values. Experimental research as well as finite volume calculations with efficient
flow simulation programs could be used for this purpose. Some work has been
done in this area, in which case local distribution of the heat transfer coefficient
on the fin was determined based on the analogy between heat and mass transfer,
e.g. by means of a naphthalene sublimation.

At ITE (Institute for Thermodynamics and Energy Conversion) such tests in-
volving direct measurement of fin surface temperature at different positions have
commenced but not yet been completed. Heat transfer and pressure drop in only
a few consecutive tube rows has not yet been entirely investigated, neither for
bundles of separate finned tubes nor for pipe bundles with continuous fins. In
particular, knowledge is missing for bundles of flat tubes and other non-circular
types of tubes with few tube rows.

With regard to wavy fins, there is very little published research concerning the
influence of wave height and wavelength or wave design (i.e. whether round
or corrugated waves) on heat transfer and pressure drop, either for single or
continuous fins.

It might be worth examining the effects of the positioning of concentric fins in
successive tubes, i.e. whether in-line, staggered or partially staggered configu-
ration has any effect. In this case the possibility of fouling as well as cleaning
options, with the aid of soot blowers, should also be considered. Initial steps
toward such investigation have already been carried out at ITE for finned tubes
with welded rectangular fins.

Further progress in the design of heat exchangers with finned tubes in cross-flow
could therefore be certainly achieved, both through the options listed above as
well as through other methods which have not been mentioned.
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7Appendix: Test facility for heat transfer mea-

surements

A test rig for heat transfer and pressure drop measurements at finned tube bundles
in cross-flow has been in operation at the laboratory of the Institute for Thermo-
dynamics and Energy conversion (ITE) at the Vienna University of Technology
since 1989.

The layout of this test facility is presented in figure (110). The (finned) tube bun-
dle under examination is admitted with up to 400 ◦C hot gas, which is generated
by combustion of natural gas and air. Air intake is performed using a Venturi
nozzle, which is also used for mass flow measurement of combustion air. Follow-
ing a connecting piece with a bend, a variable incidence entry vane is mounted
in front of the radial fan for mass flow regulation of air. The radial fan can pro-
duce a maximum pressure height of 5000 Pa and generates 45000 Nm3/h at 3500
Pa. The fan is powered by a 90 kilowatt three-phase alternator motor. The air
flows through a three-meter conical connecting piece to the burner. The burner
is designed as a duct burner, drawing its combustion air partly from the process
air through ductings. The maximum temperature after the burner is 400 ◦C,
maximum burner power is 1160 kilowatts.

Due to the overpressure in the burner, which is necessary for flue gas flow through
the experimental rig, the natural gas, with approx. 20 mbar of overpressure in
the gas pipe, has to be compressed to approx. 60-80 mbar by using a side-
channel compressor with bypass control. The gas flows to the burner through a
safety system with pressure switch and magnetic valves. Firing is initiated by an
ignition burner with high voltage pulse. The flame is controlled by means of a
flame detector. Temperature regulation is achieved through adjustable regulators
which control a gas adjustment valve. Behind the burner, with a cross-section
of 1000 x 750 mm, and following a tube with a diameter of 600 mm there is a
transition section, in which two static mixer applications are installed as well as
two 90◦ bends, resulting in the U-shaped the test rig layout; this is necessary due
to length restrictions placed by the experimental laboratory. After this redirecting
apparatus, there is an additional mixer application, followed by a transition piece
to a rectangular cross-section 500 mm in width and 1000 mm in height containing
a flow rectifier consisting of three fine wire meshes in close arrangement. After the
flow rectifier, which serves to rectify the vortices caused by mixers and redirecting
pipes, a 500 mm adjustment channel follows, which adapts the height of the
experimental channel to the required value in each case (between 800 and 1000
mm), as well as a 2000 mm inlet channel, which serves to calm the flow. The
finned tube heat exchanger with a tube length of approx. 500 mm is built into
a 1500 mm channel piece. Behind this, a 1500 mm outlet channel with the same
cross-section follows. A further adjustment channel follows the 500 x 1000 mm
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rectangular cross-section. Then there is a piece connecting to a tube with a
diameter of 500 mm which ends in a steel tube flue, into which flue gases are
conducted.

The finned tube heat exchanger consists of a rectangular sheet steel channel in
which the finned tubes are arranged horizontally with the required transverse
and longitudinal pitch. The free channel width is fixed at 500 mm and the
experimental tubes have to be prepared so that they only have fins along a length
of 500 mm. The additional 50 mm at each end are smooth. The bare tubes which
remain after the fins at the tube ends are cut off offer the advantage of allowing
insertion through the sidewalls of the heat exchanger and in turn complete sealing
using asbestos cord rings and conical pressure washers on the inside. The bends
which connect the individual finned tubes to a coiled pipe are mounted outside of
the gas channel, since this is the only arrangement allowing exact measurement
of heat transfer at the small test section width of the coiled pipes. Measurements
are thus not influenced by bypass flow through the space for the bends.

The bends have been soldered together using conventional copper fittings, as these
maintain their dimensions well, and in order to facilitate ease in mounting and
reassembly, and O-rings are used to achieve a tight seal with the finned tubes.
For this purpose, the tubes are equipped with soldered pipe connections of brass
with O-ring grooves, in which the copper fittings are mounted. The single coiled
tubes are arranged one on top of the other and connected to the collectors in
parallel on the water side. Depending on transverse pitch, 10 to 12 coiled tubes
are connected in parallel; each individual one usually consists of 8 consecutive
tubes. It is also possible to examine heat exchangers with 6, 4 and 2 consecutive
tube rows, however, and in special cases even only with one tube row. An even
flow in the coiled tubes is achieved by an arrangement of orifices after the inlet
collector in every coiled tube.

The hot parts of the test facility are insulated to prevent heat loss and any
accidental contact. The components containing hot gas are insulated using a
70 mm layer of mineral wool and, above that, an additional 50 mm layer of
glass wool. Aluminium foil is used as external protection for the finish. The
cooling water collectors and the inlets for the coiled tubes are insulated using
polyurethane foam.

The test rig requires a number of measurements to be taken simultaneously in
order to evaluate and determine the amount of heat transferred as well as gas-side
pressure drop. The temperatures on the water side are measured for every coiled
tube at the inlet and at the outlet using Pt-100 RTDs (resistance temperature
detectors) so that boundary influences can be ascertained for the outside coiled
tubes and considered in the evaluation. The thermocouples are directly immersed
in the water and sealed by screw joints. Gas temperatures are measured by NiCr-
Ni thermocouples. Four thermocouples are arranged and mounted in front of and

Principles of Finned-Tube Heat Exchanger Design for Enhanced Heat Transfer - 2nd Edition

123



126

F
lu

e

F
in

n
e
d
-t

u
b
e

h
e
a
t
e
x
c
h
a
n
g
e
r

R
a
d
ia

l
fa

n

F
lo

w
re

c
ti
fi
e
r

In
le

t
fl
o
w

p
a
s
s
a
g
e

S
ta

ti
c

m
ix

e
r

V
e
n
tu

ri
-n

o
z
z
le

G
a
s

c
o
m

p
re

s
s
o
r

G
a
s
-v

a
lv

e
-p

a
n
e
l

D
u
c
t-

b
u
rn

e
r

S
ta

ti
c

m
ix

e
r

Figure 110: Layout and design of the test facility
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behind the heating surface of the heat exchanger to obtain a grid measurement.
Additional NiCr-Ni thermocouples measure the air temperature at the Venturi
nozzle and behind the fan as well as the gas temperature behind the burner.
Compensation for reference points is achieved by software.

The mass flow of water is measured using a hot water meter with an electronic
sensor. The mass flow of air is measured by determining the pressure difference
at the Venturi nozzle in front of the inlet collector. This pressure difference as
well as others are detected using Honeywell series 160 differential pressure micro
switch sensors.

All measured values are transmitted in the form of electrical signals to the process
computer and processed there. This is done by means of a PC with measurement
value periphery by National Instruments and the LabView program system. The
test facility is operated only through the screen displays; no other instruments
are available. At the outset of testing, an HP process computer was used for data
acquisition and later replaced by the present system in 2004. The test facility
thus continues to be used for measurements on finned tubes as well as on other
types of heat exchangers.
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