Principles of GPS

Principles of GPS..

- How the Global Positioning System works is, conceptually, really very simple
- The GPS system is based on a distance measuring (satellite ranging) system
- That means that we find 'our position' on earth by measuring our distance from a group of satellites in space

Principles of GPS..

- Lets start with a simple example of triangulation:
- Assume that Sam's boat travels at a speed of 6 miles per hour. Sam has determined that his favorite fishing spot in the Lake is:
 - > 10 minutes from dock A
 - > 7.5 minutes from dock B, and
 - > 15 minutes from dock C

Principles of GPS...

- The first step is to calculate how far the fishing spot is from each of the docks
- Speed of 6 miles/ hr = 0.1 miles/minute

• DISTANCE = SPEED X TIME

- ✓ Distance to dock A:
- 0.1miles/minute X 10 minutes = 1 mile
 ✓ Distance to dock B:
- 0.1miles/minute X 7.5 minutes = 0.75 miles
- ✓ Distance to dock C:

• 0.1miles/minute X 15 minutes = 1.5 miles

Principles of GPS.

From this example, we can define the steps required to locate the fishing spot as follows:

- 1. <u>Determine the time</u> required to reach the fishing spot from each of 3 boating docks on the lake
- 2. <u>Assume that the speed</u> of the boat is constant at 6 miles per hour
- 3. <u>Calculate the distance</u> in miles, from each of the three docks
- 4. <u>Locate each of the boating docks</u> already marked on the map
- 5. <u>Determine the fishing spot</u> location by drawing circles on the map around the three docks, which were equivalent to calculated distances

Principles of GPS.

- ✓ These are essentially the same steps a GPS receiver uses to determine its position
- In the example above, the ranging method was used to determine the location of the fishing spot in <u>2-dimensions</u> based on distances from <u>3- reference points</u>, by intersecting 3-circles at a single point
- Likewise, GPS provides positions information in three dimensions by using signals from four (or more reference points) satellites

Principles of GPS..

- Lets have a look how GPS works
- Lets assume we are lost on the planet earth and we are trying to locate ourselves using GPS
- If we know that we are a certain distance from satellite A, say 11,000 miles, that really narrows it down where in the whole universe we can be
- It tells us we must be somewhere on an imaginary sphere that is centered on the satellite and that has a radius of 11,000 miles

Principles of GPS...

- By ranging from three satellites we can narrow down where we are to just two points in space
- But how do we decide which one of those two points is our true location?
- We do that by making a fourth measurement from another satellite

Principles of GPS.

- There are other ways of deciding our true location:
- We can make an intelligent assumption, because one of the two points is a ridiculous answer. Reason: the incorrect point may not be close to the earth
- Or if you're sure of your altitude, like mariners are
- However, the computers in the GPS receivers have various mathematical techniques for distinguishing the correct point from the incorrect one

Principles of GPS.

In simple terms, the steps required in finding position on earth is as follows:

- 1. Determine the time required for satellite signal to reach the GPS unit/receiver
- 2. Assume that the <u>speed of light is constant</u> at 186,000 miles per second
- 3. Receiver <u>calculates the distance</u> from each of the four or more satellites
- 4. Locate each of the satellites on specified orbits
- 5. Make <u>corrections about the position</u> and read out the coordinates

Summary: How does GPS work?

- GPS is a Distance/Ranging system
- Operates on the <u>Principle of Trilateration</u>
- Satellites transmit unique Radio waves
- Receivers passively receive SV signal
- Receivers measure time for signal to reach it
- Distance computed by $D = V \times T_{\Delta}$
- V = C = 300,000 Km/Sec (186,000Mi/Sec)

Why 4 satellites?

- Accurate positioning requires very precise measurement
- Only takes 6/100 sec. for SV signal to reach ground
 - At 300,000 Km/s
 - 1/1,000,000 sec error => 300 M Pos. error
- Satellites have very precise Atomic Clocks
- Receivers have only 'Inexpensive' Quartz clocks
- What if clock is off by just tiny fraction of a second

Two GPS Services

SPS: Standard Positioning Services Use of only L1 Band

PPS: Precise Positioning Services
Use of both L1 and L2 Band

Basic GPS Signal Structure

Each Satellite Transmits On Two Frequencies

L1 Carrier 1575.42 MHz and L2 Carrier 1227.60 MHz

Superimposed on these carriers are Pseudo-Random, Binary, Bi-Phase Modulation Codes called PRN (*Pseudo-Random Noise*) Codes unique to each satellite

Coarse Acquisition Code (C/A-Code): Standard Positioning Precise, or Protected Code (P-Code) Precise Positioning