
© 2011 Pearson Addison-Wesley. All rights reserved 2-1 

  Chapter 2 

	


Principles of Programming & 
Software Engineering	




© 2011 Pearson Addison-Wesley. All rights reserved 2-2 

Problem Solving and Software 
Engineering 
•  Coding without a solution design increases 

debugging time	

•  A team of programmers is needed for a large 

software development project	

•  Teamwork requires:	


–  An overall plan	

–  Organization	

–  Communication	


•  Software engineering	

–  Provides techniques to facilitate the development of 

computer programs	




© 2011 Pearson Addison-Wesley. All rights reserved 2-3 

What is Problem Solving? 

•  Problem solving	

–  The process of taking the statement of a problem and 

developing a computer program that solves that 
problem	


•  A solution consists of:	

–  Algorithms	


•  Algorithm: a step-by-step specification of a method 
to solve a problem within a finite amount of time	


–  Ways to store data	




© 2011 Pearson Addison-Wesley. All rights reserved 2-4 

The Life Cycle of Software 

•  The life cycle of a software	

–  A lengthy and continuing process	

–  Required for the development of good software	

–  Programmer can move from any phase of the cycle to 

any other phase	




© 2011 Pearson Addison-Wesley. All rights reserved 2-5 

The Life Cycle of Software 

Figure 2-1 
The life cycle of software as a water wheel that can rotate from one phase to any 
other phase 



© 2011 Pearson Addison-Wesley. All rights reserved 2-6 

The Life Cycle of Software 

•  Phase 1: Specification	

–  Aspects of the problem which must be specified:	


•  What is the input data?	

•  What data is valid and what data is invalid?	

•  Who will use the software, and what user interface should be 

used?	

•  What error detection and error messages are desirable?	

•  What assumptions are possible?	

•  Are there special cases?	

•  What is the form of the output?	

•  What documentation is necessary?	

•  What enhancements to the program are likely in the future? 	




© 2011 Pearson Addison-Wesley. All rights reserved 2-7 

The Life Cycle of Software 

•  Phase 1: Specification (Continued)	

–  Prototype program	


•  A program that simulates the behavior of portions of 
the desired software product	


•  Phase 2: Design	

–  Includes:	


•  Dividing the program into modules	

•  Specifying the purpose of each module	

•  Specifying the data flow among modules	




© 2011 Pearson Addison-Wesley. All rights reserved 2-8 

The Life Cycle of Software 

•  Phase 2: Design (Continued)	

–  Modules	


•  Self-contained units of code	

•  Should be designed to be:	


–  Loosely coupled	

–  Highly cohesive	


–  Interfaces	

•  Communication mechanisms among modules	




© 2011 Pearson Addison-Wesley. All rights reserved 2-9 

The Life Cycle of Software 

•  Phase 2: Design (Continued)	

–  Specifications of a method	


•  A contract between the method and the module that calls it	

•  Should not commit the method to a particular way of 

performing its task	

•  Include the method’s:	


–  Precondition	

»  A statement of the conditions that must exist at the 

beginning of the method	

–  Postcondition	


»  A statement of the conditions at the end of the method 	




© 2011 Pearson Addison-Wesley. All rights reserved 2-10 

The Life Cycle of Software 

•  Phase 3: Risk Analysis	

–  Building software entails risks	

–  Techniques exist to identify, assess, and manage the 

risks of creating a software product	

•  Phase 4: Verification	


–  Formal methods can be used to prove that an algorithm 
is correct	


–  Assertion	

•  A statement about a particular condition at a certain point in an 

algorithm	

•  Java’s assert statement:  assert booleanExpression; 



© 2011 Pearson Addison-Wesley. All rights reserved 2-11 

The Life Cycle of Software 

•  Phase 4: Verification (Continued)	

–  Invariant	


•  A condition that is always true at a particular point 
in an algorithm	


–  Loop invariant	

•  A condition that is true before and after each 

execution of an algorithm’s loop	

•  Can be used to detect errors before coding is started	




© 2011 Pearson Addison-Wesley. All rights reserved 2-12 

The Life Cycle of Software 

•  Phase 4: Verification (Continued)	

–  The invariant for a correct loop is true:	


•  Initially, after any initialization steps, but before the loop 
begins execution	


•  Before every iteration of the loop	

•  After every iteration of the loop	

•  After the loop terminates	


•  Phase 5: Coding	

–  Involves:	


•  Translating the design into a particular programming language	

•  Removing syntax errors	




© 2011 Pearson Addison-Wesley. All rights reserved 2-13 

The Life Cycle of Software 

•  Phase 6: Testing	

–  Involves:	


•  Removing the logical errors	

–  Test data should include:	


•  Valid data that leads to a known result	

•  Invalid data	

•  Random data	

•  Actual data	




© 2011 Pearson Addison-Wesley. All rights reserved 2-14 

The Life Cycle of Software 

•  Phase 7: Refining the Solution	

–  During phases 1 through 6	


•  A working program is developed under simplifying 
assumptions	


–  During phase 7	

•  Refining sophistication is added, such as:	


–  More sophisticated input and output routines	

–  Additional features	

–  More error checks	




© 2011 Pearson Addison-Wesley. All rights reserved 2-15 

The Life Cycle of Software 

•  Phase 8: Production	

–  Involves:	


•  Distribution to the intended users	

•  Use by the users	


•  Phase 9: Maintenance	

–  Involves	


•  Correcting user-detected errors	

•  Adding more features	

•  Modifying existing portions to suit the users better	




© 2011 Pearson Addison-Wesley. All rights reserved 2-16 

What is a Good Solution? 

•  A solution is good if:	

–  The total cost it incurs over all phases of its life cycle is 

minimal	

•  The cost of a solution includes:	


–  Computer resources that the program consumes	

–  Difficulties encountered by those who use the program	

–  Consequences of a program that does not behave 

correctly	

•  Programs must be well structured and documented	

•  Efficiency is only one aspect of a solution’s cost	




© 2011 Pearson Addison-Wesley. All rights reserved 2-17 

Achieving an Object-Oriented 
Design: Abstraction and 
Information Hiding 
•  A modular solution to a problem should specify 

what to do, not how to do it	

•  Abstraction	


–  Separates the purpose of a module from its 
implementation	


•  Procedural abstraction	

–  Separates the purpose of a method from its 

implementation	




© 2011 Pearson Addison-Wesley. All rights reserved 2-18 

Abstraction and Information 
Hiding 

Figure 2-2 
The details of the sorting algorithm are hidden from other parts of the solution. 



© 2011 Pearson Addison-Wesley. All rights reserved 2-19 

Abstraction and Information 
Hiding 

•  Data abstraction	

–  Focuses of the operations of data, not on the 

implementation of the operations	

–  Abstract data type (ADT)	


•  A collection of data and a set of operations on the data	

•  An ADT’s operations can be used without knowing how the 

operations are implemented, if:	

–  the operations’ specifications are known	


–  Data structure	

•  A construct that can be defined within a programming 

language to store a collection of data	




© 2011 Pearson Addison-Wesley. All rights reserved 2-20 

Abstraction and Information 
Hiding 

•  Public view of a module	

–  Described by its specifications	


•  Private view of a module	

–  Consists of details which should not be described by the 

specifications	

•  Principle of information hiding	


–  Hide details within a module	

–  Ensure that no other module can tamper with these 

hidden details	




© 2011 Pearson Addison-Wesley. All rights reserved 2-21 

Object-Oriented Design 

•  Object-oriented approach to modularity	

–  Produces a collection of objects that have behaviors	


•  Object	

–  An instance of a class	

–  Combines data and operations on that data	


•  Encapsulation	

–  A technique that hides inner details	

–  Methods encapsulate actions	

–  Objects encapsulate data as well as actions	




© 2011 Pearson Addison-Wesley. All rights reserved 2-22 

Object-Oriented Design 

•  Principles of object-oriented programming (OOP)	

–  Encapsulation	


•  Objects combine data and operations	

–  Inheritance	


•  Classes can inherit properties from other classes	

–  Polymorphism	


•  Objects can determine appropriate operations at 
execution time 	




© 2011 Pearson Addison-Wesley. All rights reserved 2-23 

Functional Decomposition 

•  Object-oriented design (OOD)	

–  Produces modular solutions for problems that primarily 

involve data	

–  Identifies objects by focusing on the nouns in the 

problem statement	

•  Functional Decomposition (FD)	


–  Produces modular solutions for problems in which the 
emphasis is on the algorithms	


–  Identifies actions by focusing on the verbs in the 
problem statement	


–  A task is addressed at successively lower levels of 
detail	




© 2011 Pearson Addison-Wesley. All rights reserved 2-24 

Functional Decomposition 

Figure 2-4 
A structure chart showing the hierarchy of modules 



© 2011 Pearson Addison-Wesley. All rights reserved 2-25 

General Design Guidelines 

•  Use OOD and FD together	

•  Use OOD for problems that primarily involve data	

•  Use FD to design algorithms for an object’s 

operations	

•  Consider FD to design solutions to problems that 

emphasize algorithms over data	

•  Focus on what, not how, when designing both 

ADTs and algorithms	

•  Consider incorporating previously written 

software components into your design	




© 2011 Pearson Addison-Wesley. All rights reserved 2-26 

Modeling Object-Oriented 
Designs Using IML 
•  Unified Modeling Language (UML): language to 

express OO designs	

•  Class diagrams include name, data, operations 	

•  Text-based notation: more complete specifications	




© 2011 Pearson Addison-Wesley. All rights reserved 2-27 

A Summary of Key Issues in 
Programming 
•  Modularity	


–  Favorable impact on program development	

•  Modifiability	


–  Use of methods and named constants	

•  Ease of Use	


–  Considerations for the user interface	

•  Program should prompt the user for input	

•  A program should always echo its input	

•  The output should be well labeled and easy to read	




© 2011 Pearson Addison-Wesley. All rights reserved 2-28 

A Summary of Key Issues in 
Programming 

•  Fail-Safe Programming	

–  Fail-safe program	


•  A program that will perform reasonably no matter 
how anyone uses it	


–  Types of errors:	

•  Errors in input data	

•  Errors in the program logic	




© 2011 Pearson Addison-Wesley. All rights reserved 2-29 

A Summary of Key Issues in 
Programming 

•  Style	

–  Five issues of style	


•  Extensive use of methods	

•  Use of private data fields	

•  Error handling	

•  Readability	

•  Documentation	




© 2011 Pearson Addison-Wesley. All rights reserved 2-30 

A Summary of Key Issues in 
Programming 

•  Debugging	

–  Programmer must systematically check a program’s 

logic to determine where an error occurs	

–  Tools to use while debugging:	


•  Watches	

•  Breakpoints	

• System.out.println statements	

•  Dump methods	




© 2011 Pearson Addison-Wesley. All rights reserved 2-31 

Summary 
•  Software engineering studies ways to facilitate the 

development of computer programs	

•  Software life cycle consists of:	


–  Specifying the problem	

–  Designing the algorithm	

–  Analyzing the risks	

–  Verifying the algorithm	

–  Coding the programs	

–  Testing the programs	

–  Refining the solution	

–  Using the solution	

–  Maintaining the software	




© 2011 Pearson Addison-Wesley. All rights reserved 2-32 

Summary 

•  A loop invariant is a property of an algorithm that 
is true before and after each iteration of a loop	


•  An evaluation of the quality of a solution must 
take into consideration	

–  The solution’s correctness	

–  The solution’s efficiency	

–  The time that went into the development of the solution	

–  The solution’s ease of use	

–  The cost of modifying and expanding the solution	




© 2011 Pearson Addison-Wesley. All rights reserved 2-33 

Summary 

•  A combination of object-oriented and functional 
decomposition techniques will lead to a modular 
solution	


•  The final solution should be as easy to modify as 
possible	


•  A method should be as independent as possible 
and perform one well-defined task	


•  A method should always include an initial 
comment that states its purpose, its precondition, 
and its postcondition	




© 2011 Pearson Addison-Wesley. All rights reserved 2-34 

Summary 

•  A program should be as fail-safe as possible	

•  Effective use of available diagnostic aids is one of 

the keys to debugging	

•  To make it easier to examine the contents of 

complex data structures while debugging, dump 
methods that display the contents of the data 
structures should be used	



