PUTTING

PRINCIPLES

FIRST

New learning architecture

The division into Principles and Practice volumes fosters better learning of both physics principles and problem solving.

PRINCIPLES \& PRACTICE OF PHYSICS

Eric Mazur

The Principles volume

 teaches the physics.Each Principles chapter is divided into a CONCEPTS section and a QUANTITATIVE TOOLS section.

The CONCEPTS section develops the ideas in qualitative terms, using words and pictures to build from specific observations to general principles.

GLOBAL EDITION

PRINCIPLES \& PRACTICE OF PHYSICS

Eric Mazur

Physics on a contemporary foundation

This text builds physics on foundational concepts to help students develop an
understanding that is stronger, deeper, and fundamentally simpler than provided by traditional texts.

Contents

Early emphasis on conservation laws
(a) Sketch initial and final conditions, identify changes, choose system

change in motion: none
changes in state: - chemical state of fuel and air changes - temperature rises
(b) Draw energy bar diagrams for initial and final conditions

(Figure 5.9)

Foundations
Motion in One Dimension
Acceleration
Momentum
Energy
Principle of Relativity
Interactions

11 Motion in a Circle
12 Torque
13 Gravity
14 Special Relativity
15 Periodic Motion
16 Waves in One Dimension
17 Waves in Two and Three Dimensions
18 Fluids
19 Entropy
20 Energy Transferred Thermally
21 Degradation of Energy
22 Electric Interactions
23 The Electric Field
24 Gauss's Law
25 Work and Energy in Electrostatics
26 Charge Separation and Storage
27 Magnetic Interactions
28 Magnetic Fields of Charged Particles in Motion
29 Changing Magnetic Fields
30 Changing Electric Fields
31 Electric Circuits
32 Electronics
33 Ray Optics
34 Wave and Particle Optics

The core ideas of mechanics are developed in one dimension

Strong emphasis on the concept of a system

(Figure 4.12)

Statistical treatment of thermodynamics
(a) Support pushes on brick

(b) Support pulls on brick

(Figure 8.9)

Research-based instruction

This text uses a range of research-based instructional techniques.

Strong connection to experiment and experience

This text develops ideas from observations and experiments, instead of stating principles and then showing that they conform to reality.

Strong visual instruction

The figures are designed to work as visual explanations, presenting ideas in visual terms. For example, they

- incorporate explanation
- are intentionally schematic to reduce cognitive load
- use multiple representations to help students visualise quantitative information
- illustrate the process of physical reasoning

(a)

System $=$ person + box

Friction generates thermal energy in Earth and box .

. . . but we don't know how much ends up in Earth and how much in box.

So, if system excludes Earth, we can't do energy accounting.

Most of hammer's mass is in head.

Axis of rotation far from center of mass:
Hammer is hard to rotate (has high rotational inertia).

Axis of rotation at centre of mass:
Hammer is easy to rotate (has low rotational inertia).

If system also includes Earth, all thermal energy remains in system .

Integrated student engagement

Self-check and engagement features are integrated closely into the learning program. Among others, they include the following:

DEVELOPING A FEEL in the Practice volume
helps students to develop a quantitative feel for the quantities introduced in the chapter and learn to make valid assumptions and estimates.

In Principles, each Concepts section ends with a SELF QUIZ that lets students test their understanding of the material before proceeding.

In the Practice volume, each fully solved Worked Problem is followed by a GUIDED PROBLEMI that has a list of Socratic questions and suggestions in place of a full solution.

MasteringPhysics® with learning catalytics

MasteringPhysics is the leading online homework, tutorial, and assessment product designed to improve results by helping students quickly master concepts.

Easily assign TUTORIALS that provide individualised coaching.

- Mastering's hallmark HINTS and FEEDBACK offer scaffolded instruction similar to what students would experience in an office hour.
- HINTS (declarative and Socratic) can provide problemsolving strategies or break the main problem into simpler exercises.
- FEEDBACK lets the student know precisely what misconception or misunderstanding is evident from their answer and offers ideas to consider when attempting the problem again.

www.pearson.com.au/MazurPhysics

