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The Principles volume  
teaches the physics.

Each Principles chapter is divided into a concePts 
section and a Quantitative tools section.

new learning

The division into Principles and Practice 
volumes fosters better learning of both 
physics principles and problem solving.
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126 Chapter 6  prinCiple of relativity

No, because nothing prescribes the reference frame; we 
get to choose it. So for now we just avoid using noninertial 
reference frames. For the accelerating car, for instance, we 
would choose not a reference frame affixed to the car but 
the Earth reference frame.

6.3 From the point of view of each observer in Figure 6.7, 
(a) is the energy of each cart constant? (b) Is the isolated system 
containing cart 1 closed? (c) Is the isolated system containing 
cart 2 closed? (d) Do the observations made by each observer 
agree with the conservation of energy law?

6.3 principle of relativity
In the preceding section, we saw that the conservation laws 
apply for single objects in inertial reference frames. Let us 
now test the conservation laws for interacting objects.

Figure 6.8 shows velocityversustime graphs for two
cart collisions. The values in Figure 6.8a were measured 
by an observer in the Earth reference frame. As you saw in 

Our accounting procedures for momentum and energy 
cannot be used in noninertial reference frames. Consider, 
for example, the two carts shown in Figure 6.7. Cart 1 is 
being accelerated by a spring, and cart 2 is at rest in the Earth 
reference frame. Cart 2 constitutes an isolated system, but 
cart 1 is not isolated because it interacts with the spring. To 
observer E in the Earth reference frame (Figure 6.7a), the 
behavior of both carts is in agreement with the momentum 
law: The momentum of the nonisolated cart 1 changes, 
while the momentum of the isolated cart 2 is constant. 
For observer M, however, who is accelerating along with 
cart 1 (Figure 6.7b), things don’t quite add up. From this 
observer’s perspective, cart 1 remains at rest even though 
it interacts with the spring, and the momentum of cart 2 
changes even though that cart is isolated. Equations 4.17 
(∆pS = 0

S
) and 5.23 (∆E = 0), which embody the laws of 

conservation of momentum and energy, do not hold in the 
noninertial reference frame of observer M in Figure 6.7b.

Are we going to run into problems because the laws of 
the universe are different in noninertial reference frames? 

Figure 6.7 A stationary cart and an accelerating cart viewed from (a) the Earth reference frame and (b) a reference frame  
affixed to the accelerating cart.

S

S S

S p p

E

aE1

cart 2 cart 1

aM2

cart 2 cart 1, M

(a) (b)Earth reference frame (observer E) Reference frame of accelerating cart (observer M)

Observer E: says cart 2 is isolated 
and has (constant) zero 
momentum c

cand cart 1 is not isolated 
and has changing momentum. 

Observer M: agrees cart 2 is isolated 
but says its momentum 
is changing, c

cand agrees cart 1 is 
not isolated, but says it 
remains at rest. 

SSvE2  =  0

vM1  =  0

Figure 6.8 Velocityversustime graphs for two carts colliding on a lowfriction track as seen (a) from the Earth reference frame and (b) from 
a reference frame moving along the track at vEM x = -0.20 m>s relative to Earth. The inertias are 0.36 kg for cart 1 and 0.12 kg for cart 2.
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6.5 Galilean relativity
Consider two observers, A and B, moving at constant velocity relative to each 
other. Suppose they observe the same event and describe it relative to their 
respective reference frames and clocks (Figure 6.13). Let the origins of the two 
observers’ reference frames coincide at t = 0 (Figure 6.13a). Observer A sees the 
event as happening at position rSAe at clock reading tAe (Figure 6.13b).* Observer B 
sees the event at position rSBe at clock reading tBe . What is the relationship be
tween these clock readings and positions?

If, as we discussed in Chapter 1, we assume time is absolute—the same every
where—and if the two observers have synchronized their (identical) clocks, they 
both observe the event at the same clock readings, which means

 tAe = tBe. (6.1)

Because the clock readings of the two observers always agree, we can omit the 
subscripts referring to the reference frames:

 tA = tB = t. (6.2)

From Figure 6.13 we see that the position rSAB of observer B in refer
ence frame A at instant te is equal to B’s displacement over the time interval 
∆t = te − 0 = te , and so rSAB = vSAB te because B moves at constant velocity 
vSAB . Therefore

 rSAe = rSAB + rSBe = vSAB te + rSBe . (6.3)

Equations 6.2 and 6.3 allow us to relate event data collected in one reference 
frame to data on the same event e collected in a reference frame that moves at 
constant velocity relative to the first one (neither of these has to be at rest relative 
to Earth, but their origins must coincide at t = 0). To this end we rewrite these 
equations so that they give the values of time and position in reference frame B 

Figure 6.13 Two observers moving relative to each other observe the same event. Observer B moves at constant velocity vSAB 
relative to observer A. (a) The origins O of the two reference frames overlap at instant t = 0. (b) At instant te , when the event 
occurs, the origin of observer B’s reference frame has a displacement vSAB te relative to reference frame A.

event

OA OBOA  =  OB

Both observers start at origin 
at clock reading t  =  0.

In time interval shown, observer B 
advances this distance.

vAB

rBerAB  =  vABte

tA  =  tB  =  0

rAe

tBe  =  tAe  =  tetAe
(a)

A AB B

Origin in frame A Origin in frame B

S

S

SS S

vAB
S

(b)

*Remember our subscript form: The capital letter refers to the reference frame; the lowercase e is for 
“event.” Thus the vector rSAe represents observer A’s measurement of the position at which the event 
occurs.
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The Quantitative tools section 
formalises the ideas mathematically.

The concePts section develops the 
ideas in qualitative terms, using words 
and pictures to build from specific 
observations to general principles.
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The Practice volume teaches  
the skills needed to apply physics  
to the task of solving problems.

p
r

a
c

t
ic

e

 QueStionS and problemS 99

 32.	 In a three-car crash, car A bumps into the back end of car B, 
which then goes forward and bumps into the back end of 
car C. Is the distance that car B moves between the collisions 
the same in all inertial reference frames? ⦁⦁

 33.	 Riding up an escalator while staying on the same step for the 
whole ride takes 30 s. Walking up the same escalator takes 
20 s. How long does it take to walk down the up escalator? ⦁⦁

  34.	 A woman is on a train leaving the station at 4.0 m>s, while 
a friend waving goodbye runs alongside the car she’s in.  
(a) If the friend is running at 6.0 m>s and moving in the same 
direction as the train, how fast must the woman walk, and in 
which direction, to keep up with him? (b) Once the train has 
reached a speed of 10 m>s, how fast must the woman walk, 
and in which direction, to keep up with her friend? ⦁⦁

  35.	 Airline pilots who fly round trips know that their round-trip 
travel time increases if there is any wind. To see this, suppose 
that an airliner cruises at speed v relative to the air. (a) For 
a flight whose one-way distance is d, write an expression for 
the interval ∆tcalm needed for a round trip on a windless day. 
Ignore any time spent on the ground, and assume that the 
airliner flies at cruising speed for essentially the whole trip. 
(b) Now assume there is a wind of speed w. It doesn’t matter 
which way the wind is blowing; all that matters is that it is a 
head wind in one direction and a tail wind in the opposite 
direction. Write an expression for the time interval ∆twind
needed for a round trip on the day this wind is blowing. Then 
show that your expression  reduces to

∆twind ≈ ∆tcalm c 1 + aw
v
b

2
d  

  provided that w V v. (For the last step, you may need to 
know that (1 ± z)b ≈ 1 ± bz when z V 1.) ⦁⦁⦁

6.6 center of mass

 36.	 The inertia of an object is m measured when the object is 
at rest in the Earth reference frame. According to Galilean 
relativity, what is its inertia measured by an observer mov-
ing past the object with a constant velocity vS in the positive  
x direction? What is the object’s momentum according to 
this observer? ⦁

 37.	 At what distance from the center of Earth is the center of 
mass of the Earth-Moon system? ⦁

 38.	 (a) Determine the location of the center of mass of the sys-
tem shown in Figure P6.38. All three disks are made of sheet 
metal of the same material, and the diameters are 1.0 m, 
2.0 m, and 3.0 m. (b) Repeat the calculation for three solid 
spheres all made of the same metal and having the same di-
ameters as in part a. ⦁⦁

the inertia of the boy and his raft. The rafts are connected by 
a rope 12 m long, so she decides to pull on the rope, drawing 
the rafts together until she can reach the toy. Which raft gets 
to the toy first? How much distance is there between the two 
rafts when the first one reaches the toy? ⦁⦁

 40.	 The two cubes in Figure P6.40 have different inertias. The 
cubes are connected to each other by a spring, and a hammer 
strikes them in the two ways, (a) and (b), shown in the  figure. 
Assuming that the same impulse is transferred from the 
hammer, does the center-of-mass motion after the  collision 
 depend on which cube is struck first? ⦁⦁

Figure p6.38 

 39.	 A boy and a girl are resting on separate rafts 10 m apart in 
calm water when the girl notices a small beach toy floating 
midway between the rafts. The girl and her raft have twice 

(a) (b)

Figure p6.40 

0.10 kg0.20 kg 0.10 kg

1.0 m 1.0 m

Figure p6.41 

  41.	 Determine the position of the center of mass of the baton 
shown in Figure P6.41, taking the origin of your coordinate 
axis to be (a) the center of the larger ball, (b) the center of 
the smaller ball, and (c) a point 1.0 m to the left of the larger 
ball. How much calculation was required for each of the three 
parts of this problem? ⦁⦁

10 mm

1.40 m

40 mm

Figure p6.44 

 43.	 How can you tell from the motion of the center of mass of an 
isolated system whether the reference frame from which the 
motion is measured is inertial? ⦁⦁

 44.	 Determine the center of mass of a pool cue whose diameter de-
creases smoothly from 40 mm to 10 mm over its 1.40-m length 
(Figure P6.44). Assume that the cue is made from solid wood, 
with no hidden weights inside. (Hint: See Appendix D for the 
center-of-mass computation for extended objects. You will find 
it easier to do the integral for a complete cone. The pool cue is 
a truncated cone—that is, a cone with its conical tip removed. 
Slicing off a piece is like adding negative inertia.) ⦁⦁⦁

 42.	 The empty cubical box shown 
in Figure P6.42 has no top face; 
that is, the box is made up of 
only five square faces. If all five 
faces have the same inertia, 
at what height above the bot-
tom of the box is the center of 
mass? ⦁⦁

Figure p6.42 
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Worked and Guided problems

These examples involve material from this chapter but are not associated with any particular section. 
Some examples are worked out in detail; others you should work out by following the guidelines provided.

Because the train does not accelerate, T is an inertial reference 
frame, as is the Earth reference frame E. We are given enough in-
formation to calculate the sprinter’s initial velocity vSTs,i, final veloc-
ity vSTs,f , and acceleration aSTs measured by an observer at rest in the 
train reference frame, and we need to determine what the trackside 
observer measures for these three quantities, which we denote as 
vSEs,i , v

S
Es,f , and aSEs because they are being measured in the Earth 

reference frame.

❷ Devise plan As Figure WG6.1 shows, we define the posi-
tive x direction as the direction in which the train is moving. The 
train is therefore moving with a velocity that has x component 
vET x = +30 m>s as measured by the observer in the Earth refer-
ence frame. (And to a passenger on the train, the trackside ob-
server moves along the x axis with a velocity that has x component 
vTE x = -30 m>s.)

We need to transform velocity information from the T refer-
ence frame to the E reference frame, and so we use Eq. 6.14 with 
the subscripts appropriate to this problem:

 vSEs = vSET + vSTs . (1)

For the sprinter’s acceleration, we note from Eq. 6.11 that the two 
inertial reference frames give the same result:

aSEs = aSTs .

We can use Eq. 1 for both the sprinter’s initial velocity and his 
final velocity measured by the trackside observer. To calculate the 
 acceleration this observer measures, we do not have enough infor-
mation to take the time derivative of the velocity because we know 

On a train carrying the university team to a track meet, a sprinter 
in one of the cars practices his starts by running down the aisle. In 
the reference frame of the train, the sprinter starts from rest and 
runs toward the rear of the car. After 2.0 s, he has accelerated to a 
speed of 10 m>s. If the train is moving at a constant 30 m>s rela-
tive to the Earth reference frame, what does an observer standing 
alongside the tracks measure for the sprinter’s initial velocity, final 
velocity, and acceleration?

❶ GettinG starteD We must translate information from the 
train reference frame T to the Earth reference frame E, which 
 suggests Galilean transformations for velocity and acceleration. As 
usual, we begin by making a sketch, paying attention to the direc-
tions of the vectors (Figure WG6.1).

3. Use subscript cancellation (Eq. 6.13) to write an equa-
tion for each quantity you need to determine,  keeping 
the first and the last subscripts on each side the same. 
For example, in a problem where you need to deter-
mine vSTc involving a moving observer B, write

vTc  =  vTB  +  vBc
SSS .

4. If needed, use subscript reversal (Eq. 6.15) to elimi-
nate any unknowns.

5. Use the kinematics relationships from Chapters 2 and 3 
to solve for any remaining unknowns, making sure 
you stay in one reference frame.

You can use this procedure and the subscript operations 
for any of the three basic kinematic quantities (position, 
velocity, and acceleration).

In problems dealing with more than one reference frame, 
you need to keep track not only of objects, but also of refer-
ence frames. For this reason, each quantity is labeled with 
two subscripts. The first subscript denotes the observer; 
the second denotes the object of interest. For example, if 
we have an observer on a train and also a car somewhere 
on the ground but in sight of the train, then aSTc is the train 
observer’s measurement of the acceleration of the car. Once 
you understand this notation and a few basic operations, 
working with relative quantities is easy and straightforward.

vAc
S

observer

observer A’s measurement of velocity of car:

object of interest

1. Begin by listing the quantities given in the problem, 
using this double-subscript notation.

2. Write the quantities you need to determine in the 
same notation.

procedure: applying Galilean relativity

Figure WG6.1 

Worked problem 6.1 running a train
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chapter Summary
inertial reference frames (Sections 6.1–6.4, 6.6)

Quantitative tools The position rScm of the center of mass of a system of objects of iner-
tias m1 , m2 , clocated at positions rS1 , rS2 , cis

 rScm K
m1rS1 + m2rS2 +g

m1 + m2 +g
. (6.24)

The center-of-mass velocity of a system of objects is

 vScm K
drScm

dt
=

m1v
S

1 + m2v
S

2 +g
m1 + m2 +g

. (6.26)

This is also the velocity of the zero-momentum reference frame for this system.

concepts A reference frame is a combi-
nation of a reference axis that defines a di-
rection in space and a reference point that 
defines the origin from which motion is 
measured. The Earth reference frame is a 
reference frame at rest relative to Earth.

An inertial reference frame is one 
in which the law of inertia holds, which 
means a reference frame in which an iso-
lated object remains either at rest or in mo-
tion at constant velocity.

The principle of relativity states that 
the laws of the universe are the same in all 
inertial reference frames.

The zero-momentum reference frame 
for a system of objects is the reference 
frame in which the momentum of the sys-
tem is zero. The velocity of this reference 
frame is equal to the velocity of the center 
of mass of the system.

Quantitative tools  The Galilean transformation equations relate the time t and posi-
tion rSe for an event (e) measured in an inertial reference frame A to these quantities mea-
sured for the event in any other inertial reference frame B. If the reference frames have a 
constant relative velocity vSAB and have their origins coinciding at t = 0, the transforma-
tion equations are

 tB = tA = t (6.4)

and rSBe = rSAe − vSABte. (6.5)

As a consequence of these equations, the velocity vSAo of an object (o) measured in an in-
ertial reference frame A is related to the object’s velocity measured in any other inertial 
reference frame B by

 vSAo = vSAB + vSBo. (6.14)

The transformation equations also give the relationship between accelerations mea-
sured in any two inertial reference frames A and B:

 aSAo K aSBo. (6.11)

concepts  The Galilean transformation 
equations allow us to transform quantities 
measured in one inertial reference frame 
into their values in another inertial refer-
ence frame when the two reference frames 
are moving at constant relative velocity. 
The transformation equations tell us that 
time intervals, lengths, and accelerations are 
the same in any two inertial reference frames 
moving at constant relative velocity.

relative motion (Section 6.5)

convertible kinetic energy (Section 6.7)

concepts  The translational kinetic energy 
of a system is the kinetic energy associated 
with the motion of its center of mass. For 
an isolated system, this kinetic energy is 
nonconvertible because it cannot be con-
verted to internal energy (if it were, the 
momentum of the system would not be 
constant).

The convertible kinetic energy of an 
isolated system is the portion of the system’s 

Quantitative tools  The translational (nonconvertible) kinetic energy Kcm of a system 
is

 Kcm K 1
2 mv2

cm , (6.32)

where m is the system’s inertia and vcm is the speed of its center of mass.
The convertible kinetic energy of a two-particle system is

 Kconv =
1
2 mv2

12 , (6.40)

 Chapter Summary 87
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Among other features, the Practice volume contains  
a chaPter summary, multi-concePt worked 
examPles, and Problem sets.



This text builds physics on foundational 
concepts to help students develop an 
understanding that is stronger, deeper, 
and fundamentally simpler than provided 
by traditional texts.

Contents 
1 Foundations
2  Motion in One Dimension
3  Acceleration
4  Momentum
5  Energy
6  Principle of Relativity
7  Interactions
8  Force
9  Work
10  Motion in a Plane
11  Motion in a Circle
12  Torque
13  Gravity
14  Special Relativity
15  Periodic Motion
16  Waves in One Dimension
17  Waves in Two and Three Dimensions
18  Fluids
19  Entropy
20  Energy Transferred Thermally
21  Degradation of Energy
22  Electric Interactions
23  The Electric Field
24  Gauss’s Law
25  Work and Energy in Electrostatics
26  Charge Separation and Storage
27  Magnetic Interactions
28  Magnetic Fields of Charged Particles in Motion
29  Changing Magnetic Fields
30  Changing Electric Fields
31  Electric Circuits
32  Electronics
33  Ray Optics
34 Wave and Particle Optics

Early emphasis on conservation laws

Physics on a
contemporary foundation

(Figure 5.9)
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fuel
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E E

combustion
products

∆Echem

change in motion:
changes in state:

•  temperature rises

none
•  chemical state of fuel and air changes

System closed (no energy 
transfer across boundary).

Fuel 
burns.

Temperature
rises.

(a) Sketch initial and �nal conditions, identify changes, choose system 

(b) Draw energy bar diagrams for initial and �nal conditions



Strong emphasis on  
the concept of a system

cart 1 cart 2

(a) Choice 1: system consists of both carts

(b) Choice 2: system consists of one cart

cart 1 cart 2

system boundary
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(b) Support pulls on brick
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contemporary foundation

Statistical treatment  
of thermodynamics

(Figure 4.12)

(Figure 19.2)

(Figure 8.9)
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The core ideas of 
mechanics are developed 
in one dimension
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Axis of rotation at centre of mass: 
Hammer is easy to rotate (has low rotational inertia).

Axis of rotation far from center of mass: 
Hammer is hard to rotate (has high rotational inertia).

centre of mass

Strong connection to experiment 
and experience
This text develops ideas from observations and 
experiments, instead of stating principles and then 
showing that they conform to reality.

Strong visual instruction
The figures are designed to work as visual explanations, 
presenting ideas in visual terms. For example, they
•  incorporate explanation
•  are intentionally schematic to reduce cognitive load
•  use multiple representations to help students 

visualise quantitative information
•  illustrate the process of physical reasoning

This text uses a range of research-based instructional techniques.

Research-based instruction

(Figure 9.11)

(Figure 11.19)



Self-check and engagement features are integrated closely into  
the learning program. Among others, they include the following:
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 Developing a Feel 19

  1. The height of a 20-story apartment building (D)
  2. The distance light travels during a human life span (B, N)
  3. The displacement (from your mouth) of an (indigestible) pop-

corn kernel as it passes through your body, and the distance 
traveled by the same kernel (F, O)

  4. The time interval within which a batter must react to a fast pitch 
before it reaches home plate in professional baseball (C, H)

  5. The time interval needed to drive nonstop from San Francisco 
to New York City by the most direct route (G, K)

  6. The distance traveled when you nod off for 2 s while driving on 
the freeway (K)

  7. The average speed of an airliner on a flight from San Francisco 
to New York City (G, Q)

  8. The average speed of a typical car in the United States in one 
year (not just while it’s running) (E)

  9. The time interval for a nonstop flight halfway around the world 
from Paris, France, to Auckland, New Zealand (J and item 7 
above)

10. The number of revolutions made by a typical car’s tires in one 
year (L, E)

11. The maximum speed of your right foot while walking (A, M, P)
12. The thickness of rubber lost during one revolution of a typical 

car tire (I, R, L, S)

Developing a Feel
Make an order-of-magnitude estimate of each of the following quantities. Letters in parentheses refer to hints below. Use them as needed to 
guide your thinking.

Hints

A. What is your average walking speed?
B. What is the speed of light?
C. What is the speed of a fastball thrown by a professional pitcher?
D. What is the height of each story in an apartment building?
E. What distance does a typical car travel during one year?
F. When you are sitting upright, how far above the chair seat is your 

mouth?
G. What is the distance between San Francisco and New York City?
H. What is the distance from the pitcher’s mound to home plate?
I. What thickness of rubber is lost during the lifetime of a car tire?
J. What is the circumference of Earth?
K. What is a typical freeway speed?
L. What is the circumference of a car tire?
M. For what time interval is your right foot at rest if you walk for 

2 min?
N. What is a typical human life span?

O. What is the length of the digestive tract in an adult person?
P. If you walk 10 m in a straight line, what is the displacement of 

your right foot?
Q. How much elapsed time does a flight from San Francisco to  

New York City require?
R. How many miles of service does a car tire provide?
S. How many revolutions does a car tire make in traveling 1 m?

Key (all values approximate)  

A. 2 m>s;  B. 3 × 108 m>s;  C. 4 × 101 m>s;  D. 4 m;   
E. 2 × 107 m;  F. 1 m;  G. 5 × 106 m;  H. 2 × 101 m; 
I. 1 × 10−2 m;  J. 4 × 107 m;  K. 3 × 101 m>s;  L. 2 m;  M. 1 min; 
N. 2 × 109 s;  O. 7 m;  P. 1 × 101 m;  Q. 2 × 104 s;  R. 8 × 107 m; 
S. 0.5 rev>m
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Developing a Feel in the Practice volume 
helps students to develop a quantitative feel for 

the quantities introduced in the chapter and learn 
to make valid assumptions and estimates.

In the Practice volume, each fully solved 
Worked Problem is followed by a guiDeD 
problem that has a list of Socratic questions 
and suggestions in place of a full solution.

In Principles, each Concepts section ends 
with a SelF Quiz that lets students test their 

understanding of the material before proceeding.

integrated 
student engagement
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❹ evaluate result As we suspected, the man pulls on the rope 
hard enough that the ladder would slide toward him if the ground 
weren’t holding it back. So the ground must supply a horizontal 
force in the direction opposite the direction of the force exerted 
by the rope, which means in the negative x direction. Thus, the 
negative value for F c

gL x is reasonable and agrees with our free-body 
diagram. If the man had pulled with less force, we might have 
obtained a positive value. We also know that the ground needs 
to be pushing up on the ladder (if it were not, the ladder would 
fall through the ground), so our +324 N result in part a is rea-
sonable. However, let’s double-check our answer by calculating 
the torque about the ladder’s center of mass, which should also 
be zero:

gtq = 3+ 112 / − dr2 cos u4F c
rL + 3+1

2 / cos u4F c
wL

     + 3+1
2 / cos u4F c

gL x + 3 -1
2 / sin u4F c

gL y .

Note the absence of any contribution by the gravitational force 
here. Why is this so?

When we substitute numerical values, we get zero, verifying our 
earlier torque result. This is one of the nice things about mechani-
cal equilibrium problems. You can pick whichever pivot is easiest 
to balance around to get an initial answer and then pick a different 
pivot to check that answer.

pivot. Remember that counterclockwise in the figure is positive 
rotation:

 gtq = +hF c
wL + 1-1

2 dwFG
EL2 + 3 -(dr cos u)F c

rL4 + 0 = 0

     (12.0 m)F c
wL − 1

2 (5.00 m)(324 N)

      − (2.00 m)112.0
13.02(390 N) = 0.

This gives us the magnitude of the force exerted by the wall:

F c
wL =

1
2 (5.00 m)(324 N) + (2.00 m)112.0

13.02(390 N)
12.0 m

= 128 N.

The sum of the horizontal forces is

gFx = F c
wL x + FG

EL x + F c
rL x + F c

gL x = 0

           (-F c
wL) + 0 + (+F c

rL) + F c
gL x = 0,

where we have used the known information about the directions 
of the forces exerted by the wall and the rope. We now solve for 
the horizontal component of the force exerted on the ladder by the 
ground:

F c
gL x = +F c

wL − F c
rL = 128 N − 390 N = -262 N. ✔

Guided problem 12.8 Moving a refrigerator

Your new refrigerator, of inertia m, has been delivered and left 
in your garage. As shown in Figure WG12.9, it has length / in 
vertical dimension and each side of its square base is of length d. 
You need to slide it across the rough garage surface to get it into 
your house. The coefficients of static and kinetic friction between 
base and garage surface are almost equal, so you approximate 
m = ms = mk. You push horizontally at a height h above the surface, 
exerting a force just big enough to keep the refrigerator moving. 
You dislike bending over, so you push at the highest possible point 
that will not cause the refrigerator to tip as it slides. Thus the 
refrigerator is always on the verge of tipping. (a) Where along 
the base of the refrigerator is the effective point of application of the 
normal force exerted by the garage surface on the refrigerator; 
that is, at what location can you picture the normal force as being 
concentrated? (b) If the refrigerator is not to tip, and if its center 
of mass is at its center, what is the maximum value hmax at which 
you can push?

❶ GettinG started
  1. What condition must be met in order for the refrigerator not 

to rotate?
  2. How can you determine the force you push with to just keep 

the refrigerator moving?
  3. Which force(s) tend to tip the refrigerator, and which tend to 

prevent it from tipping?

❷ devise plan
  4. Draw a free-body diagram and an extended free-body 

diagram for the refrigerator. Indicate a sign for each coor-
dinate axis (x, y, and q) so that you can correctly determine 
the signs of the components.

  5. What is the lever arm distance of the normal force F
S n

fr exerted 
by the floor?

  6. How does the height at which you push affect the point of 
application of F

S n
fr?

  7. Is there enough information to solve for the value of the lever 
arm distance of F

S n
fr at which the refrigerator begins to tip?

  8. What condition exists just before tipping begins?

❸ execute plan

❹ evaluate result
  9. In your expression for the lever arm distance, does each term 

have a sign that is physically plausible?
10. Does your answer make sense if m is reduced to zero or 

increased to 1.0? What if d becomes very large or very small?

Figure WG12.9 d

/

h
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self-quiz

1. A rope supports one end of a beam as shown in Figure 12.24. Draw the 
lever arm distance for the torque caused by the rope about the pivot.

2. Draw a free-body diagram and an extended free-body diagram for (a) a 
door hanging on two hinges and (b) a bridge supported from each end, with 
a car positioned at one-quarter of the bridge’s length from one support.

3. Which diagram in Figure 12.25—1, 2, or 3—shows the alarm clock on the 
left after it has been rotated in the directions indicated by (a) 90° about the 
x axis and then 90° about the y axis and (b) 90° about the y axis and then 
90° about the x axis? Does the order of the rotation change your answer?

4. Give the direction of the rotational velocity vector associated with each spinning object shown in 
Figure 12.26.

answers
1. The lever arm distance r# is the perpendicular distance between the pivot and 

the line of action of the force exerted by the rope on the beam, as shown in 
Figure 12.27.

2. See Figure 12.28. (a) The door interacts with three objects: Earth, the top 
hinge, and the bottom hinge. Without the top hinge, the force of gravity would 
tend to rotate the door about an axis perpendicular to the door through the 
bottom hinge. The force exerted by the top hinge must balance the clockwise 
torque caused by the force of gravity about the axis through the bottom hinge. 
The horizontal components of the forces exerted by the hinges must cancel each other. (b) The bridge interacts 
with four objects: Earth, the right support, the left support, and the car. The upward forces from the supports 
must balance the downward gravitational forces of the car and the bridge. Because these forces must also coun-
teract the counterclockwise torque caused by the car, the force exerted by the support closer to the car must be 
greater than the force exerted by the other support.

Figure 12.24 

pivot

Figure 12.25 

x

y

1 2 3

Figure 12.26 

(b) (c) (d)(a)

Figure 12.28 

Figure 12.27 

3. (a) 3; (b) 2. The order of rotation does make a difference.
4. Wrapping the fingers of your right hand in the direction of spin gives rotational velocity vectors that point 

(a) to the right, (b) up, (c) out of the page, and (d) into the page.
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