Printed Circuit Board Design

Agenda

- What is a PCB? Should I use a PCB?
- Design example
 - Component selection
 - Schematic design
 - Layout basics
- Layout Considerations
 - Trace Width, Pours, Thermals
 - Grounding
 - Decoupling
 - High-Frequency considerations
 - 3D Modelling
 - Testing
 - Mistakes
 - Other
- Eagle demo if time

What is a PCB?

- Interleaved layers of copper and insulator
- Number of layers = number of copper layers

Useful Terms

<u>Trace</u>

Copper path (equivalent of wire)

<u>Via</u>

Hole in board with connection

between layers

Useful Terms

Pad

Exposed copper for component placement

Package

Casing for a component with metal leads coming out. Usually black plastic.

Surface Mount (SMT/SMD)

Components that can be soldered onto pads, not through-holes

SMD Package

Pads

PCB Tradeoffs

<u>Pros</u>

- Permanence/Reliability
- Space-Savings
- Simple to Manufacture
- Immune to movement
- Better grounding

<u>Cons</u>

- Permanence
- Lead-Time
- Isolation
- High-Frequency Effects
- Testability
- Thermal Management

PCB Manufacturing

- Etching Primarily used in industry, best tolerances
- Milling Drill/Cut undesired copper
- Printing Specialized conductive nano-inks
- Direct Plating
- Direct Cutting

Design Process

- 1) Specifications
- 2) Topology & Component Selection
- 3) Schematic
- 4) Simulation
- 5) Layout
- 6) Print 1:1 on paper and check
- 7) Export Gerbers and Order
- 8) Solder
- 9) Testing/Verification10) Use

· 2 points: Working amplifier (or active filter) circuit for audio

Design Example – IR Hat

1) Specifications

What should it do? How well? In what conditions?

Given: Make a PCB which emits IR at ~10kHz

- Powered by 9V
- Mounts to robot chassis
- Should be detectable from 2 feet away without amplification
- Cheap

Open:

- Board dimensions
- Frequency accuracy
- Consistency between boards
- Harmonic content
- Protection mechanisms
- Everything else...

2) Topology Selection

At a high level, what will I use to meet the specifications?

- Microcontroller-Based? FPGA-Based? Timer-Based? Oscillator-Based?
- Waveform filtering? Duty cycle?
- Protection?
 - Fuses
 - Diode protection (Real diodes or ideal diode?)

2) Component Selection

Look on Digikey, Mouser, Ebay, Alibaba, etc.

Compar Parts	e 🔁	Image	Digi-Key Part Number	Manufacturer Part Number	Manufacturer	Description	Quantity Available	Unit Price USD	Minimum Quantity	Packaging	Series	Part Status	Туре	Count	Frequency	Voltage - Supply	Current - Supply	Operating Temperature	Package / Case	Supplier Device Package	Mounting Type
			▲ ▼	▲ ▼	▲ ▼	▲ ▼	▲ ▼		▲ ▼	▲ ▼	▲ ▼	A .	▲ ▼	▲ ▼	▲ ▼		▲ ▼	▲ ▼	▲ ▼	▲ ▼	
	Z	· Con	296-6501-2-ND	NE555DR	Texas Instruments	IC OSC SGL TIMER 100KHZ 8-SOIC	67,500 - Immediate	\$0.10440	2,500	Tape & Reel (TR) (2) <u>Alternate</u> <u>Packaging</u>	2	Active	555 Type, Timer/Oscillator (Single)	<u>.</u>	100kHz	4.5 V ~ 16 V	10mA	0°C ~ 70°C	8-SOIC (0.154", 3.90mm Width)	8-SOIC	Surface Mount
		-	296-6501-1-ND	NE555DR	Texas Instruments	IC OSC SGL TIMER 100KHZ 8-SOIC	71,360 - Immediate	\$0. <mark>48</mark> 000	1	Cut Tape (CT) (CT) Alternate Packaging	ā	Active	555 Type, Timer/Oscillator (Single)		10 <mark>0kH</mark> z	4.5 V ~ 16 V	10mA	0°C ~ 70°C	8-SOIC (0.154", 3.90mm Width)	8-SOIC	Surface Mount
		- Con	296-6501-6-ND	NE555DR	Texas Instruments	IC OSC SGL TIMER 100KHZ 8-SOIC	71,360 - Immediate	Digi-Reel®	1	Digi-Reel® <u>Alternate</u> <u>Packaging</u>	5	Active	555 Type, Timer/Oscillator (Single)	ē	100kHz	4.5 V ~ 16 V	10mA	0°C ~ 70°C	8-SOIC (0.154", 3.90mm Width)	8-SOIC	Surface Mount
	B	- Con	296-21752-2-ND	NA555DR	Texas Instruments	IC OSC SGL TIMER 100KHZ 8-SOIC	50,000 - Immediate	\$0.10440	2,500	Tape & Reel (TR) (7) <u>Alternate</u> <u>Packaging</u>	-	Active	555 Type, Timer/Oscillator (Single)	-	100kHz	4.5 V ~ 16 V	10mA	- <mark>40°C ~</mark> 105°C	8-SOIC (0.154", 3.90mm Width)	8-SOIC	Surface Mount
		- Con	296-21752-1-ND	NA555DR	Texas Instruments	IC OSC SGL TIMER 100KHZ 8-SOIC	52,346 - Immediate	\$0.48000	1	Cut Tape (CT) (7) <u>Alternate</u> <u>Packaging</u>		Active	555 Type, Timer/Oscillator (Single)	-	100kHz	4.5 V ~ 16 V	10mA	-40°C ~ 105°C	8-SOIC (0.154", 3.90mm Width)	8-SOIC	Surface Mount
	Z	-	296-21752-6-ND	NA555DR	Texas Instruments	IC OSC SGL TIMER 100KHZ 8-SOIC	52 <mark>,</mark> 346 - Immediate	Digi-Reel®	1	Digi-Reel® <u>Alternate</u> <u>Packaging</u>	-	Active	555 Type, Timer/Oscillator (Single)	-	100kHz	4.5 V ~ 16 V	10mA	- <mark>40°C</mark> ~ 105°C	8-SOIC (0.154", 3.90mm Width)	8-SOIC	Surface Mount
	ß	-	296-39169-2-ND	SE555DR	Texas Instruments	IC OSC SGL TIMER 100KHZ 8-SOIC	52,500 - Imm <mark>e</mark> diate	\$0.12705	2,500	Tape & Reel (TR) (2) <u>Alternate</u> <u>Packaging</u>	-	Active	555 Type, Timer/Oscillator (Single)	-	100kHz	4.5 V ~ 18 V	10mA	-55°C ~ 125°C	8-SOIC (0.154", 3.90mm Width)	8-SOIC	Surface Mount
	1		296-39169-1-ND	SE555DR	Texas Instruments	IC OSC SGL TIMER 100KHZ 8-SOIC	55,634 - Immediate	\$0.46000	1	Cut Tape (CT) (?) <u>Alternate</u> <u>Packaging</u>		Active	555 Type, Timer/Oscillator (Single)	-	100kHz	4.5 V ~ 18 V	10mA	-55°C ~ 125°C	8-SOIC (0.154", 3.90mm Width)	8-SOIC	Surface Mount
			206 20160 6 ND							Digi-Reel®			555 Tune								

2) Component Selection

Always make a bill of materials (BOM)

1	А	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р
1	tem #	Ref Des	Qty	Qty Owned	Qty to Order	Manufacturer	Part #	Distributor	Description	Package/ Type	Unit Cost	Notes	Ordered	Placed	Website	
2	1	U1	1	0	15	TI	296-21752-1-N	D Digikey	555 Timer	SOIC-8	0.364		NO	NO	https://w	ww.digikey.
3	2	D1-D8	8	0	25	SunLED	1497-1205-1-N	D Digikey	IR LED 880nm	SMD	0.319	Side View, 880nm	NO	NO	https://w	ww.digikey.
4	3	D9	1	0	0	LED	CLM4B-RKW- CWBXBAA3CT- ND	Digikey	Red LED	4-PLCC	0.205	70mA Imax	NO	NO	https://w	/ww.digikey
5	4	S1	1	0	0	Nidec-Copal	563-1318-1-ND	Digikey	Slide Switch	SMT	1.0152	200mA,12V	NO	NO	https://w	ww.digikey.
6	5	D10	1	0	10	ON Semi	NRVTS260ESFT	1 Digikey	Schottky	SMD	0.273		NO	NO	https://w	/ww.digikey.
7	6	R1	1	0	0	Panasonic	P6.2KDBCT-ND	Digikey	Res	_0603	0.3	6.2k	NO	NO	https://w	ww.digikey
8	7		1	0	10	Vishay	MCT0603-5.60K	- Digikey	Res	_0603	0.152	5.6k	NO	NO	https://w	ww.digikey
9	8	R2	1	0	0	Panasonic	P100KDBCT-ND	Digikey	Res	_0603	0.3	100k	NO	NO	https://w	ww.digikey
10	9	R3	1	0	0			Digikey	Res	_0603			NO	NO		
11	10	R4	1	0	0			Digikey	Res	_0603			NO	NO		
12	11	R5	1	0	0			Digikey	Res	_0603			NO	NO		
13	12	R6	1	0	0	Rohm	RHM1.0KDCT-N	II Digikey	Res	_0603	0.087	/ 1k	NO	NO	https://w	ww.digikey
14	13	C1	1	0	10	Murata	490-4931-1-ND	Digikey	Сар	_0603	0.057	2.2nF	NO	NO	https://w	ww.digikey
15	14		1	0	0	Samsung	490-4777-1-ND	Digikey	Сар	_0603	0.0254	InF	NO	NO	https://w	ww.digikey
16	15	C2,C4	2	0	0	AVX	478-1227-1-ND	Digikey	Сар	_0603	0.0334	10nF	NO	NO	https://w	ww.digikey
17	16	C3	1	0	0	Samsung	1276-1045-1-N	D Digikey	Сар	_0603	0.0306	2.2uF	NO	NO	https://w	ww.digikey
18																
19									Total Cost	~ \$20						
20																
21									For Ordering							
22									Digikey Part Number	Quantity						
23									296-21752-1-ND	15						
24									1497-1205-1-ND	25						
25									NRVTS260ESFT1GOSCT-NE	10						
26									MCT0603-5.60K-CFCT-ND	10						
17									490-4931-1-ND	10						
-																

3) Schematic Design

4) Simulation

- Can verify analog functionality and simple digital
- Recommend LTSpice due to real component models but many options... (Pspice, PartSim, PLECCS, EasyEDA, Autodesk Circuits, etc.)

4) Simulation

How do I want to physically place my components?

6) Print and Check

7) Export Gerbers

Gerber files are what the fabrication house uses to make the board.

- Generate Gerbers
- Create zipped folder
- Check that they are correct (<u>http://www.gerber-viewer.com/</u>)
- Upload to website

7) Order

Advanced Circuits, Seeedstudio, Oshpark, PCB Minions,

Fusion	PCB/PCBA	Premium PCB/PCBA	PCB Assembly	Stencil	3D Printing	PCB Layout	Gallery	More	English v
• О РСВ	в							PCB Cost	USD\$4.90
								Base Material	FR-4 TG130
								No. of Layers	2 layers
			Add Gerber F	Files				PCB Dimensions	100mm * 100mm
		Only ZIP or	RAR files accepted.	Maximum size 2	OMB.			PCB Quantity	10
			How to generate Ge	erber files				No. of Different Designs	1
W	Ve will follow th	Files CANN e Gerber files and orde	IOT be changed after r parameters directly	r order confirma y. Please contact	ition. : us first for special i	equirements.		PCB Thickness	1.6mm
We	Ve may need to	contact you regarding y	our order. Please er	nsure you are ab	le to access your re	gistered e-mail		PCB Color	Green
			address and check if	t regulariy.				Surface Finish	HASL
								Minimum Sölder Mask Dar	n 0.4mm ↑
Base	e Material	ER-4 TG130	ninum Elexible i	Boards				Copper Weight	1oz.
			include:	bodrob				Minimum Drill Hole Size	0.3mm
No.	of Layers 🕕	1 layer 2 layers	4 layers 6 laye	ers				Trace Width / Spacing	6/6 mil
								Blind or Buried Vias	No
PCB Din	imensions 🕕	100 * 100	* Units in mn	n				Plated Half-holes / Castella	ted Holes No
0.00								Impedance Control	No
PCB	S Quantity 🕖	10 ~						Sub-Total	USD\$4.90
No. of Different	nt Designs 🕕	1 2 3 4	5 6 7	8 9	Example			Production Time 📵	3 – 4 Working Days
								Weight	0.32kg
PCB T	Thickness 🕕	0.6 0.8 1	1.2 1.6 2	2.5 3	* Units in mm			Shipping	Calculated at Checkout
P	PCB Color 🚷	• Green	• Yellow	Blue 🛛 V	Vhite • Black				Add to Cart
Surfa	ace Finish 🛈	HASL HASL Lead	I Free ENIG	Hard Gold					
			_						

8) Solder

Your board looks like this when you get it back

8) Solder

- Always do SMD components first!
- Usually smaller \rightarrow bigger, IC's first then resistors/caps
- Once finished with SMD, shortest \rightarrow tallest thru-hole components
- Can solder and test incrementally
- Need to see a proper fillet!

8) Solder

<u>Methods</u>

Soldering Iron

- Melt solder onto pad
- Add flux (optional)
- Pick component with tweezers and hold lead against pad
- Re-melt solder so that it joins lead and pad

(Multiple other techniques)

Solder Paste

- Place paste on all pads (can use stencil)
- Place components onto paste
- Cook

9) Testing & Verification

1) Using your eyes and a multimeter you should:

- Visually inspect all solder joints
- Check continuity between each lead and pad (Should be <10hm)
- Check discontinuity between adjacent leads (Should be infinite resistance)

2) Do an initial power-on test

- Use a regulated voltage source!
- If voltage varies or current is high, turn it off!
- Check voltage of test-points and rails
- 3) Test functionality incrementally

10) Use

- Diagram your board for ease of use
- Follow ESD guidelines
- Use plastic mounting screws
- Avoid bending board

11) Reflect

Problems with design...

- No protection
- Inaccurate frequency
- Harmonic content
- Fab house mistake
- What else?

Layout Considerations

- Trace Width, Pours, Thermals
- Grounding
- Digital vs. Analog
- Decoupling
- High-Frequency considerations
- 3D Modelling
- Mistakes
- Other

Trace Width, Pours

- Usually start at 10mil
- Thicker traces for higher power

(https://www.4pcb.com/trace-width-calculator.html)

 Use pours when possible for greater than ~500mA

Thermals - Simple

FET has on-resistance of 10hm. Average current is 1A. \rightarrow Power dissipation is 1W

Too much power? Check Datasheet:

Yes. Add heat-sink.

Absolute maximum ratings (Ta = 25°C)

< t is the same ratings for the Tr.1 and Tr.2>

Para	ameter	Symbol	Limits	Unit
Collector-base vol	tage	V _{CBO}	30	V
Collector-emitter v	voltage	V _{CEO}	30	V
Emitter-base volta	ge	V _{EBO}	6	V
Collector ourrent	DC	I _C	3	А
Collector current	Pulsed	I _{CP} *1	6	А
		P _D *2	0.5	W/Total
Power dissipation		P _D *3	Limits 30 30 6 3 6 0.5 1.25 0.9 150 -55 to 150	W/Total
2		P _D *3	0.9	W/Element
Junction temperat	ure	Tj	150	°C
Range of storage	temperature	T _{stg}	-55 to 150	°C

Thermals - Detailed

Hand Calculations:

LTSpice Thermals:

FEA Models:

Increasing Accuracy & Complexity

Grounding

Make one layer a complete ground plane if possible! Otherwise be very careful with connections

Grounding

Common mistake...

Digital vs. Analog

Digital: High-frequency, high-harmonic-content waveforms Analog: Sensitive to ground & Vdd references

Why does every board have so many caps?

What is the transfer function?

What is the transfer function?

What is the transfer function?

What is the point of large capacitors?

$$Q = CV$$
$$V = \frac{1}{C} \int i \, dt$$

The bigger the capacitor, the smaller the voltage rise.

In summary:

- Place at least one capacitor between every analog voltage and ground
- Place larger capacitors near power input pins
- Place smaller capacitors next to IC
- Good rules of thumb
 - 2.2-10uF next to power input or IC power rail
 - 100nF-1uF along long traces
 - 10nF-100nF next to IC

High-Frequency Considerations

Take ECE 4330 – Intro to Microwave Engineering

Until then ...

- Keep traces short
- Avoid vias
- Can via-stitch grounds alongside
- Impedance matching is important sets trace width
- Keep sensitive analog and high-frequency digital apart!

3D Modelling

- Can find or make 3D models for every component.
- Can export entire board into solidworks/inventor

Dealing With Mistakes

- Solder wires onto pins
- "Floating components"
- Cut traces or pins

Floating Components

Miscellani

- Gold substrates
- Flexible boards
- Stacked boards
- IC Specifics
- Process Variation
- Many-Layer
- And more...

How can you use a PCB on your robot?

- Amplifier/filter for your microphone circuit
- Amplifier for your treasure circuit
- A tidy base station voltage divider
- The whole thing...?

Grading of System Design and Documentation ECE 3400, Fall 2017

The TA's will award up to 25 points for good system design.

All members on a team will not necessarily be awarded the same number of points.

To earn these points you can for example implement electronic circuits that improve the accuracy of the maze mapping, efficient search strategies, nice FPGA implementation and a great screen display, or new mechanical components to make the robot faster or easier to maintain. If you have tons of spare time, consider using two cooperative robots to map the maze. The sky's the limit!

Happy PCB-ing!

Board Manufacturing

<u>https://www.4pcb.com/media/presentation-how-to-build-pcb.pdf</u>

Decoupling

http://www.analog.com/en/analog-dialogue/articles/studentzone-april-2017.html

Soldering

- <u>https://www.build-electronic-circuits.com/smd-soldering/</u>
- <u>https://www.youtube.com/watch?v=3NN7UGWYmBY</u>
- https://www.youtube.com/watch?v=z7Tu8NXu5UA

Class References

Tutorials

- htts://cei-lab.github.io/ece3400-2017/tutorials/Eagle/Eagle_Tutorial.html
- <u>https://cei-lab.github.io/ece3400-2017/tutorials/Eagle_Example.html</u>
- <u>https://cei-lab.github.io/ece3400-2017/tutorials/PCB/</u>

Burn List

<u>https://cei-lab.github.io/ece3400-2017/tutorials/PCB/burnlist.html</u>