Prioritization of cis-regulatory variants in cancer using whole-genome sequencing
and integrative analysis of ChIP-seq and chromatin-state data

Hamid Bolouri
Div. Human Biology
Fred Hutchinson Cancer Research Center

http://labs.fhcrc.org/bolouri

NIH
Daniela Gerhardt Tanja Davidson,...

JHMI (DNA Methylation)
Robert Arceci Jason Farrar, ...

Thanks to: Ali Shojaei (UW Biostats)

FHCRC (pediatric AML)
Soheil Meshinchi
Rhonda Ries
Ranjani Ramamurthy
Kavita Garg (Tewari lab)
Phoenix Ho, ...

Paul Shannon \& Martin Morgan (Bioconductor team)
U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

CHIDDRENS ONCOMOCY CROUP

Todd Alonzo
The world's childhood cancer experts

Alan Gamis
Rob Gerbing

Current TARGET AML data sets:

2×138 whole genome sequences
(+ 66 relapse samples)

225+4 microarrays

187 methylation arrays

182 miRNA-seqs (not discussed)
> 50 clinical data elements/sample

If a slide is confusing,
please interrupt \& ask questions!

"I'll pause for a moment so you can let this information sink in."

cis-Regulatory Mutations Are a Genetic Cause of Human Limb Malformations

Julia E. VanderMeer and Nadav Ahituv
DEVELOPMENTAL DYNAMICS 240:920-930, 2011

TABLE 1. Enhancer Defects Known to Cause Limb Malformations in Human Patients

Mutation Name	Mutation	Location (hg19)	Phenotype	Reference
BMP2 limb enhancer				
Family 1, Dathe	duplication	$\sim \mathrm{chr} 20: 6,860,129-6,866,024$	Brachydactyly type A2	Dathe et al., 2009
Family 2, Dathe	duplication	$\sim \mathrm{chr} 20: 6,860,477-6,866,024$	Brachydactyly type A2	Dathe et al., 2009
DLX5/6 BS1 enhancer (\sim chr $7: 96,357,368-96,357,92$)				
Patient, Kouwenhoven	deletion	\sim chr7:95,552,064-96,432,064	Split hand/foot malformation1	Kouwenhoven et al., 2010
SHH ZRS enhancer (\sim chr7:156,583,562-156,584,711)				
$739 \mathrm{~A}>\mathrm{G}$, Family A,C	SNP	chr7:156,583,831	Preaxial polydactyly \& triphalangeal thumb	Gurnett et al., 2007
621 C>G, Family B	SNP	chr7:156,583,949	Preaxial polydactyly \& triphalangeal thumb	Gurnett et al., 2007
$463 \mathrm{~T}>\mathrm{G}$	SNP	chr7:156,584,107	Preaxial polydactyly \& triphalangeal thumb	Farooq et al., 2010
$404 \mathrm{G}>$ C, Family 2	SNP	chr7:156,584,166	Werner mesomelic syndrome	Wieczorek et al., 2009
$404 \mathrm{G}>$ A, Family 1	SNP	chr7:156,584,166	Werner mesomelic syndrome	Wieczorek et al., 2009
$404 \mathrm{G}>$ A, Cuban	SNP	chr7:156,584,166	Preaxial polydactyly	Lettice et al., 2003
$396 \mathrm{C}>$ T, Turkish 1	SNP	chr7:156,584,174	Preaxial polydactyly \& triphalangeal thumb	Semerci et al., 2009
334 T $>$ G, French 2	SNP	chr7:156,584,236	Preaxial polydactyly	Albuisson et al., 2010
323 T >C, Belgian 2	SNP	chr7:156,584,241	Preaxial polydactyly	Lettice et al., 2003
$305 \mathrm{~A}>$ T, Belgian 1	SNP	chr7:156,584,266	Preaxial polydactyly	Lettice et al., 2003
$297 \mathrm{G}>$ A, French 1	SNP	chr7:156,584,273	Preaxial polydactyly	Albuisson et al., 2010
$295 \mathrm{~T}>\mathrm{C}$	SNP	chr7:156,584,275	Triphalangeal thumb	Furniss et al., 2008
$105 \mathrm{C}>\mathrm{G}$, Dutch	SNP	chr7:156,584,465	Preaxial polydactyly	Lettice et al., 2003
Case, Lettice	translocation	$\mathrm{t}(5,7)(\mathrm{q} 11, \mathrm{q} 36)$	Preaxial polydactyly \& triphalangeal thumb	Lettice et al., 2002
Family, Klopocki	duplication	\sim chr7:156,143,386-156,732,204	Triphalangeal thumb-polysyndactyly	Klopocki et al., 2008
Family 6, Sun	duplication	\sim chr7:156,241,020-156,699,998	Triphalangeal thumb-polysyndactyly	Sun et al., 2008
Family 2, Sun	duplication	\sim chr7:156,241,020-156,677,759	Triphalangeal thumb-polysyndactyly	Sun et al., 2008
Family 5, Sun	duplication	\sim chr7:156,241,020-156,619,399	Syndactyly type IV	Sun et al., 2008
Family 4, Sun	duplication	$\sim \operatorname{chr7} 1156,354,085-156,687,613$	Triphalangeal thumb-polysyndactyly	Sun et al., 2008
Family 3, Sun	duplication	\sim chr7:156,354,085-156,619,399	Triphalangeal thumb-polysyndactyly	Sun et al., 2008
Family 3, Wieczorek	duplication	\sim chr7:156,368,541-156,661,877	Triphalangeal thumb-polysyndactyly	Wieczorek et al., 2009
Family 1, Sun	duplication	\sim chr7:156,539,605-156,699,998	Triphalangeal thumb-polysyndactyly	Sun et al., 2008
Family, Wu	duplication	\sim chr7:156,547,469-156,644,074	Syndactyly \& tibial hypoplasia	Wu et al., 2009
Family 4, Wieczorek	duplication	\sim chr7:156,572,751-156,661,877	Triphalangeal thumb-polysyndactyly	Wieczorek et al., 2009
SOX9 limb enhancer				
Critical region	duplication	$\sim \operatorname{chr17:65,642,665-66,847,686~}$	Brachydactyly-anonychia	Kurth et al., 2009

Position-Effect Genes in Human Diseases

Kleinjan \& van Heyningen, Am. J. Hum. Genet., 2005, (76)8-32

Gene	Gene Function	Domains/Motifs	Disease	Distance of Furthest Breakpoint ${ }^{\text {a }}$ (kb)	3^{\prime} or 5^{\prime} Side	Reference
PAX6	TF	Paired box and homeodomain	Aniridia	125	3^{\prime}	Kleinjan et al. 2001
TWIST	TF		Saethre-Chotzen syndrome	260	3^{\prime}	Cai et al. 2003
POU3F4	TF	POU homeodomain	X-linked deafness	900	5^{\prime}	de Kok et al. 1996
PITX2	TF	Homeodomain	Rieger syndrome	90	5^{\prime}	Trembath et al. 2004
GLI3	TF	Zinc finger	Greig cephalopolysyndactyly syndrome	10	3^{\prime}	Wild et al. 1997
MAF	TF	bZIP	Cataract, ocular anterior segment dysgenesis, and coloboma	1,000	5^{\prime}	Jamieson et al. 2002
FOXC1	TF	Forkhead	Glaucoma/autosomal dominant iridogoniodysgenesis	25/1,200	5^{\prime}	Davies et al. 1999
FOXC2	TF	Forkhead	Lymphedema distichiasis	120	3^{\prime}	Fang et al. 2000
FOXL2	TF	Forkhead	Blepharophimosis-ptosis-epicanthus inversus syndrome	170	5^{\prime}	Crisponi et al. 2004
SOX9	TF	HMG box	Campomelic dysplasia	850	5^{\prime}	Bagheri-Fam et al. 2001; Pop et al. 2004
SRY	TF	HMG box	Sex reversal	3	$5^{\prime} / 3^{\prime}$	McElreavy et al. 1992
SIX3	TF	Homeodomain	Holoprosencephaly (HPE2)	<200	5^{\prime}	Wallis et al. 1999
SHH	Signaling	...	Holoprosencephaly (HPE3)	265	5^{\prime}	Roessler et al. 1997
SHH	Signaling	\ldots	Preaxial polydactyly	1,000	$5{ }^{\prime}$	Lettice et al. 2003
SHFM1	TF	DLX5/DLX6?	Split-hand/split-foot malformation	~ 450	$5^{\prime} / 3^{\prime}$	Crackower et al. 1996
FSHD	??	\ldots	Facioscapulohumeral dystrophy	100	3^{\prime}	Gabellini et al. 2002; Jiang et al. 2003; Masny et al. 2004
HBB	Oxygen carrier	Globin	$\gamma \beta$-Thalassemia	50	5^{\prime}	Kioussis et al. 1983
HBA	Oxygen carrier	Globin	α-Thalassemia	18	3^{\prime}	Tufarelli et al. 2003
Hoxd complex	TF	Homeodomain	Mesomelic dysplasia and vertebral defects	60	3^{\prime}	Spitz et al. 2002
LCT	Enzyme	Lactase	Lactase persistence	15/20	5^{\prime}	Enattah et al. 2002

Gene	Disease	Location of rSNP	TF-binding site affected
HBB	β-thalassemia	Promoter	Several (TATA, CACCC, EKLF)
F9	Hemophilia B	Promoter	Several (HNF4, C/EBP)
LDLR	Familial hypercliolesterolemia	Promoter	Several (SPI, SRE repeat)
CollAI	Osteoporosis	Intron I $(+2 \mathrm{~kb})$	SPI (gain)
RET	Hirschprung	Intronl $(+9.7 \mathrm{~kb})$	Unknown
HBA	α-thalassemia	Upstream $(-13 \mathrm{~kb})$	GATAI (gain)
SHH	Preaxial polydactyly	Upstream $(-1 \mathrm{Mb})$	Unknown
SHH	Holoprosencephaly	Upstream $(-470 \mathrm{~kb})$	Six3
SOX9	Pierre Robin Sequence	Upstream $(-1.5 \mathrm{Mb})$	Msxl
IRF6	Nonsyndromic cleft lip	Upstream $(-14 \mathrm{~kb})$	Ap2

Epigenomic Enhancer Profiling Defines a Signature of Colon Cancer

Batool Akhtar-Zaidi, ${ }^{1,2}$ Richard Cowper-Sal•lari, ${ }^{3}$ Olivia Corradin, ${ }^{1}$ Alina Saiakhova, ${ }^{1}$ Cynthia F. Bartels, ${ }^{1}$ Dheepa Balasubramanian, ${ }^{1}$ Lois Myeroff, ${ }^{4}$ James Lutterbaugh, ${ }^{4}$ Awad Jarrar, ${ }^{5}$ Matthew F. Kalady, ${ }^{4,5,6}$ Joseph Willis, ${ }^{4,7}$ Jason H. Moore, ${ }^{3}$ Paul J. Tesar, ${ }^{1,4}$ Thomas Laframboise, ${ }^{1,4}$ Sanford Markowitz, ${ }^{1,4,8}$ Mathieu Lupien, ${ }^{3,9}$ Peter C. Scacheri ${ }^{1,2,4 *}$

Cancer is characterized by gene expression aberrations. Studies have largely focused on coding sequences and promoters, even though distal regulatory elements play a central role in controlling transcription patterns. We used the histone mark H3K4me1 to analyze gain and loss of enhancer activity genome-wide in primary colon cancer lines relative to normal colon crypts. We identified thousands of variant enhancer loci (VELs) that comprise a signature that is robustly predictive of the in vivo colon cancer transcriptome. Furthermore, VELs are enriched in haplotype blocks containing colon cancer genetic risk variants, implicating these genomic regions in colon cancer pathogenesis. We propose that reproducible changes in the epigenome at enhancer elements drive a specific transcriptional program to promote colon carcinogenesis.

Science 336, 736

11 MAY 2012

Mice Lacking a Myc Enhancer That Includes Human SNP rs6983267 Are Resistant to Intestinal Tumors

Inderpreet Kaur Sur, ${ }^{1,2}$ Outi Hallikas, ${ }^{3}$ Anna Vähärautio, ${ }^{1,3}$ Jian Yan, ${ }^{1}$ Mikko Turunen, ${ }^{3}$ Martin Enge, ${ }^{1}$ Minna Taipale, ${ }^{1,3}$ Auli Karhu, ${ }^{4}$ Lauri A. Aaltonen, ${ }^{4}$ Jussi Taipale ${ }^{1,3_{*}}$

TERT Promoter Mutations in Familial and Sporadic Melanoma

Susanne Horn, ${ }^{1,2}$ Adina Figl, ${ }^{1,2}$ P. Sivaramakrishna Rachakonda, ${ }^{1}$ Christine Fischer, ${ }^{3}$ Antje Sucker, ${ }^{2}$ Andreas Gast, ${ }^{1,2}$ Stephanie Kadel, ${ }^{1,2}$ Iris Moll, ${ }^{2}$ Eduardo Nagore, ${ }^{4}$ Kari Hemminki, ${ }^{1,5}$ Dirk Schadendorf, ${ }^{2 *} \dagger$ Rajiv Kumar ${ }^{1 *} \dagger$
SCIENCE VOL 33922 FEBRUARY 2013

Highly Recurrent TERT Promoter Mutations in Human Melanoma

Franklin W. Huang, ${ }^{1,2,3_{*}}$ Eran Hodis, ${ }^{1,3,4_{*}}$ Mary Jue Xu, ${ }^{1,3,4}$ Gregory V. Kryukov, ${ }^{1}$ Lynda Chin, ${ }^{5,6}$ Levi A. Garraway ${ }^{1,2,3} \dagger$

Pediatric Acute Myeloid Leukemia (AML)

Failure of a normal developmental process (block in HSC differentiation)
$+$
massive proliferation of immature white blood cells

An NF-кB binding-site variant in the SPI1 URE reduces PU. 1 expression \& is correlated with AML

Bonadies et al, Oncogene, 2009, 29(7):1062-72.

SATB1 binding site

A distal single nucleotide polymorphism alters longrange regulation of the PU. 1 gene in acute myeloid leukemia

Steidl et al, J Clin Invest. 2007, 117(9):2611-20.

Regulation of SPi1 expression - part 2 (mouse coordinates)

Bidirectional ncRNA transcription proportional to PU. 1 expression

Chou et al, Blood, 2009, 114: 983-994
Hoogenkamp et al, Molecular \& Cellular Biology, 2007, 27(21):7425-7438

A historical perspective on Transcription Factor Binding Site (TFBS) identification

(1) Computational predictions:

"FUTILITY THEOREM - that essentially all predicted TFBSs will have no functional role."
Sandelin \& Wasserman, Nature Reviews Genetics 2004; 5:276-287.
Solution: Limit computational motif mapping to experimentally-identified cis-regulatory regions.

(2) Data-driven approaches:

(A) Combinatorial histone marks identify active promoters and enhancers

Ernst et al , Nature 2011; 473(7345):43-49.
Predicted functional promoters \& enhancers in 9 cell types cover ${ }^{\sim} 9.8 \%$ of the genome.
Poor spatial resolution (~500-1000bp) results in high false positive rates.
(B) DNAse1 hypersensitivity clusters mark cis-regulatory regions

Thurman et al (Stamatoyannopoulous lab, ENCODE project) Nature 2012; 489(7414):75-82. 150bp resolution. 2.9 M peaks in 125 cell types $\rightarrow 436,970,762$ bp or $\sim 14.6 \%$ of the genome. As little as $\sim 10 \%$ of the marked sequence may be functional TFBS.
(C) DNAse1 footprints directly delineate TFBS

Neph et al ((Stam lab, ENCODE project), Nature 2012; 489(7414):83-90.
Costly but precise. 8.4M TFBS in 41 cell types $\rightarrow 164,010,758$ bp or $\sim 5.5 \%$ of the genome. Will miss condition-specific TFBS in cells not assayed.

Our approach: TF ChIP-seq peak clusters with maximal DNase1 HS agreement

ChIP-seq of 13 sequence-specific TFs

Nanog, Oct4, STAT3, Smad1, Sox2, Zfx, c-Myc, n-Myc, Klf4, Esrrb, Tcfcp2I1, E2f1, and CTCF

Number of TFs bound within 100bp of nearest neighbor

Chen et al, Cell, 2008;133(6):1106-17

JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 19, Number 9, 2012
Research Article (C) Mary Ann Liebert, Inc.

DOI: 10.1089/cmb.2012.0100

Integration of 198 ChIP-seq Datasets Reveals Human cis-Regulatory Regions

HAMID BOLOURI ${ }^{1}$ and WALTER L. RUZZO ${ }^{2,3,4}$

Distribution of overlapping peaks for all 198 ChIPseq datasets combined
 Calculating the Secrets of Life - Applications of the Mathematical Sciences in Molecular Biology, National Academy Press, 1995.

Comparing peaks called by peakSeq \& SPP for 492 ENCODE ChIP-seq datasets (optimized calls by Anshul Kundaje using FDR \& the Irreproducible Discovery Rate method)

Fraction of PeakSeq peaks overlapping SPP peaks

Fraction of SPP peaks overlapping peakSeq peaks

Overlapping base pairs as a fraction of total in peaks

ordered samples

August 9, 2012 analysis of ENCODE ChIP-seq datasets by Anshul Kundaje
ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/supplementary/integration_data_jan2011/byFreeze/june2012/peaks/spp/README.txt

Number of peaks called by SPP and filtered at IDR 2\%

Effect of selection threshold on overlap with DNase1-marked binding regions.

High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells

Alan P. Boyle, ${ }^{1}$ Lingyun Song, ${ }^{1,2}$ Bum-Kyu Lee, ${ }^{3}$ Darin London, ${ }^{1}$ Damian Keefe, ${ }^{4}$ Ewan Birney, ${ }^{4}$ Vishwanath R. Iyer, ${ }^{3}$ Gregory E. Crawford, ${ }^{1,2,5}$ and Terrence S. Furey ${ }^{1,5}$

Genome Research 21:456-464 © 2011

(HeLaS3, HUVEC, K562, NHEK, H1hesc + 7 HapMap B-lymphoblastoid cell lines)
$958,250 / 1,067,220=89.8 \%$ of DNase1 selected regions overlap histone marked regions (total footprint of DNase1-selected-regions $=22,388,756 \mathrm{bps}, \sim 0.75 \%$ of the genome)

$442,295 / 1,067,404$	$=41.4 \%$	of DNase1Regions	overlap	CRR198
$27,784 / 32,467$	$=85.6 \%$	of CRR198	overlap	DNase1Regions

ENCODE (Stam Lab, UW) DNASE1 Hyper Sensitive regions across 125 cell types

2,890,742 regions
436,970,762 bp
~14.6\% of the genome

ENCODE (Stam Lab, UW) DNASE1 TF foot prints across 41 cell types

> 6,447,639 regions
> $164,010,758 \mathrm{bp}$
~ 5.5\% of the genome

ENCODE (Stam Lab, UW) DNASE1 TF foot prints in mobilized CD34+ cells

164,049 HS regions at 1\% FDR, of which
104,544 have signal p-value < 0.01
15,806,684 bp
~ 0.53% of the genome

The need for filtering whole genome sequence variants

28,091,309	somatic variants in $\mathbf{1 2 2}$ samples	~ 230K	/ sample
13,752,804	are somatic (not LOH)	~ 112K	/ sample
1,438,103	have p-value < 0.05	~ 12K	/ sample
340,692	have p-value < 0.01	~ 2800	/ sample
83,308	have P-value < 0.01 \& are SQHIGH	~	/ sample
71,410	are SNVs (Single Nucleotide Variants)	~ 58	/ sample
read-count \& allelic-ratio filters			
ENSEMBL Variant Effect Predictor (includes SIFT \& PolyPhen2)			

| Number of SNVs in introns or 7.5Kbp upstream | ~ 350 /sample |
| :--- | :--- | :--- |
| In DNAse1 footprints (41 cell types) \& not in 54 CGI healthy genomes | $\sim 25 /$ sample |
| In recurrently impacted genes | $\sim 3.5 /$ sample |

Gene expression

 microarrays:- 225 AML samples
- 4 control samples

Unsupervised clustering
(Pearson correlation)
confirms
distinct patient groups

$>95 \%$ of all children with AML have at least one known genomic abnormality

Pui et al, J Clin Oncol 2011, 29:551-565.

Pediatric AMLs cluster into cytogenetic groups with genetic sub-groups

Unsupervised clustering of AML samples by all recurrent variants

Example potential regulatory SNV in intron3 of the Wilm's Tumor1 gene in AML

SNV selection criteria:

-- 0.4 < Allelic Ratio < 0.6
-- Not a known SNP
-- Not in RepeatMasker
-- Not in CGI's 54 genomes
-- In CD34+ DNAse1 footprints

11 of 138 AML samples share

 germline SNVs at two KIR3DL3 sites

FIMO matches to JASFAR CORE 2909 motifs with cq-value $<=0.1$
FIMO matches to TRANSFAC motifs with q-value $<=0.1$
Nuclear Receptor 2 F1 $\langle\lll \lll \lll<l$
Pouya_motifs
SP1_known4_8mer
HNF4_known4_8mer
R×RA_knowns_8mer
ERa 1phaーa_d isc4_8mer
User Supplied Track

Interactions inferred from 225+4 expression arrays (Combining results from 4 algorithms: ARACNE, CLR, MRnet, \& MRnetB)

Differential-expression enriched pathway interactions in $225+4$ samples (Using all pathways in Biocarta, KEGG, NCI PID, \& Reactome)

Key:Cancer-associated gene (MSKCC list)
Up-regulated in 225 AML samples
Down-regulated in 225 AML samples
Bold Gene differentially expressed in > half of samples

A highly recurrent SNAIL3 upstream SNV in AML

Takebe et al, Breast Cancer Res. 2011; 13(3):211.

NIH
Daniela Gerhardt Tanja Davidson,...

JHMI (DNA Methylation)
Robert Arceci Jason Farrar, ...

Thanks to: Ali Shojaei (UW Biostats)

FHCRC (pediatric AML)
Soheil Meshinchi
Rhonda Ries
Ranjani Ramamurthy
Kavita Garg (Tewari lab)
Phoenix Ho, ...

Paul Shannon \& Martin Morgan (Bioconductor team)
U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

CHIDDRENS ONCOMOCY CROUP

Todd Alonzo
The world's childhood cancer experts

Alan Gamis
Rob Gerbing

