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Warning
What is a prism?

• Geometrically: 

• Abstractly: 

•
 

where .

Prism(𝒫) = 𝒫 × ℐ =
{( f, g) : 𝒫−1 ≠ f ∈ 𝒫, ∅ ≠ g ∈ ℐ} ∪ {(𝒫−1, ∅)}

ℐ = {∅, {a}, {b}, {a, b}}
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Quick Facts About Abstract 
Polytopes

• A polytope is regular if its automorphism group acts 
transitively on the flags. 

• The connection group is  

• A polytope  is a cover of a polytope  if there 
exists a rank and adjacency preserving map 

. We write . 

• A cover  of a polytope  is minimal if  
and  implies  or .

Con(𝒫) = ⟨r0, r1, …, rd−1⟩

𝒫 𝒬

π : 𝒫 → 𝒬 𝒫 ↘ 𝒬

ℛ 𝒫 ℛ ≠ 𝒫
ℛ ↘ 𝒬 ↘ 𝒫 ℛ = 𝒬 𝒬 = 𝒫

(3.6.6){6,3}(2,2)

E

DCB

D

G

A

G

DC

E

BA

A Regular Cover for the 
Truncated Tetrahedron

Quick Facts About Abstract 
Polytopes

• A string group generated by involutions (sggi) is a group 
generated by involutions  satisfying 

 if . 

• A string C-group is an sggi satisfying the intersection 
condition: 

 

• There is a 1-1 correspondence between regular abstract 
polytopes and string C-groups. The automorphism 
group of a regular abstract polytope is always a string C-
group.

ρ0, ρ1, …, ρd−1
(ρjρk)2 = 1 | j − k | > 1

⟨ρk |k ∈ I⟩ ∩ ⟨ρk |k ∈ J⟩ = ⟨ρk |k ∈ I ∩ J⟩

Polytopal Regular Covers
(Monson, Pellicer, W. 2012) The Tomotope has 
infinitely many distinct minimal regular covers. 

(Monson, Pellicer, W. 2014)  
• If the connection group of a polytope  is a string 

C-group, then  has a unique minimal regular 
cover. 
• We will say  is C-connected. 

• The connection group of every abstract polyhedron 
is a string C-group, i.e., every polyhedron has a 
unique minimal regular cover.

𝒫
𝒫

𝒫



Prisms and Covers
Turns out, they aren’t boring: 

• G. Cunningham, M. Mixer and G.W. have been 
developing a package library for GAP called RAMP 
(Research Assistant for Maniplexes and Polytopes) 
to make working with maps, maniplexes and 
abstract polytopes much easier. 

• We’ve been using RAMP to develop conjectures. 

• There are also LOTS of 4-polytopes  that are C-
connected. However…

𝒫

But…
• Let , then  is not a 

string C-group. 

• Let , then  is not a string 
C-group. 

• Let , then  is not a string 
C-group. 

• We also tested more than 1600 small regular 
polyhedra, and in each case,  was C-
connected. Hmm…

𝒫 = {{6,3}(2,0),2} Con(Prism(𝒫))

𝒫 = {3,3,2} Con(Prism(𝒫))

𝒫 = {3,3,4} Con(Prism(𝒫))

Prism(𝒫)

In fact…

Main Theorem (Cunningham, Mixer, W.) Let  be a 
polyhedron. Then  is C-connected.

ℬ
Prism(ℬ)

Showing a Group is String C
An approach: 

(ARP 2E17) Let  be an sggi,  a string C-group and 
where  and that is one-to-one on 

 or . Then  is also a string C-group. 

(Pellicer, W. 2018) Let  be a polytope and  such 
that  is a pre-maniplex with the property that  
is a string C-group. Let 

 
Finally, suppose that if  fixes an incident vertex-facet pair, 
then . Then , , and 

 is a string C-group.

Γ Δ
π : Γ ↘ Δ, π(ρi) = σi, ∀i
⟨ρ0, …, ρd−2⟩ ⟨ρ1, …, ρd−1⟩ Γ

𝒫 H ≤ Aut(𝒫)
𝒬 := 𝒫/H Con(𝒬)

L := {l ∈ Con(𝒫) |∀Φ ∈ ℱ(𝒫), ∃h ∈ H s.t. lΦ = Φh} .
h ∈ H

h = 1 L ⊲ Con(𝒫) Con(𝒫)/L ≅ Con(𝒬)
Con(𝒫)



Maniplexes???
• A maniplex of rank  is an ordered pair  

where  is a set whose elements are called flags, and  is a fixed-
point-free involution on  satisfying 
•  acts transitively on  
• If  then  
• If  then  and  have no transpositions in common 

• A maniplex is reflexible if its automorphism group acts transitively 
on . 

• A pre-maniplex of rank  is a -regular graph with edge coloring 
from the set , such that for  with  the 
connected components of the subgraph induced by the labels  
and  are squares.

ℳ d (Ω, [r0, r1, …, rd−1])
Ω ri

Ω
Con(ℳ) := ⟨r0, r1, …, rd−1⟩ Ω

| i − j | ≥ 2 rirj = rjri
i ≠ j ri rj

Ω

d d
{0,1,…, d − 1} i, j | i − j | ≥ 2

i
j

A Useful Pre-Maniplex

•  is the pre-maniplex 
with two flags of rank 3. 

•  

•  is a string C-
group

𝒢3

Q := Prism(𝒢3)

Con(𝒬)

Stratified Operations
(From Cunningham, Pellicer, W.) 

Let  be the set of all maniplexes of rank . 

An operation  is stratified if there is a set  
(the strata) such that 
• If , then  s.t. the 

canonical projections are surjective. 
• The universal string Coxeter group  has a well 

defined action on . 
• The action of  can be described nicely in terms of the 

natural action of  on  and the action of  on .

Md d

F : Mn → Mm A

Flags(ℳ) = Ω Flags(F(ℳ)) ⊆ A × Ω

Wm
A

Wm
Wn Ω Wm A



Stratified Operations
A stratified operation  is fully stratified if 

. 

It is cover-preserving if, whenever , then 
. 

Proposition (Cunningham, Pellicer, W.) Fully-stratified 
operations are cover-preserving. 

Proposition (CPW) Let  be a minimal regular cover of 
, then . 

F
Flags(F(ℳ)) = A × Ω

ℳ ↘ ℒ
F(ℳ) ↘ F(ℒ)

ℛ
𝒫 Con(F(ℛ)) ≅ Con(F(𝒫))

We show the following: 

1. Let  be an orientable regular polyhedron, then 
 is a string C-group.  

• Proof uses fact . 
2. Let  be a non-orientable reflexible 3-maniplex 

and let  be its orientable double cover. Then the 
prism with base  is the same as the orientable 
double cover of the prism with base .  

• Proof uses fact that ODC is cover preserving. 

ℬ
Con(Prism(ℬ))

Prism(ℬ) ↘ Prism(𝒢3)
ℳ

ℒ
ℒ

ℳ

Proof for Prisms Over 
Polyhedra

Proof Steps

3. Recall (CunPelWil) that if  is a parallel product 
then  is cover-preserving and connection-
preserving. 

• Also:  

4. Show that the orientable cover operation is a 
parallel product operation on maniplexes.

F
F

Con(ℳ) ≅ Con(src(ℳ))

Proof Steps
5. Show that if  is a non-orientable 3-maniplex and 

, then .  

6. Complete the proof:  
• We have the case when  is orientable and 
reflexible. 

• By 5, holds for all reflexible polyhedra. 
• Note  is a string C-group for any 
polyhedron. 

• Use result about Prism being a parallel product  
to generalize to all polyhedra.

ℳ
ℒ = odc(ℳ) src(Prism(ℳ)) = src(Prism(ℒ))

ℬ

Con(ℬ)



Something Interesting About 
Cubes

• Observation 1: Let  be a regular polyhedron with 
automorphism group , and let 

. Then we may represent 
 with 

generators: 
•  
•  
•  
•

ℬ
Γ = ⟨ρ0, ρ1, ρ2⟩

𝒫 = Prism(ℬ)
Con(𝒫) = ⟨s0, s1, s2, s3⟩ ≤ S8 ≀ Aut(ℬ)

s0 := ((4,5), [ρ0, ρ0, ρ0, e, e, ρ0, ρ0, ρ0])
s1 := ((3,4)(5,6), [ρ1, ρ1, e, e, e, e, ρ1, ρ1])
s2 := ((2,3)(6,7), [ρ2, e, e, ρ1, ρ1, e, e, ρ2])
s3 := ((1,2)(7,8), [e, e, ρ2, ρ2, ρ2, ρ2, e, e])

Something Interesting About 
Cubes

• The interesting bit: 
•  
•  
•  

• So if  and  then  is the 
4-cube (  in Coxeter’s notation).

(s0s1)4 = ((), [(ρ0ρ1)4, (ρ0ρ1)4, e, e, e, e, (ρ0ρ1)4, (ρ0ρ1)4])
(s1s2)3 = ((), [(ρ1ρ2)3, e, e, e, e, e, e, (ρ1ρ2)3])
(s2s3)3 = ((), [e, e, e, (ρ1ρ2)3, (ρ1ρ2)3, e, e, e])

| (ρ0ρ1) | = 4 | (ρ1ρ2) | = 3 𝒫
γ4

Something About Cubes
• Observation 2: Let  be the pre-maniplex with two 

flags of rank . Then we can show that 
. 

• Observation 3: Let  be a polyhedron, then 
 is a string C-group. 

• Observation 4: (Theorem) Let  be a reflexible 3-
maniplex, and let . Then 

 and .

𝒢d
d

Con(Prism(𝒢d)) = Con(γd)

ℬ
Con(ℬ ⋄ γ3)

ℳ
𝒫 = Prism(ℳ)

src(𝒫) ↘ γ4 src(𝒫) ⋄ γ4 = src(𝒫)

Something About Cubes

• Observation 5: For every examined  of rank>3: if 
 is not a string C-group then 

 is not a string C-group! 

Conjecture: Let  be an abstract polytope of rank 
, and let  be the -cube. Then  is a 

string C-group iff  is a string C-group.

ℬ
Con(Prism(ℬ))
Con(ℬ ⋄ γd)

ℬ
d γd d Con(Prism(ℬ))

Con(ℬ ⋄ γd)
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