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ABSTRACT 

 
 Sharing is a virtue, instilled in us from childhood. Unfortunately, when it comes to big 
data—i.e., databases possessing the potential to usher in a whole new world of scientific 
progress—the legal landscape is either too greedy or too Laissez-Faire. Either all identifiers 
must be stripped from the data, rendering it useless, or one-step removed personally iden-
tifiable information may be shared freely, freely sharing secrets. In part, this is a result of 
the historic solution to database privacy, anonymization, a subtractive technique incurring 
not only poor privacy results, but also lackluster utility. In anonymization’s stead, differ-
ential privacy arose; it provides better, near-perfect privacy, but is nonetheless subtractive 
in terms of utility.  
 Today, another solution is leaning into the fore, synthetic data. Using the magic of 
machine learning, synthetic data offers a generative, additive approach—the creation of 
almost-but-not-quite replica data. In fact, as we recommend, synthetic data may be com-
bined with differential privacy to achieve a best-of-both-worlds scenario. After unpacking 
the technical nuances of synthetic data, we analyze its legal implications, finding the fa-
miliar ambiguity—privacy statutes either overweigh (i.e., inappropriately exclude data 
sharing) or downplay (i.e., inappropriately permit data sharing) the potential for synthetic 
data to leak secrets. We conclude by finding that synthetic data is a valid, privacy-conscious 
alternative to raw data, but not a cure-all. In the end, computer science progress must be 
met with sound policy in order to move the area of useful data dissemination forward. 
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INTRODUCTION 

 Synthetic data is a viable, next-step solution to the database-privacy problem: 
You1 are in a database;2 sharing your secrets and allowing data scientists to analyze 

 
 1. Moreover, this database possesses the quantifiable facts about you, which may be more 
than you suspect. For example, the database may include not only your name, where you live, 
where you work, who you know, and how to contact you, but likely a few other sensitive and 
interesting tidbits as well, such as how often you talk to your mother, where you like to go on 
Friday nights, or whether you are pregnant. See infra notes 37-40 and accompanying text; see gen-
erally JULIA ANGWIN, DRAGNET NATION (2014). 
 2. This happened not because you are famous, have over ten friends on Facebook, or even 
because you clicked “agree” to more Terms of Service contracts than you can count. This hap-
pened because you live in the 21st century: 

[T]he rapid pace of computer development and usage throughout American society 
means that vast amounts of information about individuals and private groups in the 
nation are being placed in computer-usable form. More and more information is be-
ing gathered and used by corporations, associations, universities, public schools, and 
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each and every aspect of your life has the potential to unlock incredible break-
throughs across a vast number of disciplines;3 but keeping your secrets private—
while at the same time maintaining the usefulness of the data—is a nontrivial prob-
lem.4 Enter: synthetic data, leveraging the power of machine learning to create an 
almost-but-not-quite replica of your data (as well as the data of others).  
 Historically, the way to share private information without betraying privacy 
was through anonymization,5 stripping away all identifiers that could potentially 
uniquely identify an individual or group of individuals.6 Anonymization, however, 
 

governmental agencies. And as “life-long dossiers” and interchange of information 
grow steadily, the possibilities increase that agencies employing computers can ac-
complish heretofore impossible surveillance of individuals, businesses, and groups by 
putting together all the now-scattered pieces of data. 

ALAN F. WESTIN, PRIVACY AND FREEDOM 366-67 (1967). See also BRUCE SCHNEIER, DATA AND 
GOLIATH: THE HIDDEN BATTLES TO COLLECT YOUR DATA AND CONTROL YOUR WORLD 44 (2015) 
(“It’s counterintuitive, but it takes less data to uniquely identify us than we think. Even though 
we’re all pretty typical, we’re nonetheless distinctive. It turns out that if you eliminate the top 100 
movies everyone watches, our movie-watching habits are all pretty individual. This is also true 
for our book-reading habits, our Internet-shopping habits, our telephone habits, and our web-
searching habits. We can be uniquely identified by our relationships.”). 
 3. See RAMEZ ELMASRI & SHAMKANT B. NAVATHE, FUNDAMENTALS OF DATABASE SYSTEMS 3 
(7th ed. 2016) (“Databases and database systems are an essential component of life in modern 
society: most of us encounter several activities every day that involve some interaction with a 
database.”); RAGHU RAMAKRISHNAN & JOHANNES GEHRKE, DATABASE MANAGEMENT SYSTEMS 3 (3d 
ed. 2003) (“The amount of information available to us is literally exploding, and the value of data 
as an organizational asset is widely recognized.”); Jane Yakowitz, Tragedy of the Data Commons, 25 
HARV. J. L. & TECH. 1, 2 (2011) (“[I]n 2001, John J. Donohue and Steven D. Levitt presented shock-
ing evidence that the decline in crime rates during the 1990s, which had defied explanation for 
many years, was caused in large measure by the introduction of legalized abortion a generation 
earlier. [This] stud[y] and many others have made invaluable contributions to public discourse 
and policy debates, and . . . would not have been possible without anonymized research 
data . . . .”). 
 4. See Matthew Fredrikson et al., Privacy in Pharmacogenetics: An End-to-End Case Study of 
Personalized Warfarin Dosing, 2014 PROC. USENIX SECURITY SYMP. 17, 27 (showing that utility 
and privacy cannot be both achieved in the context of personalized warfarin dosing—even with 
the application of differential privacy). 
 5. Anonymization, as used in this sentence, refers to the colloquial understanding of the 
term—which is more accurately defined as deidentification. Briefly, it means removing names 
and other obviously identifying information, and perhaps replacing them with random values. 
See infra Part I.B (discussing the history of anonymization, starting with de-identification and 
moving to synthetic data). 
 6. Paul Ohm describes how this is possible: 

Imagine a database packed with sensitive information about many people. . . . Now 
imagine that the office that maintains this database needs to place it in long-term 
storage or disclose it to a third party without compromising the privacy of the people 
tracked. To eliminate the privacy risk, the office will anonymize the data, consistent 
with contemporary, ubiquitous data-handling practices. First, it will delete personal 
identifiers like names and social security numbers. Second, it will modify other cat-
egories of information that act like identifiers in the particular context—the hospital 
will delete the names of next of kin, the school will excise student ID numbers, and 
the bank will obscure account numbers. 



4 STANFORD TECHNOLOGY LAW REVIEW Vol. 22:1 

proved to be anything but a “silver bullet.”7 From the AOL search-query debacle to 
the Netflix Prize affair, it seemed trivial with even novice computer aptitude to 
“join”8 auxiliary information with a series of “perturbed”9 data points and unveil 
the very data that anonymization was designed to protect.10 
 The well-documented failures of anonymization have prompted aggressive re-
search on data sanitization, ranging from k-anonymity11 in the late 1990s to today’s 
highly acclaimed privacy mechanism, differential privacy.12 But the basic tradeoff 
between utility and privacy—an inverse relationship—still remains.  
 The aim of this Article is to present a new, better alternative to sanitized data 
release, “synthetic” data.13 In essence, take an original (and thus sensitive) dataset, 
use it to train14 a machine-learning enabled generative model,15 and then use that 
 
Paul Ohm, Broken Promises of Privacy: Responding to the Surprising Failure of Anonymization, 57 
UCLA L. REV. 1701, 1703 (2010) (emphasis in original). 
 7. Id. at 1736; see also Arvind Narayanan & Edward W. Felton, No Silver Bullet: De-Identi-
fication Still Doesn’t Work (July 9, 2014), https://perma.cc/X6PZ-X9EP (archived Nov. 14, 2018). 
 8. In a general sense, the database “join” operation merges two tables on a common con-
dition. For example, two records that have the same value for “social security number” can be 
merged. See ELMASRI & NAVATHE, supra note 3, at 107-09. 
 9. “Perturbed” here refers to the traditional, remove-name-and-zip-code styled sanitiza-
tion techniques which often fail to exclude information which may be linked together to 
reidentify individuals. See infra Part I.B.1. 
 10. See Arvind Narayanan & Vitaly Shmatikov, Robust De-Anonymization of Large Sparse Da-
tasets, 2008 IEEE SYMP. SECURITY & PRIVACY 111, 111-112 (“We demonstrate that an adversary 
who knows only a little bit about an individual subscriber can easily identify this subscriber’s 
record in the dataset. Using the Internet Movie Database as the source of background knowledge, 
we successfully identified the Netflix records of known users, uncovering their apparent political 
preferences and other potentially sensitive information.”); Paul Ohm & Scot Pettet, What if Eve-
rything Reveals Everything?, in BIG DATA IS NOT A MONOLITH 46-47 (2016) (discussing what the 
authors believe to be a not-so-distant future where any single piece of true information can allow 
someone to infer all other true information). 
 11. See generally Pierangela Samarati & Latanya Sweeney, Protecting Privacy when Disclosing 
Information: k-Anonymity and Its Enforcement Through Generalization and Suppression (1998), 
https://perma.cc/FF9E-FTGF (archived Nov. 7, 2018); see also Subpart I.B.3.i. 
 12. See Cynthia Dwork, Differential Privacy, 33 INT’L COLLOQUIUM AUTOMATA, LANGUAGES 
& PROGRAMMING 1, 1-2 (2006); see also Tore Dalenius, Towards a Methodology for Statistical Disclo-
sure Control, 15 STATISTIK TIDSKRIFT 429 (1977); Michael Hilton, Differential Privacy: A Historical 
Survey, https://perma.cc/J3HT-DMWB (archived Nov. 7, 2018); see also Subpart I.B.3.ii. 
 13. See infra Part II. 
 14. When using machine learning, one first prepares a model of the likely input. This is 
done by feeding the program sample data, known as “training data.” The program then “learns” 
its characteristics and uses that knowledge to process subsequent input data. See HAL DAUMÉ, A 
COURSE IN MACHINE LEARNING 8-18 (2013) (“At a basic level, machine learning is about predicting 
the future based on the past. For instance, you might wish to predict how much a user Alice will 
like a movie that she hasn’t seen, based on her ratings of movies that she has seen.”). This predic-
tion may be based on many factors: the category of movie (e.g., drama or documentary), the lan-
guage, the director and actors, or the production company. Id. 
 15. A generative model, per analogy, is like trying to identify a language someone is speak-
ing by first learning many different languages and then matching one of those languages to the 
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model to produce realistic, yet artificial data that nevertheless has the same statisti-
cal properties. Consider, for example, a database of salaries. A differentially private 
version of the database would have, e.g., the same average salary but the individual 
entries would be different16 than the underlying, real data.17 The end result may be 
compared to counterfeit money. Although the appropriately-sized paper may ap-
pear genuine on first blush, a keen eye reveals its inauthenticity (e.g., perhaps the 
weight is ever-so-slightly lacking or the color-shifting ink is too monochromatic).18 
The goal of synthetic data is thus to create an as-realistic-as-possible dataset, one 
that not only maintains the nuances of the original data, but does so without endan-
gering important pieces of personal information.19  
 But how do privacy-protecting statutes interpret this new method of data gen-
eration? If a trained model were to generate a synthetic dataset full of fictitious peo-

 
one being spoken. See Sargur N. Srihari, Machine Learning: Generative and Discriminative Models 
10, https://perma.cc/YEH8-H3K7 (archived Nov. 7, 2018). For a more rigorous description, see 
Andrew Ng, CS229 Lecture Notes 1, https://perma.cc/FSK6-73YZ (archived Nov. 7, 2018) (“Con-
sider a classification problem in which we want to learn to distinguish between elephants (y = 1) 
and dogs (y = 0), based on some features of an animal. Given a training set, an algorithm like 
logistic regression or the perceptron algorithm (basically) tries to find a straight line—that is, a 
decision boundary—that separates the elephants and dogs. Then, to classify a new animal as either 
an elephant or a dog, it checks on which side of the decision boundary it falls, and makes its pre-
diction accordingly. Here’s a different approach. First, looking at elephants, we can build a model 
of what elephants look like. Then, looking at dogs, we can build a separate model of what dogs 
look like. Finally, to classify a new animal, we can match the new animal against the elephant 
model, and match it against the dog model, to see whether the new animal looks more like the 
elephants or more like the dogs we had seen in the training set. Algorithms that try to learn p(y | x) 
directly (such as logistic regression), or algorithms that try to learn mappings directly from the 
space of inputs 𝜒𝜒 to the labels {0, 1}, (such as the perceptron algorithm) are called discriminative 
learning algorithms. [A]lgorithms that instead try to model p(x | y) (and p(y)) . . . [t]hese algorithms 
are called generative learning algorithms. For instance, if y indicates whether a[n] example is a 
dog (0) or an elephant (1), then p(x | y = 0) models the distribution of dogs’ features, and p(x | y = 1) 
models the distribution of elephants’ features.”). 
 16. The statistical properties of data are a function of the type of data, whether it is an image 
or a piece of text. In the general context, statistical properties of the training-set data are descrip-
tive features that are kept close to the ground truth in the synthetic data. See, e.g., William Li et al., 
Using Algorithmic Attribution Techniques to Determine Authorship in Unsigned Judicial Opinions, 16 
STAN. TECH. L. REV. 503, 509-11, 525 (2013) (using the statistical properties of text—i.e., Justice 
Alito often uses the words “set out in” and “the decision of” while Justice Roberts often uses “the 
first place” and “without regard to”—to unveil authorship). 
 17. To use an analogy, synthetic data is like replacing the pieces of a jigsaw puzzle to create 
a different picture; even though all the puzzle pieces fit together in the same way (i.e., each piece 
has similar, yet synthetic, attributes), the overall image has changed—importantly, and hopefully, 
the change is not discernable but nonetheless protects privacy. 
 18. U.S. CURRENCY EDUC. PROGRAM, QUICK REFERENCE GUIDE (2017). 
 19. To make certain, differential privacy precautions may be additionally added while cre-
ating the new data. See infra Part II.C. Thus, synthetic data does not challenge differential privacy, 
but is instead a more refined approach to protecting privacy with synthetic data. 
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ple it would plainly not offend strict interpretations of personally identifiable infor-
mation—e.g., knowing the full extent of Mickey Mouse’s medical history does not 
offend HIPAA because Mickey Mouse is not a real person. On the other hand, de-
pending on how the machine learning model is trained and how broadly a statute 
is written, a synthetic dataset may “leak” (although the probability of such an event 
is remarkably small) just enough information to be considered offending—e.g., if 
the synthetic database’s version of Mickey Mouse just happened to live at an iden-
tifiably similar street address as a real person, this may indeed run afoul of HIPAA.  
 To analyze synthetic data’s legality, we first briefly discuss the database-privacy 
problem and outline a few privacy metrics that have populated the field post-anon-
ymization-failure awareness. Next, in Part II, we present a case study on synthetic 
data using a real, practical dataset. Here, we look at the veracity of synthetic data 
and take a practical dive into its strengths and limitations. We then tie the two 
worlds together in Part III and assess synthetic data from a legal vantage, reviewing 
“vanilla” synthetic data (i.e., data generation without additional sanitization tech-
niques) and differentially private synthetic data. Finally, we offer technical and legal 
recommendations for the legal community. 
 In short, although no solution to the database-privacy problem is a “silver bul-
let,”20 synthetic data is a promising next step, offering several advantages over his-
toric methods of deidentification. Most importantly, synthetic data allows us to step 
away from the deidentification–reidentification arms race and focus on what really 
matters: useful data. That being said, the method is relatively new and its meshing 
with legal statutes is both over- and under-inclusive: On the one hand, statutes 
thinking of “identification” in binary terms may accept the wholesale value of syn-
thetic data, even though unique-enough data may nonetheless “leak” information; 
on the other, statutes that consider identification broadly may prohibit synthetic 
data, even though risk of a leak, practically, is minimal.21 Therefore, this Article 
recommends that the privacy community view synthetic data as yet another valid 
tool in the ever-growing privacy tool belt; one that should be better accommodated 
by the law in terms of explicit permissions and limitations, but has the potential to 
offer great benefits when used properly. 

 
 20. See Narayanan & Felton, supra note 7, at 8 (“If a ‘best of both worlds’ solution exists, de-
identification is certainly not that solution.”). 
 21. See infra Part III.B. 
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I. THE DATABASE-PRIVACY PROBLEM 

 What is privacy? At its most general, privacy is the right to be left alone, as it 
was originally contemplated by Samuel Warren and Louis Brandeis, and later by 
William Prosser.22 From there, however, the concept has experienced its fair share 
of refactoring.23  

A. Privacy: A Database Perspective 

 Congress’s response to these watershed pieces of legal scholarship, along with 
the influential 1973 study,24 was to enact a lattice of statutes targeting areas of 
highly sensitive data.25 Though not the exclusive avenue for privacy protection, 
these statutes form a meshwork that, though protective of privacy, have impeded 
data sharing. Protected sectors range from health (HIPAA) to finance (FCRA), and 

 
 22. See Samuel D. Warren & Louis D. Brandeis, The Right to Privacy, 4 HARV. L. REV. 193, 
195 (1890) (taking issue with how a new innovation of the time—yellow journalism—permitted 
“what is whispered in the closet [to] be proclaimed from the house-tops”) (quotation omitted); 
William L. Prosser, Privacy, 48 CALIF. L. REV . 383, 389 (1960) (using tort law to place emphasis on 
four different categories of invasions on a plaintiff’s “right to be let alone” (quoting THOMAS M. 
COOLEY, A TREATISE ON THE LAW OF TORTS OR THE WRONGS WHICH ARISE INDEPENDENT OF 
CONTRACT 29 (2d ed. 1888)). 
 23. See generally DANIEL J. SOLOVE, THE DIGITAL PERSON: TECHNOLOGY AND PRIVACY IN THE 
INFORMATION AGE 56-72 (2004). To be sure, privacy is simply the historical response to an age-
old maxim: an irksome new technology unveiling a previously unidentified social norm (e.g., con-
sider the ;. John Henry Clippinger, Digital Innovation in Governance: New Rules for Sharing and 
Protecting Private Information, in RULES FOR GROWTH: PROMOTING INNOVATION AND GROWTH 
THROUGH LEGAL REFORM 386-89 (2011) (“The term ‘privacy’ is derived from the Latin term, 
privatus, meaning separated from the rest . . . . By separating out an individual’s right for private 
information from that of a group, public, or government, the right of privacy forms the basis for 
a broad base of individual rights such as dignity, speech, worship, and happiness.” (citing 
DIALOGUS DE SCACCARIO: THE COURSE OF THE EXCHEQUER 64 (Charles Johnson ed. 1983); M.T. 
CLANCHY, FROM MEMORY TO WRITTEN ENGLISH 20 (3d ed. 2013))). 
 24. Warren & Brandeis, supra note 22; U.S. DEP’T HEALTH, EDUC. & WELFARE, RECORDS 
COMPUTERS AND THE RIGHTS OF CITIZENS (1973), https://perma.cc/NZN7-P4R7. 
 25. Notably, this approach differs from the one adopted by the United Kingdom, which has 
been called “expansionist” and protects data that “may” lead to personal information. See generally 
Paul M. Schwartz & Daniel J. Solove, Reconciling Personal Information in the United States and Eu-
ropean Union, G.W. L. FACULTY PUBLICATIONS & OTHER WORKS 1, 10 (2013), 
https://perma.cc/6XMH-LSGP. 
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often hinge the statutory shield on the definition of “personally identifiable infor-
mation” (PII).26 Put simply, if a fact (i.e., a datum27 in the database) contains PII, 
then it is protected and cannot be shared; if the fact does not contain PII, then it is 
not protected and may be shared freely.28 The problem comes from delineating PII 
from non-PII. 
 In fact, because of the statutory mosaic in which PII has been iteratively de-
fined, the term is nearly impossible to understand. Professors Schwartz and Solove 
have therefore categorized it into three different buckets: (1) PII as a tautology, 
where the statutory definition of PII swallows any data that relates to the individual; 

 
 26. See, e.g., Fair Credit Reporting Act of 1970, 15 U.S.C. §§ 1681; 1681a(c)–(d) (2017); Pri-
vacy Act of 1974, 5 U.S.C. § 552a(a)(2) (2017); FERPA, 42 U.S.C. § 1320g(a)(5)(a) (2017); Health 
Insurance Portability and Accountability Act (HIPAA) of 1996, 42 U.S.C. § 1320 (2017); Driver’s 
Privacy Protection Act of 1994, 18 U.S.C. § 2721(a) (2017); Right to Financial Privacy Act of 1978, 
12 U.S.C. §§ 3401–3422 (2017); Foreign Intelligence Surveillance Act of 1978, 15 U.S.C. §§ 1801–
1811 (2017); Privacy Protection Act of 1980, 42 U.S.C. § 2000aa (2017); Cable Communications 
Policy Act of 1984, 47 U.S.C. § 551 (2017); Electronic Communications Privacy Act of 1986, 18 
U.S.C. §§ 2510–2522 (2017); Computer Matching and Privacy Protection Act of 1988, 5 U.S.C. 
§ 552a (2017); Telephone Consumer Protection Act of 1991, 47 U.S.C. § 227 (2017); Identity and 
Assumption Deterrence Act of 1998, 18 U.S.C. § 1028 (2017); Gramm-Leach-Bliley Act of 1999, 
15 U.S.C. §§ 6801–6809 (2017); Uniting and Strengthening America by Providing Appropriate 
Tools Required to Intercept and Obstruct Terrorism Act of 2001 (USA Patriot Act), 107 Pub. L. 
No. 56, 115 Stat. 272 (2001) (codified as amended in scattered sections of the U.S. Code); CAN-
SPAM Act of 2003; Video Voyeurism Prevention Act of 2004, 18 U.S.C § 1801 (2017); Video Pri-
vacy Protection Act of 1988, 18 U.S.C. § 2710 (2017). See generally Omer Tene, Privacy Law’s Mid-
life Crisis: A Critical Assessment of the Second Wave of Global Privacy Laws, 74 OHIO. ST. L.J. 1217, 
1225 (2013) (discussing how the United States responded to privacy protection by grouping cat-
egories of particularly sensitive information and creating specific rules to regulate those catego-
ries). Note that one impetus for the Privacy Act was the Watergate scandal. See STANLEY I. KUTLER, 
THE WARS OF WATERGATE: THE LAST CRISIS OF RICHARD NIXON 589 (1990) (“In his 1974 State of 
the Union message, Nixon warned that technology had encroached on the right of personal pri-
vacy . . . . Congress readily responded, but a committee report grasped the irony inherent in its 
efforts when it credited the ‘additional impetus’ from the ‘recent revelations connected with Wa-
tergate-related investigations, indictments, trials, and convictions.’”); see also COMM. ON GOV’T 
OPERATIONS, 93D CONG., LEGIS. HISTORY OF THE PRIVACY ACT OF 1974: S. 3418 (Pub. L. 93-579) 8 
(J. Comm. Print 1976) (background). 
 27. See MICHAEL J. HERNANDEZ, DATABASE DESIGN FOR MERE MORTALS: A HANDS-ON GUIDE 
TO RELATIONAL DATABASE DESIGN 43 (3d ed. 2013) (“The values you store in the database are data. 
Data is static in the sense that it remains in the same state until you modify it by some manual or 
automated process.”) (emphasis in original). 
 28. Under this framework, the question of privacy changes from “Does this data point in-
vade someone’s privacy?” to “Does this data point fit within the statute’s definition of what should 
be protected?” According to Professor Ohm, this is part of the problem with PII in general: The 
question should not be “Does this data fit?” (because the factual data could always “fit” with the 
right inference or SQL “inner join,” although it would not be traditionally protected because with-
out the inner joint it doesn’t fit), but rather, “Does this data pose a high-risk to privacy?” Professor 
Ohm outlined several factors to help answer his question: sanitation technique reliability, public 
release of the data, quantity limitations, industry motives for research and re-identification, and 
the trustworthiness of the data aggregator. See Ohm, supra note 6, at 1727, 1765-68. 
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(2) public versus non-public PII, where the statute shields only “non-public” infor-
mation, though non-public is not defined; and (3) explicit PII specifications, where 
only those statutorily defined facts (e.g., both first and last name) are protected.29 
On a wide lens, the limitations on data sharing may be thought of through these 
categories.  
 With that general legal framework in place, we can now more easily look at the 
problem at hand; specifically, how information stored in databases creates a 
tradeoff between privacy and utility. To be sure, if no data is shared, perfect privacy 
is achieved; if the database is not perturbed30 in any way, perfect utility is 
achieved.31 

B. Databases 

 A database is simply a collection of data. Be it physical32 or digital, the “data-
base” is more technically defined as the “organized collection of factual relations.”33 

 
 29. Paul M. Schwartz & Daniel J. Solove, The PII Problem: Privacy and a New Concept of Per-
sonally Identifiable Information, 86 N.Y.U. L. REV. 1814, 1829-35 (2011). The prototypical legal case 
follows this pattern: Corporation A is sharing a user’s data with corporation B, the user files suit, 
and the court must determine whether the data is in fact PII, and therefore whether sharing is 
impermissible. The same is true for synthetic data, except the sharing would be done with syn-
thetic data rather than original data. 
 30. Put simply, perturbation means modification—one of the simplest techniques being the 
addition of random values alongside original values. See infra Part I.B.1; see also Hillol Kargupta 
et al., On the Privacy Preserving Properties of Random Data Perturbation Techniques, 3 PROC. IEEE 
INT’L CONF. DATA MINING 99, 99 (2003). 
 31. See Ohm, supra note 6, at 1752-55 (“[P]erfect privacy can be achieved by publishing 
nothing at all—but this has no utility; perfect utility can be obtained by publishing the data exactly 
as received from the respondents, but this offers no privacy.” (quoting Shuchi Chawla et al., To-
ward Privacy in Public Databases, in THEORY CRYPTOGRAPHY CONF. 363 (2005))). 
 32. See, e.g., The Technium: One Dead Media, KK (June 17, 2008), https://perma.cc/4MF2-
VD6L (“Edge-notched cards were invented in 1896. These are index cards with holes on their 
edges, which can be selectively slotted to indicate traits or categories, or in our language today, to 
act as a field. Before the advent of computers[, these cards] were one of the few ways you could 
sort large databases for more than one term at once. In computer science terms, you could do a 
‘logical OR’ operation. This ability of the system to sort and link prompted Douglas Engelbart in 
1962 to suggest these cards could implement part of the Memex vision of hypertext.”). 
 33. See HERNANDEZ, supra note 27, at 4 (“[A] database is an organized collection of data used 
for the purpose of modeling some type of organization or organizational process. It really doesn’t 
matter whether you’re using paper or a computer application program to collect and store the 
data. As long as you’re gathering data in some organized manner for a specific purpose, you’ve 
got a database.”); RAMAKRISHNAN & GEHRKE, supra note 3, at 4 (“A database is a collection of data, 
typically describing the activities of one or more related organizations. For example, a university 
database might contain information about the following: Entities such as students, faculty, 
courses, and classrooms[; and r]elationships between entities, such as students’ enrollment in 
courses, faculty teaching courses, and the use of rooms for courses.”) (emphasis in original). 
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 It is likewise important to note that databases are not inherently threatening to 
privacy.34 Indeed, the database is not a new concept borne from the Internet or 
computer. Before the proliferation of computerized information, data describing 
individuals manifested itself in physical locations.35 And these physical locations 
were, for the most part, geographically disparate. To concatenate database infor-
mation required a laborious effort, the kind of effort deterring not only collection 
itself, but also the linkage of relations (i.e., vehicle records were not easily combined 
with credit card records, though both were located in governmental databases).36 
With the depressed compilation of data, privacy rights were more easily protected 
using traditional, redacted-name-and-zip-code methods. 
 But all this changed once seemingly unlimited columns,37 cheap storage, and 
centralized access became more ubiquitous.38 As our society merges itself with the 
digital world, information is more easily amassed.39 Not only that, but linking dif-
ferent kinds of databases is also practical—unlocking the potential for en masse 

 
 34. But see SIMSON GARFINKEL, DATABASE NATION: THE DEATH OF PRIVACY IN THE 21ST 
CENTURY 5 (2001). 
 35. See SOLOVE, supra note 23, at 13 (noting how records were mostly kept by hand in var-
ious offices); Carolym Puckett, The Story of the Social Security Number, 69 SOC. SEC. BULLETIN 55, 
56 (2009) (noting that there were 12 regional offices); Comput. Privacy: Hearings Before the 
Subcomm. on Admin. Practice and Procedure of the S. Comm. on the Judiciary, 19th Cong. 74 (1967) 
(statement of Arthur R. Miller, professor of law, University of Michigan) (“Privacy has been 
relatively easy to protect in the past for a number of reasons: (1) large quantities of information 
about individuals have not been available; (2) the available information generally has been 
decentralized and has remained uncollected and uncollated . . . .”). 
 36. SOLOVE, supra note 23,at 14 (“Technology was a primary factor in the rise of infor-
mation collection. The 1880 census [an early attempt at mass information collection] required 
almost 1,500 clerks to tally information tediously by hand—and it took seven years to complete.”). 
 37. In database terms, this is known as a field (i.e., the vertical groupings in a Microsoft 
Excel document). See HERNANDEZ, supra note 27, at 52 (“A field (known as an attribute in relational 
database theory) is the smallest structure in the database and it represents a characteristic of the 
subject of the table to which it belongs. Fields are the structures that actually store data. The data 
in these fields can then be retrieved and presented as information in almost any configuration 
that you can imagine . . . . Every field in a properly designed database contains one and only one 
value, and its name will identify the type of value it holds. This makes entering data into a field 
very intuitive. If you see fields with names such as FIRSTNAME, LASTNAME, CITY, STATE, and 
ZIPCODE, you know exactly what type of values go into each field. You’ll also find it very easy to 
sort the data by state or look for everyone whose last name is ‘Hernandez.’”) (emphasis in original). 
 38. See SOLOVE, supra note 23, at 14 (“As processing speeds accelerated and as memory bal-
looned, computers provided a vastly increased ability to collect, search, analyze, and transfer rec-
ords.”). 
 39. See id. at 15 (“Today, federal agencies and departments maintain almost 2,000 databases, 
including records pertaining to immigration, bankruptcy, licensing, welfare, and countless other 
matters. In a recent effort to track down parents who fail to pay child support, the federal gov-
ernment has created a vast database consisting of information about all people who obtain a new 
job anywhere in the nation. The database contains their SSNs, addresses, and wages.”) (internal 
citations omitted). 
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learning.40 From the social sciences to medicine to modern day business operations, 
storing, analyzing, and reproducing information has become routine.41 Some have 
even referred to this type of interaction (colloquially termed “big data”) as the 21st 
century’s microscope.42 But our brave, big data world is not without drawbacks.43 
 Because the information collected concerns more and more private minutiae,44 
the valuable byproducts of the knowledge come at an increasing cost to privacy. In 
2012, a father became irate when his high school-aged daughter began receiving 
coupons from Target for maternity clothing and nursery furniture. Shocked by 
Target’s gall—how could a corporation make such a scandalous assumption?45—
the father angrily demanded Target stop the harassment.  

 
 40. See Tim Berners-Lee, The Next Web, TED 10:45-15:00 (Feb. 2009), 
https://perma.cc/4J2Y-D9YE (urging listeners to rally around the slogan “Raw Data Now” to 
usher in a new generation of innovations in science, medicine, and technology); Tim Berners-Lee, 
The Year Open Data Went Worldwide, TED (Feb. 2010), https://perma.cc/99JW-7Z65 (listing a few 
of the ways open data has changed the world, among them the real-time mapping of Haiti after 
the 2010 earthquake, allowing users to see the location of refugee camps, damaged buildings, and 
hospitals). 
 41. See ELMASRI & NAVATHE, supra note 3, at 3 (“For example, if we go to the bank to deposit 
or withdraw funds, if we make a hotel or airline reservation, if we access a computerized library 
catalog to search for a bibliographic item, or if we purchase something online—such as a book, 
toy, or computer—chances are that our activities will involve someone or some computer pro-
gram accessing a database. Even purchasing items at a supermarket often automatically updates 
the database that holds the inventory of grocery items.”). 
 42. VIKTOR MAYER-SCHONBERGER & KENNETH CUKIER, BIG DATA: A REVOLUTION THAT WILL 
TRANSFORM HOW WE LIVE, WORK, AND THINK 18 (2014) (“Big data marks an important step in 
humankind’s quest to quantify and understand the world. A preponderance of things that could 
never be measured, stored, analyzed, and shared before is becoming datafied. Harnessing vast 
quantities of data rather than a small portion, and privileging more data of less exactitude, opens 
the door to new ways of understanding. It leads society to abandon its time-honored preference 
for causality, and in many instances tap the benefits of correlation.”). 
 43. See Jordi Soria-Comas & Josep Domingo-Ferrer, Big Data Privacy: Challenges to Privacy 
Principles and Models, 1 DATA SCI. & ENGINEERING 21, 21-22 (2016) (“The potential risk to privacy 
is one of the greatest downsides of big data. It should be taken into account that big data is all 
about gathering as many data as possible to extract knowledge from them (possibly in some in-
novative ways). Moreover, more than often, these data are not consciously supplied by the data 
subject (typically a consumer, citizen, etc.), but they are generated as a by-product of some trans-
action (e.g. browsing or purchasing items in an online store), or they are obtained by the service 
provider in return for some free service (e.g. for example, free email accounts, social networks, 
etc.) or as a natural requirement for some service (e.g. a GPS navigation system needs knowledge 
about the position of an individual to supply her with information on nearby traffic conditions).”). 
 44. For example, consider biometric data. See, e.g., JENNIFER LYNCH, EFF & IMMIGRATION 
POLICY CENTER, FROM FINGERPRINTS TO DNA: BIOMETRIC DATA COLLECTION IN U.S. IMMIGRANT 
COMMUNITIES & BEYOND 4 (2012). 
 45. Charles Duhigg, How Companies Learn Your Secrets, N.Y. TIMES, Feb. 16, 2012, at MM30 
(“Andrew Pole had just started working as a statistician for Target in 2002, when two colleagues 
from the marketing department stopped by his desk to ask an odd question: ‘If we wanted to 
figure out if a customer is pregnant, even if she didn’t want us to know, can you do that?’”). 
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 In reality, Target had accurately predicted the girl’s third trimester date based 
on an algorithm it developed by crawling its massive customer database and iden-
tifying approximately twenty-five products that are indicative of pregnancy. In-
deed, the panoply of what Target knew was creepily extensive.46 But Target, along 
with its usual compatriots like Facebook, Amazon, Netflix, and Alphabet,47 had 
been collecting this kind of data for years, yielding increasingly intimate details of 
our lives as the technology improved.48 And with these intimate details came hum-
bling returns—during the years when Target implemented its targeted baby adver-
tisements, the company’s revenues increased from $44 billion to $67 billion.49 But 
the real question for these companies is not how to monetize big data insights, but 
how to do it without the understandably negative optics.50 Stated simply, how can 
this data be usefully applied without stepping on anyone’s privacy toes? Historically, 
the answer has been anonymization.  

 
 46. See Nick Saint, Eric Schmidt: Google’s Policy Is to ‘Get Right up to the Creepy Line and Not 
Cross It,’” BUS. INSIDER (Oct. 1, 2010, 2:44 PM), https://perma.cc/HCX7-SSJP; see also Duhigg, 
supra note 45 (“For decades, Target has collected vast amounts of data on every person who reg-
ularly walks into one of its stores. Whenever possible, Target assigns each shopper a unique 
code—known internally as the Guest ID number—that keeps tabs on everything they buy. ‘If you 
use a credit card or a coupon, or fill out a survey, or mail in a refund, or call the customer help 
line, or open an e-mail we’ve sent you or visit our Web site, we’ll record it and link it to your 
Guest ID[.] We want to know everything we can.’ Also linked to your Guest ID is demographic 
information like your age, whether you are married and have kids, which part of town you live 
in, how long it takes you to drive to the store, your estimated salary, whether you’ve moved re-
cently, what credit cards you carry in your wallet and what Web sites you visit. Target can buy 
data about your ethnicity, job history, the magazines you read, if you’ve ever declared bankruptcy 
or got divorced, the year you bought (or lost) your house, where you went to college, what kinds 
of topics you talk about online, whether you prefer certain brands of coffee, paper towels, cereal 
or applesauce, your political leanings, reading habits, charitable giving and the number of cars 
you own.”). 
 47. Many companies collect large amounts of data on individuals; some market this data to 
other companies. See FED. TRADE COMM’N, DATA BROKERS: A CALL FOR TRANSPARENCY AND 
ACCOUNTABILITY 11-18, 23-31 (2014). 
 48. SCHNEIER, supra note 2, at 4 (“The bargain you make, again and again, with various com-
panies is surveillance in exchange for free service.”). 
 49. See Duhigg, supra note 45. 
 50. Id. As an executive for Target pronounced: “‘With the pregnancy products . . . we 
learned that some women react badly . . . . [T]hen we started mixing in all these ads for things we 
knew pregnant women would never buy, so the baby ads looked random. We’d put an ad for a 
lawn mower next to diapers. We’d put a coupon for wineglasses next to infant clothes. That way, 
it looked like all the products were chosen by chance.’” Id. 
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1. The (Assumedly) Good: Privacy via “Anonymization” 

 Early on—and still making the rounds today51—the assumption was that if you 
stripped out enough identifying information from a dataset, the data could be 
shared freely.52 Though the approach is colloquially referred to as anonymiza-
tion,53 it is more accurately described as deidentification: sterilization via subtrac-
tion.54 Under HIPPA’s “safe harbor” provision,55 medical data is freely shareable if 

 
 51. For example, FERPA explicitly allows data release if the information is deidentified, 
meaning all personally identifiable information has been removed; the Gramm-Leach-Bliley Act 
has been interpreted by the FTC to not protect “aggregate information or blind data [not contain-
ing] personal identifiers such as account numbers, names, or addresses”; and both the Cable Act 
and VPPA’s definition of PII have been interpreted by the courts to not cover anonymized iden-
tifiers. See FERPA, 20 U.S.C. § 1232g(a)(5)(a) (2017) (listing facts constituting PII—and conversely, 
which facts are not PII and are therefore free to share); Gramm-Leach-Bliley Act of 1999, 15 
U.S.C. §§ 6801–09 (2017); 16 CFR § 313.3(o)(2)(ii) (2018). In Pruitt, the court ruled that hexadec-
imal codes identifying customers and their purchases were not PII because the digits were not 
addresses or names. See Pruitt v. Comcast Cable Holdings, 100 F. App’x 713, 715 (10th Cir. 2004) 
(“[T]he converter box code—without more—provides nothing but a series of numbers. . . . With-
out the information in the billing or management system one cannot connect the unit address 
with a specific customer; without the billing information, even Comcast would be unable to iden-
tify which individual household was associated with the raw data in the converter box.”). And in 
In re Hulu, the court found that “a unique anonymized ID alone is not PII.” In re Hulu Privacy 
Litig., No. C 11-03764 LB, 2014 WL 1724344, at *10-11 (N.D. Cal. Apr. 28, 2014) (using Pruitt as 
a standard and finding that “an anonymous, unique ID without more does not constitute PII”) (em-
phasis in original); see also 34 C.F.R. § 99.31(b) (2018) (discussing how the deidentification must 
reasonably ensure that a student’s identity is not “personally identifiable”); 16 C.F.R. 
§ 313.3(o)(2)(ii)(B); Benjamin Charkow, Note, The Control Over the De-Identification of Data, 21 
CARDOZO ARTS & ENT. L.J. 195, 196-97 (2003) (noting “[c]ongressional statutes and related ad-
ministrative agency regulations typically exclude information from protection once the infor-
mation has been modified in such a way that the data subject can no longer be identified” and 
arguing that “no privacy interest is retained in de-identified information”) (internal citation omit-
ted). 
 52. See Ohm, supra note 6, at 1707-11 (recounting the staunch supporters of de-identifica-
tion—spanning from industry to academia to administration). 
 53. Meaning “without a name or nameless” from the Greek áνωνυμíα. See Zoltán Alexin, Does 
Fair Anonymization Exist?, 28 INT’L REV. L. COMPUTERS & TECH. 21, 21 (2014) (finding that 
HIPAA’s safe harbor permits anonymization, meaning that stripping out the seventeen named 
identifiers permits a small enough chance of re-identification to consider the resulting dataset 
private). 
 54. See Ira S. Rubinstein & Woodrow Hartzog, Anonymization and Risk, 91 WASH. L. REV. 
703, 710 (2016) (defining de-identification as “the process by which data custodians remove the 
association between identifying data and the data subject” (citing Simson L. Garfinkel, De-Identi-
fication of Personal Information, NISTIR 8053 (2015), https://perma.cc/N9TW-K86K)). Sanitiza-
tion is also a term used to describe a similar process. See Justin Brickell & Vitaly Shmatikov, The 
Cost of Privacy: Destruction of Data-Mining Utility in Anonymized Data Publishing, in 14 PROC. INT’L 
CONF. KNOWLEDGE DISCOVERY & DATA MINING 70, 70, 78 (2008) (considering “trivial sanitiza-
tion” to be the removal of all quasi-identifiers or sensitive attributes)).  
 55. See generally Health Insurance Portability and Accountability Act (HIPAA) of 1996, 42 
U.S.C. § 1320 (2017); 45 CFR § 164.514. The identifiers are name, geographic subdivision smaller 
than a state (including and address and part of the zip code), anything including a date, telephone 
number, vehicle identifiers like license plate number, fax number, serial number, email address, 
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all seventeen identifiers have been removed. Detailed and explicitly defined, HIPAA 
assumes that information lacking these identifiers is of no privacy concern: how 
could Jane Doe’s privacy be affected if no one knows her name, address, or social 
security number?56  
 In actuality, identifying individuals using seemingly non-unique identifiers is 
far easier than a data sanitizer might hope.57 

2. The Bad: Reidentification Awareness 

 Because the core of deidentification is the removal of unique identifiers, a pre-
mium is necessarily placed on precisely defining what constitutes a unique identi-
fier. Indeed, by relying on “subtractive uniqueness,”58 it is difficult to correctly guess 
which attributes should be removed (i.e., one man’s trash is another man’s treasure) 
while maintaining the necessary idiosyncrasies for the data to remain useful.59 The 
result is an inescapable tradeoff: more representative data versus more privacy.  
 Full scale DNA sequencing—anonymized via de-identification—was publicly 
released in the 1990s as part of the Human Genome Project.60 However, in 2004, 

 
URLs, social security number, IP address, medical record numbers, biometric identifiers, insur-
ance number, facial images, account numbers, professional license number, and any other unique 
identifier not listed. 
 56. HIPAA does have a provision for “any other unique identifier not listed.” 45 CFR 
§ 164.514(b)(2). However, as Part I.B.2 demonstrates, even trivial data points may be linked with 
an identity. See infra Subsection I.B.2. Before the Netflix Prize reidentifications, it would have 
defied logic to consider liking non-blockbuster movies to be a unique identifier. See Narayanan 
& Shmatikov, supra note 10, at 122 fig.9 (2008) (showing how liking less popular movies makes 
deidentification more likely). 
 57. See, e.g., Brian Hayes, Uniquely Me!, AM. SCI., https://perma.cc/UD6A-XM9C (archived 
Oct. 26, 2018). 
 58. Similar to the way subtractive manufacturing produces a desired object by removing 
material until the object is created, deidentification takes an original description and removes as 
much of it as is necessary to achieve the desired anonymity. See, e.g., Nathan Reitinger, Comment, 
CAD’s Parallel to Technical Drawings: Copyright in the Fabricated World, 97 J. PAT. TRADEMARK OFF. 
SOC’Y 111, 113-14 (2015) (explaining how subtractive manufacturing starts with a large block of 
material and gradually whittles it away to form a desired object, while additive manufacturing 
gradually builds an object from the ground up); Samuel H. Huang et al., Additive Manufacturing 
and Its Societal Impact: A Literature Review, 67 J. ADVANCED MANUFACTURING TECH. 1191, 1191 
(2013). 
 59. See Brian Parkinson et al., The Digitally Extended Self: A Lexicological Analysis of Personal 
Data, 44 J. INFO. SCI. 552, 552-53 (2017) (noting “the classification of data based on degrees of 
identifiability may fluctuate and become indeterminate.”). 
 60. This was the result of policies adopted by several organizations, including the National 
Human Genome Research Institute, the Department of Energy, and the International Human Ge-
nome Sequencing Consortium. With a focus on open records, these policies generally recom-
mended depositing data and resources into the public domain. See Reaffirmation and Extension of 
NHGRI Rapid Data Release Policies: Large-Scale Sequencing and Other Community Resource Projects, 
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researchers demonstrated that it was possible to link an individual’s de-identified 
genomic data with publicly available single nucleotide polymorphism data.61 NIH 
reacted to the privacy woes by restricting access to individual-level genomic data 
on a permission-only basis.62 But then, in 2008, researchers again showed that in-
dividuals could be identified in trace-amount, high-density genetic mixtures.63 NIH 
clamped down harder on the weak link, restricting any access to genome-wide as-
sociation studies.64 Most recently, in 2013, researchers demonstrated yet again that 
it was possible to match NIH’s snippet tandem repeats with consumer-focused, 
publicly available, genetic genealogy information, which permitted an individual’s 
surname to be identified.65 In response, NIH held its tune and moved age infor-
mation from a public to non-public database.66  

 
NAT’L HUMAN GENOME RESEARCH INST. (Feb. 2003), https://perma.cc/HT2Q-VDT3. 
 61. Zhen Lin et al., Genomic Research and Human Subject Privacy, 305 SCIENCE 183, 183 
(2004) (“If someone has access to individual genetic data and performs matches to public [single 
nucleotide polymorphism (SNP)] data, a small set of SNPs could lead to successful matching and 
identification of the individual. In such a case, the rest of the genotypic, phenotypic, and other 
information linked to that individual in public records would be available.”). 
 62. NIH required approval from a Data Access Committee to gain access to individual ge-
nomic data in the Database of Genotypes and Phenotypes. See Stacey Pereira et al., Open Access 
Data Sharing in Genomic Research, 5 GENES 739, 740 (2014). 
 63. This is the common “security via aggregation” theory, which was applied to batch-sam-
ples containing many participants’ data. See Nils Homer et al., Resolving Individuals Contributing 
Trace Amounts of DNA to Highly Complex Mixtures Using High-Density SNP Genotyping Microarrays, 
4 PLOS GENETICS 1, 9 (2008) (“Considering privacy issues with genetic data, it is now clear that 
further research is needed to determine how to best share data while fully masking identity of 
individual participants. However, since sharing only summary data does not completely mask 
identity, greater emphasis is needed for providing mechanisms to confidentially share and com-
bine individual genotype data across studies, allowing for more robust meta-analysis such as for 
gene-environment and gene-gene interactions.”). 
 64. See Natasha Gilbert, Researchers Criticize Genetic Data Restrictions: Fears Over Privacy 
Breaches are Premature and Will Impede Research, Experts Say, NATURE NEWS (Sept. 4, 2008), 
https://perma.cc/C8YU-S496 (“The US National Institutes of Health (NIH), the Broad Institute 
in Cambridge, Massachusetts, and the Wellcome Trust in London all decided to restrict access to 
data from genome-wide association (GWA) studies—which contain collections of thousands of 
people’s DNA—after research suggested that it is possible to identify an individual from their 
genetic fingerprint even when their DNA is mixed together with that of many other people.”). 
 65. Melissa Gymrek et al., Identifying Personal Genomes by Surname Inference, 339 SCIENCE 
321, 324 (2013) (“This study shows that data release, even of a few markers, from one person can 
spread through deep genealogical ties and lead to the identification of another person who might 
have no acquaintance with the person who released his genetic data.”). 
 66. See Pereira et al., supra note 62, at 740 (“NIH worked with the [National Institute of 
General Medical Sciences] to move age information, which was previously publicly accessible, 
into the controlled-access part of the database.”). But see Khaled El Emam at al., A Systematic Re-
view of Re-Identification Attacks on Health Data, 6 PLOS ONE 1, 1 (2011) (“The current evidence 
shows a high re-identification rate but is dominated by small-scale studies on data that was not 
de-identified according to existing standards. This evidence is insufficient to draw conclusions 
about the efficacy of de-identification methods.”). 
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 This vignette demonstrates not only that de-identification requires precise def-
initions of “unique identifiers,” but also that de-identification suffers from an aging 
problem. When genomic data was originally released, consumer-opt-in genetic 
studies were not popular. To be sure, it is difficult enough to pin down exactly what 
data identifies individuals, but it is even more difficult to accurately predict what 
potential auxiliary information could be available in the future—i.e., the de-identi-
fication–re-identification arms race.  

3. The Confusing: Post-Anonymization-Failure Awareness  

 Realizing that anonymization promises much more than it manages to deliver, 
a number of alternative approaches have been suggested. Setting aside the purely 
legal solutions (often focusing on reframing PII),67 one of the most popular paths in 
this terrain is to use computer science metrics to replace the historic means of 
deidentification.  
 The linchpin in each of these methods is to start with creating a metric for de-
fining privacy because, as with all connotative definitions, using non-technical, 
non-mathematical descriptions invites ambiguity.68 Indeed, it is because of these 
metrics that computer scientists are able to provide quantifiable guarantees; specif-
ically, a measure of how much privacy is protected not only in the typical case, but 
also in the face of an “attacker” attempting to obtain secrets. 

i. k-Anonymity 

 k-anonymity maintains privacy by guaranteeing that for every record in a data-
base there are some number “k” of indistinguishable copies.69 Stated otherwise, no 

 
 67. Various methods for addressing PII’s failures have been proposed. See Schwartz & 
Solove, supra note 29, at 1894 (arguing for a division between “identified” and “identifiable” in-
formation and applying protection mechanisms based on the risk each category engenders); Ru-
binstein & Hartzog, supra note 54, at 706 (“[T]he best way to move data release policy past the 
alleged failures of anonymization is to focus on the process of minimizing risk, not preventing 
harm.”). Compare Andrew Chin & Anne Klinefelter, Differential Privacy as a Response to the 
Reidentification Threat: The Facebook Advertiser Case Study, 90 N.C. L. REV. 1417, 1423 (2012) (ar-
guing that differential privacy could be a workable standard to replace traditional anonymization 
techniques) with Jane Bambauer et al., Fool’s Gold: An Illustrated Critique of Differential Privacy, 16 
VAND. J. ENT. & TECH. L. 701, 754 (2014) (“In its strictest form, differential privacy is a farce. In its 
most relaxed form, it is no different, and no better, than other methods.”). 
 68. Felix T. Wu, Defining Privacy and Utility in Data Sets, 84 U. COLO. L. REV. 1117, 1121, 
1125-26 (2013). 
 69. See Samarati & Sweeney, supra note 11, at 1 (“[W]e address the problem of releasing 
person-specific data while, at the same time, safeguarding the anonymity of the individuals to 
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single row in the table is unique because it cannot be distinguished from at least k 
others. The fundamental guiding principle of k-anonymity is that it tries to map at 
least k entities to what is considered identifying information in a database.  

To better understand how this sanitization technique works, consider the 
following table, which pairs an individual with a computing “task” (i.e., accessing a 
file via “touch,” creating a file via “create,” or removing a file via “delete”).  

 
 

Name Class Year Phone Number Task 

Bill 1 123-345-6789 Touch 

Alice 1 234-345-4567 Touch 

Becky 2 345-456-5678 Create 

Bob 2 456-567-6789 Delete 

 
 In an attempt to anonymize the table above, we can use a combination of two 
common techniques, both leading to k-anonymity: suppression and generaliza-
tion.70 The suppression method follows a denotative definition and replaces a piv-
otal piece of identifying information in the original database with a meaningless 
placeholder.71 In our example, we will remove “name” and “phone number” and in-
sert a “#” as a symbolic placeholder. The other technique, generalization, employs a 
broadening approach to add uncertainty, aggregating rows (i.e., “Class Year” of one) 
to create a range of values as opposed to a single value (i.e., “Class Year” between 
one and three).72 Applying these two techniques to our simple dataset results in the 
following:  

 

 
whom the data refer.”). 
 70. Roberto J. Bayardo & Rakesh Agrawal, Data Privacy Through Optimal k-Anonymization, 
21 PROC. INT’L CONF. DATA ENGINEERING 217, 217 (2005) (“Suppression is the process of deleting 
cell values or entire tuples . . . . Generalization involves replacing specific values [such as a phone 
number] with more general ones [such as the area code alone.]”). 
 71. Id. 
 72. Id.; see also Sheng Zhong et al., Privacy-Enhancing k-Anonymization of Consumer Data, in 
PRINCIPLES DATABASE SYSTEMS 139, 139-40 (2005). 
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Name Class Year Phone Number Task 

# 1 ≤ Year ≤ 3 # Touch 

# 1 ≤ Year ≤ 3 # Touch 

# 2 ≤ Year ≤ 4 # Create 

# 2 ≤ Year ≤ 4 # Delete 

 
 The newly suppressed and generalized dataset now has a k value of two for 
Class Year since there are two records for any class (i.e., two rows have a Class Year 
from one to three and two rows have a Class Year from two to four). Importantly, 
though the example is oversimplified, it illustrates the tradeoff between utility and 
privacy—the table is less useful now because each individual row is less unique. 
There has been a loss of utility for the gain of privacy. 

ii. Differential Privacy 

 Differential privacy is a popular and robust method73 that rose to prominence 
following the famous shortcomings demonstrated in the Netflix Prize affair.74 

 
 73. Andrew Chin & Anne Klinefelter, Differential Privacy as a Response to the Reidentification 
Threat: The Facebook Advertiser Case Study, 90 N.C. L. REV. 1417, 1423 (2012) (arguing that differ-
ential privacy could be a workable standard to replace traditional anonymization techniques); 
Kobbi Nissim et al., Differential Privacy: A Primer for a Non-technical Audience, VAND. J. ENT & 
TECH. LAW (forthcoming), https://perma.cc/GE7G-EV6V (archived Oct. 26, 2018) (“Intuitively, a 
computation protects the privacy of individuals in the data if its output does not reveal any infor-
mation that is specific to any individual data subject. Differential privacy formalizes this intuition 
as a mathematical definition. Just as we can show that an integer is even by demonstrating that it is 
divisible by two, we can show that a computation is differentially private by proving it meets the 
constraints of the definition of differential privacy. In turn, if a computation can be proven to be 
differentially private, we can rest assured that using the computation will not unduly reveal in-
formation specific to a data subject.”) (emphasis in original). 
 74. See generally Narayanan & Shmatikov, supra note 10, at 118-23; Ohm, supra note 6, at 
1720-22 (“On October 2, 2006, about two months after the AOL debacle, Netflix, the ‘world’s 
largest online movie rental service,’ publicly released one hundred million records revealing how 
nearly a half-million of its users had rated movies from December 1999 to December 2005. In 
each record, Netflix disclosed the movie rated, the rating assigned (from one to five stars), and the 
date of the rating. Like AOL and GIC, Netflix first anonymized the records, removing identifying 
information like usernames, but assigning a unique user identifier to preserve rating-to-rating 
continuity . . . . To improve its recommendations, Netflix released the hundred million records to 
launch what it called the ‘Netflix Prize,’ a prize that took almost three years to claim. The first 
team that used the data to significantly improve on Netflix’s recommendation algorithm would 
win one million dollars. . . . Two weeks after the data release, researchers from the University of 
Texas, Arvind Narayanan and Professor Vitaly Shmatikov, announced that ‘an attacker who 
knows only a little bit about an individual subscriber can easily identify this subscriber’s record 
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While there are many forms of the general technique, its primary goal is to maxim-
ize the accuracy of queries from a database while limiting or minimizing the poten-
tial for privacy leakage.75 Theoretical computer scientists are fond of the method 
due to its strict mathematical formulations and provable guarantees. For our pur-
poses, a high-level understanding may be attained through a simple example mod-
ified from Professor Dwork and Roth’s recent work.76  
 Imagine a scenario in which someone asks you the question: “Do you like ice 
cream?”77 This question has a binary, yes or no, answer. However, it could be mod-
ified with the aid of a coin toss.78 Prior to answering, a coin is tossed, and if a head 
is the result, you answer the question with the truth. Otherwise, you will give a 
“random” answer (which in this case is another coin toss with a predefined “yes” if 
heads and “no” if not).79  
 While it is possible to deduce the probability of people who like ice cream, the 
individuals answering this question now have “deniability.”80 In other words, alt-
hough combining some basic facts about the independence of events may produce 
a probability distribution, the individuals are now permitted to say “I may or may 
not have answered truthfully.” And this is the essence of differential privacy: Be-
cause of the introduction of randomness (i.e., a person’s veracity depends on a coin 
toss) which produces deniability, you may now say “I may or may not be ‘in’ the 
database.”81 

 
if it is present in the [Netflix Prize] dataset, or, at the very least, identify a small set of records 
which include the subscriber’s record.’”) (internal citations omitted). 
 75. Although not the first to introduce differential privacy, Cynthia Dwork’s survey is com-
monly cited. See Cynthia Dwork, Differential Privacy: A Survey of Results, 5TH INT’L CONF. THEORY 
& APPLICATIONS OF MODELS OF COMPUTATION 1, 2-3 (2008). 
 76. Cynthia Dwork & Aaron Roth, The Algorithmic Foundations of Differential Privacy, 9 
FOUND. & TRENDS THEORETICAL COMP. SCI. 211 (2013). 
 77. Id. at 238-39. 
 78. Id. 
 79. Id. 
 80. Id. at 225-26 (discussing how “‘[p]rivacy’ comes from the plausible deniability of any 
outcome”). 
 81. Those responsible for the database’s secrets may now say: “You will not be affected, 
adversely or otherwise, by allowing your data to be used in any study or analysis, no matter what 
other studies, data sets, or information sources, are available.” Cynthia Dwork, The Promise of 
Differential Privacy: A Tutorial on Algorithmic Techniques, 52 IEEE FOUND. COMP. SCI. 1, 1 (2011); 
see also Cynthia Dwork, A Firm Foundation for Private Data Analysis, 54 COMM. ACM 86, 91 (2011) 
(“Differential privacy will ensure that the ability of an adversary to inflict harm (or good, for that 
matter)—of any sort, to any set of people—should be essentially the same, independent of whether 
any individual opts in to, or opts out of, the dataset.”). 
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 Differential privacy has many strengths, but as with all methods, it is not a pan-
acea.82 For example, if enough identical queries are asked, the power of deniability 
is diluted.83 Eventually, repeat queries may be able to take all answers together and 
disambiguate falsity from truth.84 Additionally, if the query being asked requires 
high specificity, then it is more difficult to permit deniability.85 For example, if a 
query asks for the minimum GPA in a group of students, it will be hard to tell a lie 
while also providing a useful answer, because there is only one student with the 
lowest GPA.  
 In fact, some studies suggest that utility and privacy are mutually exclusive at-
tributes if utility of the data is of the utmost importance.86 One study focusing on 
Warfarin dosing found that privacy was only sufficiently protected if differential 
privacy was used, but that differential privacy destroyed utility.87 “We show that 
differential privacy substantially interferes with the main purpose of these models 
in personalized medicine: for ε values [i.e., a measure of “how” protective of privacy 
the database is] that protect genomic privacy . . . the risk of negative patient out-
comes increases beyond acceptable levels.”88 Stated another way, if absolute utility 
is needed, even de minimis sanitization has an adverse effect. 
 In summary, the solutions to the database-privacy problem thus far may be lik-
ened to requesting a contentious document from the FBI pursuant to a Freedom of 

 
 82. For one critique of the metric, see Bambauer et al., supra note 67, at 754 (“In its strictest 
form, differential privacy is a farce. In its most relaxed form, it is no different, and no better, than 
other methods.”). But see Frank McSherry, Differential Privacy for Dummies, GITHUB (Jan. 4, 2017), 
https://perma.cc/2U98-D798 (critiquing Fool’s Gold for misreading differential privacy’s value). 
 83. See generally Bill Howe, Weakness of Differential Privacy, COURSERA (last accessed Aug. 1, 
2018), https://perma.cc/2GPN-FWAB (finding that differential privacy is best suited for low-
sensitivity areas and has problems with repeat queries). 
 84. See Matthew Green, What Is Differential Privacy, CRYPTOGRAPHY ENGINEERING (June 15, 
2016), https://perma.cc/B37U-GP43 (“But there’s a big caveat here. Namely, while the amount of 
‘information leakage’ from a single query can be bounded by a small value, this value is not zero. 
Each time you query the database on some function, the total ‘leakage’ increases—and can never 
go down. Over time, as you make more queries, this leakage can start to add up.”). 
 85. Id. 
 86. Matthew Fredrikson et al., supra note 4, at 19 (finding utility and privacy mutually ex-
clusive in regard to warfarin dosing studies); id. at 29 (“[F]or ε values that protect genomic privacy, 
which is the central privacy concern in our application, the risk of negative patient outcomes 
increases beyond acceptable levels.”). 
 87. The study did use a new method to assess utility, in which differentially private results 
and non-sanitized results were used to suggest warfarin dosing amounts. In the end, if the privacy 
loss parameter (ε) was too high, then utility was gained but privacy was lost; however, if ε was too 
low, then privacy was gained but utility was lost, resulting in adverse patient outcomes. See id. at 
26-27, 29. 
 88. Id. at 29. 
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Information Request. The FBI may return a heavily redacted document which per-
fectly maintains privacy by liberally striking all remotely identifying phrases (i.e., 
deidentification). Unfortunately, the document is also useless; it is impossible to 
plunder the document’s gems when all that can be seen are black highlights. Using 
updated methods of sanitization will help the FBI be more responsive—k-anonym-
ity (i.e., replacing names, dates, and locations with symbols or grouping important 
facts together) or differential privacy (i.e., allowing you to ask the FBI specific ques-
tions, without allowing you to know whether the FBI answers truthfully). But not 
in all cases. We are still in a negative-sum game, less data for more privacy, and the 
threat remains that joining auxiliary information with existing data could unveil 
secrets. This brings us to yet another solution posed by the computer science liter-
ature: synthetic data. 

II. SYNTHETIC DATA 

 Synthetic data may be thought of as “fake” data created from “real” data. The 
beauty of it stems from its grounding in real data and real distributions, which make 
it almost indistinguishable from the original data. Its impetus, in this context, comes 
from the fact that there are many times when, legally, real data cannot be shared, 
but, practically, deidentified data lacks sufficient utility. In those moments, having 
a synthetic dataset may present a best-of-both-worlds solution—shareable, yet sim-
ilar-to-original data. 
 Before illustrating the veracity and limitations of synthetic data using a case 
study, we will first outline the core concepts underlying synthetic data. Here, we 
start with an oft-cited yet poorly-understood term: machine learning.  

A. In Brief: Machine Learning 

 When Ada Lovelace sat down to ponder one of the world’s first computer pro-
grams, the automatic calculation of Bernoulli numbers, she did so in painstaking 
detail.89 She considered each and every step in a laborious, mathematical fashion.90 
As anyone with experience in programming knows, this is exactly what the art of 

 
 89. See generally Stephen Wolfram, Untangling the Tale of Ada Lovelace, WIRED (Dec. 22, 
2015), https://perma.cc/H6U3-K9HW. 
 90. For an image of the resulting program, see Gene Kogan, From Deep Learning Down: An 
Excavation of Mathematics Reveals the Continuity of Our Knowledge, MEDIUM (Dec. 28, 2017), 
https://perma.cc/Z47B-B7FP. 
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programming requires.91 But what if the computer could learn to calculate the Ber-
noulli numbers on its own; what if by showing the computer specific data the com-
puter could interpret the data in a useful fashion and, after many iterations, repli-
cate desired behavior?92 This is exactly what machine learning does, often relying 
on a neural network93 at its core.94 
 While neural networks are not new, the concept has garnered tremendous at-
tention recently given the multitude of problems that are now tractable as a result 
of improvements in computer hardware and cheaper prices for that hardware.95 In 
the past, a necessarily large neural network (i.e., large enough to produce worth-
while results) could not be trained without rooms of computers and rows of 
graphics cards. Today, thanks in part to the gaming culture’s endless hunger for 
higher-performance graphics cards, the computations may be done at home. Be-
cause the neural network is a central component of machine learning, which is used 
in the creation of synthetic data, our understanding of synthetic data will start there. 

 
 91. See MARKO PETKOVŠEK ET AL., A=B, at vii (1997) (“Science is what we understand well 
enough to explain to a computer. Art is everything else we do. During the past several years an 
important part of mathematics has been transformed from an Art to a Science: No longer do we 
need to get a brilliant insight in order to evaluate sums of binomial coefficients, and many similar 
formulas that arise frequently in practice; we can now follow a mechanical procedure and dis-
cover the answers quite systematically.”); see generally 1 DONALD E. KNUTH, THE ART OF COMPUTER 
PROGRAMMING (2d. ed. 1973). 
 92. See Jeremy Howard, The Wonderful and Terrifying Implications of Computers that Can 
Learn, TED (Dec. 2014), https://perma.cc/J42E-GBYC (describing how Arthur Samuel wanted to 
write a program that could play—and beat—him at checkers, eventually coming upon the idea 
that the computer program should “learn” to play checkers by playing against itself). 
 93. Neural networks, as well as other techniques such as regression, may be considered a 
subset of machine learning, which is itself a subset of artificial intelligence. 
 94. Research in the neural network domain dates back decades, at least as far back as Walter 
Pitts’s 1942 article on the subject. See Walter Pitts, Some Observations on the Simple Neuron Circuit, 
4 BULLETIN MATHEMATICAL BIOPHYSICS 121, 121 (1942) (explaining “[a] new point of view in the 
theory of neuron networks”). 
 95. Ophir Tanz describes this history: 

“When id Software’s John Carmack released Doom in 1993, he had no inkling that 
his gory first-person shooter—one of the first to feature a 3D environment, and eas-
ily the most popular at that time—would help spark a revolution in how machines 
process information. Six years later, Nvidia released the GeForce 256, the first graph-
ical processing unit (GPU) built specifically to produce 3D graphics for the burgeon-
ing game industry. In the 17 years since, GPUs have become not merely a staple of 
high-end gaming, which was the original primary reason for their development, but 
a driving force behind major advances in artificial intelligence (AI).” 

Ophir Tanz, How Video Game Tech Makes Neural Networks Possible, TECHCRUNCH (Oct. 27, 2017), 
https://perma.cc/D9RE-397W. 
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 The easiest way to understand a neural network is to first see how one behaves 
after its training is complete, as we will describe.96 From there, we will work back-
wards and explain how training occurs. For purposes of explanation, we will use a 
convolutional neural network (CNN). These networks are often used for image 
classification and provide the easiest means to begin to understand an otherwise 
difficult-to-illustrate concept.97 

1. The Neural Network  

 The first place to start is with a mathematical representation of some goal; here, 
our goal will be to correctly identify hand-drawn digits captured in a digital image. 
Digital images like those you see on your computer screen are made up of pixels; 
each pixel is one specific color, and that color results from mixing a specific amount 
of red, green, and blue—known to your computer as a combination of numbers.98 
Assume we start with the digital image of a hand-drawn one. 

 

 
 96. For further introduction, see Jeremy Howard, Lesson 3: Deep Learning 2018, YOUTUBE 
(Dec. 30, 2017), https://perma.cc/EK6G-LD39; see also Otavio Good, A Visual and Intuitive Un-
derstanding of Deep Learning, YOUTUBE (Nov. 5, 2017), https://perma.cc/3JJD-G2CF. 
 97. Although we later describe the production of synthetic data from a text standpoint, im-
ages may be synthetically replicated as well. See John T. Guibas et al., Synthetic Medical Images from 
Dual Generative Adversarial Networks, in 31 PROC. NEURAL INFO. PROCESSING SYSTEMS 1, 2 (2017) 
(“We propose a novel pipeline for generating synthetic medical images, allowing for the produc-
tion of a public and extensive dataset, free from privacy concerns.”). 
 98. David Eck explains the concept with even greater clarity and comprehensiveness: “A 
digital image is made up of rows and columns of pixels. A pixel in such an image can be specified 
by saying which column and which row contains it.” DAVID J. ECK, INTRODUCTION TO COMPUTER 
GRAPHICS 11 (version 1.2, 2018). Continuing: 

The colors on a computer screen are produced as combinations of red, green, and 
blue light. Different colors are produced by varying the intensity of each type of light. 
A color can be specified by three numbers giving the intensity of red, green, and blue 
in the color. Intensity can be specified as a number in the range zero, for minimum 
intensity, to one, for maximum intensity. This method of specifying color is called 
the RGB color model, where RGB stands for Red/Green/Blue. For example, in the 
RGB color model, the number triple (1, 0.5, 0.5) represents the color obtained by set-
ting red to full intensity, while green and blue are set to half intensity. The red, green, 
and blue values for a color are called the color components of that color in the RGB 
color model. 

Id. at 19 (emphasis omitted); see also Victor Powell, Image Kernels (Jan. 29, 2015), 
https://perma.cc/LLY3-MJ79. 
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Figure 199 

 
 We can then assign pixels in the drawing a weight between 0.0 and 1.0, depend-
ing on the pixel-value at each location. The closer to white, the higher the number; 
the closer to black, the lower the number.  
 Imagine the simplified case where we map our image to a five-by-five grid.100 
The result would look something like the following, where we can see a black area 
(i.e., “0.0”) with a line of white down the center (i.e., “1.0”). This starting grid is 
known as our “input.”101  

Input 

0.0 0.0 1.0 0.0 0.0 

0.0 0.0 1.0 0.0 0.0 

0.0 0.0 1.0 0.0 0.0 

0.0 0.0 1.0 0.0 0.0 

0.0 0.0 1.0 0.0 0.0 

Figure 2102 
 

 
 99. Yann LeCun et al., The MNIST Database of Handwritten Digits, https://perma.cc/UN3B-
AVZH (archived Oct. 15, 2018). Note that reproducing this image requires writing a basic com-
puter program that interacts with data provided.  
 100. See Howard, supra note 96, at 50:33 (using a spreadsheet to map a larger grid); see also 
Jeremy Howard, deeplearning1, GITHUB (Dec. 31, 2016), https://perma.cc/7T6P-HLJL (containing 
the spreadsheet used in the exercise). 
 101. See Howard, supra note 96. 
 102. Here we see a 5x5 grid as a mathematical representation of the digital image of a one; 
the contours of the one are outlined by those points where the values are 1.0 instead of 0.0. For a 
larger example of this representation, see Jean-Carlos Paredes, Understanding Neural Networks Us-
ing Excel, MEDIUM: TOWARDS DATA SCI. (Nov. 18, 2017), https://perma.cc/HF35-SRTE. 
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 The neural network would then run the grid through a series of “convolu-
tions.”103 A convolution is simply a filter104 or filters applied to the numbers that 
make up the grid.105 Here is an example filter which happens to highlight the verti-
cal lines in the grid:  

 
Filter 

1 0 -1 
1 0 -1 
1 0 -1 
Figure 3106 

 
 To apply the filter, we first slide the filter on top of the input grid, covering a 
3x3 set of cells at a time, or nine of the twenty-five cells in the input grid. We then 
multiply each cell in the input against each cell in the filter and find the sum (e.g., 
the top-right 3x3 grid would be: 1 * 1 + 0 * 0 + 0 * - 1. We sum all nine results 
together, and record them as the result of a single convolution. If the sum is nega-
tive, we can use a zero in its place.107 We shift the 3x3 filter one column to the right 

 
 103. A convolution pulls out the features of an image (e.g., detecting edges, sharpening, or 
blurring). See Ujjwal Karn, An Intuitive Explanation of Convolutional Neural Networks, DATA SCI. 
BLOG (Aug. 11, 2018), https://perma.cc/3VLE-UXFG (“The primary purpose of [c]onvolu-
tion . . . is to extract features from the input image. Convolution preserves the spatial relationship 
between pixels by learning image features using small squares of input data.”); see also Alex 
Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks, in 60 COMM. 
ACM 84, 87 fig.2 (2017) (pictorially representing each of the convolutions). 
 104. A filter is a sequence of mathematical operations on the grid. Adit Deshpande explains 
a filter this way: 

Now, the best way to explain a conv[olutional] layer is to imagine a flashlight that is 
shining over the top left of the image. Let’s say that the light this flashlight shines 
covers a 5 x 5 area. And now, let’s imagine this flashlight sliding across all the areas 
of the input image. In machine learning terms, this flashlight is called a filter (or 
sometimes referred to as a neuron or a kernel) and the region that it is shining over 
is called the receptive field. Now this filter is also an array of numbers (the numbers 
are called weights or parameters). . . . As the filter is sliding, or convolving, around 
the input image, it is multiplying the values in the filter with the original pixel values 
of the image (aka computing element[-]wise multiplications). 

Adit Deshpande, A Beginner’s Guide to Understanding Convolutional Neural Networks, 
https://perma.cc/4X7B-ENCH (archived Oct. 15, 2018) (emphasis omitted). 
 105. See Howard, supra note 92. 
 106. Filters may also be called kernels. Using a pre-trained model, these filters are pre-de-
termined. 
 107. This is known as the rectified linear unit, simply the maximum between zero and the 
result of the convolution (i.e., negative numbers are replaced with zero). See Howard, supra note 
96; see also Yee Whye Teh & Geoffrey E. Hinton, Rate-Coded Restricted Boltzmann Machines for Face 
Recognition, in 13 PROC. NEURAL INFO. PROCESSING SYSTEMS 872, 872 (2000). 
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and start again. Here, it turns out there are nine possible locations for the filter, and 
so the output of this filter (i.e., one layer in the neural network) has nine cells.108 
This is what the grid looks like on the third iteration, this three-by-three slice be-
coming the sum of each multiplication (i.e., 3). 

 
Filter Applied to Top-Right Corner 

0.0 0.0 1.0 * 1 0.0 * 0 0.0 * -1 
0.0 0.0 1.0 * 1 0.0 * 0 0.0 * -1 
0.0 0.0 1.0 * 1 0.0 * 0 0.0 * -1 
0.0 0.0 1.0 0.0 0.0 
0.0 0.0 1.0 0.0 0.0 

Figure 4 
 

 The end result of this convolution (i.e., a single layer in our convolutional neu-
ral network) is the following smaller grid:  

 
Result of Sin-

gle-Layer Con-
volution 

0 0 3 
0 0 3 
0 0 3 

Figure 5 

 
 108. A filter may be applied to the top-left corner and moved one pixel at a time to the right 
until the end of that row is reached. The filter may then be moved back to the first column but 
shifted one pixel down, and then shifted again pixel by pixel to the right until the end of that row 
is reached. This continues until the end of the input is reached. See, e.g., Jonathan Hui, Convolu-
tional Neural Networks (CNN) Tutorial, JONATHAN HUI BLOG (Mar. 16, 2017), 
https://perma.cc/TD5B-43MT. 
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 A CNN may have any number of convolutions, each used in a stacking fashion 
to highlight some aspect of the pixels that make up the drawing.109 These convolu-
tions, in combination with other layers,110 make up the architecture of the model 
(i.e., stacked layers form the “deep” part of deep learning). For example, the next 
layer may be a pooling layer, for instance a 2x2 pooling layer, where we halve the 
dimension of the grid by taking the maximum number out of each four-cell block. 
Another common method would be a fully-connected layer, in which we find the 
matrix product of the grid by multiplying the full grid with a layer of pre-deter-
mined weights.111 Here is our example with a fully-connected layer: 

 
Result of Sin-

gle-Layer Con-
volution 

0 0 3 
0 0 3 
0 0 3 

 
Hypothetical 

Weights 
.2 0 .5 
.3 .1 .5 
.1 0 .5 

 
 
 
 

 
 109. These may focus on the outer edges of the drawing, the horizontal edges, or practically 
anything imaginable. Soham Chatterjee explains why this is valuable: 

By being able to learn the values of different filters, CNNs can find more meaning 
from images that humans and human designed filters might not be able to find. More 
often than not, we see the filters in a convolutional layer learn to detect abstract con-
cepts, like the boundary of a face or the shoulders of a person. By stacking layers of 
convolutions on top of each other, we can get more abstract and in-depth infor-
mation from a CNN. 

Soham Chatterjee, Different Kinds of Convolutional Filters, SAAMA (Dec. 20, 2017), 
https://perma.cc/6JB7-RWQ3; see also Deshpande, supra note 104. 
 110. Another layer may be a fully connected layer where each digit in the grid is multiplied 
by a pre-specified weight. 
 111. Howard, supra note 96. 
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Fully Connected Layer 
0 * .2 0 * 0 3 * .5 
0 * .3 0 * .1 3 * .5 
0 * .1 0 * 0 3 * .5 

 
Result of  

Fully Connected Layer 
4.5 

Figure 6 
 

 The end result of the fully connected layer is the number 4.5 (i.e., the far-right 
column would be 3 * .5 + 3 * .5 + 3 * .5 = 4.5). This is the result of a single convolu-
tion layer plus a single fully connected layer. If this is the last step in our architec-
ture, then this would be known as the “output,” with each layer in-between input-
to-output known as a “hidden” layer.112  
 In practice, this sequence of adding filters plus a fully-connected layer to pro-
duce a single number would occur several times. With each number, we start with 
the original “input layer,” apply a series of filters, and end up with a single number 
at the output layer.113 The process teases out distinguishing characteristics of the 
hand-drawn images of numbers—e.g., the number one is traditionally a single ver-
tical line surrounded by empty space. 
 This grid of numbers together (here we would have ten of them) will form the 
basis of our prediction as to which digit (i.e., 0-9) the original image represents. 114 
The prediction is often obtained by using the softmax function, a method used to 
calculate a probability distribution.115 Softmax starts by finding the exponential 
function of each of those numbers (e.g., e4.5 = 90.01), finds the sum of the result, and 
then divides each number by the sum. Essentially, the softmax function removes 

 
 112. Id. 
 113. Id. 
 114. Id. 
 115. Softmax will first use the exponential function of each number (i.e., e to the power of 
each number—e4.5) and then find the sum of each of those numbers and divide the result of the 
exponential function by the sum. See John S. Bridle, Probabilistic Interpretation of Feedforward Clas-
sification Network Outputs, with Relationships to Statistical Pattern Recognition, in 68 
NEUROCOMPUTING 227, 231-32 (1989). 
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any negative numbers (via exponentiation) and distinguishes more likely predic-
tions from less likely ones.116 The result will be a set of probabilities—one for each 
digit—adding up to 1 with (hopefully) the correct number having the highest prob-
ability. If we are using a robust model, we may anticipate an accuracy of nearly 100 
percent.117 We are now done with the pre-trained CNN and have our prediction in 
hand: in this case, the model will predict that the image is undoubtedly of the digit 
“1.” 
 As for what trains a model like this in the first place, it suffices to say this occurs 
through a process of gradually improving the filters and weights discussed above.118 
Starting out, values are randomly assigned to the filters and weights (i.e., the param-
eters). Then, typically through a process known as stochastic gradient descent,119 
the values assigned to the parameters are optimized to minimize a particular loss 
function (e.g., during each training loop we check the model’s predictions against 
known outcomes, the difference between the two being the loss).120 Stated other-
wise, the weights and filters are adjusted to find the optimal combination of num-
bers to achieve some desired result such as the accurate identification of hand-
drawn digits.  
 But this raises another question relevant to synthetic data. How would this pro-
cess work if we were using text instead of pixels?  

2. Recurrent Neural Network  

 Switching gears from images to text, one attribute determines how we design 
the neural network: context. The CNN we used above to identify hand-drawn char-
acters can walk through layers of convolutions in an independent fashion, without 

 
 116. See Ji Yang, ReLU and Softmax Activation Functions, GITHUB (Feb. 11, 2017), 
https://perma.cc/4VZH-DCTV (“The softmax function squashes the outputs of each unit to be 
between 0 and 1, just like a sigmoid function. But it also divides each output such that the total 
sum of the outputs is equal to 1 . . . . The output of the softmax function is equivalent to a cate-
gorical probability distribution, it tells you the probability that any of the classes are true.”). 
 117. See, e.g., Li Wan et al., Regularization of Neural Networks Using DropConnect, 30 PROC. 
INT’L CONF. MACHINE LEARNING 1058, 1063 (2013) (using a new method and finding the result to 
be a 0.21% error rate—“We note that our approach surpasses the state-of-the-art result of 0.23% 
(Ciresan et al., 2012), achieving a 0.21% error rate, without the use of elastic distortions (as used 
by (Ciresan et al., 2012)).”). 
 118. For an overview, see How Neural Networks Are Trained, MACHINE LEARNING FOR 
ARTISTS, https://perma.cc/Q2X8-S9S7 (archived Oct. 15, 2018). 
 119. See generally Sebastian Ruder, An Overview of Gradient Descent Optimization Algo-
rithms 2 (June 15, 2017) (manuscript), https://perma.cc/H8B2-3UYY. 
 120. See Vitaly Bushaev, How Do We ‘Train’ Neural Networks, MEDIUM: TOWARDS DATA SCI. 
(Nov. 15, 2017), https://perma.cc/88AX-ZZ2C; Howard, supra note 96. 
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one layer’s result affecting the operation of the others.121 For example, an edge-
detecting filter’s ability to detect edges does not depend on what filters were applied 
before it. No layer depends on the others. A neural network required to understand 
sentences, however, would need to be designed differently because speech relies 
heavily on context and on order. And context comes from memory—something a 
CNN lacks, but an RNN boasts.  
 A recurrent neural network (RNN) uses the same layer-by-layer approach as 
the CNN. The main difference for an RNN is that another input is added after the 
first filter is applied.122 For example, if we were using a character-based model, the 
first input would be the first character of a word (e.g., the character “t”), followed by 
the application of a filter, followed by the next character (e.g., the character “h”) 
added through something like a matrix multiplication.123 That is, instead of simply 
adding more layers of convolutions on top, we merge the equivalent of another pic-
ture to the mix. This process allows the network to gain memory. The end result, 
like the final 4.5 we produced in the CNN example, depends not only on a single 
input entered in the beginning, but also on the intermediate input injected within 
the hidden layers.  
 This brings us to the last concept in our nutshell: Generative Adversarial Net-
works (GANs).124 The sine qua non of a GAN, a recent invention,125 is its ability to 

 
 121. Independence implies that one element does not affect another; for example, the chance 
of rolling a six on a dice two consecutive times is not impacted by whether or not you roll a six 
the first time. Each of the roles is independent of the other. 
 122. Howard, supra note 92. 
 123. Id. 
 124. See generally Ian J. Goodfellow et al., Generative Adversarial Nets, in 27 PROC. NEURAL 
INFO. PROCESSING SYSTEMS 2672, 2672 (2014); see also Martin Arjovsky et al., Wasserstein GAN 
(Dec. 6, 2017), https://perma.cc/R4JU-KTJE. 
 125. See Goodfellow, supra note 124 (seminal paper on GANs published in 2014). In fact, 
GANs are one of the reasons synthetic data has recently received attention. See e.g., JAKUB LANGR 
& VLADIMIR BOK, GANS IN ACTION 2 (2018) (“[W]hile artificial intelligence and machine learning 
have historically been excellent at teaching computers to discern ever more intricate patterns in 
data and master ever more complex gameplays, they have been poor at teaching them to generate 
new data—something that we, humans, do every day as we converse with one another, come up 
with innovative solutions to problems, and express our creativity through art. This all changed in 
2014 when Ian Goodfellow invented [GANs]. . . . GANs have achieved remarkable results that 
have long been considered virtually impossible for artificial systems, such as the ability to gener-
ate fake images in real-world-like quality, turn a scribble into a photograph-like image, or turn a 
video footage of a horse into a running zebra—all without the need for vast troves of painstak-
ingly-labeled training data. As such, [GANs are] hailed by industry experts as one of the most 
important innovations in deep learning.”); Christopher Bowles et al., GAN Augmentation: Aug-
menting Training Data Using Generative Adversarial Networks (Jan. 8, 2019), 
https://perma.cc/K9SH-73L2 (discussing the use of GANs to increase the availability of medical 
training data).   
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generate similar data.126 The newness of GANs, however, should not be mistaken 
for novelty; GANs are built upon the exact same foundations we have seen in the 
previous subparts. 

3. Generative Adversarial Network 

 The easiest way to think of a GAN is through the example of the production of 
counterfeit money.127 A counterfeiter (i.e., the generator) attempts to produce the 
most realistic-looking fake money, while a detective (i.e., the discriminator) seeks 
to spot the fraudulent activity. In this way (i.e., using a generator and discrimina-
tor128), a GAN uses two models pitted against each other in an iterative loop.129 
Notably, GANs may rely on either type of neural network, a CNN or an RNN, for 
a foundation. The important feature is rather in the interplay between the two 
roles.130  
 Specifically, the generator’s measurement of success depends on the detective’s 
ability to correctly identify falsity, and vice-versa. If the game is played repeatedly, 
assuming theoretically ideal conditions, an equilibrium is reached in which the dis-
criminator is unable to distinguish between real and fake data.131 This is why GANs 
are becoming the go-to for synthetic data generation132—they have the ability to 
generate similar data (e.g., deepfakes133) with better results than seen before.  

 
 126. See Goodfellow, supra note 124. 
 127. Id. at 2672. 
 128. This is unlike the CNN or RNN, both of which typically only use one model. See supra 
Subparts II.A.1-2. 
 129. Id. 
 130. Notably, there are no constraints on the specific types of models used in the GAN. 
 131. The end result here is an equilibrium between the generator and discriminator, known 
as Nash equilibrium: “In a Nash equilibrium, every person in a group makes the best decision for 
herself, based on what she thinks the others will do. And no-one can do better by changing strat-
egy: every member of the group is doing as well as they possibly can.” What Is the Nash Equilibrium 
and Why Does It Matter?, ECONOMIST (Sept. 7, 2016), https://perma.cc/WCX9-KQJN; see also Tim 
Salimans et al., Improved Techniques for Training GANs, 30 PROC. NEURAL INFO. PROCESSING 
SYSTEMS 2234 (2016). 
 132. See infra note 148 and accompanying text. 
 133. See James Vincent, All of These Faces Are Fake Celebrities Spawned by AI, THEVERGE (Oct. 
30, 2017, 7:05 AM), https://perma.cc/795N-9L87 (“By working together, these two networks can 
produce some startlingly good fakes. And not just faces either—everyday objects and landscapes 
can also be created. The generator networks produce[] the images, the discriminator checks them, 
and then the generator improves its output accordingly. Essentially, the system is teaching itself.”). 

https://perma.cc/795N-9L87
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 Concluding our brief discussion of machine learning, it is important to remem-
ber the core134 technology at hand: the neural network, the layers of convolutions 
discussed in the first example.135 Importantly, regarding synthetic data, these net-
works may also be paired with differential privacy.136 The addition of differential 
privacy to neural networks drew interest as early as 2016;137 however, it was not 
until 2018 that researchers realized the potential implications and advantages of 
applying the technique to GANs.138 Without delving into the technical details, pri-
vacy is added by implementing noise into the training data (i.e., creating the filters 
and weights). With this understanding at hand we may now move onto our case 
study demonstrating the feasibility and utility of synthetic data generated through 
a GAN. 

B. Case Study: Generating and Evaluating Synthetic Data 

 The first step in producing synthetic data is to acquire an original, raw dataset, 
which is often difficult. Consider the area of insider threat detection. An insider 
threat is an individual or group of individuals who betray the trust of the organiza-
tion and expose information about the organization to others for motives often 
misaligned with those of the company. The area commanded international spotlight 
when a Booz Allen Hamilton contractor, Edward Snowden, shared classified docu-
ments from the National Security Agency (NSA).139 Mr. Snowden’s leak not only 
spurred widespread concern, as dealings of the NSA became available to the public, 
but also caused research to explode on how to thwart insider threats.140 Paradoxi-
cally, despite interest in insider threat detection, it is an area devoid of publicly 

 
 134. And for the deft reader, the core of the core is this—the universal approximation theo-
rem: any real-world problem which is able to be mathematically mapped as a continuous function 
can be solved with nearly-perfect accuracy by using a neural network. And in more mathematical 
terms, “neural networks with a single hidden layer can be used to approximate any continuous 
function to any desired precision.” Michael Nielsen, Neural Networks and Deep Learning (Oct. 
2018), https://perma.cc/L8AZ-ZCFF; see also Howard supra note 92. 
 135. See supra Part II.A.1. 
 136. See generally Nissim et al., supra note 73. 
 137. See Martín Abadi et al., Deep Learning with Differential Privacy, 2016 PROC. CONF. 
COMPUTER & COMMS. SECURITY 308, 308 (applying differential privacy techniques to machine 
learning language modeling). 
 138. See Liyang Xie et al., POSTER: A Unified Framework of Differentially Private Synthetic Data 
Release with Generative Adversarial Network, 2017 PROC. CONF. COMPUTER & COMMS. SECURITY 
2547. 
 139. See Ewen Macaskill & Gabriel Dance, NSA Files: Decoded, GUARDIAN (Nov. 1, 2013), 
https://perma.cc/2YW7-ZN5Z. 
 140. See generally INSIDER ATTACK AND CYBER SECURITY: BEYOND THE ATTACKER (Salvatore J. 
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available data since the data is expensive to attain and privacy-invasive by nature. 
This is because the data necessary to detect an insider threat is very fine-grained,141 
and its collection causes privacy concerns. With this in mind, we opted to use a pre-
viously-attained, private dataset maintained by Columbia University’s Intrusion 
Detection Lab, the West Point dataset.142 

1. Database Selection and Synthetic Data Generation 

 The West Point dataset tracks the computer interactions of 63 West Point ca-
dets over a one-month period.143 The original data was acquired by having each 
cadet install software on their machine collecting information on all aspects of use 
(i.e., editing documents, viewing webpages, opening files, and any other activity oc-
curring on the computer). This resulted in a wide variety of comparable relation-
ships. For example, the number of website visits per user per day (see figure below) 
or the time spent online versus time spent writing documents.144 

 

 
Stolfo et al. eds. 2008). 
 141. Detecting insider threats is only attained from thorough, intimate access to a user’s in-
teractions with their computer. 
 142. See Preetam Dutta et al., Simulated User Bots: Real Time Testing of Insider Threat Detection 
Systems, 2018 IEEE SYMP. SECURITY & PRIVACY WORKSHOP 228, 228. The data from the West Point 
cadets was gathered under an IRB-approved protocol. 
 143. See id. at 232. The earliest installations of this software occurred on January 15, 2015, 
and the latest installations were on February 13, 2015. “Each user had a participant/device Win-
dows System ID and Unique ID number. The cadets had up to three extraction dates for the data 
from their machines, ranging from February 10, 2015, for the first pull to March 12, 2015, for the 
last data collection.” Id. Notably, the data collected did suffer from periods of technical difficulties 
due to the data collection software agent. However, despite this fact, the data still provides a val-
uable resource and a wealth of information regarding normal user behavior. 
 144. Although the users are from a homogenous population with similar roles, the users have 
diverse usage habits. Data heterogeneity is an important characteristic to consider when model-
ing and analyzing data since it is intuitively and pragmatically impossible to differentiate individ-
uals if they all resemble one another. 
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Notably, it is easy to see how users may be differentiated by their actions—some 
often use social media (i.e., users four and two) and others do not (i.e., users three 
and five). 
 The next step is to select the type of neural network to be used. Given the type 
of data contained in the West Point dataset (e.g., the columns of the dataset contain 
user ID, timestamp, action, and detail), an RNN is the best neural network architec-
ture for the job.145 Additionally, it would be most ideal for the RNN to take into 
account various prior actions when making predictions. For this reason, we used a 
specific type of RNN known as Long Short-Term Memory (LSTM).146 This type of 

 
 145. See supra Part II.A.2 (explaining how RNNs are typically used for text-based genera-
tion). 
 146. See generally Sepp Hochreiter & Jürgen Schmidhuber, Long Short-Term Memory, 9 
NEURAL COMPUTATION 1735, 1735 (1997); see also Christopher Olah, Understanding LSTM Net-
works, COLAH’S BLOG (Aug. 27, 2015), https://perma.cc/EE26-C6Y6 (“Sometimes, we only need to 
look at recent information to perform the present task. For example, consider a language model 
trying to predict the next word based on the previous ones. If we are trying to predict the last 
word in ‘the clouds are in the [next word],’ we don’t need any further context—it’s pretty obvious 
the next word is going to be sky. In such cases, where the gap between the relevant information 
and the place that it’s needed is small, RNNs can learn to use the past information. But there are 
also cases where we need more context. Consider trying to predict the last word in the text ‘I grew 
up in France . . . I speak fluent [next word].’ Recent information suggests that the next word is 
probably the name of a language, but if we want to narrow down which language, we need the 
context of France, from further back. It’s entirely possible for the gap between the relevant infor-
mation and the point where it is needed to become very large. Unfortunately, as that gap grows, 
RNNs become unable to learn to connect the information. . . . Long Short Term Memory net-
works—usually just called ‘LSTMs’—are a special kind of RNN, capable of learning long-term 

https://perma.cc/EE26-C6Y6
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RNN leverages not only an RNN’s ability to maintain some form of memory, but 
also the ability to remember important events over varying time periods. We 
primed the LSTM with the following inputs: previous event, previous time step, 
previous day-of-week, and previous hour-of-day. Additionally, as illustrated above, 
we used the GAN technique and pitted a generator against a discriminator. The 
generator was able to produce a predicted next event and predicted next time step 
while the discriminator was able to check these predictions for accuracy. This pro-
cess formed the basis for our synthetic data.  

2. Evaluation of Synthetic Data 

 To assess the efficacy of our generated data, we clustered both the raw data (i.e., 
the cadets’ computer interactions) and synthetic data around similar actions—i.e., 
intuitively, the trail of actions left by users naturally groups around commonalities 
like frequency of social media use. To accomplish this task, we used term frequency 
inverse document frequency (TF-IDF).147 This metric looks at the frequency of 
word-use in a document. After grouping, we could then assess the similarities or 
differences between the raw and synthetic data. 
 As expected, when checking the clustered synthetic groups against the clus-
tered raw groups we found little to no variance. In other words, our synthetic data, 
for all but privacy infractions, was the same.148 What is more, even beyond our case 
study, similar research concurs in our results: Synthetic data is a valid alternative to 
original data.149 

 
dependencies.”). 
 147. See Gerard Salton & Christopher Buckley, Term-Weighting Approaches in Automatic Text 
Retrieval, in 24 INFO. PROCESSING & MGMT. 513, 513 (1988). This process initially looks at the 
frequency with which words occur in a document (i.e., the text-based actions assigned to each 
user). The problem is that insignificant words often occur with high frequency (such as “the” or 
“a”). Id. TF-IDF therefore pivots to ascribe a higher weight to less-common words and a lower 
weight to more-common words. Id. In the end, the combination of these two components yields 
a useful metric for grouping users by similar actions. For specifics, we used a Gaussian Mixture 
Model that minimized the Bayesian Information Criterion. See Scott Chen & P.S. Gopalakrish-
nan, Clustering via the Bayesian Information Criterion with Applications in Speech Recognition, 1998 
PROC. IEEE INT’L CONF. ON ACOUSTICS, SPEECH & SIGNAL PROCESSING 645, 647-48; see also Charu 
C. Aggarwal & Philip S. Yu, A Condensation Approach to Privacy Preserving Data Mining, ADVANCED 
DATABASE TECH. 183, 183 (2004). 
 148. See Dutta et al., supra note 142. 
 149. See generally Neha Patki et al., The Synthetic Data Vault, 2016 IEEE INT’L CONF. DATA 
SCI. & ADVANCED ANALYTICS 399, 400-10 (demonstrating a technique—the synthetic data vault—
used to create synthetic data from five publicly available datasets). 



36 STANFORD TECHNOLOGY LAW REVIEW Vol. 22:1 

 A budding body of research has found that when comparing analysis using 
original data to analysis using synthetic data, for the most part, the results are in-
distinguishable, even by domain experts.150 In fact, researchers have gone so far as 
to conclude that “scientists can be as productive with synthesized data as they can 
with control data.”151 Moreover, other publications suggest that in the face of 
reidentification (i.e., the thorn in the side of deidentification), synthetic datasets 
leave no room for leakage.152 In summary, the “usefulness” of synthetic data has 
been validated by not only our work, but also the work of others. 
 However, this is not to say that synthetic data is the “silver bullet” data scientists 
and privacy activists have been searching for.153 As the deidentification saying goes, 

 
 150. See id. at 409 (“[For] 7 out of 15 comparisons, we found no significant difference be-
tween the accuracy of features developed on the control dataset vs. those developed on some ver-
sion of the synthesized data . . . .”); Edward Choi et al., Generating Multi-Label Discrete Patient Rec-
ords Using Generative Adversarial Networks, 68 PROC. MACHINE LEARNING HEALTHCARE 286, 296 
(2017) (“The findings suggest that medGAN’s synthetic data are generally indistinguishable to a 
human doctor except for several outliers. In those cases, the fake records identified by the doctor 
either lacked appropriate medication codes, or had both male-related codes (e.g. prostate cancer) 
and female-related codes (e.g. menopausal disorders) in the same record.”). 
 151. See Patki et al., supra note 149, at 409. 
 152. See Noseong Park et al., Data Synthesis Based on Generative Adversarial Networks, in PROC. 
11TH VLDB ENDOWMENT 1071, 1074 (2018). 
 153. Chong Huang et al., Context-Aware Generative Adversarial Privacy, 19 ENTROPY 656, 656 
(2017) (implementing a “context-aware privacy framework”); Brett K. Beaulieu-Jones et al., Pri-
vacy-Preserving Generative Deep Neural Networks Supporting Clinical Data Sharing (July 5, 2017), 
https://perma.cc/X65F-36VE (acknowledging the failure to non-sanitized synthetic data to hold 
up against even simple privacy attacks—and therefore incorporating differential privacy into 
their machine learning models); Vincent Bindschaedler et al., Plausible Deniability for Privacy-Pre-
serving Data Synthesis, in PROC. 10TH VLDB ENDOWMENT 481, 481 (2017) (“[T]he major open 
problem is how to generate synthetic full data records with provable privacy, that experimentally 
can achieve acceptable utility in various statistical analytics and machine learning settings. In this 
paper, we fill this major gap in data privacy by proposing a generic theoretical framework for 
generating synthetic data in a privacy-preserving manner.”) (emphasis in original); Matt Fredrik-
son et al., Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures, in 
PROC. 22ND CONF. COMPUTER & COMMS. SECURITY 1322, 1322 (2015) (“Computing systems in-
creasingly incorporate machine learning (ML) algorithms in order to provide predictions of life-
style choices, medical diagnoses, facial recognition, and more. The need for easy ‘push-button’ 
ML has even prompted a number of companies to build ML-as-a-service cloud systems . . . . The 
features used by these models, and queried via APIs to make predictions, often represent sensitive 
information. In facial recognition, the features are the individual pixels of a picture of a person’s 
face. In lifestyle surveys, features may contain sensitive information, such as the sexual habits of 
respondents. In the context of these services, a clear threat is that providers might be poor stew-
ards of sensitive data, allowing training data or query logs to fall prey to insider attacks or expo-
sure via system compromises. [We] introduce new attacks that infer sensitive features used as 
inputs to decision tree models, as well as attacks that recover images from API access to facial 
recognition services. . . . One example from our facial recognition attacks is depicted in Figure 1: 
an attacker can produce a recognizable image of a person, given only API access to a facial recog-
nition system and the name of the person whose face is recognized by it.”); Aleksei Triastcyn & 
Boi Faltings, Generating Artificial Data for Private Deep Learning (June 7, 2018), 
https://perma.cc/UWR9-XQXB (“Following recent advancements in deep learning, more and 

https://perma.cc/UWR9-XQXB
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just because the dataset appears anonymous does not mean it is. For synthetic data, 
this means that without adding privacy-preserving features like differential pri-
vacy, there still remains risk of data leakage. 

C. Risk of Data Leakage: Limitations of Synthetic Data 

 Synthetic data alone is not the end-game for database privacy: it too has limi-
tations. These include the uniqueness of data used to train the machine learning 
model, the ability of an attacker to use adversarial machine learning techniques, and 
the type of questions being asked of the dataset. Moreover, as discussed in Part III, 
the ceiling on each of these limitations hinges on the particular law being applied. 
As fodder for that later legal analysis, each of these limitations are discussed in turn. 

1. Too Individualized 

 First off, one inherent characteristic of synthetic datasets is that they may leak 
information.154 In computer science parlance, this is referred to as overfitting a 
model, which may result in particular data being “leaked.”155 Consider the graph of 
social media use above, showing the outlier count of over 350 visits to social media 
websites by user four. A machine learning model must take this into account.156 

 
more people and companies get interested in putting their data in use and employ [machine learn-
ing models] to generate a wide range of benefits that span financial, social, medical, security, and 
other aspects. At the same time, however, such models are able to capture a fine level of detail in 
training data, potentially compromising privacy of individuals whose features sharply differ from 
others. Recent research . . . suggests that even without access to internal model parameters, by 
using hill climbing on output probabilities of a neural network, it is possible to recover (up to a 
certain degree) individual examples (e.g. faces) from a training set. The latter result is especially 
disturbing knowing that deep learning models are becoming an integral part of our lives, making 
its way to phones, smart watches, cars, and appliances. And since these models are often trained 
on customers’ data, such training set recovery techniques endanger privacy even without access 
to the manufacturer’s servers where these models are being trained.”). 
 154. The term leak here means to permit discovery of facts that were assumedly hidden by 
the process of synthetic data generation. See Samuel Yeom et al., Privacy Risk in Machine Learning: 
Analyzing the Connection to Overfitting, 31 IEEE COMP. SECURITY FOUNDS. SYS. 268, 281 (2018) 
(finding privacy leaks in machine learning models as owed to overfitting—and even other, more 
subtle features of the models); see also Tyler Hunt et al., Chiron: Privacy-Preserving Machine Learn-
ing as a Service (Mar. 15, 2018), https://perma.cc/QZ8S-UHZY. 
 155. See generally Michael Veale, Reuben Binns & Lilian Edwards, Algorithms that Remember: 
Model Inversion Attacks and Data Protection Law, 376 PHIL. TRANSACTIONS ROYAL SOC’Y 1, 3- 6 
(2018) (“It has been demonstrated that machine learning models are vulnerable to a range of cy-
bersecurity attacks that cause breaches of confidentiality. Confidentiality attacks leak infor-
mation to entities other than those whom designers intended to view it.”). 
 156. See Nicolas Papernot & Ian Goodfellow, Privacy and Machine Learning: Two Unexpected 
Allies?, CLEVERHANS-BLOG (Apr. 29, 2018), https://perma.cc/W93V-6VR8 (“Machine learning al-
gorithms work by studying a lot of data and updating their parameters to encode the relationships 

https://perma.cc/QZ8S-UHZY
https://perma.cc/W93V-6VR8
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Consequently, that fact will be reflected in the model, and may show up in some 
synthetic records.157 Under an absolute definition of privacy—no leakage whatso-
ever, in any reasonable amount of time—this latter result is unacceptable, since only 
that one person used social media excessively. 
 We thus have a dilemma: even with a reasonable distribution of input records 
(i.e., one that does not exhibit habitual cases such as only one party performing a 
particular action with sufficient frequency to sway the model) there may be at least 
some risk that some quantity of the original data could be leaked. Moreover, bound-
ing that leakage by quantifying “how hard” it is to reverse the model to find a leak 
is an open-ended problem.158 
 Ideally, a technical solution could be developed. Although one solution might 
be to use a synthesizing algorithm to replace the actual cadet’s anomalous behavior 
with a different one, this is simply anonymization, the very technology whose fail-
ures we are trying to avoid.159 Other techniques falling into this category—i.e., reg-
ularization methods like weight-decay or drop out (i.e., discarding certain pieces of 
potentially-sensitive data during training)—are equally ill suited.160  
 A better solution here is to use differential privacy in combination with syn-
thetic data generation.161 Though a relatively new technique, the results are very 

 
in that data. Ideally, we would like the parameters of these machine learning models to encode 
general patterns (‘patients who smoke are more likely to have heart disease’) rather than facts 
about specific training examples (‘Jane Smith has heart disease’). Unfortunately, machine learning 
algorithms do not learn to ignore these specifics by default. If we want to use machine learning 
to solve an important task, like making a cancer diagnosis model, then when we publish that ma-
chine learning model (for example, by making an open source cancer diagnosis model for doctors 
all over the world to use) we might also inadvertently reveal information about the training set. 
A malicious attacker might be able to inspect the published model and learn private information 
about Jane Smith.”). 
 157. Though social media visits are relatively benign, consider the frequent visitation to an 
incredibly specific website such as Delta Junction Dating, a dating website geared toward the 
roughly 850-person town of Delta Junction, Alaska. See DELTA JUNCTION DATING, 
https://perma.cc/X2VE-NHBA (archived Oct. 26, 2018). If this were part of the analysis it may 
work its way into the synthetic dataset. And in some sense, this is privacy leakage: real data has 
appeared. In another sense, it is not; someone receiving the data could not easily tell which rec-
ords are real and which are synthetic. However, if a single record appears frequently in the gen-
erated data, it would be likely assumed to be a reflection of the actual input data. 
 158. But see Florian Tramèr et al., Stealing Machine Learning Models via Prediction APIs, in 25TH 
USENIX SECURITY SYMP. 601, 601 (2016) (engaging in something similar to reversal by showing 
the successful duplication of machine learning model functionality given only pre-trained models 
in query-based interactions). 
 159. See Ohm, supra note 6, at 1716-31 (describing the failures of anonymization). 
 160. Nicholas Carlini et al., The Secret Sharer: Measuring Unintended Neural Network 
Memorization and Extracting Secrets 11-12 (Feb. 22, 2018) (unpublished manuscript), 
https://perma.cc/JD9Z-5DPQ. 
 161. Cynthia Dwork & Vitaly Feldman, Privacy-Preserving Prediction, 75 PROC. MACHINE 
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promising.162 Utility is sustained through data generation and privacy is obtained—
up to a certain threshold—via the robust guarantees of differential privacy.163 How-
ever, setting that threshold164 will be key in achieving a balance between privacy 
and utility. These two pillars remain a tradeoff. For this reason, while adding dif-
ferential privacy to synthetic data generation does help in the data leakage sense, it 
does not offer a silver bullet.165 

2. Adversarial Machine Learning  

 A second limitation to synthetic data concerns situations where an attacker at-
tempts to exert influence over the process of generating synthetic data to force leak-
age. These attacks are known generally as adversarial machine learning.166 Notably, 
these attacks require more than the mere possession of synthetic data. Rather, the 
ability to have access to the model used to generate synthetic data (e.g., the particu-
lar convolutions and weights used in the CNN example given above) is a prerequi-
site.  
 Consider a pre-trained image recognition model similar to the one demon-
strated above for the classification of digits, but aimed at faces. Recent research 
demonstrates that if the attacker has access to this model, and a little auxiliary in-
formation such as a person’s name, the faces of those used to train the model could 

 
LEARNING RESEARCH 1, 1 (2018); Carlini et al., supra note 160, at 13 (finding not only that neural 
networks memorize and generate secrets even when secrets are alarmingly rare, but that the use 
of differential privacy in combination with training neural network works better than any other 
sanitization technique). 
 162. H. Brendan McMahan et al., Learning Differentially Private Recurrent Language Models, 
6TH INT’L CONF. ON LEARNING REPRESENTATIONS, May 2018, at 1-2. 
 163. See Abadi et al., supra note 137 (applying differential privacy techniques to machine 
learning language modeling). 
 164. See supra note 87 and accompanying text (referring to the epsilon parameter). 
 165. See supra Subpart I.B.3.ii. 
 166. See Ling Huang et al., Adversarial Machine Learning, 4 PROC. WORKSHOP SECURITY & 
ARTIFICIAL INTELLIGENCE 43, 43 (2011); Ivan Evtimov et al., Robust Physical-World Attacks on Ma-
chine Learning Models, COMPUTER VISION & PATTERN RECOGNITION, June 2018, at 1.; see also Alexey 
Kurakin et al., Adversarial Machine Learning at Scale, 5TH INT’L CONF. ON LEARNING 
REPRESENTATIONS, Apr. 2017, at 1; Gamaleldin F. Elsayed et al., Adversarial Examples that Fool Both 
Computer Vision and Time-Limited Humans, 32 PROC. NEURAL INFO. PROC. SYS. 1, 1 (2018) (tricking 
image recognition software into thinking a panda was a type of monkey); Ian J. Goodfellow, Jon-
athon Shlens & Christian Szegedy, Explaining and Harnessing Adversarial Examples, in ICLR 1, 3 
(2015); Julia Evans, How to Trick a Neural Network Into Thinking a Panda Is a Vulture, CODEWORDS, 
http://perma.cc/AR3J-UGHF (archived Oct. 26, 2018). 
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be uncovered.167 Along those same lines, other research168 goes even further to sug-
gest that if the attacker has full access to the model’s code,169 then up to 70% of the 
original data used to train the model could be uncovered. Not only that, but even 
with limited input-output access only,170 the attacker could learn whether a data 
point was “in” the data set used to train the model.171 
 The point here is that while synthetic data itself may escape the reidentification 
woes, not all aspects of its use are invulnerable. In particular, sharing machine learn-
ing models used for training on sensitive data should not be taken lightly. Yet, even 
from this perspective computer science literature points to differential privacy.172 
In fact, out of many possible solutions to the model-access problem, differential 
privacy has been noted as the only solution to sufficiently protect privacy while 
maintaining utility.173 In this sense, differential privacy provides both a way to es-
cape data leakage and adversarial machine learning.174 
 
 167. See Fredrikson et al., supra note 4, at 17 (“Performing an in-depth case study on privacy 
in personalized warfarin dosing, we show that suggested models carry privacy risks, in particular 
because attackers can perform what we call model inversion: an attacker, given the model and some 
demographic information about a patient, can predict the patient’s genetic markers.”); see also 
Congzheng Song et al., Machine Learning Models that Remember Too Much, 2017 PROC. CONF. ON 
COMPUTER & COMMS. SECURITY 587, 600 (2017) (“ML cannot be applied blindly to sensitive data, 
especially if the model-training code is provided by another party. Data holders cannot afford to 
be ignorant of the inner workings of ML systems if they intend to make the resulting models 
available to other users, directly or indirectly. Whenever they use somebody else’s ML system or 
employ ML as a service (even if the service promises not to observe the operation of its algo-
rithms), they should demand to see the code and understand what it is doing.”). 
 168. See Fredrikson et al., supra note 4. It is important to note that the authors of this work 
make several assumptions about the models, which may not necessarily be feasible or realistic. 
However, the work does highlight the possibility of potentially dangerous leaks. But see Reza 
Shokri et al., Membership Inference Attacks Against Machine Learning Models, 2017 IEEE SYMP. 
SECURITY & PRIVACY 3, 3; Yunhui Long et al., Understanding Membership Inferences on Well-
Generalized Learning Models 1 (Feb. 13, 2018) (unpublished manuscript), 
https://perma.cc/GAU3-AV62 (“[These] type[s] of attacks can have a significant privacy implica-
tion such as re-identifying a cancer patient whose data is used to train a classification model.”). 
 169. In this sense, we are referring to white-box access. White-box attacks allow the attacker 
to see “how” the sausage is made—i.e., how the machine learning code is built. The attacker does 
not have access to the data used in training, but is able to supply training data and see what comes 
out. See Shokri et al., supra note 168, at 3. 
 170. This is a black-box attack. The attacker is only able to give known input and observe 
output. The attacker may not see the code manipulating the input or alter that code in any way. 
See id. 
 171. See id. This is known as the membership inference attack; “[G]iven a data record and 
black-box access to a model, determine if the record was in the model’s training dataset.” Id. 
 172. See Long et al., supra note 168, at 13 (“Differential privacy is a prominent way to for-
malize privacy against membership inference.”); Bindschaedler et al., supra note 153 (using a form 
of differential privacy plus synthetic data). 
 173. Long et al., supra note 168. But see Dwork & Feldman, supra note 161. 
 174. Carlini, supra note 160, at 13 (“Only by developing and training a differentially-private 
model are we able to train models with high utility while protecting against the extraction of 

https://perma.cc/GAU3-AV62


Winter 2019     PRIVACY AND SYNTHETIC DATASETS 41 

3. Non-Universality  

 Finally, as with all other methods, synthetic data even with differential privacy 
is not a cure-all. Indeed, the hard-limit reality of data sanitization is that there will 
always be some situations when the demands of individuality will not be satisfied 
by any privacy-preserving technique, no matter how finely tuned. For example, 
suppose the intended use is a particular statistical query: what percentage of records 
satisfy some property? If the result must be highly accurate and almost no sanitiza-
tion is used, then an untrustworthy data custodian may be able to reconstruct the 
original data with 99% accuracy; conversely, if the results must be private, then even 
minimal amounts of noise may derail the needed accuracy.175 The conundrum, 
though improved, is not completely solved by synthetic data.176  

III. SYNTHETIC DATA’S LEGALITY 

 Turning to the legal world, one question remains: is synthetic data legal? Does 
synthetic data protect privacy at least as much as a to-be-applied statute would 
mandate? Though the answer may appear straightforward—yes, fake data is not 
real—the nuances of data leakage and the mosaic used to define privacy require a 
more detailed response. We therefore group the analysis into two categories: (1) 
“vanilla” synthetic data and (2) differentially private synthetic data. 

A. Vanilla Synthetic Data 

 When a generative model is trained without applying any form of data saniti-
zation during or after training177 the produced data may be deemed “vanilla” syn-
thetic data. The generation process is as bare-bones as possible. Data in, data out. 

 
secrets in both theory and practice.”). 
 175. More precisely, this applies if there are n records and the maximum error in a query 
must be much less than √𝑛𝑛. See Irit Dinur & Kobbi Nissim, Revealing Information While Preserving 
Privacy, in PRINCIPLES DATABASE SYSTEMS 202, 202-03 (2003). 
 176. See, e.g., Briland Hitaj et al., Deep Models Under the GAN: Information Leakage from Col-
laborative Deep Learning, 2017 PROC. CONF. COMPUTER & COMMS. SECURITY 603, 606-07; Jamie 
Hayes et al., LOGAN: Evaluating Privacy Leakage of Generative Models Using Generative Ad-
versarial Network 1-2 (Aug. 21, 2018) (unpublished manuscript), https://perma.cc/S9UF-VQVN. 
On the other hand, see Stefanie Koperniak, Artificial Data Give the Same Results as Real Data—
Without Compromising Privacy, MIT NEWS (Mar. 3, 2017), https://perma.cc/GWC5-YSTG. 
 177. This also assumes sanitization techniques are not used after the fact, such as applying 
differential privacy when querying the database. 

https://perma.cc/S9UF-VQVN
https://perma.cc/GWC5-YSTG
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Unfortunately, as Part II.C demonstrates, this could result in data leakage: secrets 
in, secrets out.  
 Per data leakage, pairing vanilla synthetic data with privacy statutes results in 
both over and under inclusive statutes. Statutes thinking of PII in absolute terms 
(i.e., no privacy loss is permitted no matter how small the chance of leakage) may 
not permit synthetic datasets to be shared, even though the likelihood of identifying 
an individual is low. Conversely, statutes using a less stringent approach may un-
derestimate the risk where more caution is needed. To illustrate each of these 
points, consider a large training dataset with few outliers. This would give the gen-
erative model its best chance of hiding secrets found in the original data. 

1. Over-Inclusive Privacy 

 Under one of the strictest privacy standards, HIPAA, privacy is assumed if a 
database is stripped of all seventeen identifiers believed to uniquely describe indi-
viduals, such as name, zip code, and anything else that could reasonably be consid-
ered a “unique identifier.” If the dataset lacks these identifiers, then it may be shared 
freely. 
 To be sure, synthetic data would most likely not contain any of the “real” iden-
tifiers found in the training data—all of the unique identifiers outlined by HIPAA 
would be replaced with machine-generated counterparts. Moreover, considering 
evenly distributed training data, even if the model reproduced a particular datum 
that turned out to be real, this would not automatically mean an individual could be 
deidentified.178 Assuming an adversary learns zip code 10004 within the database 
is real (e.g., assume the row in the database has the following fields: <name>, <zip 
code>, <HIV status>) this does not mean any of the information related to the zip 
code is real or that the zip code provides any clues to uncovering the identity of an 
individual.179 Synthetic data may not be “joined” with auxiliary information in the 
same sense as a deidentified dataset—the matchings would pair on fake data. 
 True enough, some sense of privacy has been lost with the hypothetical zip 
code leakage, but is this enough to prohibit sharing outright? HIPPA is clear; the 
dataset must lack all identifiers (or be verifiably secure according to an expert). 

 
 178. To visualize this, see Figure 4 in Triastcyn and Faltings’s work, supra note 153. The 
image displays real versus fake pictures of numbers, illustrating how many numbers look similar, 
but are not. 
 179. On the opposite end of the spectrum, if an adversary learns the first and last name of 
someone in the database is real, that obviously has graver consequences. 
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Seemingly, then, the case is closed and the data may not be shared. Yet, consider 
that even complex computer science methods of extracting secrets from vanilla syn-
thetic data (i.e., attempts to identify “leaks”180 in the dataset) have been shown to be 
hit or miss.181 Researchers using sophisticated methods to extract secrets in a va-
nilla synthetic dataset were only successful182 three times in seven—even when the 
likelihood that a secret was in the synthetic dataset was over four thousand times 
more likely than a random word.183 
 For another perspective, look at it under the lens of the Sander case, where pro-
fessor Richard Sander litigated over access to the State Bar of California’s bar ad-
mission database.184 On remand from the California Supreme Court, the California 
Superior Court assessed whether any method of de-identification would suffi-
ciently protect students’ privacy rights under FERPA while allowing Professor 
Sander to use the database.185 Of four proposed methods relying on deidentifica-
tion, the court found only one sufficiently protected privacy by using k-anonym-
ity—though it destroyed utility.186 Importantly, Professor Sweeney pegged the 

 
 180. See supra Part II.C.1 (describing leaky data). 
 181. Carlini, supra note 160, at 10, tbl.5. 
 182. The researchers did not exhaustively search for a secret but merely ran extraction algo-
rithms for one hour. See id. at 10. Additionally, the “secrets” researchers were searching for were 
specific phrases (e.g., a passcode or credit card number) and not data which is relatively benign as 
a standalone data point—like discovering a zip code which may be real, but which is not linked to 
any real information directly. Id. (using social security number and credit card number). 
 183. Id. at 9-10. Training on the Enron corpus and hunting for secrets—looking for “real” 
social security numbers or credit card numbers—secrets were successfully extracted, in most 
cases, when the likelihood of a “secret” showing up was over four thousand times more likely than 
a random phrase. 
 184. See Sander v. State Bar of California, No. CPF-08-508880 (Nov. 7, 2016) (on file with 
author); see generally Latanya Sweeney et al., Saying It’s Anonymous Doesn’t Make It So: Re-Identifi-
cations of “Anonymized” Law School Data, J. TECH. SCI., Nov. 2018. 
 185. Sander, No. CPF-08-508880 at *19. 
 186. Id. at *4. The other proposals included various levels of k-anonymity, removal of tradi-
tional identifiers like name and zip code, and the use of a secure data enclave. Id. at *17-21. 
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most-privacy-preserving method proposed as having a 31% chance of reidentifica-
tion.187 And to the court, this far exceeded the acceptable privacy risk.188 The court 
prohibited the data from being disclosed.189 
 Though non-precedential, the conclusion is clear: anonymization either 
skirted utility (i.e., k-anonymity) or privacy (i.e., historical anonymization tech-
niques like removal of zip code and name)—making disclosing sensitive bar data 
unwarranted in one case or unwise in the other. 
 Likewise, vanilla synthetic data makes no guarantee that a dataset is 100 per-
cent free of all real identifiers. Where, as here in Sander, sensitive facts are on the 
line, urging a court to permit data release will be a tough sell. In other words, when 
data disclosure is governed by a stringent statute, any chance of identification—no 
matter how low—may prohibit the release of a dataset into the wild.190 

2. Under-Inclusive Privacy 

 Insensitivity to chance identification is also possible. With statutes like CCPA 
or VPPA, statutorily protected identifiers relate to a specific, unique piece or pieces 
of information. A database must lack these identifiers to be considered shareable, 
even if the pieces do not fall into the traditional category of name or zip code. And 
again, looking at evenly distributed training data, the generated synthetic data 
would present a “theoretical” rather than concrete chance of identification: any ex-
pected data leakage is unlikely to enable the identification of an individual. Here, 
 
 187. Id. at *17-21; see also Sweeney et al., supra note 184, at 74-78. Stepping back, however, 
one of the reasons for this high risk of reidentification was that each proposal for sanitization 
revolved around starting with unique data and removing uniqueness bit by bit. The database’s 
core was built on unique identifiers. Conversely, with synthetic data, the database’s core would 
be built on fake, machine-generated data. Data leakage only concerns the possibility that one of 
the data points is real and is enough to tip off identification, presenting a much lower, theoretic 
risk to privacy. 
 188. See Sweeney et al., supra note 184, at 9 (“[T]he Court found that the percentage of unique 
records that exist after application of three of the four protocols is significantly higher than other 
acceptable norms. In particular, minority groups are more vulnerable to re-identification than 
their White counterparts. The Court also found considerable risk in “attribute disclosures,” that 
is, inferences that can be drawn about applicants by virtue of their membership of a particular 
group.”). To be sure, although HIPAA did not apply, the court used HIPAA as a benchmark in 
assessing risk. The petitioners in the case argued that HIPAA would accept a .22% risk of reidenti-
fication while the respondents argued for .02 to .04%. Sander, No. CPF-08-508880 at *19. 
 189. Sander, No. CPF-08-508880 at *21-22. 
 190. This is not to say the dataset should be released; only that under the right circumstances, 
the risk of identification may be overprotected and a less-stringent protection policy might better 
coax the wheels of research. Additionally, if the data concerned HIPAA, the provision regarding 
expert satisfaction could be used. 45 CFR § 164.514(b)(1). However, as seen in Sander, this is not 
a sure bet, and may result in clashing expert opinions. 
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however, the chance is likely low enough for a court to permit disclosure. Consider 
the unifying themes in Pruitt, In re Hulu, Eichenberger, and In re Nickelodeon. 
 The courts in these cases, focusing on the CCPA and VPPA, held that “anony-
mized” identifiers (i.e., user IDs, device serial numbers, or hexadecimal codes) could 
be publicly shared without violating consumers’ PII. In Yershov, facing a relatively 
straightforward issue, the court found the combination of geolocation, device iden-
tification, and content viewed to be PII and therefore protected.191 However, in 
Pruitt the court faced a more nebulous situation, debating whether converter box 
codes used by a company to map customers with business information were also 
PII.192 Because the codes were simply a series of digits, and the mapping from codes 
to customers was not publicly shared, the court found these codes to be non-PII.193 
 Building on this holding, In re Hulu194 and Eichenberger195 drew the line on the 
mere theoretical possibility of data linkage when sharing information.196 These 

 
 191. Yershov v. Gannett Satellite Info. Network, Inc., 820 F.3d 482, 485 (1st Cir. 2016) (dis-
closing the following information: “[E]ach time Yershov watched a video clip on the App, Gannett 
disclosed to Adobe the title of the viewed video, Yershov’s unique Android ID, and the GPS co-
ordinates of Yershov’s device at the time the video was viewed. Using this information, Adobe 
was able to identify Yershov and link the videos he had viewed to his individualized profile main-
tained by Adobe.”). 
 192. See Pruitt v. Comcast Cable Holdings, LLC, 100 F. App’x 713, 716 (10th Cir. 2004) 
(“Without the information in the billing or management system one cannot connect the unit ad-
dress with a specific customer; without the billing information, even Comcast would be unable 
to identify which individual household was associated with the raw data in the converter box.”). 
 193. Id. at 715 (“To receive [digital cable service], subscribers must have a special converter 
box installed and attached to their telephone line. The converter boxes, manufactured by 
Motorola, transmit and store (1) pay-per-view purchase information, (2) system diagnostic infor-
mation and (3) settop bugging information. Each converter box contains a code displayed in hex-
adecimal format indicating the date of a pay-per-view purchase and a source identifier for the 
pay-per-view channel. The converter box stores a maximum of sixty-four purchases. When total 
purchases exceed that number, the newest purchase information overwrites the oldest purchase. 
The converter box also contains a code (again displayed in hexadecimal format) signifying the 
total number of purchases and payments generated through that particular box. Individual sub-
scriber information is not contained within the converter box, but an identifying number known 
as a ‘unit address’ allows Comcast to match the subscriber’s purchases to its billing system. The 
billing system contains the name and address of the household member responsible for pay-
ment.”). 
 194. In re Hulu Privacy Litig., No. C 11-03764 LB, 2014 WL 1724344, at *10-11 (N.D. Cal. 
Apr. 28, 2014). 
 195. Eichenberger v. ESPN, Inc., 876 F.3d 979, 985 (9th Cir. 2017). But see In re Vizio, Inc., 
238 F. Supp. 3d 1204, 1212 (C.D. Cal. 2017) (finding the following assortment of collections to 
satisfy PII: “up to 100 billion content ‘viewing data points’ along with detailed information about 
a consumer’s digital identity, such as consumers’ IP addresses, zip codes, MAC addresses, product 
model numbers, hardware and software versions, chipset IDs, region and language settings, as 
well as similar information about other devices connected to the same network”). 
 196. In re Hulu Privacy Litig., 2014 WL 1724344, at *11 (“In sum, the statute, the legislative 
history, and the case law do not require a name, instead require the identification of a specific 
person tied to a specific transaction, and support the conclusion that a unique anonymized ID 
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courts held that “randomly”197 generated user IDs like the converter box codes in 
Pruitt were useless without a master table mapping the codes to real identifiers. 
Curtly stated, if reidentification of data is hard or time-consuming, that means the 
data is not PII. As stated in Eichenberger:  

 
The manager of a video rental store in Los Angeles understood 
that if he or she disclosed the name and address of a customer—
along with a list of the videos that the customer had viewed—the 
recipient of that information could identify the customer. By con-
trast, it was clear that, if the disclosure were that “a local high 
school teacher” had rented a particular movie, the manager would 
not have violated the statute. That was so even if one recipient of 
the information happened to be a resourceful private investigator 
who could, with great effort, figure out which of the hundreds of 
teachers had rented the video.198  
 

Finally, pushing the line the farthest, In re Nickelodeon Consumer Privacy Litigation199 
found that networking cookies and an IP address were not PII—making Yershov’s 
understanding come full circle: “There is certainly a point at which the linkage of 
information to identity becomes too uncertain, or too dependent on too much yet-
to-be-done, or unforeseen detective work.”200 According to this line of cases at 

 
alone is not PII but context could render it not anonymous and the equivalent of the identification 
of a specific person.”); Eichenberger, 876 F.3d 985-86 (“Plaintiff alleges that Defendant disclosed 
to Adobe: (1) his Roku device serial number and (2) the names of the videos that he watched. As 
Plaintiff concedes, that information cannot identify an individual unless it is combined with other 
data in Adobe’s possession—data that ESPN never disclosed and apparently never even possessed. 
Indeed, according to Plaintiff, Adobe can identify individuals only because it uses a complex ‘Vis-
itor Stitching technique’ to link an individual’s Roku device number with other identifying infor-
mation derived from ‘an enormous amount of information’ collected ‘from a variety of sources.’ 
We conclude that an ordinary person could not use the information that Defendant allegedly dis-
closed to identify an individual.”) (emphasis in original). 
 197. But see Jason M. Rubin, Can a Computer Generate a Truly Random Number?, ASK AN 
ENGINEER (Nov. 1, 2011), https://perma.cc/V9QU-K5F7 (“‘One thing that traditional computer 
systems aren’t good at is coin flipping,’ says Steve Ward, Professor of Computer Science and En-
gineering at MIT’s Computer Science and Artificial Intelligence Laboratory. ‘They’re determin-
istic, which means that if you ask the same question you’ll get the same answer every time.’”). 
 198. See Eichenberger, 876 F.3d at 985. 
 199. 827 F.3d 262 (3d Cir. 2016). 
 200. Id. at 289 (citing Yershov v. Gannett Satellite Info. Network, Inc., 820 F.3d 482, 486 (1st 
Cir. 2016)). 
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least, non-detective work’s boundary is the combination of geolocation, device 
identification, and content viewing history. 
 While it was obvious to the courts that an address or geolocation may be PII, 
the introduction of randomness when paired with identifiers has not found favor-
able protection, even if some portion of potentially sensitive information like view-
ing history is tied to the “anonymous codes,” as seen in Pruitt,201 and even if rela-
tively simple techniques could be used to track users across time with the released 
“non-identifiers,” as seen in In re Nickelodeon.202 However, the problem with per-
mitting the sharing of these datasets containing only theoretical risk of identification 
is legion. This line of reasoning is the same one abhorred by the cavalcade of aca-
demics criticizing the historical means of anonymization.203 Indeed, that the data-
base “join” operation would not work on synthetic data does not mean the method 
is free of all threats. 
 As outlined in Part II.C, adversarial machine learning may be incredibly suc-
cessful in uncovering secrets found in the training data, in some cases revealing up 
to 70% of the real, underlying records.204 Likewise, membership inference, another 
successful attack, would allow an attacker to glean sensitive information about the 
training data; specifically, whether the record attempting to be matched was used 
to train the model.205 Either way, synthetic data does not insulate privacy com-
pletely. 
 In summary, synthetic data’s newness acts like a double-edged sword. On the 
one hand, the statutory lines drawn around privacy could result in over-inclusive 
protection if a high-bar statute is applied, prohibiting data release in the face of a 
low chance of identification. On the other hand, we may overestimate synthetic 
data’s protection, and we can all agree that identifying individuals in a medical da-

 
 201. Although knowing User001’s viewing history sounds benign, consider what would hap-
pen if User001 watched a particularly rare TV show in which 90% of its watchers come from one 
geographic location. Similar to the AOL search query reidentifications, anonymity in name alone 
may not be true anonymity if the user left bread crumbs in each of their recorded actions. See 
supra note 74.  
 202. In re Nickelodeon, 827 F.3d at 283 (“To an average person, an IP address or a digital code 
in a cookie file would likely be of little help in trying to identify an actual person.”). 
 203. It is like releasing stackable Lego blocks one at a time, but throwing caution to the wind 
because hard work alone could not possibly muster the energy to build a tower. A Lego block’s 
very nature is aggregation. How can our “privacy” be dead while at the same time ensured because 
“theoretic” identification is not identification at all? And the same is true for vanilla synthetic data. 
 204. See Long et al., supra note 168 and accompanying text. 
 205. See supra notes 176-84 and accompanying text. 



48 STANFORD TECHNOLOGY LAW REVIEW Vol. 22:1 

taset, for instance, should be avoided. Congress should strike a new balance be-
tween over- and under-inclusive protection in light of new understandings of pri-
vacy-preserving techniques and the chance of identification. However, in the short 
term, a technical solution—differential privacy—should be pushed. 

B. Differentially Private Synthetic Data 

 Ultimately, data leakage and the threat of techniques like adversarial machine 
learning result in the same dilemma identified in Part II.C: Even with a reasonable 
distribution of input records, there exists a theoretical possibility that original data 
may be leaked. Moreover, because privacy statutes do not speak to “fake” data, a 
door is left open, for better or worse. The chance of identification may be inappro-
priately heightened or dampened depending on the statute at hand, the techniques 
used to train the model, and the ability to quantify the risk of identification. This 
uncertainty is problematic, and could lead to consequences paralleling the Netflix 
prize affair or the AOL search query debacle. Fortunately, a way forward has been 
identified: differential privacy. 
 Differential privacy’s robust guarantees calm not only the fear of data leakage, 
but also the risks of adversarial machine learning. Although the technique is rela-
tively new (and the optimal means of applying differential privacy to synthetic data 
is not yet settled206), differential privacy nonetheless provides a better way of as-
suring privacy given chance identification. Consider each of the examples discussed 
above. 
 When looking at HIPAA, the use of differentially private synthetic data would 
turn a “hit or miss” identification into a theoretical exercise, meaning the model 
resists even sophisticated attempts to reveal identities. In the Sanders case, synthetic 
data plus differential privacy would likely give the court comfort in a “guarantee” 
of privacy post-release of the bar admission database. The court would have assur-
ance that individuals could not be identified (i.e., a “secret” would not be any more 
likely “in” the database than any other datum) and Professor Sander would have 
assurance that the data remains useful (i.e., research on these methods suggest only 
a 10% drop in accuracy).207 And in the VPPA cases, even more intimate details could 

 
 206. See supra Part II.C. 
 207. See Carlini, supra note 160, at 12. 
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be shared with less risk. In Yershov, the court likely would have swayed toward per-
missible sharing if it knew that individuals had an incredibly low chance of identi-
fication. 
 In summary, using differential privacy in combination with synthetic data 
solves many of the problems owed to the limitations of the data generation process. 
However, we would be remiss if we did not make it absolutely clear that synthetic 
data and even differentially private synthetic data are not silver bullets. Yes, differ-
entially private synthetic data takes the chance of identification to a much safer level 
than vanilla synthetic data, but this does not mean it escapes all flaws entirely.  
 No privacy preserving technique will completely solve the database-privacy 
problem. Indeed, if utility is of paramount concern, neither synthetic data nor dif-
ferential privacy (nor even the combination of the two) will resolve the conflict. 
Although synthetic data aids the database–privacy problem by using additive tech-
niques rather that subtractive ones, and presents a statistically nearly-identical rep-
lica of the original data, this does not change the fact that the original data has been 
reshaped. The most ideal data to use in any analysis will always be original data. But 
when that option is not available, synthetic data plus differential privacy offers a 
great compromise.  

IV. RECOMMENDATIONS 

 From the above analysis, three things are clear. First, synthetic datasets are bet-
ter than traditional anonymization techniques (i.e., deidentification). Second, cur-
rent laws are inadequate; while synthetic data may be permissible under some cir-
cumstances, the statutes do not appreciate the full benefits or risks of synthetic 
data.208 And third, synthetic data—if constructed properly—may solve Professor 
Ohm’s failure of anonymization.209 We briefly summarize the first two points in 
concrete recommendations. 
 First, we recommend that data managers and researchers use synthetic datasets 
instead of anonymized ones when appropriate. The chief reason for this recom-
mendation is to avoid the arms race between deidentification and reidentification. 
True, secure anonymization via deidentification may be possible, albeit difficult;210 

 
 208. See supra Part II.A. 
 209. See Ohm, supra note 6. 
 210. See Dataverse, HarvardX-MITx Person-Course Academic Year 2013 De-Identified Dataset, 
Version 2.0, https://perma.cc/886F-TG67 (archived Oct. 26, 2018). 
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however, the availability of secondary sources of information unknown to the san-
itizer of the real data makes it a risky bet.211 With synthetic datasets, we largely 
escape that trap. 
 Second, we recommend privacy statutes be amended to enable the use of syn-
thetic datasets. Most of today’s statutes are absolute: they bar disclosure of PII. 
While the actual metrics may be statistical—i.e., the HIPAA rules effectively use k-
anonymity212—the goal is the same. No information may be disclosed about iden-
tifiable individuals. 
 Synthetic datasets are different. These datasets protect privacy through the ad-
dition of statistically similar information, rather than through the stripping away of 
unique identifiers. This, in turn, invites statutory ambiguity: the resulting datasets 
may leak information, but these leaks may or may not be enough to bar disclosure 
(resulting in over and under inclusive privacy coverage). 
 Our recommendation is therefore to face the ambiguity head on. New or 
amended statutes should accommodate synthetic data,213 accepting the possibility 
of measurably214 small privacy leakage in exchange for perhaps mathematically 
provable protection against reidentification.215 The exact amount of leakage is, of 
course, context-dependent; there is no reason that each U.S. sector-specific privacy 
statute should have the same tradeoff.216 

 
 211. This was the case in the AOL and Netflix data dumps: linking the original data with 
other sources was sufficient to re-identify some of the records. See supra note 74 and accompa-
nying text. 
 212. The purpose of stripping out 17 identifiers is to generalize the records, similar to how 
k-anonymity seeks to replace individuality with groupings. See supra Subpart II.B.3.i. 
 213. Notably, because of the many different definitions of privacy and PII, it is most likely 
that amendments must be made to key statutes. For example, it might be possible for HIPAA to 
explicitly embrace synthetic data under its expert determination statute, while it might require a 
statutory statement for statutes such as CCPA. See Cable Communications Policy Act of 1984, 47 
U.S.C. § 551(a)(2)(A) (1984) (“[T]he term ‘personally identifiable information’ does not include any 
record of aggregate data which does not identify particular persons”—likewise, a new statute 
could include a statement that differentially private synthetic data is not PII). 
 214. It is likely possible, though not yet available, to provide provable bounds on information 
leakage, with a stated error bound on queries. This opens up an interesting possibility: that the 
law provides a safe harbor for organizations that use this technique and are thus willing to incur 
less-than-perfect answers. There are still challenges, notably the possibility that software bugs 
may result in inadvertent leakage despite the guarantees of the algorithm; that said, it is worth 
exploring. 
 215. Such tradeoffs have been used very successfully to obtain dramatic improvements in 
the performance of encrypted search algorithms. See, e.g., Vasilis Pappas et al., Blind Seer: A Scalable 
Private DBMS, 2014 IEEE SYMP. SECURITY & PRIVACY 359, 359. 
 216. There is a large debate in the privacy community about what constitutes “harm.” To 
some, harm occurs only from direct financial loss or compromise of medical information; to oth-
ers, disclosure of any private information is a priori harmful. See, e.g., Maureen Ohlhausen, Acting 
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CONCLUSION 

 Databases play a key role in scientific progression. Yet, the very fuel of data-
bases, open data, is more like shale oil given our current privacy laws. Since the 
early days of reidentification, a Catch-22 has emerged: We have the ability to gather 
and process enormous amounts of information, but we are forced to act cautiously 
because of the ambiguity found in our legal statutes. We must either act too greedily 
by thoroughly stripping all identifiers from the data before sharing it, thereby mak-
ing it useless, or too Laissez-Faire by being permitted to disclose the fact that “a local 
high school teacher rented a particular obscure French film,” even if there was only 
one high school teacher in the area who spoke French. 
 Synthetic data offers progress. Though not a silver bullet, the method allows us 
to put an end to the deidentification–reidentification arms race and focus on what 
matters: useful, private data. To this extent, we recommend the privacy community 
accept synthetic data as a valid, next step to the database privacy problem. 
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