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ABSTRACT
Deep learning based on artificial neural networks is a very popular
approach to modeling, classifying, and recognizing complex data
such as images, speech, and text. The unprecedented accuracy of
deep learning methods has turned them into the foundation of new
AI-based services on the Internet. Commercial companies that col-
lect user data on a large scale have been the main beneficiaries of
this trend since the success of deep learning techniques is directly
proportional to the amount of data available for training.

Massive data collection required for deep learning presents ob-
vious privacy issues. Users’ personal, highly sensitive data such as
photos and voice recordings is kept indefinitely by the companies
that collect it. Users can neither delete it, nor restrict the purposes
for which it is used. Furthermore, centrally kept data is subject to
legal subpoenas and extra-judicial surveillance. Many data own-
ers—for example, medical institutions that may want to apply deep
learning methods to clinical records—are prevented by privacy and
confidentiality concerns from sharing the data and thus benefitting
from large-scale deep learning.

In this paper, we design, implement, and evaluate a practical sys-
tem that enables multiple parties to jointly learn an accurate neural-
network model for a given objective without sharing their input
datasets. We exploit the fact that the optimization algorithms used
in modern deep learning, namely, those based on stochastic gradi-
ent descent, can be parallelized and executed asynchronously. Our
system lets participants train independently on their own datasets
and selectively share small subsets of their models’ key parameters
during training. This offers an attractive point in the utility/privacy
tradeoff space: participants preserve the privacy of their respective
data while still benefitting from other participants’ models and thus
boosting their learning accuracy beyond what is achievable solely
on their own inputs. We demonstrate the accuracy of our privacy-
preserving deep learning on benchmark datasets.

Categories and Subject Descriptors
Security and privacy [Software and application security]: Domain-
specific security and privacy architectures
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1 Introduction
Recent advances in deep learning methods based on artificial neu-
ral networks have led to breakthroughs in long-standing AI tasks
such as speech, image, and text recognition, language translation,
etc. Companies such as Google, Facebook, and Apple take advan-
tage of the massive amounts of training data collected from their
users and the vast computational power of GPU farms to deploy
deep learning on a large scale. The unprecedented accuracy of the
resulting models allows them to be used as the foundation of many
new services and applications, including accurate speech recogni-
tion [24] and image recognition that outperforms humans [26].

While the utility of deep learning is undeniable, the same train-
ing data that has made it so successful also presents serious pri-
vacy issues. Centralized collection of photos, speech, and video
from millions of individuals is ripe with privacy risks. First, com-
panies gathering this data keep it forever; users from whom the
data was collected can neither delete it, nor control how it will be
used, nor influence what will be learned from it. Second, images
and voice recordings often contain accidentally captured sensitive
items—faces, license plates, computer screens, the sound of other
people speaking and ambient noises [44], etc. Third, users’ data
kept by companies is subject to subpoenas and warrants, as well as
warrantless spying by national-security and intelligence outfits.

Furthermore, the Internet giants’ monopoly on “big data” col-
lected from millions of users leads to their monopoly on the AI
models learned from this data. Users benefit from new services,
such as powerful image search, voice-activated personal assistants,
and machine translation of webpages in foreign languages, but the
underlying models constructed from their collective data remain
proprietary to the companies that created them.

Finally, in many domains, most notably those related to medicine,
the sharing of data about individuals is not permitted by law or reg-
ulation. Consequently, biomedical and clinical researchers can only
perform deep learning on the datasets belonging to their own insti-
tutions. It is well-known that neural-network models become better
as the training datasets grow bigger and more diverse. Due to not
being able to use the data from other institutions when training their
models, researchers may end up with worse models. For exam-
ple, data owned by a single organization (e.g., a particular medical
clinic) may be very homogeneous, producing an overfitted model
that will be inaccurate when used on other inputs. In this case,
privacy and confidentiality restrictions significantly reduce utility.

Our contributions. We design, implement, and evaluate a practi-
cal system for collaborative deep learning that offers an attractive
tradeoff between utility and privacy. Our system enables multiple



participants to learn neural-network models on their own inputs,
without sharing these inputs but benefitting from other participants
who are concurrently learning similar models.

Our key technical innovation is the selective sharing of model pa-
rameters during training. This parameter sharing, interleaved with
local parameter updates during stochastic gradient descent, allows
participants to benefit from other participants’ models without ex-
plicit sharing of training inputs. Our approach is independent of the
specific algorithm used to construct a model for a particular task.
Therefore, it can easily accommodate future advances in neural-
network training without changing the core protocols.

Selective parameter sharing is effective because stochastic gradi-
ent descent algorithms underlying modern neural-network training
can be parallelized and run asynchronously. They are robust to un-
reliable parameter updates, race conditions, participants dropping
out, etc. Updating a small fraction of parameters with values ob-
tained from other participants allows each participant to avoid lo-
cal minima in the process of finding optimal parameters. Parameter
sharing can be tuned to control the tradeoff between the amount of
information exchanged and the accuracy of the resulting models.

We experimentally evaluate our system on two datasets, MNIST
and SVHN, used as benchmarks for image classification algorithms.
The accuracy of the models produced by the distributed partici-
pants in our system is close to the centralized, privacy-violating
case where a single party holds the entire dataset and uses it to train
the model. For the MNIST dataset, we obtain 99.14% accuracy
(respectively, 98.71%) when participants share 10% (respectively,
1%) of their parameters. By comparison, the maximum accuracy
is 99.17% for the centralized, privacy-violating model and 93.16%
for the non-collaborative models learned by participants individu-
ally. For the SVHN dataset, we achieve 93.12% (89.86%) accuracy
when participants share 10% (1%) of their parameters. By compar-
ison, the maximum accuracy is 92.99% for the centralized, privacy-
violating model and 81.82% for the non-collaborative models.

Even without additional protections, our system already achieves
much stronger privacy, with negligible utility loss, than any existing
approach. Instead of directly revealing all training data, the only
leakage in our system is indirect, via a small fraction of neural-
network parameters. To minimize even this leakage, we show how
to apply differential privacy to parameter updates using the sparse
vector technique, thus mitigating privacy loss due to both parame-
ter selection (i.e., choosing which parameters to share) and shared
parameter values. We then quantitatively measure the tradeoff be-
tween accuracy and privacy.

2 Related Work
2.1 Deep learning

Deep learning is the process of learning nonlinear features and
functions from complex data. Surveys of deep-learning architec-
tures, algorithms, and applications can be found in [5, 16]. Deep
learning has been shown to outperform traditional techniques for
speech recognition [23,24,27], image recognition [30,45], and face
detection [48]. A deep-learning architecture based on a new type
of rectifier activation functions is claimed to outperform humans
when recognizing images from the ImageNet dataset [26].

Deep learning has shown promise for analyzing complex biomed-
ical data related to cancer [13, 22, 32] and genetics [15, 56]. The
training data used to build these models is especially sensitive from
the privacy perspective, underscoring the need for privacy-preserving
deep learning methods.

Our work is inspired by recent advances in parallelizing deep
learning, in particular parallelizing stochastic gradient descent on

GPU/CPU clusters [14], as well as other techniques for distribut-
ing computation during neural-network training [1, 39, 59]. These
techniques, however, are not concerned with privacy of the training
data and all assume that a single entity controls the training.

2.2 Privacy in machine learning

The existing literature on privacy protection in machine learning
mostly targets conventional machine learning algorithms, as op-
posed to deep learning, and addresses three objectives: privacy of
the data used for learning a model or as input to an existing model,
privacy of the model, and privacy of the model’s output.

Techniques based on secure multi-party computation (SMC) can
help protect intermediate steps of the computation when multiple
parties perform collaborative machine learning on their proprietary
inputs. SMC has been used for learning decision trees [33], lin-
ear regression functions [17], association rules [50], Naive Bayes
classifiers [51], and k-means clustering [28]. In general, SMC tech-
niques impose non-trivial performance overheads and their applica-
tion to privacy-preserving deep learning remains an open problem.

Techniques that protect privacy of the model include privacy-
preserving probabilistic inference [38], privacy-preserving speaker
identification [36], and computing on encrypted data [3, 6, 55]. By
contrast, our objective is to collaboratively train a neural network
that can be used privately and independently by each participant.

Differential privacy [19] is a popular approach to privacy-preser-
ving machine learning. It has been applied to boosting [21], princi-
pal component analysis [10], linear and logistic regression [8, 57],
support vector machines [41], risk minimization [9, 53], and con-
tinuous data processing [43]. Recent results show that a noisy vari-
ant of stochastic gradient descent achieves optimal error for mini-
mizing Lipschitz convex functions over `2-bounded sets [4], and
that randomized “dropout,” used to prevent overfitting, cal also
strengthen the privacy guarantee in a simple 1-layer neural net-
work [29]. To the best of our knowledge, none of the previous work
addressed the problem of collaborative deep learning with multiple
participants using distributed stochastic gradient descent.

Aggregation of independently trained neural networks using dif-
ferential privacy and secure multi-party computation is suggested
in [37]. Unfortunately, averaging neural-network parameters does
not necessarily result in a better model.

Unlike previously proposed techniques, our system achieves all
three privacy objectives in the context of collaborative neural-network
training: it protects privacy of the training data, enables participants
to control the learning objective and how much to reveal about their
individual models, and lets them apply the jointly learned model to
their own inputs without revealing the inputs or the outputs. Our
system achieves this at a much lower performance cost than cryp-
tographic techniques such as secure multi-party computation or ho-
momorphic encryption and is suitable for deployment in modern
large-scale deep learning.

3 Deep Learning
Deep learning aims to extract complex features from high-dimensio-
nal data and use them to build a model that relates inputs to outputs
(e.g., classes). Deep learning architectures are usually constructed
as multi-layer networks so that more abstract features are computed
as nonlinear functions of lower-level features. We mainly focus
on supervised learning, where the training inputs are labeled with
correct classes, but in principle our approach can also be used for
unsupervised, privacy-preserving learning, too.

Multi-layer neural networks are the most common form of deep
learning architectures. Figure 1 shows a typical neural network
with two hidden layers. Each node in the network models a neu-
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Figure 1: A neural network with two hidden layers. Black circles represent
the bias nodes. Matrices Wk contain the weights used in computing the
activation functions at each layer k.

ron. In a typical multi-layer network, each neuron receives the out-
put of the neurons in the previous layer plus a bias signal from
a special neuron that emits 1. It then computes a weighted aver-
age of its inputs, referred to as the total input. The output of the
neuron is computed by applying a nonlinear activation function to
the total input value. The output vector of neurons in layer k is
ak = f(Wk ak−1), where f is an activation function and Wk is
the weight matrix that determines the contribution of each input
signal. Examples of activation functions are hyperbolic tangent
f(z) = (e2z − 1)(e2z + 1)−1, sigmoid f(z) = (1 + e−z)−1,
rectifier f(z) = max(0, z), and softplus f(z) = log(1 + ez). If
the neural network is used to classify input data into a finite num-
ber of classes (each represented by a distinct output neuron), the
activation function in the last layer is usually a softmax function
f(zj) = ezj · (

∑
k e

zk )−1, ∀j. In this case, the output of each
neuron j in the last layer is the relative score or probability that the
input belongs to class j.

In general, the values computed in higher layers represent more
abstract features of the data. The first layer is composed of the raw
features extracted from the data, e.g., the intensity of colors in each
pixel in an image or the frequency of each word in a document.
The outputs of the last layer correspond to the abstract answers
produced by the model. If the neural network is used for classifi-
cation, these abstract features also represent the relation between
input and output. The nonlinear function f and the weight matrices
determine the features that are extracted at each layer. The main
challenge in deep learning is to automatically learn from training
data the values of the parameters (weight matrices) that maximize
the objective of the neural network (e.g., classification accuracy).

Learning network parameters using gradient descent. Learn-
ing the parameters of a neural network is a nonlinear optimization
problem. In supervised learning, the objective function is the out-
put of the neural network. The algorithms that are used to solve
this problem are typically variants of gradient descent [2]. Sim-
ply put, gradient descent starts at a random point (set of parameters
for the neural network), then, at each step, computes the gradient
of the nonlinear function being optimized and updates the parame-
ters so as to decrease the gradient. This process continues until the
algorithm converges to a local optimum.

In a neural network, the gradient of each weight parameter is
computed through feed-forward and back-propagation procedures.
Feed-forward sequentially computes the output of the network given
the input data and then calculates the error, i.e., the difference be-
tween this output and the true value of the function. Back-propagation
propagates this error back through the network and computes the
contribution of each neuron to the total error. The gradients of

individual parameters are computed from the neurons’ activation
values and their contribution to the error.
Stochastic gradient descent (SGD). The gradients of the parame-
ters can be averaged over all available data. This algorithm, known
as batch gradient descent, is not efficient, especially if learning on
a large dataset. Stochastic gradient descent (SGD) is a drastic sim-
plification which computes the gradient over an extremely small
subset (mini-batch) of the whole dataset [58]. In the simplest case,
corresponding to maximum stochasticity, one data sample is se-
lected at random in each optimization step.

Let w be the flattened vector of all parameters in a neural net-
work, composed of Wk, ∀k. Let E be the error function, i.e., the
difference between the true value of the objective function and the
computed output of the network. E can be based on L2 norm or
cross entropy [34]. The back-propagation algorithm computes the
partial derivative of E with respect to each parameter in w and up-
dates the parameter so as to reduce its gradient. The update rule of
stochastic gradient descent for a parameter wj is

wj := wj − α
∂Ei
∂wj

(1)

where α is the learning rate and Ei is computed over the mini-
batch i. We refer to one full iteration over all available input data
as an epoch.

Note that each parameter in vector w is updated independently
from other parameters. We will rely on this property when de-
signing our system for privacy-preserving, collaborative stochastic
gradient descent in the rest of this paper. Some techniques set the
learning rate adaptively [18] but still preserve this independence.

4 Distributed Selective SGD
The core of our approach is a distributed, collaborative deep learn-
ing protocol that relies upon the following observations: (i) up-
dates to different parameters during gradient descent are inherently
independent, (ii) different training datasets contribute to different
parameters, and (iii) different features do not contribute equally to
the objective function. Our Selective Stochastic Gradient Descent
(Selective SGD or SSGD) protocol achieves comparable accuracy
to conventional SGD but involves updating 1 or even 2 orders of
magnitude fewer parameters in each learning iteration.
Selective parameter update. The main intuition behind selective
parameter update is that during SGD, some parameters contribute
much more to the neural network’s objective function and thus un-
dergo much bigger updates during a given iteration of training. The
gradient value depends on the training sample (mini-batch) and
varies from one sample to another. Moreover, some features of
the input data are more important than others, and the parameters
that help compute these features are more crucial in the process of
learning and undergo bigger changes.

In selective SGD, the learner chooses a fraction of parameters to
be updated at each iteration. This selection can be completely ran-
dom, but a smart strategy is to select the parameters whose current
values are farther away from their local optima, i.e., those that have
a larger gradient. For each training sample i, compute the partial
derivative ∂Ei

∂wj
for all parameters wj as in SGD. Let S be the in-

dices of θ parameters with the largest ∂Ei
∂wj

values. Finally, update
the parameter vector wS in the same way as in (1), so the parame-
ters not in S remain unchanged. We refer to the ratio of θ over the
total number of parameters as the parameter selection rate.
Distributed collaborative learning. Distributed selective SGD
assumes two or more participants training independently and con-
currently. After each round of local training, participants asyn-
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Figure 2: High-level architecture of our deep learning system. An abstract
model of the parameter server, which maintains global values for the pa-
rameters, is depicted at the top.

chronously share with each other the gradients they computed for
some of the parameters. Each participant fully controls which gra-
dients to share and how often. The sum of all gradients computed
for a given parameter determines the magnitude of the global de-
scent towards the parameter’s local optima (“local” here refers to
the space of parameter values and does not mean being limited to a
single participant). Participants thus benefit from each other’s train-
ing data—without actually seeing this data!—and produce much
more accurate models that they would have been able to learn in
isolation, limited to their own training data.

Participants can exchange gradients directly, or via a trusted cen-
tral server, or even use secure multi-party computation to exchange
them “obliviously,” emulating the functionality of a trusted server
that hides the origin of each update. For the purposes of this dis-
cussion, we assume an abstraction of a central server to which par-
ticipants asynchronously upload the gradients. The server adds all
gradients to the value of the corresponding parameter. Each par-
ticipant downloads a subset of the parameters from the server and
uses them to update his local model. The download criterion for a
given parameter can be the frequency or recency of updates or the
moving average of gradients added to that parameter.

5 System Architecture
5.1 Overview

Figure 2 illustrates the main components and protocols of our col-
laborative deep learning system. We assume that there are N par-
ticipants, each of which has a local private dataset available for
training. All participants agree in advance on a common network
architecture and common learning objective. We assume the ex-
istence of a parameter server which is responsible for maintaining
the latest values of parameters available to all parties. This parame-
ter server is an abstraction, which can be implemented by an actual
server or emulated by a distributed system.

α Learning rate of stochastic gradient descent
θd, θu Fraction of parameters selected for download and upload
γ Bound on gradient values shared with other participants
τ Threshold for gradient selection

Table 1: List of meta-parameters

Choose initial parameters w(i) and learning rate α.
Repeat until an approximate minimum is obtained:

1. Download θd×|w(i)| parameters from server and replace the
corresponding local parameters.

2. Run SGD on the local dataset and update the local parameters
w(i) according to (1).

3. Compute gradient vector ∆w(i) which is the vector of
changes in all local parameters due to SGD.

4. Upload ∆w
(i)
S to the parameter server, where S is the set

of indices of at most θu × |w(i)| gradients that are selected
according to one of the following criteria:

• largest values: Sort gradients in ∆w(i) and upload θu
fraction of them, starting from the biggest.

• random with threshold: Randomly subsample the gra-
dients whose value is above threshold τ .

The selection criterion is fixed for the entire training.

Figure 3: Pseudocode of DSSGD for participant i.

Each participant initializes the parameters and then runs the train-
ing on his own dataset. The system includes a parameter exchange
protocol that enables participants to upload the gradients of selected
neural-network parameters to the parameter server and download
the latest parameter values at each local SGD epoch. This allows
participants to (i) independently converge to a set of parameters
and, critically, (ii) avoid overfitting these parameters to a single
participant’s local training dataset. Once the network is trained,
each participant can independently and privately evaluate it on new
data, without interacting with other participants.

In the following, we describe all components of our system in
detail. Table 1 lists the meta-parameters of our system. These
parameters control the collaborative learning process, as opposed
to the actual neural-network parameters that are being learned.

5.2 Local training
We assume that each participant imaintains a local vector of neural-
network parameters, w(i). The parameter server maintains a sepa-
rate parameter vector w(global). Each participant can initialize his
local parameters randomly or by downloading their latest values
from the parameter server.

Each participant then trains the neural network using the stan-
dard SGD algorithm, iterating over his local training data over many
epochs. There need not be any coordination between different par-
ticipants during their local training. They influence each other’s
training indirectly, via the parameter server.

Figure 3 presents the pseudocode of the distributed selective SGD
(DSSGD) algorithm. DSSGD is run independently by every partic-
ipant and consists of five steps in each learning epoch. First, the
participant downloads a θd fraction of parameters from the server
and overwrites his local parameters with the downloaded values.
He then runs one epoch of SGD training on his local dataset. This
training can be done on a sequence of mini-batches; a mini-batch
is the set of randomly chosen training data points of size M .



In the third step, the participant computes ∆w(i), the vector of
changes in all parameters in step 2, i.e., for every parameter j, the
old w(i)

j value is subtracted from the new w
(i)
j value after the latest

epoch of local SGD. We refer to ∆w
(i)
j as the gradient of parameter

j over one epoch of local SGD.1 ∆w(i) values reflect how much
each parameter has to change to more accurately model the local
dataset of the ith participant. This information is exactly what other
participants need to incorporate in order to avoid overfitting.

There are several ways to choose which gradients to share at the
end of each local epoch. Participants need to agree on the criterion
and use it consistently throughout DSSGD. We assume that at most
θu fraction of parameters can be selected for upload at each epoch.

We consider two selection criteria. The first method is to select
exactly θu fraction of values, picking big values that significantly
contribute to the gradient descent algorithm. The other method is
to select a random subset of values that are larger than threshold
τ . Since the number of gradients that are greater than τ may be
smaller than the θu fraction of parameters, fewer gradients will be
shared. This might slow down convergence but this selection cri-
terion is closer to the sparse vector technique that we use when
extending our system with differential privacy (see Section 7.2).

Before uploading the selected gradients ∆w(i), their values are
truncated into the [−γ, γ] range. To prevent these values from leak-
ing too much information about the training data, random noise can
also be added as described in Section 7. In short, the participant up-
dates ∆w(i) with bound(∆w(i), γ) and adds some random noise
to it before uploading it. In Section 7, we explain how to set the
range and randomness parameters and discuss their effect on SGD.

5.3 Parameter server

The parameter server initializes the parameter vector w(global) and
then handles the participants’ upload and download requests. Fig-
ure 4 shows the server’s pseudocode. When someone uploads gra-
dients, the server adds the uploaded ∆wj value to the correspond-
ing global parameters and updates the meta-data and the update
counter statj for each parameter j. To increase the weight of more
recently updated parameters, the server can periodically multiply
the counter by a decay factor β, i.e., stat := β · stat. These
statistics are used during download, when participants obtain from
the server the latest values of the parameters with the largest stat
values. Each participant decides what fraction of these parameters
to download by setting θd.

5.4 Why distributed selective SGD works

Our distributed SSGD achieves achieving almost the same accuracy
as conventional, privacy-violating SGD for the same reason why
SGD is successful in general: stochasticity of the learning process.
Updating local parameters with a subset of global parameters dur-
ing training increases the stochasticity of local SGD. This plays an
essential role in preventing local SGD from overfitting to its small
local dataset. When training alone, each participant is susceptible
to falling into local optima. Overwriting locally learned parame-
ters with values learned by other participants, who train on differ-
ent datasets, helps each participant escape local optima and enables
them to explore other values, resulting in more accurate models.

Our distributed SSGD does not make any assumptions about
which parameters need to be updated by other participants, nor
about the update rate. Some participants may undergo a higher
number of updates, due to better computation and throughput ca-

1Usually gradient refers to the change in a parameter after a sin-
gle mini-batch training, but here we generalize it to one epoch of
training over several mini-batches.

Choose initial global parameters w(global).
Set vector stat to all zero.

EVENT: A participant uploads gradients ∆wS .

• For all j ∈ S:

– Set w(global) := w(global) + ∆wj

– Set statj := statj + 1

EVENT: A participant downloads θ parameters.

• Sort stat, and let Iθ be the set of indices for stat elements
with largest values.

• Send w
(global)
Iθ

to the participant.

Figure 4: Pseudocode of DSSGD on the server.

pabilities. Some participants may fail to upload their selected pa-
rameters due to network errors or other failures. They may also
overwrite each other’s updates due to asynchronous access to the
parameter server. Not only do race conditions not cripple our dis-
tributed SSGD, in fact they contribute to its success by increas-
ing stochasticity. Stochasticity due to asynchronous parameter up-
date is known to be effective for training accurate deep neural net-
works [14]. This is also consistent with regularizing techniques that
randomly corrupt neurons [47] or input data [52] during training in
order to avoid overfitting.

5.5 Parameter exchange protocol

DSSGD does not assume that participants follow any particular
schedule when uploading their parameters. In our evaluation, we
considered the following scenarios.

With round robin, participants run SSGD sequentially. Each
downloads a fraction of the most updated parameters from the server,
runs local training, and uploads selected gradients; the next partici-
pant follows in fixed order. With random order, participants down-
load, learn, and upload in random order, but access to the server is
atomic, i.e., participants lock it before reading and release the lock
after writing. With asynchronous, participants do not coordinate.
While one participant is training on a set of parameters, others may
update them on the server before training finishes.

6 Evaluation
6.1 Datasets and learning objectives

We evaluate our system on two major datasets used as benchmarks
in the deep-learning literature. The first is the MNIST dataset [31]
of handwritten digits formatted as 32x32 images, normalized so
that the digits are located at the center of the image. The dataset2 is
composed of 60,000 training examples and 10,000 test examples.

The second is the SVHN dataset [35] of house numbers obtained
from Google’s street view images. The images are 32x32, with
3 floating point numbers containing the RGB color information of
each pixel (that we convert to YUV). Each image is centered around
a digit, but many of the images contain some distractors at the sides.
The dataset3 contains 600,000 training images, from which we use
100,000 for training and 10,000 as test examples. Table 2 summa-
rizes how many training and test examples we use.

We normalize the datasets by subtracting the average and di-
viding by the standard deviation of data samples in their training
sets. The size of the input layer of neural networks for MNIST and
2http://yann.lecun.com/exdb/mnist
3http://ufldl.stanford.edu/housenumbers



nn.Sequential {
[input -> (1) -> ... -> (7) -> output]
(1): nn.Reshape(1024)
(2): nn.Linear(1024 -> 128)
(3): nn.ReLU
(4): nn.Linear(128 -> 64)
(5): nn.ReLU
(6): nn.Linear(64 -> 10)
(7): nn.LogSoftMax

}

Figure 5: MLP architecture used for MNIST (and for SVHN, with 3072
inputs instead of 1024) in Torch7 nn

nn.Sequential {
[input -> (1) -> ... -> (11) -> output]
(1): nn.SpatialConvolutionMM
(2): nn.Tanh
(3): nn.SpatialMaxPooling
(4): nn.SpatialConvolutionMM
(5): nn.Tanh
(6): nn.SpatialMaxPooling
(7): nn.Reshape(256)
(8): nn.Linear(256 -> 200)
(9): nn.Tanh
(10): nn.Linear(200 -> 10)
(11): nn.LogSoftMax

}

Figure 6: CNN architecture used for MNIST in Torch7 nn

nn.Sequential {
[input -> (1) -> ... -> (13)-> output]
(1): nn.SpatialConvolutionMM
(2): nn.Tanh
(3): nn.Sequential {

[input -> (1) -> (2) -> (3)-> output]
(1): nn.Square
(2): nn.SpatialAveragePooling
(3): nn.Sqrt

}
(4): nn.SpatialSubtractiveNormalization
(5): nn.SpatialConvolutionMM
(6): nn.Tanh
(7): nn.Sequential {

[input -> (1) -> (2) -> (3)-> output]
(1): nn.Square
(2): nn.SpatialAveragePooling
(3): nn.Sqrt

}
(8): nn.SpatialSubtractiveNormalization
(9): nn.Reshape(1600)
(10): nn.Linear(1600 -> 128)
(11): nn.Tanh
(12): nn.Linear(128 -> 10)
(13): nn.LogSoftMax

}

Figure 7: CNN architecture used for SVHN in Torch7 nn

SVHN are 1024 and 3072, respectively. The learning objective is
to classify the input as one of 10 possible digits, thus the size of the
output layer is 10.

6.2 Computing framework

We use Torch7 [11, 49] and Torch7 nn packages.4 This popular
deep-learning library has been used and extended by major Internet
companies such as Facebook.5

4https://github.com/torch/nn
5https://github.com/facebook/fblualib

MNIST SVHN
train 60,000 100,000
test 10,000 10,000

Table 2: Size of training and test datasets

MNIST SVHN
MLP 140,106 402,250
CNN 105,506 313,546

Table 3: Number of neural-network parameters

6.3 Neural network architectures

We use two popular neural network architectures: multi-layer per-
ceptron (MLP) and convolutional neural network (CNN). MLPs are
feed-forward neural network architectures in which neurons in each
layer are fully connected to the neurons in the next layer. The back-
propagation algorithm was initially proposed to learn the parame-
ters of these networks [42]. Figure 1 is an example of an MLP
network. CNNs are a special kind of multi-layer neural networks
with sparse connectivity [31]. CNNs are widely used for image and
video recognition . We provide the exact specifications of our net-
work architectures in Figure 5 (MLP) and Figures 6 and 7 (CNN),
all printed using Torch7 nn package. The figures show the activa-
tion function used in each layer (e.g., Tanh for tangent hyperbolic,
and ReLU for rectifier function), and the connection between lay-
ers. Table 3 summarizes the number of parameters.

6.4 Experimental setup

We implemented distributed SSGD with three different parameter
exchange protocols—round robin, random order, and asynchronous.
The performance of random order was very similar to round robin
and thus omitted. We compared all results with two baseline sce-
narios. The first is Centralized SGD on the entire dataset. This is a
privacy-violating scenario where all the training data is pooled into
one dataset and the network is trained on this dataset using stan-
dard stochastic gradient descent. The other scenario is Standalone
SGD. This is the scenario where participants train solely on their
own training data, without any collaboration.

We implemented two criteria for selecting which gradients to
upload to the parameter server. With largest values, each partic-
ipant uploads the gradients with the biggest absolute values from
the last local training epoch. With random with threshold, the par-
ticipant uploads a random sample of gradients whose values are
over a threshold. For download, each participant selects the param-
eters that have undergone the most updates. Other selection criteria,
e.g., downloading the parameters that have undergone the biggest
change, are also feasible.

In all experiments, the decay factor β for parameter statistics
(see Section 5.3) was set to 0.8. We evaluate several settings for
the mini-batch size (1 and 32) and for the SGD learning rate6 (α =
0.001 and 0.01) with decay rate 1e−7. We also vary the number of
participants N in each DSSGD scenario between 30, 90, and 150.

We randomly initialize the local training dataset of each partic-
ipant with 1% of the entire dataset, i.e., 600 data samples for the
MNIST scenario and 1000 data samples for the SVHN scenario.
The fraction θu of parameters selected for sharing in SSGD takes
values in {1, 0.1, 0.01, 0.001}, i.e., {15, 141, 1402, 140106} pa-
rameters in the case of training an MLP on MNIST (see Table 3).
The fraction θd of parameters to be downloaded is usually set to 1.
6The learning rate and its decay rate are applied during local SGD
when training over a new mini-batch. The parameter server does
not apply it to the uploaded gradients.
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Figure 8: Convergence of SSGD for different mini-batch sizes. The legends show the fraction of parameters selected for sharing at each gradient descent step
(with 1, SSGD is equivalent to SGD).

SGD 0.1 0.01 0.001 Standalone
MNIST, CNN 0.9917 0.9914 0.9871 0.9645 0.9316
SVHN, CNN 0.9299 0.9312 0.8986 0.7481 0.8182

SGD 0.1 0.01 0.001 Standalone
MNIST, MLP 0.9810 0.98 0.9707 0.9171 0.8832
SVHN, MLP 0.8476 0.8394 0.7833 0.6542 0.5136

Table 4: Maximum accuracy achieved by SSGD for CNN and MLP net-
work architectures and different parameter sharing rates. The results are
compared with standalone accuracy. Mini-batch size is 1.

6.5 Results for selective SGD

To show the effectiveness of our approach compared to conven-
tional stochastic gradient descent, we evaluate the accuracy of SSGD
and SGD when training a convolutional neural network (CNN) on
the MNIST and SVHN datasets. Figure 8 compares SGD and
SSGD for different values of meta-parameters (mini-batch size and
the fraction of shared gradients). In general, participants can choose
the values for the meta-parameters by training on a calibration dataset,
e.g., a public dataset that has no privacy implications.

These results confirm the intuition behind SSGD: by sharing
only a small fraction of gradients at each gradient descent step, we
can achieve almost the same accuracy as SGD. Furthermore, the
overall behavior of SGD with and without selective parameter shar-
ing is similar. Setting mini-batch size to 1 achieves high stochastic-
ity throughout the training process and converges very quickly, but
also causes fluctuation in some curves. Figure 8 shows accuracy
trajectories up to epoch 35; beyond this, we can potentially achieve
slightly higher accuracy as shown in Table 4. SSGD can achieve
even higher accuracy than SGD because updating only a small frac-

tion of parameters at each epoch acts as a regularization technique
which avoids overfitting by preventing the neural network weights
from jointly “remembering” the training data (this concept is de-
scribed in [47]). When mini-batch size is set to 32, convergence is
slower but smoother, due to applying the average of gradients over
many training data points during gradient descent.

6.6 Results for distributed selective SGD

Figure 9 presents the best accuracy we obtain when running DSSGD
on MNIST and SVHN for different neural network architectures,
parameter exchange protocols, and fractions of shared parameters.
The x-axis is the fraction of shared parameters (θu); the y-axis is
the accuracy, i.e., the fraction of correctly classified data samples
in the test set. We set the download rate θd to 1, the learning rate α
to 0.001, and mini-batch size to 32.

In each plot, we show the best accuracy for centralized (maxi-
mum utility, minimum privacy) and standalone (minimum utility,
maximum privacy) SGD. Both are independent of the x-axis since
there is no parameter sharing in either. These two scenarios are our
baselines. Comparing the accuracy of distributed SSGD with the
baselines reflects the tradeoff between utility and privacy. This gap
depends on the network architecture and reflects that CNN takes
more advantage the training data vs. MLP. Moreover, in our set-
ting, the gap is affected by the complexity of classification and the
fact each participant has 1000 data samples in the case of SVHN
dataset and 600 data samples in the case of MNIST dataset.

Our results show that any cooperation, even when sharing only
1 percent of parameters, results in higher accuracy than standalone
learning. Distributed SSGD using round robin parameter exchange
results in the highest accuracy, almost equal to centralized SGD.
The reason is its similarity to SSGD (see Figure 8). The price paid
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Figure 9: Accuracy of distributed SSGD on the MNIST and SVHN datasets.
The legends show the number of participants. “Standalone” means that each
participants trains independently on his own data; “SGD” means all training
data is pooled for centralized training.

for this accuracy is the speed of learning, which is determined by
the slowest participant. The round robin protocol is suitable for
scenarios where all participants have similar computation capacity,
e.g., biomedical research institutions with dedicated SSGD servers.
We do not make any assumptions, however, about how local SGD
should run. For example, it can be executed on parallel GPUs to
speed up the process. Asynchronous parameter exchange protocol
can produce accurate models, too. The key to its success is the in-
herent randomness and thus high stochasticity of gradient descent,
which prevents overfitting. In our implementation, we assumed that
each participant may lag behind others and download an outdated
set of parameters (those from the previous epoch) with probability
0.5. The promising accuracy of this protocol indicates that DSSGD
should work well even with unreliable (e.g., mobile) networks.
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Figure 10: Accuracy of DSSGD for different gradient selection criteria.

We also observe that the number of participants has a lower im-
pact on accuracy than the percentage of shared parameters. This
indicates that distributed SSGD does not require very many partic-
ipants to boost the accuracy.

The number of participants, the rate of parameter updates, and
the parameter exchange schedule all influence the communication
cost of distributed SSGD. For example, training an MLP model
on MNIST dataset with 90 participants with the parameter upload
rate of 10% in round-robin schedule requires the server to support
90× 14010× 32 = 38.5 Megabytes of parameter uploads during
each epoch. With the parameter download rate of 100%, the server
needs to support 385 Megabytes of download during each epoch.

All of the above results were obtained assuming each participant
shares his largest gradients with the other participants. The other
method is to randomly sample from the gradients whose values are
above a threshold. Figure 10 compares the accuracy of DSSGD
with these two criteria for both MNIST and SVHN datasets. In
the “random with threshold” scenario, we first truncate gradient
values ∆w into the [−0.001, 0.001] range, then go through them in
random order, and upload if abs(∆wj) ≥ τ . The neural network
architecture (CNN), learning rate (α = 0.001), mini-batch size
(M = 1), and exchange protocol (Round Robin) are the same in
all experiments. In the “random with threshold” scenario, fewer
than the θu fraction of gradients may be uploaded, thus accuracy
is sometimes lower. To find an effective value of the threshold τ ,
participants need to run DSSGD on a public calibration dataset.

Figure 11 shows the convergence of DSSGD for different datasets,
learning rates, and number of participants. The upload rate θu is
0.1, download rate θd is 1, mini-batch size is 32, the parameter ex-
change protocol is round robin, and the gradient selection criterion
is the largest values. These results show that higher learning rate
indeed results in faster convergence to maximum accuracy regard-
less of the number of participants. Therefore, the distributed and
selective nature of DSSGD does not change the overall behavior of
the gradient descent algorithm.

7 Privacy
Our system aims to address several privacy threats associated with
deep learning. First, in conventional deep learning, all training data



 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 10  20  30  40  50  60  70  80

A
cc

ur
ac

y

Epoch

MNIST, CNN, M=32, Round Robin, θu=0.1, θd=1

SGD, α=0.01
SGD, α=0.001
N=90, α=0.01

N=90, α=0.001
N=30, α=0.01

N=30, α=0.001
 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 10  20  30  40  50  60  70  80

A
cc

ur
ac

y

Epoch

SVHN, CNN, M=32, Round Robin, θu=0.1, θd=1

SGD, α=0.01
SGD, α=0.001
N=90, α=0.01

N=90, α=0.001
N=30, α=0.01

N=30, α=0.001

Figure 11: Convergence of DSSGD. The legends show the number of participants N and the learning rate α.

is revealed to a third party (typically, the company performing the
learning) and individuals who contributed the data do not have any
control over it. Their sensitive information may leak to the com-
pany itself, to attackers who compromised the company’s data stor-
age, and to law enforcement and intelligence outfits who can access
the data via legal and extra-legal means.

Second, in conventional deep learning, data owners have no con-
trol over the learning objective (i.e., which model is being trained)
and thus no control or even knowledge of what is being inferred
from their data. For example, an individual might be willing to
share her image for face recognition but not for inferring her loca-
tion from the background objects.

Third, in conventional deep learning, the learned model is not
available directly to data owners. If they want to use it, they must
reveal their inputs to the company holding the model, thus exposing
them to the same privacy risks as the training data.

Our privacy-preserving deep learning system addresses all of
these concerns and aims to protect privacy of the training data, en-
sure public knowledge of the learning objective, and protect privacy
of the data to which the learned model is applied, as well as privacy
of the model’s output.

The scenarios we consider—for example, collaborative learning
of image recognition models between medical institutions—involve
participants who are not actively malicious. Therefore, it is reason-
able to assume a “passive” adversary model, in which the partici-
pants execute the protocol as designed but may attempt to learn or
infer sensitive information from other participants’ data.

7.1 Preventing direct leakage

While training the model. Unlike conventional deep learning,
in our system participants do not reveal their training datasets to
anyone, thus ensuring strong privacy of their data. The size and
dynamics of local datasets are confidential, and different data sam-
ples can be used in each round of SSGD. The participants can also
delete their training data at any time.

While using the model. All participants learn the model and
thus can use it locally and privately, without any communication
with other participants and without revealing the input data or the
model’s output to anyone. Therefore, in contrast to conventional
deep learning, there is absolutely no leakage while using the model.

7.2 Preventing indirect leakage

Participants in our system may indirectly reveal some information
about their training datasets via public updates to a fraction of the
neural-network parameters during training. Each participant fully
controls which gradients to share and may decide not to share par-

ticularly sensitive ones. Furthermore, each participant shares only
a tiny fraction of his gradients: as we show, even sharing as few
as 1% still results in significantly better accuracy than learning just
on local data. Even so, we use differential privacy to ensure that
parameter updates do not leak too much information about any in-
dividual point in the training dataset.
Differential privacy. Our application of differential privacy to
parameter updates is inspired by recent work on privacy-preserving
empirical risk minimization [4]. In a nutshell, a computation is
differentially private if the probability of producing a given output
does not depend very much on whether a particular data point is
included in the input dataset [19]. For any two datasets D and D′

differing in a single item and any output O of function f ,

Pr{f(D) ∈ O} ≤ exp(ε) · Pr{f(D′) ∈ O}. (2)

The parameter ε controls the tradeoff between the accuracy of the
differentially private f and how much information it leaks.

In our case, f computes parameter gradients and selects which
of them to share with other participants. There are two sources of
potential leakage: how gradients are selected for sharing and the
actual values of the shared gradients. To mitigate both types of
leakage, we use the sparse vector technique [20, 25] to (i) ran-
domly select a small subset of gradients whose values are above a
threshold, and to (ii) share perturbed values of the selected gradi-
ents, all under a consistent differentially private mechanism. This
is equivalent to releasing the responses to queries whose value is
above a publicly known threshold.

Let the total privacy budget for each epoch of DSSGD for each
participant i be ε. We split this budget into c parts, where c is the
total number of gradients that we can upload at each epoch (i.e.,
c = θu|∆w|). The budget for each potential upload is then di-
vided into two parts. The first will be spent on checking whether
the gradient ∆w

(i)
j of a randomly chosen parameter j is above the

threshold τ . The second will be spent on actually releasing (upload-
ing) the gradient if it is above the threshold. We use the Laplacian
mechanism to add noise during selection and upload according to
the allocated privacy budgets. The noise depends on the privacy
budget as well as the sensitivity of the gradient for each parameter.
In the following, we assume the same sensitivity ∆f for all param-
eters, but this is not a requirement, and different parameters may
have different sensitivities.

Figure 12 presents the pseudocode of differentially private DSSGD.
To split ε, we follow [20]. 8

9
of ε

c
is devoted to the selection, where

part of it is spent on random noise rw and the other part is spent on
random noise rτ . The remaining 1

9
is devoted to the released value.

Note that rτ is not re-generated after failed threshold checks. This
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Figure 13: Accuracy of differentially private DSSGD for different datasets, number of participants, fraction of uploaded gradients, and privacy budget. Each
subfigure plots the per-parameter privacy budget (i.e., ε

c
) versus accuracy. The accuracy of SGD and Standalone are plotted for comparison.

• Let ε be the total privacy budget for one epoch of participant
i running DSSGD, and let ∆f be the sensitivity of each gra-
dient

• Let c = θu|∆w| be the maximum number of gradients that
can be uploaded in one epoch

• Let ε1 = 8
9
ε, ε2 = 2

9
ε

• Let σ(x) = 2c∆f
x

1. Generate fresh random noise rτ ∼ Lap(σ(ε1))

2. Randomly select a gradient ∆w
(i)
j

3. Generate fresh random noise rw ∼ Lap(2σ(ε1))

4. If abs(bound(∆w
(i)
j , γ)) + rw ≥ τ + rτ , then

(a) Generate fresh random noise r′w ∼ Lap(σ(ε2))

(b) Upload bound(∆w
(i)
j +r′w, γ) to the parameter server

(c) Charge ε
c

to the privacy budget

(d) If number of uploaded gradients is equal to c, then Halt
Else Goto Step 1

5. Else Goto Step 2

Figure 12: Pseudocode of differentially private DSSGD for participant i
using the sparse vector technique

ensures not only that all shared gradients are differentially private,
but also that the privacy “penalty” is not paid for gradients that are
too small to be shared with other participants.

Estimating sensitivity. The sensitivity of a function determines
how much random noise needs to be added to its output to achieve
differential privacy. The (global) sensitivity of f is

∆f = maxD,D′ ||f(D)− f(D′)||. (3)

Estimating the true sensitivity of stochastic gradient descent is
challenging. Instead, we modify the function so that its output stays
within fixed, input-independent bounds and use these bounds to es-
timate sensitivity: that’s the bound function that enforces a [−γ, γ]
range on gradient values that may be shared with other participants
(Section 5). This approach may reduce accuracy (although in our
case the effect is negligible), but privacy is guaranteed. A similar
technique was previously used to enforce privacy of MapReduce
computations with untrusted mappers [40].

Limiting the range of values that parameters and gradients can
take even improves the training process by helping to avoid overfit-
ting. Some existing regularization techniques already force a bound
on the norm of the parameters. Max-norm has been used for col-
laborative filtering [46] and deep learning [47]. Moreover, gradient
values truncated into the [−γ, γ] range indicate the direction and
magnitude of moves during gradient descent. Therefore, small val-
ues of γ (implying smaller sensitivity and thus smaller noise and
higher accuracy) would influence the learning rate of the algorithm
but not whether the optimal solution is achievable. Furthermore, as
gradients of multiple participants are aggregated, the gradient de-
scent algorithm can traverse through local optima. We discuss the
effect of perturbation on distributed selective SGD below.

The meta-parameter γ is set independently of the training data
and thus cannot leak any sensitive information. It can be set by
training on a calibration dataset with inputs that are similar to the
real inputs but are not privacy-sensitive. We then (over-)estimate



the sensitivity of our algorithm as 2γ and truncate the uploaded
gradients into the [−γ, γ] range. This helps mitigate the detrimen-
tal effect of very large noise values on the training process.

We expect that global sensitivity estimates can be significantly
reduced, resulting in higher accuracy, by ensuring that the norm of
all gradients is bounded for each update—either globally, or locally,
e.g., across all edges leading to a given neural-network node. In
fact, the latter kind of norm-bounding is a known regularization
technique. We plan to investigate applications of norm-bounding
to differentially private deep learning in future work.

7.3 Experimental results
We evaluate the effect of different values of ε (the differential pri-
vacy parameter), N (the number of participants), and θu (the frac-
tion of uploaded gradients) on the accuracy of neural networks
trained using distributed selective SGD with differential privacy.

Figure 13 shows the results and compares them with standalone
learning and centralized SGD. We set the bound γ to 0.001 and the
threshold τ to 0.0001. As expected, smaller ε values (i.e., stronger
differential privacy guarantees) result in lower accuracy. However,
with many participants and when participants share a large fraction
of their gradients, the accuracy of differentially private DSSGD is
better than the accuracy of standalone training.

7.4 Oblivious parameter server
Regardless of whether the parameter server is trusted, the privacy
guarantees of training data separation and differential privacy still
hold. However, to prevent a curious server from linking the updates
of each participant, it is possible to design a parameter server that
is oblivious to uploaders’ identities. For example, participants can
anonymously authenticate themselves and the gradients they up-
load [7]. Scalable anonymous communication protocols with prov-
able security can be used to hide participants’ identities [12, 54].

The independence of parameters from each other in distributed
SSGD, which is inherent to the underlying stochastic gradient de-
scent algorithm, also enables a completely distributed implemen-
tation of the parameter storage system where each participant is
responsible for a random subset of the parameters. We leave the
detailed design of this scheme to future work.

8 Conclusions
This work is the first step in bringing privacy to a machine learning
approach that is revolutionizing AI. We proposed a new distributed
training technique, based on selective stochastic gradient descent.
Our methodology works for any type of neural network and pre-
serves privacy of participants’ training data without sacrificing the
accuracy of the resulting models. Therefore, it can help bring the
benefits of deep learning to domains where data owners are pre-
cluded from sharing their data by confidentiality concerns.
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