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Preface

The book you hold in your hands, Dear Reader, is not at all what you expected...

1
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Chapter 1

Motivation and Background

Where are we; how did we get here; and where are we going?

If on a winter’s night a programmer (with apologies to Italo Calvino)
You’ve just picked up the new book by Greg Meredith, Pro Scala. Perhaps you’ve
heard about it on one of the mailing lists or seen it advertised on the Scala site or at
Amazon. You’re wondering if it’s for you. Maybe you’ve been programming in func-
tional languages or even Scala for as long as you can remember. Or maybe you’ve
been a professional programmer for quite some time. Or maybe you’re a manager
of programmers, now and you’re trying to stay abreast of the latest technology. Or,
maybe you’re a futurologist who looks at technology trends to get a sense of where
things are heading. Whoever you are, if you’re like most people, this book is going
to make a lot more sense to you if you’ve already got about five to ten thousand
hours of either Scala or some other functional language programming under your
belt 1. There may be nuggets in here that provide some useful insights for people
with a different kind of experience; and, of course, there are those who just take to
the ideas without needing to put in the same number of hours; but, for most, that’s
probably the simplest gauge of whether this book is going to make sense to you at
first reading.

On the other hand, just because you’ve got that sort of experience under your
belt still doesn’t mean this book is for you. Maybe you’re just looking for a few tips
and tricks to make Scala do what you want for the program you’re writing right

1 Now, i’ve been told that this is too much to expect of a would-be reader; but, when i whip
out my calculator, i see that (5000 hrs / 25 hrs/wk ) / 52 wks/yr) = 3.84615384615 years. That
means that if you’ve put in under four years at a hobbyist level, you’ve met this requirement.
Alternatively, if you’ve put in less than two years as a professional working solely in functional
languages, you’ve met the requirement. Honestly, we don’t have to give in to inflationary trends
in the meanings of terms. If we say something is aimed at a pro, we could mean what we say.

3



4 CHAPTER 1. MOTIVATION AND BACKGROUND

now. Or maybe you’ve got a nasty perf issue you want to address and are looking
here for a resolution. If that’s the case, then maybe this book isn’t for you because
this book is really about a point of view, a way of looking at programming and
computation. In some sense this book is all about programming and complexity
management because that’s really the issue that the professional programmer is
up against, today. On average the modern programmer building an Internet-based
application is dealing with no less than a dozen technologies. They are attempting
to build applications with nearly continuous operation, 24x7 availability servicing
100’s to 1000’s of concurrent requests. They are overwhelmed by complexity. What
the professional programmer really needs are tools for complexity management. The
principle aim of this book is to serve that need in that community.

The design patterns expressed in this book have been developed for nearly fifty
years to address exactly those concerns. Since Scala isn’t nearly fifty years old you
can guess that they have origins in older technologies, but Scala, it turns out, is
an ideal framework in which both to realize them and to talk about their ins and
outs and pros and cons. However, since they don’t originate in Scala, you can also
guess that they have some significant applicability to the other eleven technologies
the modern professional programmer is juggling.

1.1 Where are we

1.1.1 The concurrency squeeze: from the hardware up, from
the web down

It used to be fashionable in academic papers or think tank reports to predict and
then bemoan the imminent demise of Moore’s law, to wax on about the need to “go
sideways” in hardware design from the number of cores per die to the number of
processors per box. Those days of polite conversation about the on-coming storm
are definitely in our rear view mirror. Today’s developer knows that if her program
is commercially interesting at all then it needs to be web-accessible on a 24x7 basis;
and if it’s going to be commercially significant it will need to support at least 100’s
if not thousands of concurrent accesses to its features and functions. Her application
is most likely hosted by some commercial outfit, a Joyent or an EngineYard or an
Amazon EC3 or . . . who are deploying her code over multiple servers each of which
is in turn multi-processor with multiple cores. This means that from the hardware
up and from the web down today’s intrepid developer is dealing with parallelism,
concurrency and distribution.

Unfortunately, the methods available in in mainstream programming languages
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of dealing with these different aspects of simultaneous execution are not up to the
task of supporting development at this scale. The core issue is complexity. The
modern application developer is faced with a huge range of concurrency and concur-
rency control models, from transactions in the database to message-passing between
server components. Whether to partition her data is no longer an option, she’s
thinking hard about how to partition her data and whether or not this “eventual
consistency” thing is going to liberate her or bring on a new host of programming
nightmares. By comparison threads packages seem like quaint relics from a time
when concurrent programming was a little hobby project she did after hours. The
modern programmer needs to simplify her life in order to maintain a competitive
level of productivity.

Functional programming provides a sort of transition technology. On the one
hand, it’s not that much of a radical departure from mainstream programming like
Java. On the other it offers simple, uniform model that introduces a number of key
features that considerably improve productivity and maintainability. Java brought
the C/C++ programmer several steps closer to a functional paradigm, introducing
garbage collection, type abstractions such as generics and other niceties. Languages
like OCaml, F# and Scala go a step further, bringing the modern developer into
contact with higher order functions, the relationship between types and pattern
matching and powerful abstractions like monads. Yet, functional programming does
not embrace concurrency and distribution in its foundations. It is not based on
a model of computation, like the actor model or the process calculi, in which the
notion of execution that is fundamentally concurrent. That said, it meshes nicely
with a variety of concurrency programming models. In particular, the combination
of higher order functions (with the ability to pass functions as arguments and re-
turn functions as values) together with the structuring techniques of monads make
models such as software transactional memory or data flow parallelism quite easy to
integrate, while pattern-matching additionally makes message-passing style easier
to incorporate.

1.1.2 Ubiquity of robust, high-performance virtual machines

Another reality of the modern programmer’s life is the ubiquity of robust, high-
performance virtual machines. Both the Java Virtual Machine (JVM) and the Com-
mon Language Runtime (CLR) provide managed code execution environments that
are not just competitive with their unmanaged counterparts (such as C and C++),
but actually the dominant choice for many applications. This has two effects that
are playing themselves out in terms of industry trends. Firstly, it provides some
level of insulation between changes in hardware design (from single core per die to
multi-core, for example) that impacts execution model and language level interface.
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To illustrate the point, note that these changes in hardware have impacted hardware
memory models. This has a much greater impact on the C/C++ family of languages
than on Java because the latter is built on an abstract machine that not only hides
the underlying hardware memory model, but more importantly can hide changes to
the model. One may, in fact, contemplate an ironic future in which this abstraction
alone causes managed code to outperform C/C++ code because of C/C++’s faulty
assumptions about best use of memory that percolate all through application code.
Secondly, it completely changes the landscape for language development. By provid-
ing a much higher level and more uniform target for language execution semantics
it lowers the barrier to entry for contending language designs. It is not surprising,
therefore, that we have seen an explosion in language proposals in the last several
years, including Clojure, Fortress, Scala, F# and many others. It should not
escape notice that all of the languages in that list are either functional languages,
object-functional languages, and the majority of the proposals coming out are ei-
ther functional, object-functional or heavily influenced by functional language design
concepts.

1.1.3 Advances in functional programming, monads and the
awkward squad

Perhaps chief among the reasons for the popularity of developing a language design
based on functional concepts is that the core of the functional model is inherently
simple. The rules governing the execution of functional programs (the basis of an
abstract evaluator) can be stated in half a page. In some sense functional language
design is a “path of least resistance” approach. A deeper reason for adoption of
functional language design is that the core model is compositional. Enrichment of
the execution semantics amounts to enrichment of the components of the semantics.
Much more can be said about this, but needs to be deferred to a point where more
context has been developed. Deep simplicity and compositionality are properties
and principles that take quite some time to appreciate while some of the practical
reasons that recent language design proposals have been so heavily influenced by
functional language design principles is easily understood by even the most impa-
tient of pragmatic of programmers: functional language design has made significant
and demonstrable progress addressing performance issues that plagued it at the be-
ginning. Moreover, these developments have significant applicability to the situation
related to concurrent execution that the modern programmer finds herself now.

Since the mid ’80’s when Lisp and it’s progeny were thrown out of the industry
for performance failures a lot of excellent work has gone on that has rectified many
of the problems those languages faced. In particular, while Lisp implementations
tried to take a practical approach to certain aspects of computation, chiefly having
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to do with side-effecting operations and I/O, the underlying semantic model did
not seem well-suited to address those kinds of computations. And yet, not only are
side-effecting computations and especially I/O ubiquitous, using them led (at least
initially) to considerably better performance. Avoiding those operations (sometimes
called functional purity) seemed to be an academic exercise not well suited to writing
“real world” applications.

However, while many industry shops were throwing out functional languages,
except for niche applications, work was going on that would reverse this trend.
One of the key developments in this was an early bifurcation of functional language
designs at a fairly fundamental level. The Lisp family of languages are untyped
and dynamic. In the modern world the lack of typing might seem egregiously un-
maintainable, but by comparison to C it was more than made up for by the kind
of dynamic meta-programming that these languages made possible. Programmers
enjoyed a certain kind of productivity because they could “go meta” – writing pro-
grams to write programs (even dynamically modify them on the fly) – in a uniform
manner. This sort of feature has become mainstream, as found in Ruby or even
Java’s reflection API, precisely because it is so extremely useful. Unfortunately, the
productivity gains of meta-programming available in Lisp and it’s derivatives were
not enough to offset the performance shortfalls at the time.

There was, however, a statically typed branch of functional programming that
began to have traction in certain academic circles with the development of the ML

family of languages – which today includes OCaml, the language that can be consid-
ered the direct ancestor of both Scala and F#. One of the very first developments
in that line of investigation was the recognition that data description came in not
just one but two flavors: types and patterns. The two flavors, it was recognized,
are dual. Types tell the program how data is built up from its components while
patterns tell a program how to take data apart in terms of its components. The
crucial point is that these two notions are just two sides of the same coin and can
be made to work together and support each other in the structuring and execution
of programs. In this sense the development – while an enrichment of the language
features – is a reduction in the complexity of concepts. Both language designer and
programmer think in terms of one thing, description of data, while recognizing that
such descriptions have uses for structuring and de-structuring data. These are the
origins of elements in Scala’s design like case classes and the match construct.

The ML family of languages also gave us the first robust instantiations of para-
metric polymorphism. The widespread adoption of generics in C/C++, Java and C#

say much more about the importance of this feature than any impoverished account
the author can conjure here. Again, though, the moral of the story is that this
represents a significant reduction in complexity. Common container patterns, for
example, can be separated from the types they contain, allowing for programming
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that is considerably DRYer. 2

Still these languages suffered when it came to a compelling and uniform treat-
ment of side-effecting computations. That all changed with Haskell. In the mid-80’s
a young researcher by the name of Eugenio Moggi observed that an idea previ-
ously discovered in a then obscure branch of mathematics (called category theory)
offered a way to structure functional programs to allow them to deal with side-
effecting computations in uniform and compelling manner. Essentially, the notion
of a monad (as it was called in the category theory literature) provided a language
level abstraction for structuring side-effecting computations in a functional setting.
In today’s parlance, he found a domain specific language, a DSL, for organizing
side-effecting computations in an ambient (or hosting) functional language. Once
Moggi made this discovery another researcher, Phil Wadler, realized that this DSL
had a couple of different “presentations” (different concrete syntaxes for the same
underlying abstract syntax) that were almost immediately understandable by the
average programmer. One presentation, called comprehensions (after it’s counter
part in set theory), could be understood directly in terms of a very familiar con-
struct SELECT ... FROM ... WHERE ...; while the other, dubbed do-notation
by the Haskell community, provided operations that behaved remarkably like se-
quencing and assignment. Haskell offers syntactic sugar to support the latter while
the former has been adopted in both XQuery’s FLWOR-expressions and Microsoft’s
LINQ.

Of course, to say that Haskell offers syntactic sugar hides the true nature of
how monads are supported in the language. There are actually three elements that
come together to make this work. First, expressing the pattern at all requires sup-
port for parametric polymorphism, generics-style type abstraction. Second, another
mechanism, Haskell’s typeclass mechanism (the Haskell equivalent to Scala’s
trait) is required to make the pattern itself polymorphic. Then there is the do-
notation itself and the syntax-driven translation from that to Haskell’s core syntax.
Taken together, these features allow the compiler to work out which interpretations
of sequencing, assignment and return are in play – without type annotations. The
simplicity of the design sometimes makes it difficult to appreciate the subtlety, or
the impact it has had on modern language design, but this was the blueprint for the
way Scala’s for-comprehensions work.

With this structuring technique (and others like it) in hand it becomes a lot
easier to spot (often by type analysis alone) situations where programs can be rewrit-
ten to equivalent programs that execute much better on existing hardware. This
is one of the central benefits of the monad abstraction, and these sorts of powerful
abstractions are among the primary reasons why functional programming has made

2 DRY is the pop culture term for the ’Do not Repeat Yourself’. Don’t make me say it again.
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such progress in the area of performance. As an example, not only can LINQ-based
expressions be retargeted to different storage models (from relational database to
XML database) they can be rewritten to execute in a data parallel fashion. Results of
this type suggest that we are really just at the beginning of understanding the kinds
of performance optimizations available through the use of monadic programming
structuring techniques.

It turns out that side-effecting computations are right at the nub of strategies
for using concurrency as a means to scale up performance and availability. In some
sense a side-effect really represents an interaction between two systems (one of which
is viewed as “on the side” of the other, i.e. at the boundary of some central locus of
computation). Such an interaction, say between a program in memory and the I/O
subsystem, entails some sort of synchronization. Synchronization constraints are the
central concerns in using concurrency to scale up both performance and availabil-
ity. Analogies to traffic illustrate the point. It’s easy to see the difference in traffic
flow if two major thoroughfares can run side-by-side versus when they intersect and
have to use some synchronization mechanism like a traffic light or a stop sign. So,
in a concurrent world, functional purity – which insists on no side-effects, i.e. no
synchronization – is no longer an academic exercise with unrealistic performance
characteristics. Instead computation which can proceed without synchronization,
including side-effect-free code, becomes the gold standard. Of course, it is not real-
istic to expect computation never to synchronize, but now this is seen in a different
light, and is perhaps the most stark way to illustrate the promise of monadic struc-
turing techniques in the concurrent world programmers find themselves. They allow
us to write in a language that is at least notionally familiar to most programmers
and yet analyze what’s written and retarget it for the concurrent setting.

In summary, functional language design improved in terms of

• extending the underlying mechanism at work in how types work on data ex-
posing the duality between type conformance and pattern-matching

• extending the reach of types to parametric polymorphism

• providing a framework for cleaning up the semantics of side-effecting or stateful
computations and generalizing them

Taken together with the inherent simplicity of functional language design and
its compositional nature we have the makings of a revolution in complexity man-
agement. This is the real dominating trend in the industry. Once Java was within
1.4X the speed of C/C++ the game was over because Java offered such a significant
reduction in application development complexity which turned into gains in both
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productivity and manageability. Likewise, the complexity of Java 3 development
and especially Java development on Internet-based applications has become nearly
prohibitive. Functional languages, especially languages like Scala which run on the
JVM and have excellent interoperability with the extensive Java legacy, and have
performance on par with Java are poised to do to Java what Java did to C/C++.

1.2 Where are we going

With a preamble like that it doesn’t take much to guess where all this is heading.
More and more we are looking at trends that lead toward more functional and
functionally-based web applications. We need not look to the growing popularity
of cutting-edge frameworks like Lift to see this trend. Both Javascript (with it’s
origins in Self) and Rails must be counted amongst the functionally influenced.

1.2.1 A functional web

Because there are already plenty of excellent functional web frameworks in the open
source community our aim is not to build another. Rather our aim is to supply a
set of design patterns that will work with most – in fact are already implicitly at
work in many – but that when used correctly will reduce complexity.

Specifically, we will look at the organization of the pipeline of a web-application
from the pipeline of HTTP requests through the application logic to the store and
back. We will see how in each case judicious use of the monadic design pattern
provides for significant leverage in structuring code, making it both simpler, more
maintainable and more robust in the face of change.

To that end we will be looking at

• processing HTTP-streams using delimited continuations to allow for a sophis-
ticated state management

• parser combinators for parsing HTTP-requests and higher-level application
protocols using HTTP as a transport

• application domain model as an abstract syntax

• zippers as a means of automatically generating navigation

• collections and containers in memory

3and here we are not picking on Java, specifically, the same could be said of C#
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• storage, including a new way to approach query and search

In each case there is an underlying organization to the computation that solves
the problem. In each case we find an instance of the monadic design pattern.
Whether this apparent universal applicability is an instance of finding a hammer
that turns everything it encounters into nails or that structuring computation in
terms of monads has a genuine depth remains to be seen. What can be said even at
this early stage of the game is that object-oriented design patterns were certainly
proposed for each of these situations and many others. It was commonly held that
such techniques were not merely universally applicable, but of genuine utility in
every domain of application. The failure of object-oriented design methods to make
good on these claims might be an argument for caution. Sober assessment of the
situation, however, gives cause for hope.

Unlike the notion monad, objects began as “folk” tradition. It was many
years into proposals for object-oriented design methods before there were commonly
accepted formal or mathematical accounts. By contrast monads began as a math-
ematical entity. Sequestered away in category theory the idea was one of a whole
zoology of generalizations of common mathematical entities. It took some time to
understand that both set comprehensions and algebraic data types were instances
monads and that the former was a universal language for the notion. It took even
more time to see the application to structuring computations. Progress was slow and
steady and built from a solid foundation. This gave the notion an unprecedented
level of quality assurance testing. The category theoretic definition is nearly fifty
years old. If we include the investigation of set comprehensions as a part of the QA
process we add another one hundred years. If we include the forty years of vigorous
use of relational databases and the SELECT−FROM−WHERE construct in the
industry, we see that this was hardly just an academic exercise.

Perhaps more importantly than any of those is the fact that while object-
oriented techniques as realized in mainstream language designs 4 ultimately failed
to be compositional in any useful way – inheritance, in fact, being positively at odds
with concurrent composition – the notion of monad is actually an attempt to capture
the meaning of composition. As we will see in the upcoming sections, it defines an
powerful notion of parametric composition. This is crucial because in the real world
composition is the primary means to scaling – both in the sense of performance and
in the sense of complexity. As pragmatic engineers we manage complexity of scale by
building larger systems out of smaller ones. As pragmatic engineers we understand
that each time components are required to interface or synchronize we have the
potential for introducing performance concerns. The parametric form of composition

4To be clear, message-passing and delegation are certainly compositional. Very few mainstream
languages support these concepts directly
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encapsulated in the notion of monad gives us a language for talking about both kinds
of scaling and connecting the two ideas. It provides a language for talking about
the interplay between the composition of structure and the composition of the flow
of control. It encapsulates stateful computation. It encapsulates data structure. In
this sense the notion of monad is poised to be the rational reconstruction of the
notion of object. Telling this story was my motivation for writing this book.

1.2.2 DSL-based design

It has become buzz-word du jour to talk about DSL-based design. So much so that
it’s becoming hard to understand what the term means. In the functional setting the
meaning is really quite clear and since the writing of the Structure and Interpretation
of Computer Programs (one of the seminal texts of functional programming and
one of the first to pioneer the idea of DSL-based design) the meaning has gotten
considerably clearer. In a typed functional setting the design of a collection of types
tailor-made to model and address the operations of some domain is the basis is
effectively the design of an abstract syntax of a language for computing over the
domain.

To see why this must be so, let’s begin from the basics. Informally, DSL-based
design means we express our design in terms of a little mini-language, tailor-made
for our application domain. When push comes to shove, though, if we want to
know what DSL-based design means in practical terms, eventually we have to ask
what goes into the specification of a language. The commonly received wisdom
is that a language is comprised of a syntax and a semantics. The syntax carries
the structure of the expressions of the language while the semantics says how to
evaluate those expressions to achieve a result – typically either to derive a meaning
for the expression (such as this expression denotes that value) or perform an action
or computation indicated by the expression (such as print this string on the console).
Focusing, for the moment, on syntax as the more concrete of the two elements, we
note that syntax is governed by grammar. Whether we’re building a concrete syntax,
like the ASCII strings one types to communicate Scala expressions to the compiler
or building an abstract syntax, like the expression trees of LINQ, syntax is governed
by grammar.

What we really want to call out in this discussion is that a collection of types
forming a model of some domain is actually a grammar for an abstract syntax.
This is most readily seen by comparing the core of the type definition language of
modern functional languages with something like EBNF, the most prevalent language
for defining context-free grammars. At their heart the two structures are nearly the
same. When one is defining a grammar one is defining a collection of types that
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model some domain and vice versa. This is blindingly obvious in Haskell, and
is the essence of techniques like the application of two-level type decomposition to
model grammars. Moreover, while a little harder to see in Scala it is still there.
It is in this sense that typed functional languages like Scala are very well suited
for DSL-based design. To the extent that the use of Scala relies on the functional
core of the language (not the object-oriented bits) virtually every domain model is
already a kind of DSL in that it’s types define a kind of abstract syntax.

Taking this idea a step further, in most cases such collections of types are
actually representable as a monad. Monads effectively encapsulate the notion of
an algebra – which in this context is a category theorist’s way of saying a certain
kind of collection of types. If you are at all familiar with parser combinators and
perhaps have heard that these too are facilitated with monadic composition then the
suggestion that there is a deeper link between parsing, grammars, types and monads
might make some sense. On the other hand, if this seems a little too abstract it
will be made much more concrete in the following sections. For now, we are simply
planting the seed of the idea that monads are not just for structuring side-effecting
computations.

1.3 How are we going to get there

1.3.1 Leading by example

The principal technique throughout this book is leading by example. What this
means in this case is that the ideas are presented primarily in terms of a coherent
collection of examples, rendered as Scala code, that work together to do something.
Namely, these examples function together to provide a prototypical web-based ap-
plication with a feature set that resonates with what application developers are
building today and contemplating building tomorrow.

Let’s illustrate this in more detail by telling a story. We imagine a cloud-based
editor for a simple programming language, not unlike Mozilla’s bespin . A user
can register with the service and then create an application project which allows
them

• to write code in a structured editor that understands the language;

• manage files in the application project;

• compile the application;

• run the application
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Figure 1.1: Example sign up page
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Figure 1.2: Example REPL page

These core capabilities wrap around our little toy programming language in
much the same way a modern IDE might wrap around development in a more
robust, full-featured language. Hence, we want the capabilities of the application to
be partially driven from the specification of our toy language. For example, if we
support some syntax-highlighting, or syntax-validation on the client, we want that
to be driven from that language spec to the extent that changes to the language
spec ought to result in changes to the behavior of the highlighting and validation.
Thus, at the center of our application is the specification of our toy language.
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Figure 1.3: Example evaluation result page
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Our toy language

Abstract syntax Fittingly for a book about Scala we’ll use the λ-calculus as our
toy language. 5 The core abstract syntax of the lambda calculus is given by the
following EBNF grammar.

expression

M, N ::=
mention

x
abstraction

| λx.M
application

| MN

Informally, this is really a language of pure variable management. For example,
if the expression M mentions x, then λx.M turns x into a variable in M and provides
a means to substitute values into M , via application. Thus, (λx.M)N will result
in a new term, sometimes written M [N/x], in which every occurrence of x has
been replaced by an occurrence of N . Thus, (λx.x)M yields M , illustrating the
implementation in the λ-calculus of the identity function. It turns out to be quite
remarkable what you can do with pure variable management.

Concrete syntax We’ll wrap this up in concrete syntax.

expression

M, N ::=
mention

x
abstraction

| (x1,...,xk) => M
application

| M(N1,...,Nk)

let

| val x = M;N
seq

| M;N
group

| { M }

It doesn’t take much squinting to see that this looks a lot like a subset of
Scala, and that’s because – of course! – functional languages like Scala all share a
common core that is essentially the λ-calculus. Once you familiarize yourself with
the λ-calculus as a kind of design pattern you’ll see it poking out everywhere: in
Clojure and OCaml and F# and Scala. In fact, as we’ll see later, just about any
DSL you design that needs a notion of variables could do worse than simply to crib
from this existing and well understood design pattern.

5A word to the wise: even if you are an old hand at programming language semantics, even if
you know the λ-calculus like the back of your hand, you are likely to be surprised by some of the
things you see in the next few sections. Just to make sure that everyone gets a chance to look at
the formalism as if it were brand new, a few recent theoretical developments have been thrown in.
So, watch out!
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Code editor

Project editor

Advanced features

1.3.2 Chapter map

Taking a step back from the technical discussion let’s recall what we plan to cover and
how we plan to cover it. Essentially, the book is organized to follow the processing
of HTTP requests from the browser through the server and application code out to
the store and back.

• Chapter two introduces terminology, notation and concepts necessary for the
rest of the book.

• Chapter three looks at the organization of an HTTP server.

• Chapter four investigates parsing the transport and application level requests.

• Chapter five focuses on the application domain model.

• Chapter six addresses at the navigation model.

• Chapter seven reviews collections.

• Chapter eight looks at the storage model.

• Chapter nine investigates deployment of the application.

• Chapter ten addresses new foundations for semantic query.
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Chapter 2

Toolbox

Notation and terminology

TBD

2.1 Introduction to notation and terminology

While we defer to the rich and growing body of literature on Scala to provide a more
complete set of references for basic Scala notation, to be somewhat self-contained in
this section we review the notation and terminology we will need for this book.

2.1.1 Scala

2.1.2 Maths

2.2 Introduction to core design patterns

2.2.1 A little history

Haskell was the first programming language to popularize the notion of monad as a
structuring technique for functional programming. There were several key ideas that
went into the Haskell packaging of the idea. One was to treat the core elements
that make up a monad more or less directly without appeal to category theory –
the branch of mathematics where the notion originated. This is considerably easier
to do in a functional programming language because the ambient language can be

21
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thought of as a category; thus, for the average programmer there is no need to
refer to categories, in general, but only to the “universe” of programs that can be
written in the language at hand. Then, because Haskell already has a notion of
parametric polymorphism, a monad’s most central piece of data is a parametric
type constructor, say T .

Haskell’s monad API Given such a type constructor, you only need a pair of
maps (one of which is higher order). Thus, in Haskell a monad is presented in
terms of the following data

• a parametric type constructor, T a

• a return map enjoying the signature return :: a −> T a

• a bind map enjoying the signature bind : T a −> (a −> T b) −> T b

In Haskell these elements can be collected inside a typeclass. Resulting in a
declaration of the form

type c l a s s Monad T a where
return : : a −> T a
bind : : T a −> ( a −> T b ) −> T b

Listing 2.1: monad typeclass

Now, it’s not enough to simply have this collection of pieces. The pieces have
to fit together in a certain way; that is, they are subject to the following laws:

• return (bind a f) ≡ f a

• bind m return ≡ m

• bind (bind m f) g ≡ bind m (\ x −> bind (f x) g)

Do-notation One of the driving motivations for this particular formulation of the
concept is that it makes it very easy to host a little DSL inside the language. The
syntax and semantics of the DSL is simultaneously given by the following procedure
for de-sugaring, i.e. translating expressions in the DSL back to core Haskell.
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do { x } = x

do { x ; <stmts> }
= bind x (\ −> do { <stmts> })

do { v <− x ; <stmts> }
= bind x (\v −> do { <stmts> })

do { l et <dec l s> ; <stmts> }
= l et <dec l s> in do { <stmts> }

Listing 2.2: do-notation de-sugaring

The assignment-like operation extends to full pattern matching with

do { p <− x ; <stmts> }
= l et f p = do { <stmts> }

f = f a i l ” . . . ”
in bind x f

On the face of it, the notation provides both a syntax and a semantics reminis-
cent of the standard side-effecting operations of mainstream imperative languages.
In presence of polymorphism, however, these instruments are much more powerful.
These operations can be systematically “overloaded” (meaning the overloaded defi-
nitions satisfy the laws above). This allows to systematically use the notation for a
wide variety of computations that all have some underlying commonality. Typical
examples include I/O, state management, control flow (all three of which all bun-
dle up in parsing), and also container navigation and manipulation. It gets better
for many of the tools of mathematics that are regularly the subject of computer
programs such probability distributions, integration, etc., also have presentations as
monads. Thus, innocent examples like this one

do { putStrLn ”Enter a l i n e o f t ex t : ” ;
x <− getLine ;
putStrLn ( ”you wrote : ” ++ x) }

as might be found in some on-line tutorial on monads belie the potency of this
combination of ideas.

for-comprehensions Unlike Haskell, Scala does not reify the notion of monad
under a trait, the language’s equivalent of Haskell’s typeclass. Instead the system-
atic means of de-sugaring for-notation and polymorphic interpretations of flatMap,
etc are the effective definitions of the notion in Scala.
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The basic Scala construct looks like

for ( p <− e [ ; p <− e ] [ p = e ] [ i f t ] ) yield { e }

and the de-sugaring looks like
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for ( x <− expr1 ; y <− expr2 ; <stmts> )
yield expr3

=
expr1 f latMap (

x => for ( y <− expr2 ; <stmts> ) yield expr3

)

for ( x <− expr1 ; y = expr2 ; <stmts> )
yield expr3

=
for ( ( x , y ) <− for ( x <− expr1 ) yield ( x , expr2 ) ;

<stmts> )
yield expr3

for ( x <− expr1 i f pred ) yield expr2

=
expr1 f i l t e r ( x => pred ) map ( x => expr2 )

Listing 2.3: for-comprehension de-sugaring

Again, general pattern matching is supported in assignment-like statements.

for ( p <− expr1 ; <stmts> ) yield expr2

=

expr1 f i l t e r {
case p => true
case => fa l se

} f latMap {
p => for ( <stmts> ) yield expr2

}

This means, therefore, inside the appropriate code context (i.e., a do-block or
a for-comprehension, respectively) we have the following correspondence

ptn <− expr
return expr

ptn <− expr
yield expr

with a kind of spiritual kinship between expr1 << expr2 and expr1 ; expr2.
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2.3 Variations in presentation

2.3.1 A little more history

If one were to reify the notion in Scala there are several design choices – all of which
endure some desiderata. Following the original presentation developed in category
theory, however, has some crucial advantages:

• intuition

• correspondence to previously existing structures

• decomposition of the requirements

which we explore in some detail here.

Intuition: Monad as container

As we will see the notion of monad maps nicely onto an appropriately parametric
notion of container. From this point of view we can imagine a container “API” that
has three basic operations.

Shape of the container The first of these is a parametric specification of the
shape of the container. Examples of container shapes include: List [A], Set[A],
Tree[A], etc. At the outset we remain uncommitted to the particular shape. The
API just demands that there is some shape, say S[A].

Putting things into the container The next operation is very basic, it says
how to put things into the container. To align with a very long history, we will refer
to this operation by the name unit. Since the operation is supposed to allow us to
put elements of type A into containers of shape S[A], we expect the signature of this
operation to be unit : A =>S[A].

Flattening nested containers Finally, we want a generic way to flatten nested
containers. Just like there’s something fundamentally the same about the obvious
way to flatten nested lists and nested sets, we ask that the container API provide a
canonical way to flatten nested containers. If you think about it for a moment, if
a container is of shape, S[A], then a nested container will be of shape, S[S[A]]. If
history demands that we call our flattening operation mult, then our generic flatten
operation will have signature, mult : S[S[A]] =>S[A].
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Preserving connection to existing structure: Monad as generalization of
monoid

Programmers are very aware of data structures that support a kind of concatenation
operation. The data type of String is a perfect example. Every programmer expects
that the concatenation of a given String, say s, with the empty String, ”” will
return a result string equal to the original. In code, s .equals( s + ”” ) ==true .
Likewise, string concatenation is insensitive to the order of operation. Again, in
code, (( s + t ) + u).equals( s + ( t + u ) ) ==true .

Most programmers have noticed that these very same laws survive polymorphic
interpretations of +, equals and the “empty” element. For example, if we substituted
the data type Integer as the base type and used integer addition, integer equality,
and 0 as the empty element, these same code snippets (amounting assertions) would
still work.

Many programmers are aware that there is a very generic underlying data type,
historically referred to as a monoid defined by these operations and laws. In code,
we can imagine defining a trait in Scala something like

tra it Monoid {
def uni t : Monoid
def mult ( that : Monoid )

}

This might allow views of Int as a monoid as in

class MMultInt extends Int with Monoid {
override def uni t = 1
override def mult ( that : Monoid ) = this ∗ that
}

except for the small problem that Int is final (illustrating an important differ-
ence between the adhoc polymorphism of Haskell’s typeclass and Scala’s trait).

Any solution will depend on type parametrization. For example

tra it Monoid [ Element ] {
def uni t : Element
def mult ( a : Element , b : Element )

}

and corresponding view of Int as a monoid.

class MMultInt extends Monoid [ Int ] {
override def uni t : Int = 1
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override def mult ( a : Int , b : Int ) = a ∗ b
}

This parametric way of viewing some underlying data structure is natural both
to the modern programmer and the modern mathematician. Both are quite familiar
with and make extensive use of overloading of this kind. Both are very happy to find
higher levels of abstraction that allow them to remain DRY when the programming
demands might cause some perspiration. One of the obvious places where repetition
is happening is in the construction of view. Consider another view of Int

class MAddInt extends Monoid [ Int ] {
override def uni t : Int = 0
override def mult ( a : Int , b : Int ) = a + b

}

It turns out that there is a lot of machinery that is common to defining a view
like this for any given data type. Category theorists realized this and recognized that
you could reify the view which not only provides a place to refactor the common
machinery, but also to give it another level of polymorphism. Thus, a category
theorist’s view of the monad API might look something like this.

tra it Monad [ Element ,M[ ] ] {
def uni t ( e : Element ) : M[ Element ]
def mult ( mme : M[M[ Element ] ] ) : M[ Element ]

}

The family resemblance to the Monoid API is not accidental. The trick is to
bring syntax back into the picture. Here’s an example.

case class MonoidExpr [ Element ] ( val e : L i s t [ Element ] )
class MMInt extends Monad [ Int , MonoidExpr ] {

override def uni t ( e : Int ) = MonoidExpr ( L i s t ( e ) )
override def mult ( mme : MonoidExpr [ MonoidExpr [ Int ] ] ) =
mme match {

case MonoidExpr ( Ni l ) =>
MonoidExpr ( Ni l )

case MonoidExpr ( mes ) =>
MonoidExpr (

( Ni l / : mes ) (
{ ( acc , me ) => me match {

case MonoidExpr ( es ) => acc +++ es
}

}
)
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)
}

}

While it’s clear that unit turns Ints into integer expressions, what the opera-
tion mult is doing is canonically flattening nested expressions in a way the exactly
parallels the flattening of nest arithmetic addition expressions. For a broad class
of monads, this is the paradigmatic behavior of mult. The fact that monads are
characterized by a generic interpretation of flattening of nested structure, by the
way, makes the choice of the term flatMap particularly appropriate.

Associativity as flattening Looking at it from the other way around, one of the
properties of a monoid is that it’s binary operation, its mult, is associative. The
actual content of the notion of associativity is that order of grouping doesn’t make
any difference. In symbols, a binary operation, ∗, is associative when a ∗ (b ∗ c) =
(a ∗ b) ∗ c. This fact gives us the right to erase the parens and simply write a ∗ b ∗ c.
In other words, associativity is flattening. A similar connection can be made for
unit and the identity of a monoid. One quick and dirty way to see this is that since
we know that a ∗ e = a (when e is the unit of the monoid) then the expression a ∗ e
effectively nests a in a MonoidExpr. That’s the “moral” content of the connection
between the two notions of unit.

Bracing for XML In this connection it is useful to make yet another connection to
a ubiquitous technology, namely XML. As a segue, notice that we can always write
a binary operation in prefix notation as well as infix. That is, whatever we could
write at a ∗ b we could just as easily write as ∗(a, b). The flattening property of
associativity says we can drop nesting such as ∗(a, ∗(b, c)) in favor of ∗(a, b, c). In
this sense, the syntax of braces is a kind of generic syntax for monoids and monads.
If we introduce the notion of “colored” braces, this becomes even more clear at the
lexicographic or notational level. So, instead of ∗(a, b, c) we’ll mark the “color” of the
braces like so: (∗|...|∗), where ∗ can be any color. Then, at the level of monoid the
unit is the empty braces, (∗||∗), while at the level of the monad the unit places the
element, say a, in between the braces: (∗|a|∗). The conceptual connection between
the two variations of the operation now becomes clear: writing a ∗ e is the same as
writing ∗(a, e) which is the same as writing (∗|a, (∗||∗)|∗), which canonically flattens
into (∗|a|∗).

Now, anyone who’s spent any time around XML can see where this is headed. At
a purely syntactic, lexicographic level we replace round brackets with angle brackets
and we have exactly XML notation for elements. In this sense, XML is a kind of uni-
versal notation for monads. The only thing missing from the framework is a means
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to associate operations to unit and mult, i.e. to inserting content into elements and
flattening nested elements. Scala’s specific support for XML puts it in an interesting
position to rectify this situation.

The connection with set-comprehensions Finally, since we’ve gone this far
into it, we might as well make the connection to comprehensions. Again, let’s let
notation support our intuitions. The above discussion should make it clear that its
not the particular shape of the brace that matters, but the action of “embracing” a
collection of elements that lies at the heart of the notion. So, it’s fine if we shift to
curly braces to be suggestive. Thus, we are looking at a formalism that allows us to
polymorphically “collect” elements between braces, like {∗|a, b, c|∗}.

This is fine for finite collections, but what about infinitary collections or col-
lections of elements selected programmatically, rather than given explicitly. The
set theoretic notation was designed specifically for this purpose. When we have an
extant set of elements that we can give explicitly, we simply write {a1, a2, a3, ...}.
When we have a potentially infinitary collection of elements, or elements that are se-
lected on the basis of a condition, then we write {pattern ∈ S | condition}. The idea
of monad as comprehension recognizes that these operations of collecting, pattern
matching and selection on the basis of a condition can be made polymorphic using
monads. Notationally, we can denote the different polymorphic interpretations by
the “color” of the brace. In other words, we are looking at a shift of the form

• {a1, a2, a3, ...} 7→ {∗| a1, a2, a3, ... |∗}

• {pattern ∈ S | condition} 7→ {∗| pattern ∈ S | condition |∗}

to build into our notation an explicit representation of the fact that the operation of
collection, pattern matching and filtering on the basis of predicate are polymorphic.
1

Often times, good mathematics, like good programming is really about the
design of good notation – it’s about DSLs! In this case, the notation is particularly
useful because it begs the question of the language of patterns and the language
of conditions – something that Wadler’s original paper on monads as generalized
comprehensions did not address. This is a theme to which we will return at the end

1 This demarcation between extensionally and intensionally given expressions is also reflected
in the notation used for arithmetic or monoids, more generally. When we have a finite number
and/or explicitly given set of operands, we can write expressions like a1 + a2 + ... + an, but when
we have an infinite expression (like and infinite series) or an expression whose operands are given

programmatically we write expressions like
∑
i∈S

e(i).
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of the book when we address search on a semantics basis. For now, the central point
is to understand how monad as container and monad as generalization of monoid
are actually views of the same underlying idea.

Now, just to make sure the connection is absolutely explicit, there is a one-
for-one correspondence between the polymorphic set-comprehension notation and
the for-comprehension notation of Scala. The correspondence takes {∗|pattern ∈
S | condition|∗} to

for ( x <− S i f condition ) yield {
x match { case pattern => x }

}

As the Scala type checker will explain, this translation is only approximate.
If the pattern is refutable, then we need to handle the case when the match is not
possible. Obviously, we just want to throw those away, so a fold might be a better
a better choice, but then that obscures the correspondence.

Syntax and containers The crucial point in all of this is that syntax is the only
container we have for computation. What do we mean by this? Back when Moggi
was crafting his story about the application of the notion of monad to computing
he referred to monads as “notions of computation”. What he meant by that was
that monads reify computation (such as I/O or flow of control or constructing data
structures) into “objects”. Computation as a phenomenon, however, is both dy-
namic and (potentially) infinitary. At least as we understand it today, it’s not in
the category of widgets we can hold in our hand like an apple or an Apple TM com-
puter. All we can do is point to it, indicate it in some way. Syntax, it turns out, is
our primary means of signifying computation. That’s why many monads factor out
as a reification of syntax, and why they are so key to DSL-based design.

Decomposition of monad requirements

In the presentation of the monad API that we’ve discussed here the constraints on
any given monad candidate are well factored into three different kinds of require-
ments – operating at different levels of the “API”, dubbed in order of abstraction:
functoriality, naturality and coherence. Often these can be mechanically verified,
and when they can’t there are natural ways to generate spot-checks that fit well
with tools such as ScalaCheck.
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A categorical way to look at monads

One of the principle challenges of presenting the categorical view of monads is the
dependencies on the ambient theory. In some sense the categorical view of the
monad API is like a useful piece of software that drags in a bunch of other libraries. A
complete specification of monad from the categorical point of view requires providing
definitions for

• category

• functor

• natural transformation

This book is not intended to be a tutorial on category theory. There are lots
of those and Google and Wikipedia are your friends. Rather, this book is about a
certain design pattern that can be expressed, and originally was expressed within
that theory, but is to a great extent an independent notion. 2 On the other hand, for
the diligent and/or curious reader a pointer to that body of work has the potential
to be quite rewarding. There are many treasures there waiting to be found. For
our purposes, we strike a compromise. We take the notion of category to be given
in terms of the definable types within the Scala type system and the definable
programs (sometimes called maps) between those types. Then a functor, say F, is a
pair consisting of a parametric type constructor, FT , together with a corresponding
action, say FM , on programs, that respects certain invariants. Specifically,

• A functor must preserve identity. That is, for any type, A, we can define
an identity map, given canonically by the program ( x : A ) =>x. Then
FM( ( x : A ) => x ) = ( x : FT [A] ) => x

• A functor must preserve composition. That is, given two programs, f : A =>B
and g : B =>C, FM( f ◦ g ) = FM( f ) ◦ FM( g ) where ( f ◦ g )( x ) = g( f( x ) )

In Scala-land this is what it means for F =(FT ,FM) to be functorial. The
constraint itself is called functoriality. Sometimes we will refer to the tuple (FT ,FM)
just by F when there is little risk of confusion.

From these operational definitions, it follows that a natural transformation is
map between functors! We expect it to be given in terms of component maps. That

2In point of fact, at present writing, i suspect that there is a way to turn category theory on
its head and make the notion of monad as the fundamental building block out of which the rest of
category theory may be defined.
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is, at a type, say A, a natural transformation, n from a functor F to a functor G
should have a map nA : FT [A] => GT [A]. These component maps need to satisfy
some constraints. To wit,

• Suppose we have a map f : A =>B. Then we want nA ◦ GM( f ) = FM( f ) ◦ nB.

As you might have guessed, this constraint is dubbed naturality. Category the-
orists have developed a nice methodology for reasoning about such constraints. They
draw them as diagrams. For example, the diagram below represents the naturality
equation.

FT [A]
nA- GT [A]

FT [B]

FM(f)

?

nB

- GT [B]

GM(f)

?

You can read the diagram as stating that the two paths from the upper left
corner of the diagram to the lower right corner (one along the top and down the
right and the other down the left and along the bottom) must be equal as functions.
In general, when all the path between two vertices in such a diagram are equal as
functions, the diagram is said to commute. This sort of tool is really invaluable for
people doing systems-level design.

Quick digression about design by diagram-chasing In preparation for this
book i was looking at the open source Scala library, kiama. This package provides
support for rewrite systems, making it possible to give a specification of systems
like the lambda-calculus at a level more closely resembling its original specification.
That system makes the choice of using Scala case classes as the input language
for the terms in rewrite clauses. i wanted to use it over the Java classes generated
from a parser written in BNFC. This meant i needed a case class shadow of the
BNFC-generated Java-based abstract syntax model. It just turns out that BNFC also
generates a DTD-driven XML parser for element structure that is isomorphic to the
input grammar. There are open source tools that will generate an XSD schema from
the DTD. This can then be fed into the open source tool scalaxb which will generate
case classes. In pictures
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EBNF
BNFC

- DTD
trang

- XSD
scalaxb

- case classes

Chaining through the open source components (maps in our category) to find a
way to wire in the kiama functionality is a lot like diagram chasing, which feels like it
was made for an open source world. Moreover, when BNFC eventually targets Scala
directly, we have a quality assurance constraint. Up to some accepted variance in
output format we want

EBNF
BNFC

- DTD
trang

- XSD
BNFC

+
+

-
case classes

scalaxb

?

Often developers will draw similar diagrams, intuitively attempting to convey
similar information; but, just as often, because of their informality, these diagrams
are just as much a source of mis-communication. It is possible, however, in a lan-
guage such as Scala to get both more formal and more intuitive (by appealing to a
higher level of abstraction, like diagram-chasing) at the same time.

Monads are triples Returning to the topic at hand, a monad is really given by
a triple3, (S, unit, mult) where

• S is a functor,

• unit is a natural transformation from the identity functor to S,

• mult is a natural transformation from S2 to S.

subject to the following constraints.

• mult ◦ S mult = mult ◦ mult S

• mult ◦ S unit = mult ◦ unit S

3In fact, in the early days of category theory they were actually give the imaginative moniker:
triple.
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Or in pictures

S3 S mult
- S2

S2

mult S

?

mult
- S

mult

?

S
unit S

- S2

S2

S unit

?

mult
- S

mult

?

which are really shorthand for

S[S[S[A]]
S(multA)

- S[S[A]]

S[S[A]]

multS[A]

?

multA
- S[A]

multA

?

S[A]
unitS[A]- S[S[A]]

S[S[A]]

S(unitA)

?

multA
- S[A]

multA

?

These constraints are called coherence constraints because they ensure that
unit and mult interact coherently (and, in fact, that mult interacts coherently with
itself).

Scala programmers can certainly understand these laws. Once you observe
that nesting of containers corresponds to iterated invocation of the functor associated
with a monad, then it’s easy to see that the first diagram merely expresses that there
is a canonical way to flatten nested monadic structure. The second diagram says
that whichever way you try to nest with the unit transform, applying the mult after
results in the same flattened structure.

Despite the apparent complexity, the presentation has a certain organization
to it that is very natural once it becomes clear. There are actually three different
levels in operation here, following a kind of food-chain.

• At the level of Scala, which – if you recall – is our ambient category, we find
types and maps between them.

• Though this is harder to see because we have restricted our view to just one
category, at the level of functors, categories play in the role of types, while
functors play in the role of maps between them.

• At the level of natural transformations, functors play in the role of types while
natural transformations play in the role of maps between them.

Correspondingly, we have three different levels of constraints.
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• functoriality

• naturality

• coherence

Monads bring all three levels together into one package. Monads operate on a
category via a functor and pair of natural transformations that interact coherently.
This food chain arrangement points the way toward an extremely promising recon-
struction of the notion of interface. One way to think about it is in terms of the
recent trend away from inheritance and towards composition. In this trend the no-
tion of interface is still widely supported, but it really begs the question: what is an
interface? What makes a collection of functions cohere enough to be tied together
under an interface?

One way to go about answering that question is to assume there’s nothing
but the interface name that collects the functions it gathers together. In that case,
how many interfaces are there? One way to see that is just to consider all the sub
interfaces of a single interface with n methods on it: that’s 2n interfaces. That’s a
lot. Does that give us any confidence that any one way of carving up functionality
via interfaces is going to be sane? Further, in practice, do we see random distribution
through this very large space?

What we see over and over again in practice is that the answer to the latter
question is “no!” Good programmers invariably pick out just a few factorizations
of possible interfaces – from the giant sea of factorizations. That means that there
is something in the mind of a good programmer that binds a collection of methods
together. What might that something be? i submit that in their minds there are
some constraints they know or at least intuit must hold across these functions. The
evidence from category theory is that these are not just arbitrary constraints, but
that the space of constraints that bind together well factored interfaces is organized
along the lines of functoriality, naturality and coherence. There may yet be higher-
order levels of organization beyond that, but these – at least – provide a well-vetted
and practical approach to addressing the question of what makes a good interface. If
monad is the new object, then these sorts of categorical situations (of which monad
is but one instance) are the basis for a re-thinking what we mean when we say
“interface”.

All of this is discussion leads up to the context in which to understand the
correspondence between the Haskell variation of the monad laws and their original
presentation.
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tra it Monad [M[ ] ] {
// map par t o f M
// par t o f the requirement o f M’ s f u n c t o r i a l i t y
// M : Sca la => Sca la
def map [A,B] ( a2b : A => B ) : M[A] => M[B]
// the un i t na tura l t rans format ion , unit : Identity => M [A]
def uni t [A] ( a : A ) : M[A]
// the mult na tura l t rans format ion , mult : M [M [A]] => M [A]
def mult [A] ( mma : M[M[A ] ] ) : M[A]

// flatMap , aka bind i s a der i v ed not ion
def f latMap [A,B] ( ma : M[A] , a2mb : A => M[B] ) : M[B] = {

mult ( map( a2mb ) ( ma ) )
}

}

Listing 2.4: categorical presentation of monad as Scala trait
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Chapter 3

An IO-monad for http streams

Code first; questions later

The following code is adapted from Tiark Rompf’s work using delimited con-
tinuations for handling HTTP streams.

3.1 Code first, questions later

import s c a l a . c on t inua t i on s .
import s c a l a . c on t inua t i on s . ControlContext .

import s c a l a . concurrent .
import s c a l a . concurrent . cpsops .

import java . net . InetSocketAddress
import java . net . InetAddress

import java . n io . channe l s . Se lect ionKey
import java . n io . channe l s . S e l e c t o r
import java . n io . channe l s . Se l ec tab l eChanne l
import java . n io . channe l s . ServerSocketChannel
import java . n io . channe l s . SocketChannel
import java . n io . channe l s . s p i . S e l e c t o rProv id e r

import java . n io . ByteBuf fer
import java . n io . CharBuffer

39
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Figure 3.1: Chapter map

import java . n io . cha r s e t . Charset
import java . n io . cha r s e t . CharsetDecoder
import java . n io . cha r s e t . CharsetEncoder

import java . u t i l . regex . Pattern
import java . u t i l . regex . Matcher

import java . u t i l . Set

import s c a l a . c o l l e c t i o n . JavaConvers ions .

// adapted from h t t p :// vodka . na ch t l i c h t−media . de/ tu tHt tpd . html

object DCWebserver
extends FJTaskRunners {

case class Generator [+A,−B,+C] ( val fun : (A => (B @cps [Any ,Any ] ) ) => (C @cps [Any ,Any ] ) ) {

def copy = null // FIXME: workaround f o r named/ d e f a u l t params bug

f ina l def f o r each ( f : (A => B @cps [Any ,Any ] ) ) : C @cps [Any ,Any ] = {
fun ( f )

}
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}

def s e l e c t i o n s ( s e l e c t o r : S e l e c t o r )
: ControlContext [ Set [ Se lect ionKey ] , Unit , Unit ] =
sh i f tR {

k : ( Set [ Se lect ionKey ] => Any) =>

p r i n t l n ( ” i n s i d e s e l e c t ” )

while ( true ) { // problem???
val count = s e l e c t o r . se lectNow ( )
i f ( count > 0)

k ( s e l e c t o r . s e l e c t edKeys ( ) )
}

}

def c r ea t eAsyncSe l e c to r ( ) = {
val s e l e c t o r = Se l e c t o rProv id e r . p rov ide r ( ) . openSe l e c to r ( )

// TODO: t h i s shou ld run in i t s own thread , so s e l e c t can b l o c k s a f e l y
spawn {

s e l e c t i o n s ( s e l e c t o r ) . fun {
keySet =>

for ( key <− keySet ) {
p r i n t l n ( ” S e l e c t : ” + key )
val handler = key . attachment ( ) . as InstanceOf [ ( Se lect ionKey => Any ) ]

p r i n t l n ( ” handl ing : ” + handler )
handler ( key )

}
keySet . c l e a r ( )

}
}

s e l e c t o r
}

def c a l l b a c k s ( channel : Se lectab leChanne l , s e l e c t o r : S e l e c to r , ops : Int ) =
Generator {

k : ( Se lect ionKey => Unit @cps [Any ,Any ] ) =>
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p r i n t l n ( ” l e v e l 1 c a l l b a c k s ” )

s h i f t {
outerk : ( Unit => Any) =>

def c a l l b a ck ( key : Se lect ionKey ) = {
key . in t e r e s tOps (0 )

spawn {
p r i n t l n ( ” be f o r e cont inuat i on in ca l l b a ck ” )

k ( key )

p r i n t l n ( ” a f t e r cont inuat i on in ca l l b a ck ” )

i f ( key . i sVa l i d ( ) ) {
key . in t e r e s tOps ( ops )
s e l e c t o r . wakeup ( )

} else {
outerk ( )
// re tu rn to . gen ( ) ;

}
}

}

p r i n t l n ( ” be f o r e r e g i s t e r i n g ca l l b a ck ” )

val s e l e c t i onKey = channel . r e g i s t e r ( s e l e c t o r , ops , c a l l b a ck )

p r i n t l n ( ” a f t e r r e g i s t e r i n g ca l l b a ck ” )
// s top
( )

}
}

def acceptConnect ions ( s e l e c t o r : S e l e c to r , port : Int ) =
Generator {

k : ( SocketChannel => Unit @cps [Any ,Any ] ) =>
val serverSocketChanne l = ServerSocketChannel . open ( )
serverSocketChanne l . c on f i gu r eB lock ing ( fa l se )
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val i s a = new InetSocketAddress ( port )

serverSocketChanne l . socke t ( ) . bind ( i s a )

for (
key <−
c a l l b a c k s ( serverSocketChannel , s e l e c t o r , Se lect ionKey .OP ACCEPT )

) {

val serverSocketChanne l =
key . channel ( ) . as InstanceOf [ ServerSocketChannel ]

val socketChannel = serverSocketChanne l . accept ( )
socketChannel . c on f i gu r eB lock ing ( fa l se )

k ( socketChannel )
}

p r i n t l n ( ” accept r e tu rn ing ” )
}

def readBytes ( s e l e c t o r : S e l e c to r , socketChannel : SocketChannel ) =
Generator {

k : ( ByteBuffer => Unit @cps [Any ,Any ] ) =>
s h i f t {

outerk : ( Unit => Any) =>
r e s e t {

val bu fS i z e = 4096 // f o r example . . .
val bu f f e r = ByteBuf fer . a l l o c a t eD i r e c t ( bu fS i z e )

p r i n t l n ( ”about to read ” )

for (
key
<− c a l l b a c k s (

socketChannel , s e l e c t o r , Se lect ionKey .OP READ
)

) {

p r i n t l n ( ”about to a c tua l l y read ” )



44 CHAPTER 3. AN IO-MONAD FOR HTTP STREAMS

val count = socketChannel . read ( bu f f e r )

i f ( count < 0) {
p r i n t l n ( ” should c l o s e connect ion ” )
socketChannel . c l o s e ( )

p r i n t l n ( ” r e s u l t o f outerk ” + outerk ( ) )
// re tu rn to . gen () shou ld cance l here !

} else {

bu f f e r . f l i p ( )

p r i n t l n ( ”about to c a l l read cont ” )

k ( bu f f e r )

bu f f e r . c l e a r ( )
s h i f t { k : ( Unit=>Any) => k ( ) }

}
}

p r i n t l n ( ” readBytes r e tu rn ing ” )
outerk ( )

}
}

}

def readRequests ( s e l e c t o r : S e l e c to r , socketChannel : SocketChannel ) =
Generator {

k : ( S t r ing => Unit @cps [Any ,Any ] ) =>

var s : S t r ing = ”” ;

for ( buf <− readBytes ( s e l e c t o r , socketChannel ) ) {
k ( ” read : ” + buf )

}
}
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def writeResponse (
s e l e c t o r : S e l e c to r ,
socketChannel : SocketChannel ,
r e s : S t r ing

) = {
val r ep ly = r e s

val cha r s e t = Charset . forName ( ”ISO−8859−1” )
val encoder = cha r s e t . newEncoder ( )

socketChannel . wr i t e ( encoder . encode ( CharBuffer . wrap ( r ep ly ) ) )
}

def handleRequest ( req : S t r ing ) = req

def t e s t ( ) = {

val s e l = c r ea t eAsyncSe l e c to r ( )

p r i n t l n ( ”http daemon running . . . ” )

for ( socketChannel <− acceptConnect ions ( s e l , 8080)) {

spawn {
p r i n t l n ( ”Connect : ” + socketChannel )

for ( req <− readRequests ( s e l , socketChannel ) ) {

val r e s = handleRequest ( req )

writeResponse ( s e l , socketChannel , r e s )

s h i f t { k : ( Unit => Any) => k ( ) } // FIXME: shouldn ’ t be needed
}

p r i n t l n ( ”Disconnect : ” + socketChannel )
}

s h i f t { k : ( Unit => Any) => k ( ) } // FIXME: shouldn ’ t be needed
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}

}

// de f main ( args : Array [ S t r ing ] ) = {

// r e s e t ( t e s t ( ) )

// Thread . s l e e p (1000∗60∗60) // 1h !
// // t e s t . mainTaskRunner . wa i tUn t i lF in i s hed ()

// }

}

3.1.1 An HTTP-request processor

3.1.2 What we did

3.2 Synchrony, asynchrony and buffering

TBD

3.3 State, statelessness and continuations

TBD
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Parsing requests, monadically

How to get from the obligatory to the well formed

TBD

4.1 Obligatory parsing monad

TDB

4.2 Your parser combinators are showing

TBD

4.3 EBNF and why higher levels of abstraction

are better

4.3.1 Different platforms, different parsers

4.3.2 Different performance constraints, different parsers

4.3.3 Maintainability

47
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Figure 4.1: Chapter map

# l i n e endings
CRLF = ”\ r\n” ;

# charac t e r types
CTL = ( cn t r l | 127 ) ;
s a f e = ( ”$” | ”−” | ” ” | ” . ” ) ;
ext ra = ( ” ! ” | ”∗” | ” ’ ” | ” ( ” | ” ) ” | ” , ” ) ;
r e s e rved = ( ” ; ” | ”/” | ”?” | ” : ” | ”@” | ”&” | ”=” | ”+” ) ;
s o r t a s a f e = ( ”\”” | ”<” | ”>” ) ;
unsa fe = (CTL | ” ” | ”#” | ”%” | s o r t a s a f e ) ;
na t i ona l = any −− ( a lpha | d i g i t | r e s e rved | ex t ra | s a f e | unsafe ) ;
unreserved = ( alpha | d i g i t | s a f e | ext ra | na t i ona l ) ;
escape = ( ”%” xd i g i t x d i g i t ) ;
uchar = ( unreserved | escape | s o r t a s a f e ) ;
pchar = ( uchar | ” : ” | ”@” | ”&” | ”=” | ”+” ) ;
t s p e c i a l s = ( ” ( ” | ” ) ” | ”<” | ”>” | ”@” | ” , ” | ” ; ” | ” : ” | ”\\” | ”\”” | ”/” | ” [ ” | ” ] ” | ”?” | ”=” | ”{” | ”}” | ” ” | ”\ t ” ) ;

# elements
token = ( a s c i i −− (CTL | t s p e c i a l s ) ) ;

# URI schemes and abso lu te paths
scheme = ( alpha | d i g i t | ”+” | ”−” | ” . ” )∗ ;
a b s o l u t e u r i = ( scheme ” : ” ( uchar | r e s e rved ) ∗ ) ;



4.3. EBNF AND WHY HIGHER LEVELS OF ABSTRACTION ARE BETTER49

path = ( pchar+ ( ”/” pchar∗ )∗ ) ;
query = ( uchar | r e s e rved )∗ %que ry s t r i n g ;
param = ( pchar | ”/” )∗ ;
params = ( param ( ” ; ” param )∗ ) ;
r e l p a th = ( path? %reques t path ( ” ; ” params )? ) ( ”?” %s t a r t qu e ry query ) ? ;
abso lu t e path = ( ”/”+ r e l p a th ) ;

Request URI = ( ”∗” | ab s o l u t e u r i | abso lu te path ) >mark %r e qu e s t u r i ;
Fragment = ( uchar | r e s e rved )∗ >mark %fragment ;
Method = ( upper | d i g i t | s a f e ){1 ,20} >mark %request method ;

http number = ( d i g i t+ ” . ” d i g i t+ ) ;
HTTP Version = ( ”HTTP/” http number ) >mark %ht tp ve r s i on ;
Request Line = ( Method ” ” Request URI ( ”#” Fragment ){0 ,1} ” ” HTTP Version CRLF ) ;

f i e ld name = ( token −− ”:” )+ > s t a r t f i e l d $ s n a k e u p c a s e f i e l d %w r i t e f i e l d ;

f i e l d v a l u e = any∗ >s t a r t v a l u e %wr i t e va l u e ;

message header = f i e ld name ” : ” ” ”∗ f i e l d v a l u e :> CRLF;

Request = Request Line ( message header )∗ ( CRLF @done ) ;

main := Request ;
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Chapter 5

The domain model as abstract
syntax

In which Pooh and Piglet understand the value of pipelines

TBD

5.1 Our abstract syntax

Abstract syntax Fittingly for a book about Scala we’ll use the λ-calculus as our
toy language. 1 The core abstract syntax of the lambda calculus is given by the
following EBNF grammar.

expression

M, N ::=
mention

x
abstraction

| λx.M
application

| MN

Informally, this is really a language of pure variable management. For example,
if the expression M mentions x, then λx.M turns x into a variable in M and provides
a means to substitute values into M , via application. Thus, (λx.M)N will result
in a new term, sometimes written M [N/x], in which every occurrence of x has
been replaced by an occurrence of N . Thus, (λx.x)M yields M , illustrating the

1A word to the wise: even if you are an old hand at programming language semantics, even if
you know the λ-calculus like the back of your hand, you are likely to be surprised by some of the
things you see in the next few sections. Just to make sure that everyone gets a chance to look at
the formalism as if it were brand new, a few recent theoretical developments have been thrown in.
So, watch out!
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implementation in the λ-calculus of the identity function. It turns out to be quite
remarkable what you can do with pure variable management.

5.2 Our application domain model

Our toy language

A simple-minded representation At a syntactic level this has a direct repre-
sentation as the following Scala code.
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tra it Expres s ions {
type Nominal
// M, N ::=
abstract class Express ion

// x
case class Mention ( r e f e r e n c e : Nominal )

extends Express ion

// λ x1, ..., xn.M
case class Abstract ion (

fo rmal s : L i s t [ Nominal ] ,
body : Express ion

) extends Express ion

// MN1...Nn

case class Appl i cat ion (
opera t i on : Express ion ,
a c tua l s : L i s t [ Express ion ]

) extends Express ion
}

In this representation each syntactic category, EXPRESSION, MENTION,
ABSTRACTION and APPLICATION, is represented by a trait or case class. EX-
PRESSION’s are trait’s because they are pure placeholders. The other categories
elaborate the syntactic form, and the elaboration is matched by the case class
structure. Thus, for example, an ABSTRACTION is modeled by an instance of the
case class called Abstraction having members formal for the formal parameter of
the abstraction, and body for the λ-term under the abstraction that might make
use of the parameter. Similarly, an APPLICATION is modeled by an instance of
the case class of the same name having members operation for the expression that
will be applied to the actual parameter called (not surprisingly) actual.

Currying The attentive reader will have noticed that there’s a difference between
the abstract syntax and our Scala model. The abstract syntax only supports a single
formal parameter under λ-abstraction, while the Scala model declares the formals

to be of type List [Nominal]. The model anticipates the encoding λ x y.M
def
=

λ x.λ y.M . Given that abstractions are first-class values, in the sense that they can
be returned as values and passed as parameters, this is a fairly intuitive encoding.
It has some pleasant knock-on effects. For example, when there is an arity shortfall,
i.e. the number of actual parameters is less than the number of formal parameters,
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then it is both natural and useful simply to return an abstraction. Thus, (λxy.fxy)u
can be evaluated to return (λy.fuy). This is an extremely convenient mechanism
to support partial evaluation.

Type parametrization and quotation One key aspect of this representation
is that we acknowledge that the abstract syntax is strangely silent on what the
terminals are. It doesn’t actually say what x’s are. Often implementations of
the λ-calculus will make some choice, such as Strings or Integers or some other
representation. With Scala’s type parametrization we can defer this choice. In
fact, to foreshadow some of what’s to come, we illustrate that we never actually
have to go outside of the basic grammar definition to come up with a supply of
identifiers.

In the code above we have deferred the choice of identifier. In the code below
we provide several different kinds of identifiers (the term of art in this context is
“name”), but defer the notion of an expression by the same trick used to defer the
choice of identifiers.

tra it Nominals {
type Term
abstract class Name
case class Transc r ip t i on ( exp r e s s i on : Term )

extends Name
case class S t r i n gL i t e r a l ( s t r : S t r ing )

extends Name
case class DeBruijn ( outerIndex : Int , inner Index : Int )

extends Name
case class URLLiteral ( u r l : java . net .URL )

extends Name
}

Now we wire the two types together.

tra it Re f l e c t i v eGene ra to r s
extends Expres s ions with Nominals {

type Nominal = Name
type Term = Express ion

}

This allows us to use quoted terms as variables in lambda-terms! The idea
is very rich as it begs the question of whether such variables can be unquoted and
what that means for evaluation. Thus, Scala’s type system is already leading to
some pretty interesting places! In fact, this is an instance of a much deeper design



5.2. OUR APPLICATION DOMAIN MODEL 55

principle lurking here, called two-level type decomposition, that is enabled by type-
level parametricity. We’ll talk more about this in upcoming chapters, but just want
to put it on the backlog.

Some syntactic sugar To this core let us add some syntactic sugar.

previous

M, N ::= ...
let

| let x = M in N
seq

| M ; N

This is sugar because we can reduce let x = M in N to (λx.N)M and M ; N
to let x = M in N with x not occurring in N .

Digression: complexity management principle In terms of our implemen-
tation, the existence of this reduction means that we can choose to have explicit
representation of these syntactic categories or not. This choice is one of a those de-
sign situations that’s of significant interest if our concern is complexity management.
[Note: brief discussion of the relevance of super combinators.]

Concrete syntax Now let’s wrap this up in concrete syntax.

expression

M, N ::=
mention

x
abstraction

| (x1,...,xk) => M
application

| M(N1,...,Nk)

let

| val x = M;N
seq

| M;N
group

| { M }

It doesn’t take much squinting to see that this looks a lot like a subset of
Scala, and that’s because – of course! – functional languages like Scala all share a
common core that is essentially the λ-calculus. Once you familiarize yourself with
the λ-calculus as a kind of design pattern you’ll see it poking out everywhere: in
Clojure and OCaml and F# and Scala. In fact, as we’ll see later, just about any
DSL you design that needs a notion of variables could do worse than simply to crib
from this existing and well understood design pattern.

If you’ve been following along so far, however, you will spot that something is
actually wrong with this grammar. We still don’t have an actual terminal! Concrete
syntax is what “users” type, so as soon as we get to concrete syntax we can no longer
defer our choices about identifiers. Let’s leave open the door for both ordinary
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identifiers – such as we see in Scala – and our funny quoted terms. This means we
need to add the following productions to our grammar.

identifier

x, y ::=
string-id

| String
quotation

| @<M>

(The reason we use the @ for quotation – as will become clear later – is that
when we have both quote and dequote, the former functions a lot like asking for a
pointer to a term while the latter is a lot like dereferencing the pointer.)

Translating concrete syntax to abstract syntax The translation from the
concrete syntax to the abstract syntax is compactly expressed as follows. Even if
the form of the translation is unfamiliar, it should still leave you with the impression
that some core of Scala is really the λ-calculus.

[[ x ]] = x
[[ ( x ) => expr ]] = λ x.[[ expr ]]
[[ expr ( expr1 , . . . , exprn ) ]]

= [[ expr ]] [[ expr1 ]] . . . [[ exprn ]]
[[ val x = expr1 ; expr2 ]] = let [[ x ]] = [[ expr1 ]] in [[ expr2 ]]
[[ expr1 ; expr2 ]] = [[ expr1 ]] ; [[ expr2 ]]
[[ { expr } ]] = ( [[ expr ]] )

Listing 5.1: translating concrete to abstract syntax

Further, the value of the explicit representation of sugar in terms of structuring
the translation should be clear. Of course, in a book entitled Pro Scala the best
way to unpack this presentation is in terms of a Scala implementation.

tra it Compiler extends Expres s ions with Nominals {
// Abs t rac t away in t e rn in g v a r i a b l e s
type I n t e r n i s t =
{def i n t e rn ( varExpr : Absyn . VariableExpr ) : Nominal}
def i n t e r n i s t ( ) : I n t e r n i s t

def i n t e rn ( varExpr : Absyn . VariableExpr )
: Nominal = { i n t e r n i s t ( ) . i n t e rn ( varExpr ) }
def compileExpr ( numericExpr : Absyn . Numeric )
: Express ion = {

new In t ege rExpre s s i on (
numericExpr . i n t e g e r . as InstanceOf [ Int ]

)
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}

// [[ x ]] = x
def compileExpr ( mentionExpr : Absyn . Mention )
: Express ion = {

new Mention ( i n t e rn ( mentionExpr . v a r i ab l e e xp r ) )
}
// [[ ( x ) => expr ]] = λ x.[[ expr ]]
def compileExpr ( abst ract ionExpr : Absyn . Abstract ion )
: Express ion = {

val fmls : L i s t [ Nominal ] =
abst ract ionExpr . l i s t v a r i a b l e e x p r .map(
{ ( vExpr : Absyn . VariableExpr ) => i n t e rn ( vExpr ) }
) . t oL i s t
new Abstract ion ( fmls , compi le ( abst ract ionExpr . e xp r e s s i on ) )

}
// [[ expr ( expr 1 , . . . , exprn ) ]]
// = [[ expr ]] [[ expr 1 ]] . . . [[ exprn ]]
def compileExpr ( app l i ca t ionExpr : Absyn . App l i cat ion )
: Express ion = {

new Appl i cat ion (
compi le ( app l i ca t ionExpr . e xp r e s s i on 1 ) ,
L i s t ( compi le ( app l i ca t ionExpr . e xp r e s s i on 2 ) )

)
}

// [[ − ]] : Mini−Sca la => λ−c a l c u l u s
def compi le ( expr : Absyn . Express ion )
: Express ion = {

expr match {
case value : Absyn . Value => {

value . va lueexpr match {
case numericExpr : Absyn . Numeric =>
compileExpr ( numericExpr )

}
}
case numericExpr : Absyn . Numeric => {

compileExpr ( numericExpr )
}
case mentionExpr : Absyn . Mention => {

compileExpr ( mentionExpr )
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}
case abst ract ionExpr : Absyn . Abstract ion => {

compileExpr ( abst ract ionExpr )
}
case app l i ca t ionExpr : Absyn . App l i ca t ion => {

compileExpr ( app l i ca t ionExpr )
}

}
}

def parse ( s t r : S t r ing ) : Absyn . Express ion = {
(new par s e r (

new Yylex ( new Str ingReader ( s t r ) )
) ) . pExpress ion ( )

}

def compi le ( s t r : S t r ing ) : Express ion = {
try {

compi le ( parse ( s t r ) )
}
catch {

case e => { // l o g error
throw e

}
}

}
}

The first thing to notice about this translation is how faithfully it follows
the equational specification. This aspect of functional programming in general and
Scala in particular is one of the things that sets it apart. In a development culture
where AGILE methodologies rightfully demand a justification thread running from
feature to line of code, a means of tracing specification to implementation is of prac-
tical importance. Of course, rarely do today’s SCRUM meetings result in equational
specifications; however, they might result in diagrammatic specification which, as
we will see in subsequent sections, can be given equational interpretations that then
guide functional implementation. Of equal importance: it cannot have escaped no-
tice how much more compact the notations we have used for specification actually
are. In a context where brevity and complexity management are paramount, tools
– such as these specification techniques – that help us gain a higher vantage point
ought to carry some weight. This is another aim of this book, to provide at least
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some exposure to these higher-level techniques. One of the central points to be made
is that if she’s not already using them, the pro Scala programmer is primed and
ready to take advantage of them.

Structural equivalence and Relations or What makes abstract syntax ab-
stract Apart from the fact that concrete syntax forces commitment to explicit
representation of terminals, you might be wondering if there are any other differ-
ences between concrete and abstract syntax. It turns out there are. One of the key
properties of abstract syntax is that it encodes a notion of equality of terms that is
not generally represented in concrete syntax.

It’s easier to illustrate the idea in terms of our example. We know that pro-
grams that differ only by a change of bound variable are essentially the same.
Concretely, the program ( x ) =>x + 5 is essentially the same as the program
( y ) =>y + 5. By “essentially the same” we mean that in every evaluation con-
text where we might put the former if we substitute the latter we will get the same
answer.

However, this sort of equivalence doesn’t have to be all intertwined with evalu-
ation to be expressed. A little forethought shows we can achieve some separation of
concerns by separating out certain kinds of structural equivalences. Abstract syn-
tax is where we express structural equivalence (often written using ≡, for example
M ≡ N). In terms of our example we can actually calculate when two λ-terms differ
only by a change of bound variable, where by bound variable we just mean a variable
mention in a term also using the variable as formal parameter of an abstraction.

Since we’ll need that notion to express this structural equivalence, let’s write
some code to clarify the idea, but because it will be more convenient, let’s calculate
the variables not occurring bound, i.e. the free variables of a λ-term.

def f r e eVa r i a b l e s ( term : Express ion ) : Set [ Nominal ] = {
term match {

case Mention ( r e f e r e n c e ) => Set ( r e f e r e n c e )
case Abstract ion ( formals , body ) =>

f r e eVa r i a b l e s ( body ) &˜ formal s . toSet
case Appl i cat ion ( operat ion , a c tua l s ) =>

( f r e eVa r i a b l e s ( ope rat i on ) / : a c tua l s ) (
{ ( acc , elem ) => acc ++ f r e eVa r i a b l e s ( elem ) }
)

}
}

In addition to this idea we’ll need to represent exchanging bound variables.
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A traditional way to approach this is in terms of substituting a term (including
variables) for a variable. A crucial point is that we need to avoid unwanted variable
capture. For example, suppose we need to substitute y for x in a term of the form
λy.(xy). Doing so blindly will result in a term of the form λy.(yy); but, now the first
y is bound by the abstraction – probably not what we want. To avoid this – using
structural equivalence! – we can move the bound variable “out of the way”. That
is, we can first change the term to an equivalent one, say λu.(xu). Now, we can
make the substitution, resulting in λu.(yu). This is what’s called capture-avoiding
substitution. Central to this trick is the ability to come up with a fresh variable,
one that doesn’t occur in a term. Obviously, any implementation of this trick is
going to depend implicitly on the internal structure of names. Until we have such
a structure in hand we have to defer the implementation, but we mark it with a
placeholder.

def f r e s h ( terms : L i s t [ Express ion ] ) : Nominal

Now we can write in Scala our definition of substitution.
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def s ub s t i t u t e (
term : Express ion ,
a c tua l s : L i s t [ Express ion ] , f o rmal s : L i s t [ Nominal ]

) : Express ion = {
term match {

case Mention ( r e f ) => {
f o rmal s . indexOf ( r e f ) match {

case −1 => term
case i => a c tua l s ( i )

}
}
case Abstract ion ( fmls , body ) => {

val fmlsN = fmls .map(
{

( fml ) => {
f o rmal s . indexOf ( fml ) match {

case −1 => fml
case i => f r e s h ( L i s t ( body ) )

}
}

}
)
val bodyN =

s ub s t i t u t e (
body ,
fmlsN .map( => Mention ( ) ) ,
fmlsN

)
Abstract ion (

fmlsN ,
s ub s t i t u t e ( bodyN , ac tua l s , f o rmal s )

)
}
case Appl i cat ion ( op , a c t l s ) => {

Appl i cat ion (
s ub s t i t u t e ( op , ac tua l s , f o rmal s ) ,
a c t l s .map( => s ub s t i t u t e ( , ac tua l s , f o rmal s ) )

)
}

}
}
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With this code in hand we have what we need to express the structural equiv-
alence of terms.

def ‘=a= ‘ (
term1 : Express ion , term2 : Express ion

) : Boolean = {
( term1 , term2 ) match {

case (
Mention ( r e f 1 ) ,
Mention ( r e f 2 )

) => {
r e f 1 == r e f 2

}
case (

Abstract ion ( fmls1 , body1 ) , Abstract ion ( fmls2 , body2 )
) => {

i f ( fmls1 . l ength == fmls2 . l ength ) {
val f reshFmls =

fmls1 .map(
{ ( fml ) => Mention ( f r e s h ( L i s t ( body1 , body2 ) ) ) }

)
‘=a= ‘ (

s ub s t i t u t e ( body1 , freshFmls , fmls1 ) ,
s ub s t i t u t e ( body2 , freshFmls , fmls2 )

)
}
else fa l se

}
case (

App l i ca t ion ( op1 , a c t l s 1 ) ,
App l i ca t ion ( op2 , a c t l s 2 )

) => {
( ‘=a= ‘ ( op1 , op2 ) / : a c t l s 1 . z ip a c t l s 2 ) (
{ ( acc , a c t lPa i r ) =>

acc && ‘=a= ‘ ( a c t lPa i r . 1 , a c t lPa i r . 2 )
}

)
}

}
}

This is actually some significant piece of machinery just to be able to calculate



5.2. OUR APPLICATION DOMAIN MODEL 63

what we mean when we write M [N/x] and M ≡ N . People have wondered if this
sort of machinery could be reasonably factored so that it could be mixed into a
variety of variable-binding capabilities. It turns out that this is possible and is
at the root of a whole family of language design proposals that began with Jamie
Gabbay’s FreshML.

Beyond this separation of concerns the introduction of abstract syntax affords
another kind of functionality. While we will look at this in much more detail in
subsequent chapters, and especially the final chapter of the book, it is worthwhile
setting up the discussion at the outset. A computationally effective notion of struc-
tural equivalence enables programmatic investigation of structure. In the context of
our story, users not only write programs, but store them and expect to retrieve them
later for further editing. In such a system it is easy to imagine they might want
to search for structurally equivalent programs. In looking for patterns in their own
code they might want to abstract it is easy to imagine them searching for programs
structurally equivalent to one they’ve found themselves writing for the umpteenth
time. Further, structural equivalence is one of the pillars of a system that supports
automated refactoring.

Digression: the internal structure of the type of variables At this point
the attentive reader may be bothered by something going on in the calculation of
freeVariables . To actually perform the remove or the union we have to have equality
defined on variables. Now, this works fine for Strings, but what about Quotations?

The question reveals something quite startling about the types2 of variables.
Clearly, the type has to include a definition of equality. Now, if we want to have an
inexhaustible supply of variables, then the definition of equality of variables must
make use of the “internal” structure of the variables. For example, checking equality
of Strings means checking the equality of the respective sequences of characters.
There are a finite set of characters out of which all Strings are built and so eventually
the calculation of equality grounds out. The same would be true if we used Integers
as “variables”. If our type of variables didn’t have some evident internal structure
(like a String has characters or an Integer has arithmetic structure) and yet it was
to provide an endless supply of variables, then the equality check could only be an
infinite table – which wouldn’t fit inside a computer. So, the type of variables must
also support some internal structure, i.e. it must be a container type!

Fortunately, our Quotations are containers, by definition. However, they face
another challenge: are the Quotations of two structurally equivalent terms equal
as variables? If they are then there is a mutual recursion! Equivalence of terms

2Note that here we mean the type of the entity in the model that represents variables – not a
typing for variables in the language we’re modeling.
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depends on equality of Quotations which depends on equivalence of terms. It turns
out that we have cleverly arranged things so that this recursion will bottom out.
The key property of the structure of the abstract syntax that makes this work is that
there is an alternation: quotation, term constructor, quotation, ... . Each recursive
call will lower the number of quotes, until we reach 0.

Evaluation – aka operational semantics The computational engine of the λ-
calculus is an operation called β-reduction. It’s a very simple operation in principle.
Whenever an abstraction occurs in the operation position of an application the ap-
plication as a whole reduces to the body of the abstraction in which every occurrence
of the formal parameter(s) of the abstraction has been replaced with the actual pa-
rameter(s) of the application. As an example, in the application (λu.(uu))(λx.x),
λu.(uu) is in operation position. Replacing in the body of the abstraction each
occurrence of the formal parameter, u, with the actual parameter, λx.x, of the ap-
plication reduces the application to (λx.x)(λx.x) which when we repeat the action
of β-reduction reduces in turn to λx.x.

In symbols we write beta reduction like this

β-reduction

(λx.M)N → M [N/x]

In terms of our concrete syntax this means that we can expect expressions of
the form ((x1 ,..., xn) =>e)e1 ... en to evaluate to e[e1/x1 ... en/xn].

It is perhaps this last expression that brings home a point: we need to man-
age variable bindings, called environments in this discussion. The lambda calculus
is silent on how this is done. There are a variety of strategies for implementing
environments.

Ordinary maps

DeBruijn notation

The Scala implementation

Here’s the code

tra it Values {
type Environment
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type Express ion
abstract class Value
case class Closure (

fn : L i s t [ Value ] => Value
) extends Value
case class Quantity ( quant i ty : Int )

extends Value
}

tra it Reduction extends Expres s ions with Values {
type Dere f e r ence r = {def apply ( m : Mention ) : Value }
type Expans ion i s t =
{def extend (

fmls : L i s t [ Mention ] ,
a c t l s : L i s t [ Value ]
) : De r e f e r ence r }

type Environment <: ( Dere f e r ence r with Expans ion i s t )
type Appl i cator = Express ion => L i s t [ Value ] => Value

val i n i t i a l A p p l i c a t o r : Appl i cator =
{ ( xpr : Express ion ) => {

( a c t l s : L i s t [ Value ] ) => {
xpr match {

case In t ege rExpre s s i on ( i ) => Quantity ( i )
case => throw new Exception ( ”why are we here ?” )

}
}

}
}

def reduce (
app l i c a t o r : Appl icator ,
environment : Environment

) : Express ion => Value = {
case In t ege rExpre s s i on ( i ) => Quantity ( i )
case Mention ( v ) => environment ( Mention ( v ) )
case Abstract ion ( fmls , body ) =>
Closure (

{ ( a c tua l s : L i s t [ Value ] ) => {
val keys : L i s t [ Mention ] =
fmls .map( { ( fml : Nominal ) => Mention ( fml ) } ) ;
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reduce (
app l i ca to r ,
environment . extend (

keys ,
a c tua l s ) . as InstanceOf [ Environment ]

) ( body )
}

}
)
case Appl i cat ion (

operator : Express ion ,
a c tua l s : L i s t [ Express ion ]

) => {
reduce ( app l i c a to r , environment ) ( operator ) match {

case Closure ( fn ) => {
fn . apply (

( a c tua l s
map
{( ac tua l : Express ion ) =>

( reduce ( app l i c a to r , environment ) ) ( ac tua l )} )
)

}
case =>

throw new Exception ( ”attempt to apply non func t i on ” )
}

}
case => throw new Exception ( ”not implemented , yet ” )

}
}

What goes into a language definition

Before moving to the next chapter it is important to digest what we’ve done here.
Since we’ve called out DSL-based design as a methodology worthy of attention, what
does our little foray into defining a language tell us about language definition? It
turns out that this is really part of folk lore in the programming language semantics
community. At this point in time one of the commonly accepted presentations of a
language definition has three components:

• syntax – usually given in terms of some variant of BNF
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• structural equivalence – usually given in terms of a set of relations

• operational semantics – usually given as a set of conditional rewrite rules, such
as might be expressed in SOS format.

That’s exactly what we see here. Our toy language can be completely charac-
terized by the following aforementioned half-page specification.

Syntax

expression

M, N ::=
mention

x
abstraction

| λx.M
application

| MN

Structural equivalence

α-equivalence
y /∈ FN (M)

λx.M = λy.M [y/x]

where

FN (x) = x FN (λx.M) = FN (M)\{x} FN (MN) = FN (M) ∪ FN (N)

and we write M [y/x] to mean substitute a y for every occurrence of x in M .

Operational semantics

β-reduction (λx.M)N → M [N/y]
struct

M ≡ M ′, M ′ → N ′, N ′ ≡ N

M → N

Discussion This specification leaves open some questions regarding order or eval-
uation. In this sense it’s a kind of proto-specification. For example, to get a left-most
evaluation order you could add the rule

leftmost
M → M ′

MN → M ′N

The Scala code we wrote in the preceding sections is essentially an elaboration
of this specification. While this notation is clearly more compact, it is not hard to
recognize that the code follows this structure very closely.
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5.3 The project model

Recalling chapter one, the aim is not just to implement the λ-calculus, but to im-
plement an editor and project management capability. One of the key points of this
book is that DSL-based design really does work. So, the basic methods for specify-
ing and implementing the toy language also apply to specifying and implementing
these features of our application as well.

5.3.1 Abstract syntax

5.3.2 Concrete syntax – and presentation layer

5.3.3 Domain model

5.4 A transform pipeline

TBD



Chapter 6

Zippers and contexts and URI’s,
oh my!

Zippers are not just for Bruno anymore

6.1 Zippers are not just for Bruno anymore

6.1.1 The history of the zipper

The origin of the zipper rests in the desire to provide an efficient functional repre-
sentation of a “structure” editor. For example, we might consider navigation and
destructive modification of a tree. In a functional representation destructive opera-
tions need to be replaced by copying. Done naively, this can be very expensive.

Huet’s zipper

In his functional pearl Huet describes a generic approach to the problem of an
applicative structure editor. He dubbed it the zipper. The key idea is to denote the
location of a position in a tree by splitting it into two pieces: the subtree of focus
and the context in which it appears.

To render this idea in Scala suppose that we have modeled the type of a tree
as

tra it Tree [A]
// Leaf
class TreeItem [A] ( val item : A ) extends Tree [A]

69



70 CHAPTER 6. ZIPPERS AND CONTEXTS AND URI’S, OH MY!

browser

store

User

request
stream

http
parser

app
request
parser

domain
model

storage
model

navigation
model

query model

Chapter 3 Chapter 4

Chapter 6

Chapter 5 Chapter 8

Chapter 10

Chapter 9

Chapter 1

Chapter 2 Chapter 7

Figure 6.1: Chapter map

// Branches
class TreeSect ion [A] (

val s e c t i o n : L i s t [ Tree [A ] ]
) extends Tree [A]

with corresponding companion objects for easy construction and deconstruc-
tion. (We’d make these case classes, but then we couldn’t use inheritance.)

object TreeItem {
def apply [A] ( item : A ) = { new TreeItem ( item ) }
def unapply [A] ( t r e e : TreeItem [A] )
: Option [ ( A ) ] = {

Some( ( t r e e . item ) )
}

}
object TreeSect ion {

def apply [A] ( s e c t i o n : L i s t [ Tree [A ] ] ) = {
new TreeSect ion ( s e c t i o n )

}
def unapply [A] ( t r e e : TreeSect ion [A] )
: Option [ ( L i s t [ Tree [A ] ] ) ] = {

Some( ( t r e e . s e c t i o n ) )
}

}
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then we would model a context in the tree as

tra it Context [A]
case class Top [A] ( ) extends Context [A]
class TreeContext [A] (

val l e f t : L i s t [ Tree [A] ] ,
val c tx t : Context [A] ,
val r i g h t : L i s t [ Tree [A ] ]

) extends Context [A]

Essentially, a Context denotes a place where we might “plugin” a subtree.
Thus, it identifies the branches to the left, the branches to the right and a “path”
to a “hole”.

Of course, we have the obligatory companion object.

object TreeContext {
def apply [A] (

l e f t : L i s t [ Tree [A] ] ,
c tx t : Context [A] ,
r i g h t : L i s t [ Tree [A ] ] ) = {

new TreeContext ( l e f t , ctxt , r i g h t )
}
def unapply [A] ( c tx t : TreeContext [A] )
: Option [ ( L i s t [ Tree [A] ] , Context [A] , L i s t [ Tree [A ] ] ) ] = {

Some( ( c tx t . l e f t , c tx t . ctxt , c tx t . r i g h t ) )
}

}

Since it is clear how this boilerplate is made, we will dispense with it in sub-
sequent discussion; but note that the cost in boilerplate may not have been worth
deprecating inheritance in case classes.

Now, we have the types necessary to model our intuitions as to what a location
is. It’s a pair of a context and a tree that plugs into the context. Note that neither
of these datum are suffient in an of themselves to identify a location in a tree. The
subtree could occur in any number of trees. Likewise, the context could be filled
with any number of subtrees. It takes the pair to identify a location in a tree. For
those with some experience in mathematics, this idea is strongly reminiscent of both
Dedekind cuts and Conway’s models of games as numbers.

class Locat ion [A] (
val t r e e : Tree [A] ,
val c tx t : Context [A]

)
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As a paradigmatic example consider (a crude model of) the syntax tree of an
arithmetic expression. (Now, the decision to model a tree as a class becomes clear.)

case class Token [A] (
override item : A

) extends TreeItem [A] ( item )
case class AST[A] (

override s e c t i o n : L i s t [ Tree [A ] ]
) extends TreeSect ion [A] ( s e c t i o n )

Then an instance might look like

AST[ St r ing ] (
L i s t (

AST[ St r ing ] (
L i s t (

Token [ S t r ing ] ( ”a” ) ,
Token [ S t r ing ] ( ”∗” ) ,
Token [ S t r ing ] ( ”b” )

)
) ,
Token [ S t r ing ] ( ”+” ) ,
AST[ St r ing ] (

L i s t (
Token [ S t r ing ] ( ”c” ) ,
Token [ S t r ing ] ( ”∗” ) ,
Token [ S t r ing ] ( ”d” )

)
)

)
)

Then the location of the second multiplication sign is:

Locat ion [ S t r ing ] (
Token [ S t r ing ] ( ”∗” ) ,
TreeContext [ S t r ing ] (

L i s t ( Token [ S t r ing ] ( ”c” ) ) ,
TreeContext [ S t r ing ] (

L i s t (
Token [ S t r ing ] ( ”+” ) ,
AST[ St r ing ] (

L i s t (
Token [ S t r ing ] ( ”a” ) ,
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Token [ S t r ing ] ( ”∗” ) ,
Token [ S t r ing ] ( ”b” )
)

)
) ,
Top( ) ,
L i s t ( )
) ,

L i s t ( Token [ S t r ing ] ( ”d” ) )
)

)

The navigation functions With this structure we can define generic navigation
functions.

tra it ZipperNavigat ion [A] {
def l e f t ( l o c a t i o n : Locat ion [A] ) : Locat ion [A] = {

l o c a t i o n match {
case Locat ion ( , Top ) => {

throw new Exception ( ” l e f t o f top” )
}
case Locat ion ( t , TreeContext ( l : : l e f t , up , r i g h t ) ) => {

Locat ion ( l , TreeContext ( l e f t , up , t : : r i g h t ) )
}
case Locat ion ( t , TreeContext ( Nil , up , r i g h t ) ) => {

throw new Exception ( ” l e f t o f f i r s t ” )
}

}
}
def r i g h t ( l o c a t i o n : Locat ion [A] ) : Locat ion [A] = {

l o c a t i o n match {
case Locat ion ( , Top ) => {

throw new Exception ( ” r i gh t o f top” )
}
case Locat ion ( t , TreeContext ( l e f t , up , r : : r i g h t ) ) => {

Locat ion ( r , TreeContext ( t : : l e f t , up , r i g h t ) )
}
case Locat ion ( t , ) => {

throw new Exception ( ” r i gh t o f l a s t ” )
}

}
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}
def up( l o c a t i o n : Locat ion [A] ) : Locat ion [A] = {

l o c a t i o n match {
case Locat ion ( , Top ) => {

throw new Exception ( ”up o f top” )
}
case Locat ion ( t , TreeContext ( l e f t , up , r i g h t ) ) => {

Locat ion ( TreeSect ion [A] ( l e f t . r e v e r s e : : : ( t : : r i g h t ) ) ,
up )

}
}

}
def down( l o c a t i o n : Locat ion [A] ) : Locat ion [A] = {

l o c a t i o n match {
case Locat ion ( TreeItem ( ) , ) => {

throw new Exception ( ”down o f item” )
}
case Locat ion ( TreeSect ion ( u : : t r e e s ) , c tx t ) => {

Locat ion ( u , Context ( Nil , ctxt , t r e e s ) )
}

}
}

}

Exercising the zipper We can exercise the zipper navigation functions using the
two examples from above.

object Exerc i s e extends ZipperNavigat ion [ S t r ing ] {
val ar i thmet icExpr1 = . . .

val locat ionOf2ndMult = . . .

def show ( depth : Int ) ( t r e e : Tree [ S t r ing ] ) : Unit = {
t r e e match {

case TreeItem ( item : St r ing ) => {
val indent =
( ”” / : (1 to depth ) ) ( { ( acc , d ) => acc + ” ” } )
p r i n t l n ( indent + ”Leaf : ” + item )

}
case TreeSect ion ( s e c t i o n : L i s t [ Tree [ S t r ing ] ] ) => {

for ( t <− s e c t i o n ){ show ( depth + 2 ) ( t ) }
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}
}

}
}

s ca la> import Exerc i s e .
import Exerc i s e .
import Exerc i s e .

s ca la> show ( 0 ) ( ar i thmet icExpr1 )
show ( 0 ) ( ar i thmet icExpr1 )

Leaf : a
Leaf : ∗
Leaf : b

Leaf : +
Leaf : c
Leaf : ∗
Leaf : d

sca la> show ( 0 ) ( locat ionOf2ndMult . t r e e )
show ( 0 ) ( locat ionOf2ndMult . t r e e )
Leaf : ∗

s ca la> show ( 0 ) ( up( locat ionOf2ndMult ) . t r e e )
show ( 0 ) ( up( locat ionOf2ndMult ) . t r e e )
Leaf : c
Leaf : ∗
Leaf : d

sca la> show ( 0 ) ( up( up( locat ionOf2ndMult ) ) . t r e e )
show ( 0 ) ( up( up( locat ionOf2ndMult ) ) . t r e e )

Leaf : a
Leaf : ∗
Leaf : b

Leaf : +
Leaf : c
Leaf : ∗
Leaf : d

sca la> show ( 0 ) ( up( up( up( locat ionOf2ndMult ) ) ) . t r e e )
show ( 0 ) ( up( up( up( locat ionOf2ndMult ) ) ) . t r e e )
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java . lang . Exception : up o f top
. . .

s ca la>

Of course, the real desiderata are the mutation functions.

t r a i t ZipperMutation [A] {
de f update (
l o c a t i o n : Locat ion [A] , t r e e : Tree [A]
) : Locat ion [A] = {

l o c a t i o n match {
case Locat ion ( , c tx t ) =>

Locat ion ( t ree , c tx t )
}

}
de f i n s e r tR i gh t (

l o c a t i o n : Locat ion [A] , t r e e : Tree [A]
) : Locat ion [A] = {

l o c a t i o n match {
case Locat ion ( , Top( ) ) => {

throw new Exception ( ” i n s e r t o f top” )
}
case Locat ion (

curr , TreeContext ( l e f t , up , r i g h t )
) => {

Locat ion (
curr , TreeContext ( l e f t , up , t r e e : : r i g h t )

)
}

}
}
de f i n s e r t L e f t (

l o c a t i o n : Locat ion [A] , t r e e : Tree [A]
) : Locat ion [A] = {

l o c a t i o n match {
case Locat ion ( , Top( ) ) => {

throw new Exception ( ” i n s e r t o f top” )
}
case Locat ion (

curr , TreeContext ( l e f t , up , r i g h t )
) => {

Locat ion (
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curr , TreeContext ( t r e e : : l e f t , up , r i g h t )
)

}
}

}
de f insertDown (

l o c a t i o n : Locat ion [A] , t r e e : Tree [A]
) : Locat ion [A] = {

l o c a t i o n match {
case Locat ion ( TreeItem ( ) , ) => {

throw new Exception ( ”down o f item” )
}
case Locat ion (

TreeSect ion ( progeny ) , c tx t
) => {

Locat ion (
t ree , TreeContext ( Nil , ctxt , progeny )

)
}

}
}
de f delete (

l o c a t i o n : Locat ion [A] , t r e e : Tree [A]
) : Locat ion [A] = {

l o c a t i o n match {
case Locat ion ( , Top( ) ) => {

throw new Exception ( ” d e l e t e o f top” )
}
case Locat ion (

, TreeContext ( l e f t , up , r : : r i g h t )
) => {

Locat ion (
r , TreeContext ( l e f t , up , r i g h t )

)
}
case Locat ion (

, TreeContext ( l : : l e f t , up , Ni l )
) => {

Locat ion (
l , TreeContext ( l e f t , up , Ni l )

)
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}
case Locat ion (

, TreeContext ( Nil , up , Ni l )
) => {

Locat ion ( TreeSect ion ( Ni l ) , up )
}

}
}

}

Zippers generically

Two kinds of genericity It turns out that Huet’s discovery can be made to work
on a much wider class of structures than “just” trees. Intuitively speaking, if their
type arguments are “zippable”, then virtually all of the common functional data
type constructors, including sequencing constructors like product, and branching
constructors, like summation or “casing”, result in “zippable” types. That is, there
are procedures for deriving a notion of zipper capable of traversing and mutating
the structure. Essentially, there are two strategies to achieve this genericity: one is
based on structural genericity and the other on procedural genericity.

Genericity of structure The former approach relies on being able to define a
notion of context for any “reasonable” data structure. Not surprisingly, it turns out
that we can give a good definition of “reasonable”. What is surprising is that the
resulting definition is amenable to an operation that perfectly mimics the notion of
derivative from Newton’s calculus. The operation is an operation on types. This
allows us to give a type-level definition of the notion of location – just as we did
with trees, but now for any type.

We can use Scala’s type notation to see where the new genericity has been
added. The type of trees in the example is already polymorphic: Tree[A]. That’s
what having that type parameter A means. The navigation trait is therefore also
parametric in A. The navigation trait, however, is hardcoded in the container type,
Tree[A]. When we add this second level of genericity, the navigation trait will have
to take a second, higher-kinded type parameter for the container because it will work
on any container within a range of reasonably defined containers.

The use case we have been considering – navigating and mutating an in-
memory representation of a tree – is then extended to navigating and mutating
an in-memory representation of an arbitrary data structure. Moreover, the code is
purely functional – with all of the attendant advantages of purely functional code
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we have been observing since Chapter 1. Obviously, in the context of the web,
this particular use case is of considerable interest. Nearly, every web application is
of this form: navigating a tree or graph of pages. Usually, that graph of pages is
somehow homomorphic, i.e. an image of, the graph of some underlying domain data
structure, like the data structures of employee records in a payroll system, or the
social graph of a social media application like Twitter. Many web applications, such
as so-called content management systems, also support the mutation of the graph
of pages. So, having a method of generating this functionality from the types of
the underlying data domain, be they web pages, or some other domain data type,
is clearly pertinent to the most focused of application developers.

And yet, the notion of a derivative of data types is irresistably intriguing. It’s
not simply that it has many other applications besides web navigation and update.
That a calculational device that an Englishman discovered some 400+ years ago in
his investigations for providing a mathematical framework for gravitation and other
physical phenomena should be applicable to structuring computer programs is as
surprising as it is elegant and that makes it cool.

Genericity of control The latter approach to generically constructing zippers
is just as rich in terms of the world of ideas it opens up as it is in the imminent
practicality of its immediate applications. The key insight is to abstract on con-
trol, rather than on form. Not surprisingly, then the central tool is the (delimited)
continuation. To be clear, in this approach, originally developed by Oleg Kiselyov,
navigation is reifed as a function and supplied as a parameter. In this sense, it is not
automagically deriving mechanism for navigation, as does the structural approach.
The semantics of mutation, on the other hand, is provided with a powerful gener-
ative mechanism. More specifically, a dial is provided for the visibility of mutation
with respect to different threads of control. In other words, fine-grained constrol
on the transactional semantics of mutating the data structure is provided. This is
exceptionally powerful because, as we have mentioned since Chapter 1, the transac-
tional semantics is one of the principal places on which performance of a system –
especially a high-volume system – hinges; but, by being based on a form of monad,
namely delimited continuations, the abstraction gets the compiler involved. This
has the effect of enlisting the compiler in maintaining discipline and sanity on trans-
action semantics – which is vitally important when supplying a fine-grained control
on something as performance-critical as the semantics and visibility of update.
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6.2 Zipper and one-holed contexts

6.3 Differentiation and contexts

6.3.1 Regular types

6.3.2 Container types

6.4 Generic zipper – differentiating navigation

In this section we build a bridge between Oleg Kiselyov’s Haskell implementation of
the generic zipper. This is a transliteration of his original code. As such, we provide
a veneer over Scala’s native delimited continuation library. Then we use this veneer
to express a direct translation of Oleg’s code.

object MonadDefns {
type MonadLike = {

def map [A,B] ( f : A => B )
def f latMap [M[ ] ,A,B] ( f : A => M[B] )
def f i l t e r [A] ( p : A => Boolean )

}
type MonadXFormLike = {

def l i f t [ML[ ] ,MU[ ] ,A] ( m : ML[A] ) : MU[A]
}

}

tra it StateT [ S ,M[ ] ,A]{
def runState ( s : S ) : M[ (A, S ) ]
def eva lS ta t e ( s : S ) : M[A]
def get : StateT [ S ,M, S ]
def put ( s : S ) : StateT [ S ,M, Unit ]

def map [B] ( f : A => B )
def f latMap [B] ( f : A => StateT [ S ,M,B] )
def f i l t e r ( p : A => Boolean )

def l i f t ( c : M[A] ) : StateT [ S ,M,A]
}

tra it CC[R,M[ ] ,A] {
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def k2P : K[R,M,A, ] => StateT [ Int ,M,A]
}

tra it Prompt [R,A] {
def l e v e l : Int

}

class CPrompt [R,A] (
override val l e v e l : Int

) extends Prompt [R,A] {
}

tra it P[R,M[ ] ,A] {
s e l f : StateT [ Int ,M,A] =>
def stateT : StateT [ Int ,M,A]
def runP ( ) : M[ ( Int ,A) ]
def newPrompt ( ) = {

for ( n <− get ) yield{ put ( n+1 ) ; new CPrompt( n ) }
}

}

tra it Frame [M[ ] ,R,A,B]{
def a2CC : A => CC[R,M,B]

}

tra it K[R,M[ ] ,A,B]{
def frame : Frame [M,R,A,B]
def r : R
def a : A
def b : B

def map [C] ( f : A => C )
def f latMap [C] ( f : A => K[R,M,A,C] )
def f i l t e r ( p : A => Boolean )

def l i f t ( m : M[A] ) : CC[R,M,A]
}

tra it SubK [R,M[ ] ,A,B] extends K[R,M,A,B]{
}
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tra it ControlOps [R,M[ ] ,A] {
def appk [B] ( k : K[R,M,A,B] , a : A ) : StateT [ Int ,M,A]
def runCC( cc : CC[R,M,A] ) : M[A]
def newPrompt ( ) : CC[R,M, Prompt [R,A ] ]
def pushPrompt (

prompt : Prompt [R,A] , cc : CC[R,M,A]
) : CC[R,M,A]
def letSubK [B] (

prompt : Prompt [R,B] ,
subk : SubK [R,M,A,B] => CC[R,M,B]

) : CC[R,M,A]
def pushSubK [B] (

prompt : Prompt [R,B] ,
subk : CC[R,M,A]

) : CC[R,M,B]
def promptP( f : Prompt [R,A] => CC[R,M,A] ) : CC[R,M,A]
def s h i f tP [B] (

p : Prompt [R,B] ,
f : (CC[R,M,A] => CC[R,M,B] ) => CC[R,M,B]

) : CC[R,M,A]
}

Essentially, a zipper in this new style wraps a term. It may also contain a
traversal function.

tra it Zipper [R,M[ ] ,T,D] {
def term : T

}

class DCZipper [R,M[ ] ,T,D] (
override val term : T,
val t r a v e r s a l : CC[R,M, ( Option [T] ,D) ] => CC[R,M, Zipper [R,M,T,D ] ]

) extends Zipper [R,M,T,D]

class ZipDone [R,M[ ] ,T,D] (
override val term : T

) extends Zipper [R,M,T,D]



6.4. GENERIC ZIPPER – DIFFERENTIATING NAVIGATION 83

We then provide basic factory mechanism for constructing zippers and then
using them.

tra it ZipperOps [R,M[ ] ,T,D] {
def zipTerm (

t r a v e r s a l
: ( ( T => CC[R,M, ( Option [T] , D ) ] ) , T )

=> CC[R,M,T] ,
term : T

) : CC[R,M, Zipper [R,M,T,D ] ]
def zipThrough ( z ippe r : Zipper [R,M,T,D] ) : Unit

}

6.4.1 Delimited continuations

In Scala we have the delimited continuations plugin. This provides access to a
type-driven source-to-source continuation-passing-style translation of code involving
the operators shift and reset to code that does not. This approach has several
interesting and novel features, including a so-called “direct-style” syntax to express
the operations of delimited continuations.

This direct-style syntax is to be contrasted with a monadic presentation of
delimited continuations, as discovered by Dybvig, Peyton-Jones and Sabry. One
of the criticisms of this approach is that it involves the use of a monadic “meta-
language”. That is, access to the delimited continuations functionality requires
using the monadic operations plus some additional ones. However, assuming we have
a monad, T supporting the semantics for usual cast of map, flatMap and filter ,
together with four additional operations – newPrompt, pushPrompt, withSubCont
and pushSubCont – we can use for comprehensions together with the prompt and
sub-continuation operations as a DSL for delimited continuations. We only need
source-to-source translations for embedded use of the prompt and subcontinuation
operations – i.e., occurrences of the those operations inside a for comprehension –
which we give below.



84 CHAPTER 6. ZIPPERS AND CONTEXTS AND URI’S, OH MY!

Figure 6.2: delimited continuations and synchronized exchange

T [[ newPrompt ]] = newPrompt
T [[ pushPrompt e1 e2 ]] =

T [[e1]] f latMap {
( p ) => pushPrompt p T [[e2]]

}
T [[ withSubCont e1 e2 ]] =

T [[e1]] f latMap {
( p ) => T [[e2]] f latMap {

( f ) => withSubCont p f
}

}
T [[ pushSubCont e1 e2 ]] =

T [[e1]] f latMap {
( s ) => pushSubCont s T [[e2]]

}

This would allow an alternative presentation of delimited continuations which
has the advantage of facilitating “transliteration” of Haskell packages dependent
on the widely used Dybvig-Peyton-Jones-Sabry approach.

The genericity of delimited continuations

In previous sections we have used the analogy of monads as maintaining a disci-
pline for ”putting things in a box”; similarly, comonads provide a discipline for
”taking things out of the box”. There is a connection between this and delimited
continuations. To see the connection, we might imagine a picture like
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shift { ( kg : ... ) => ... }

kg( ),

Figure 6.3: Giver’s side

One way to implement this is that the “daemon”, Pooh, is really just the act of
wrapping either client’s access to the box in code that grabs the current continuation,
call it kg (or kt, respectively), and then does the following.

• Giver side:

– check to see if there is a matching taker, kt, (in a queue of taker requests
packaged as continuations).

– If there is, invoke (kt v) passing it the value, v, that came in on the giver’s
call, and invoke (kg unit), passing it unit.

– Otherwise, queue (v,kg) in a giver’s queue.

• Taker’s side:

– check to see if there is a matching giver, (v,kg), (in a queue of giver
requests packages as continuations).

– If there is, invoke (kt v), passing v to the taker’s continuation, and (kg
unit) passing unit to the giver’s continuation.

– Otherwise, queue kt in a taker’s queue.

If these look strangely like the put and get operations of the State monad
– they’s because they are. They’ve been coordinated around a state cell that is
”located” at a rendezvous point for a pair of coroutines to exchange data.

For the adventurous, it is possible to develop a further connection to Milner’s
π-calculus. Roughly speaking, this is the way to implement synchronous-IO-style in
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shift { ( kt : ... ) => ... }

kg( ),

Figure 6.4: Taker’s side

the π-calculus, spelling out a specific relationship between delimited continuations
and π-calculus-style communication.

If you see a further connection between this pattern and tuple spaces, that’s
because it’s the basic mechanism for implementing tuple spaces.

Summarizing, monads like IO that are forever sticky, are one-way monads.
Like the roach motel, or Hotel California, things go in, but don’t come out. Monads
that are really containers are ”intuitionistic”. That is, you know that if you put
something in, you can get it out; but, if you receive a container, you don’t know
if it has anything in it until you open the lid. They have a relationship with a
comonad that is ”intuitionistically” disciplined. Finally, there are monad-comonad
pairs that enjoy a linear discipline. This linear discipline matches every ”gozinta”
with a ”gozouta” and vice versa. That discipline may be implemented by delimited
continuations. This implementation strategy, by the way, also connects delimited
continuations to the other generic zipper, discovered by Oleg.

6.5 Species of Structure

6.6 Constructing contexts and zippers from data

types

The key intuition is that a zipper is a “focus” on a subterm of a term. The data
needed to capture this idea is a pair, (T,∂), the subterm itself, and the context
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context subterm

zipper

Figure 6.5: Context and subterm

in which it occurs. Using types to guide our intuition we see that the subterm
must have the same type as a term while the type of a context is determined by a
calculation that perfectly matches a version of the derivative one might have learned
in high school calculus – but applied to data structures.

6.6.1 Contexts

∂ConstA = 0

∂Id = 0

∂F + G = ∂F + ∂G

∂F ×G = F × ∂G + ∂F ×G

∂F ◦G = ∂F ◦G×G

6.6.2 Zippers

case class Context [Name, NSeq <: NmSeq [Name ] ] (
override val s e l f : RegularType [Name, NSeq ]

)
extends RegularType [Name, NSeq ] with Proxy {

override def support = s e l f . support
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∂
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Figure 6.6: Context and subterm
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}

tra it Contextual [Name, NSeq <: NmSeq [Name ] ]
extends D i f f e r e n t i a l [Name, NSeq ] {

def holePunch ( support : NSeq ) (
x : Name, regularType : RegularType [Name, NSeq ]

) : Context [Name, NSeq ] = {
f r e s h match {

case None => throw new Exception ( ”out o f names” )
case Some( cX ) => {

val fixRT =
RegularFixPt [Name, NSeq ] (

( f r e s h match {
case None =>

throw new Exception ( ”out o f names” )
case Some( fX ) => fX

} ) ,
regularType ,
support

)
Context [Name, NSeq ] (

RegularFixPt [Name, NSeq ] (
cX ,

RegularSum [Name, NSeq ] (
L i s t (

RegularUnity [Name, NSeq ] ( support ) ,
RegularProduct [Name, NSeq ] (

L i s t (
RegularFPEnv [Name, NSeq ] (
x ,
p a r t i a l ( x , regularType ) ,
fixRT ,
support
) ,
RegularMention [Name, NSeq ] (

cX ,
support

)
) ,
support

)
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) ,
support

) ,
support

)
)

}
}

}
}

tra it D i f f e r e n t i a l [Name, NSeq <: NmSeq [Name ] ]
extends NmSeqOps [Name, NSeq ] {

def r e gu l a rNu l l ( supp : NSeq ) : Regu la rNu l l i ty [Name, NSeq ]
def r egu la rUn i t ( supp : NSeq ) : RegularUnity [Name, NSeq ]
def p a r t i a l ( x : Name, rtype : RegularType [Name, NSeq ] )
: RegularType [Name, NSeq ] = {

rtype match {
case RegularMention ( y , supp ) => {

i f ( x == y ) {
r egu la rUn i t ( supp )

}
else {

r e gu l a rNu l l ( supp )
}

}
case Regu la rNu l l i ty ( supp ) => r e gu l a rNu l l ( supp )
case RegularUnity ( supp ) => r e gu l a rNu l l ( supp )
case RegularSum ( s , supp ) => {

RegularSum (
s .map(
{

( r t : RegularType [Name, NSeq ] ) => {
p a r t i a l ( x , r t )

}
}

) ,
supp

)
}
case RegularProduct ( s , supp ) => {



6.6. CONSTRUCTING CONTEXTS AND ZIPPERS FROM DATA TYPES 91

val r i g h t = s . dropRight ( 1 )
RegularSum [Name, NSeq ] (

L i s t (
RegularProduct [Name, NSeq ] (

L i s t (
p a r t i a l ( x , s ( 0 ) ) ,
RegularProduct [Name, NSeq ] (

r i ght ,
supp

)
) ,
supp

) ,
RegularProduct [Name, NSeq ] (

L i s t (
s ( 0 ) ,
p a r t i a l (

x ,
RegularProduct [Name, NSeq ] ( r i ght , supp )

)
) ,
supp

)
) ,
supp

)
}
case RegularFixPt ( v , e , supp ) => {

val z = f r e s h match {
case None => throw new Exception ( ”out o f names” )
case Some( fn ) => fn

}
RegularSum [Name, NSeq ] (

L i s t (
RegularFixPt (

z ,
p a r t i a l (

x ,
RegularWeakening (

z ,
RegularFPEnv ( v , e , rtype , supp ) ,
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supp
)

) ,
supp

) ,
RegularProduct (

L i s t (
p a r t i a l (

v ,
RegularFPEnv (

v ,
e ,
rtype ,
supp

)
) ,
RegularMention ( z , supp )

) ,
supp

)
) ,
supp

)
}
case RegularFPEnv ( v , e , s , supp ) => {

RegularSum (
L i s t (

RegularFPEnv (
v ,
p a r t i a l ( x , e ) ,
s ,
supp

) ,
// BUGBUG −− lgm −− have i go t the a s s o c i a t i on co r r e c t
RegularProduct (

L i s t (
RegularFPEnv (

v ,
p a r t i a l ( v , e ) ,
s ,
supp
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) ,
p a r t i a l ( x , s )

) ,
supp

)
) ,
supp

)
}
case RegularWeakening ( v , e , supp ) => {

i f ( x == v ) {
r e gu l a rNu l l ( supp )

}
else {

RegularWeakening ( v , p a r t i a l ( x , e ) , supp )
}

}
}

}
}

6.7 Mapping URIs to zipper-based paths and back

6.7.1 Path and context

6.7.2 Homomorphisms and obfuscation

6.8 Applying zippers to our project

6.8.1 Navigating and editing terms

6.8.2 Navigating and editing projects
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status
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file
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file
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file

subdirectory

directory
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   (lambda x. (f x x))
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File Edit Build Tools Help

Figure 6.7: Zippers and editors



Chapter 7

A review of collections as monads

Where are we; how did we get here; and where are we going?

7.1 Sets, Lists and Languages

As we saw in chapter two, one role of monad is to provide the bridge between “flatten-
able” collections and the models of binary operators, investigating two paradigmatic
kinds of collections and, more importantly, their interaction, exposes some of the
necessary interior structure of a wide range of species of monad. It also prepares us
for an investigation of the new Scala collections library. Hence, in this section we
investigate, in detail, the Set and List monads as well as their combinations.

7.1.1 Witnessing Sets and Lists monadicity

Recalling our basic encapsulation of the core of the monad structure in Scala
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Figure 7.1: Chapter map

tra it Monad [M[ ] ] {
// map par t o f the func to r M
def map [A,B] ( a2b : A => B ) : M[A] => M[B]
// the un i t na tura l t rans format ion , unit : Identity => M [A]
def uni t [A] ( a : A ) : M[A]
// the mult na tura l t rans format ion , mult : M [M [A]] => M [A]
def mult [A] ( mma : M[M[A ] ] ) : M[A]

// der i v ed
def f latMap [A,B] ( ma : M[A] , a2mb : A => M[B] ) : M[B] = {

mult ( map( a2mb ) ( ma ) )
}

}
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We instantiate it for List by extending Monad[List] in order to provide canon-
ical implementations of the operations map, unit and mult.

tra it ListM extends Monad [ L i s t ] {
// map par t o f the L i s t f unc to r
override def map [A,B] ( a2b : A => B ) = {

( sa : L i s t [A] ) => sa map a2b
}
// the un i t na tura l t rans format ion o f the L i s t monad
override def uni t [A] ( a : A ) = L i s t ( a )
// the mult na tura l t rans format ion o f the L i s t monad
override def mult [A] ( mma : L i s t [ L i s t [A ] ] ) =
( ( L i s t ( ) : L i s t [A] ) / : mma ) (

{ ( acc : L i s t [A] , elem : L i s t [A] ) => acc ++ elem }
)

}

The definition suggests we have named map well: our map means Scala’s map.
This is a fairly general recipe: in a preponderance of cases lifting a function, say
f : A =>B, to a function, M[f] : M[A] =>M[B], means calculating the function
on each of the “elements” of M[A] and collecting the results in an M-like collection,
namely M[B]. In the case above, M just happens to be Set.

In a similar manner, the recipe for the implementation of unit is ... well...
paradigmatic. If the meaning of unit is the construction of a container embracing
a single element, say a, then calling the constructor of the M collection feels like a
natural choice. This is yet another view on the discussion in chapter 2 on monads as
a kind of generic brace notation. If that was the syntactic view, this is the semantic
view of the very same concept.

Finally, while there are several ways to implement mult we choose fold be-
cause the genericity of this implementation is a quick and dirty demonstration of
the universality of fold. In some very real sense, all “flattening” of structure is
representable as a fold.

To illustrate the genericity of these definitions, we compare them with a sim-
ple implementation of the Set monad. The implementations are nearly identical,
begging the question of a DRYer expression of these instantiations, which we defer
to a later section.
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tra it SetM extends Monad [ Set ] {
// map par t o f the Set f unc to r
def map [A,B] ( a2b : A => B ) = {

( sa : Set [A] ) => sa map a2b
}
// the un i t na tura l t rans format ion o f the Set monad
def uni t [A] ( a : A ) = Set ( a )
// the mult na tura l t rans format ion o f the Set monad
def mult [A] ( mma : Set [ Set [A ] ] ) =
( ( Set ( ) : Set [A] ) / : mma ) (

{ ( acc : Set [A] , elem : Set [A] ) => acc ++ elem }
)

}

They illustrate another point that bears investigation. What distinguishes
Sets from Lists is that the latter remembers both order and multiplicity. Not
to put to fine a point on it, we expect that Set( 1 )++Set( 1 )==Set( 1) while
List( 1 )++List( 1 )==List( 1, 1 ). In a similar manner, Set( 1, 2 ) ==Set( 2, 1 )
while List( 1, 2 ) 6=List( 2, 1 ). As the code should make clear, when encountering
these two species of collection in the wild, the notion of monad is indifferent to their
distinguishing markings. It will assimilate either of them in exactly the same man-
ner. At least as used in this particular way, monad is not where we encode order
information. Likewise, it is not where we encode characteristics like the idempotency
of operations like the idempotency of the ++ operation on Sets.

Recalling the summary of what goes into a language definition at the end of
chapter six, notice that there are – at a minimum – two components: the grammar
generating terms in the language and the relations saying when two terms in the
language may be considered equal despite surface syntactic differences. The point
of contact between monads and languages, as we will see in the upcoming sections,
is that monads assimilate and encode the grammar part of a language without the
relations part. A language that is pure grammar, with no additional identification
of terms, i.e. no relation component, is called free. The above code is an encoding
of the proof that List and Set stand in the same relation to some underlying “free”
structure. That is, there is a language the terms of which stand in one-to-one
correspondence with syntactic representations of Sets and Lists. The difference
between the two structures lies “above” this underlying syntactic representation, in
the relations component of a purely syntactic presentation of either data structure.
That is why the monadic view of these data structures is identical.

It is also worth noting that while List records more information about order
and multiplicity of the elements of a collection inhabiting the type, that corresponds
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to fewer constraints on the operation ++. Inversely, Set records less information
about order and multiplicity of the elements inhabiting the type; yet, this corre-
sponds to more properties imposed on the operation ++. To wit, on the data type
++, the operation is required to be commutative, i.e. if s1:Set[A] and s2:Set[A],
then (s1++s2)==(s2++s1). Likewise, if s : Set[A], then (s++s)==s.

This is a general principle worth internalizing. When the operations associated
with a collection acquire more structure, i.e. enjoy more properties, the collection
remembers less information about the individual inhabitants of the type, precisely
because the operation associated with “collecting” identifies more inhabitants of the
type. In some sense the the assumption of properties drops a kind of veil down over
individual structure. Controposatively, “freedom” means that individual structure
is the only carrier of information, or that all inhabitants of the type are “perfectly”
individuated.

As seen below, the structure underlying the monadic view of List and Set is
the data type we called a Monoid in chapter two. More specifically, it is the free
monoid. It turns out that List is really just another syntax for the free monoid,
while Set is a characterization of the smallest version of the monoid where the binary
operation is commutative and idempotent. For those in the know, this means that
Set is model of Boolean algebra. In terms of our discussion of DSLs, this means that
there is an isomorphism between the DSL of Boolean algebra and the data type Set.

Why go to such lengths to expose truths that most programmers know in
their bones, even if they don’t know that they know them? We return to our aim:
complexity management. What we have seen is that there is a deep simplicity, in
fact one common structure, underlying these data types. Moreover, the notation of
monad provides a specific framework for factoring this common structure in a way
that both aligns with the principles of DSL-based design and with mathematical
wisdom now vetted over 50 years. Looked at from another point of view, it provides
justification for the intuitions guiding proposals for DSL-based design. Language-
oriented design hooks into and makes available a wide range of tools that actually
can simplify code and encourage reuse.

Moreover, like the language design view, the categorical view also provides a
factorization of the free structure, aka the grammar, and the identities on terms, aka
the relations. In categorical language the addition of identities takes place in what’s
called the Eilenberg-Moore algebras of the the monad. As we will see below, in a
computatonal universe such as Scala this is just a four syllable name for the action
of pairing the grammar with the relations. As we will see in the last chapter, on
semantic search, holding a place for the relations widens the scope of the applicability
of this technology. Specifically, it provides a unified framework for constraint-based
programming, significantly expanding the scope of reach of LINQ-like technologies.
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7.1.2 Languages and Sets of Words

Kleene star

I am not a number, I am a free monoid

type Se tL i s t [X] = Set [ L i s t [X ] ]
tra it SetListM extends Monad [ S e tL i s t ] {

// map par t o f the Set f unc to r
def map( a2b : A => B ) = {

( sa : Set [ L i s t [A ] ] ) => sa map a2b
}
// the un i t na tura l t rans format ion o f the Set monad
def uni t ( a : A ) = Set ( L i s t ( a ) )
// the mult na tura l t rans format ion o f the Set monad
def mult ( mma : Set [ L i s t [ Set [ L i s t [A ] ] ] ] ) =
( ( Set ( ) : Set [A] ) / : mma ) (

{ ( acc : Set [ L i s t [A] ] , elem : Set [ L i s t [A ] ] ) => . . . }
)

}

7.1.3 Of lenses and bananas

7.2 Containers and syntax

7.2.1 The algebra of Sets

expression

m, n ::=
additive identity

T
generators

| g1 | ... | gn

complement

| ¬m
addition

| m&n

7.2.2 The algebra of Lists

expression

m, n ::=
multiplicative identity

1
generators

| g1 | ... | gn

multiplication

| m ∗ n
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7.2.3 The algebra of Sets of Words

Often we want to compose different kinds of collections. Languages offer a good
example. Languages are Sets of words – which, as we saw above, can be identified
with Lists. That is, languages are Sets of Lists. Just like Sets and Lists the
composite also has an algebra, known in the literature as a quantale. The free
quantale is legitimately identified with the Set of all Sets of Lists of some finite
enumeration. Presented as a algebra this looks like

expression

m, n ::=
additive identity

T
multiplicative identity

1
generators

| g1 | ... | gn

addition

| m&n
multiplication

| m ∗ n

7.3 Algebras

7.3.1 Kleisli

7.3.2 Eilenberg-Moore

7.4 Monad as container

TBD

7.5 Monads and take-out
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7.5.1 Option as container

7.5.2 I/O monad for contrast

7.5.3 Matching gazintas and gazoutas

Intuitionistic discipline

Linear discipline

7.6 Co-monad and take-out

7.7 Hopf structure

7.8 Container and control

7.8.1 Delimited continuations reconsidered



Chapter 8

Domain model, storage and state

Mapping to the backend

TBD

8.1 Mapping our domain model to storage

8.1.1 Functional and relational models

8.1.2 Functional and XML models

8.1.3 ORM

8.2 Storage and language-integrated query

8.2.1 LINQ and for-comprehensions

Open source implementations

ScalaQuery

Squeryl
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Figure 8.1: Chapter map

8.3 Continuations revisited

8.3.1 Stored state

8.3.2 Transactions
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Putting it all together

The application as a whole

TBD

9.1 Our web application end-to-end

TBD

9.2 Deploying our application

9.2.1 Why we are not deploying on GAE

9.3 From one web application to web framework

TBD
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Chapter 10

The semantic web

Where are we; how did we get here; and where are we going?

10.1 Referential transparency

In the interest of complete transparency, it is important for me to be clear about
my position on the current approach to the semantic web. As early as 2004 i
appeared in print as stating a complete lack of confidence regarding meta-data, tags
and ontology-based approaches. Despite the attention and intense efforts around
technologies like OWL, i am unaware of major success stories. The funny thing is,
the same could be said of similar sorts of efforts underway two decades before that,
such as KIF, and those two decades before that. i realize this is a controversial
position. However, since i worked one floor above Doug Lenat’s team at MCC, i feel
i have a particular vantage point some 30 years on to ask, so what has CyC done for
you lately? In my humble opinion, the theory of programming language semantics,
especially compositional accounts as found in λ-calculus and π-calculus, is currently
the best foundation we have for a theory we have of semantics, period. As such it
constitutes the most sound basis for a good account of knowledge representation.

To make good on this claim, i want to illustrate how the monadic techniques
provide a new foundation for search on a semantic basis. In particular, what we will
see in the following sections of the concluding chapter is how to use monads to search
for programs in our toy language on the basis of their structure and their behavior !
Despite the fact that the open source movement has created such a demand for
higher-level techniques to search code repositories, at present writing, i am unaware
of any system, not Hoogle, not Merobase, not Google Codebase, nor any of the
other of several dozen efforts in this direction, that offer this feature. Yet, the
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Figure 10.1: Chapter map

monadic design pattern not only makes it clear that such a feature is a possibility, it
makes the organization of the code to do it perfectly tractable. i cannot imagine a
more powerful argument for the efficacy of this technique for structuring functional
programs.

A little motivation The next couple of sections will introduce some a little more
apparatus. Hopefully, by now, the reader is convinced of the value of the more
standard theoretical presentations of this kind of material if for no other reason
than the evident compression it affords. That said, we recognize the need to ground
the introduction of new apparatus in good use cases. The discussion above can be
turned directly into a use case. The central point of this chapter is to develop a query
language for searching for programs in our toy language. Following the analogy we
established at the outset of this book between select ... from ... where ... and
for-comprehensions, this query language will allow users to write queries of the form

for ( p <− d i f c ) yield e

where p is a pattern, d is an interface to a data source and c is a predicate
constraining the structure and behavior of the program. We will show how to
programmatically derive the language of patterns and the language of constraints
from our toy language.

The first new piece of machinery we need to introduce is how to compose
monads.
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10.2 Composing monads

In all of the preceding chapters we deferred one of the most important questions:
do monads themselves compose? After all, if monad is the proposal to replace the
notion of object, and the primary criticism of the notion of object is its lack of
support for composition, hadn’t we better check that monads compose?

Intriguingly, monads do not automatically compose. That is, if F = (F, unitF , multF )
and G = (G, unitG, multG) are monads it does not necessarily follow that

F ◦ G
def
= (F ◦ G, un i tF ◦ uni tG , multf ◦ multG )

(which we’ll write simply as F G going forward) is a monad. In Haskell this
is one of the purposes of monad transformers, to sketch out a compositional model
for monads. Here, we follow a different route. The internal structure of a monad
nearly dictates the simplest conditions under which F G forms a monad. Consider
the requirement of having a mult for F G. We need a natural transformation from
mult: F G F G =>F G.

The components we have to build this mult are primarily multF and multG.
These act to take F F =>G and G G =>G, yet we have F G F G as our initial
type. Notice that if we had a way of swapping the interior G F to make it F G,
that is, we had a map of the form d : G F =>F G (d for distributive because it
distributes F across G), then we could chain up like so

FGFG
F d G

- FFGG
multF multG- FG

It is natural therefore, to require a map like d in order to compose monads.
We can investigate whether this proposal scales by looking at how it fairs when we
have three monads, F, G and H. We insist on being supplied with distributive maps
d1 : G F => F G, d2 : H G => G H and, for good measure, d3 : H F => F H.
These will give canonical monads (F G)H and F (G H), but we cannot ensure their
equality. That is, we cannot ensure the higher level of associativity. To get this we
need to impose an additional set of requirements. These requirements come down
to making the following diagram commute.
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GHF
Gd3- GFH

HGF

d 2
F

-

FGH

d
1H

-

HFG
d3G-

H
d
1

-

FHG

F
d 2

-

They are the coherence conditions, the conditions of good interaction amongst
the distributive maps. In fact, this is sufficient to scale out to arbitrary collections
of monads. That is, if for any pair of monads in the collection we have a distributive
map, and for any three we have the switching condition above, then composition
is completely coherent and well defined. To illustrate that this is not just some
abstract mathematical gadget lets put it to work.

Preliminary

First we will consider a single distributive map. We will look at this in terms of two
extremely simple monads, a DSL for forming arithmetic expressions involving only
addition, i.e. a monoid, and a monad for collection, in this case Set.

case class MonoidExpr [ Element ] ( val e : L i s t [ Element ] )
class MMExpr[A] extends Monad [A, MonoidExpr ] {

override def uni t ( e : A ) = MonoidExpr ( L i s t ( e ) )
override def mult ( mme : MonoidExpr [ MonoidExpr [A ] ] ) =
mme match {

case MonoidExpr ( Ni l ) =>
MonoidExpr ( Ni l )

case MonoidExpr ( mes ) =>
MonoidExpr (

( Ni l / : mes ) (
{ ( acc , me ) => me match {

case MonoidExpr ( es ) => acc +++ es
}

}
)
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)
}

}

Now, what we need to construct is a map d that takes elements inhabiting the
type MMExpr[Set[A]] to elements inhabiting the type Set[MMExpr[A]].

The primary technique is what’s called point-wise lifting of operations. Con-
sider a simple example, such as the element

e =MMExpr( List( Set( a1, a2 ), Set( b1, b2, b3 ) ) ).

This element represents the composition of two sets. We can turn this into a
set of compositions, by considering pairs of a’s with b’s. That is,

e match {
case MMExpr( s1 : : s2 : : N i l ) =>

Set (
for ( a <− s1 ; b <− s2 )
yield { MMExpr( L i s t ( a , b ) ) }

)
case . . .
}

This is exactly the type we want.

10.3 Semantic application queries

An alternative presentation

If you recall, there’s an alternative way to present monads that are algebras, like our
monoid monad. Algebras are presented in terms of generators and relations. In our
case the generators presentation is really just a grammar for monoid expressions.

expression

m, n ::=
identity element

e
generators

| g1 | ... | gn

monoid-multiplication

| m ∗ n

This is subject to the following constraints, meaning that we will treat syn-
tactic expressions of certain forms as denoting the same element of the monoid. To
emphasize the nearly purely syntactic role of these constraints we will use a differ-
ent symbol for the constraints. We also use the same symbol, ≡, for the smallest
equivalence relation respecting these constraints.
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identity laws

m ∗ e ≡ m ≡ e ∗m
associativity

m1 ∗ (m2 ∗m3) ≡ (m1 ∗m2) ∗m3

Logic: the set monad as an algebra In a similar manner, there is a language
associated with the monad of sets considered as an algebra. This language is very
familiar to most programmers.

expression

c, d ::=
identity verity

true
negation

| ¬c
conjunction

| c&d

Now, if we had a specific set in hand, say L (which we’ll call a universe in the
sequel), we can interpret the expressions in the this language, aka formulae, in terms
of operations on subsets of that set. As with our compiler for the concrete syntax
of the lambda-calculus in chapter 1, we can express this translation very compactly
as

[[true]] = L [[¬c]] = L\c [[c&d]] = [[c]] ∩ [[d]]

Now, what’s happening when we pull the monoid monad through the set
monad via a distributive map is this. First, the monoid monad furnishes the uni-
verse, L, as the set of expressions generated by the grammar. We’ll denote this by
L(m). Then, we enrich the set of formulae by the operations of the monoid acting
on sets.

expression

c, d ::=
identity verity

true
negation

| ¬c
conjunction

| c&d

identity verity

e
negation

| g1 | ... | gn

conjunction

| c ∗ d

The identity element, e and the generators of the monoid, g1, ..., gn, can be
considered 0-ary operations in the same way that we usually consider constants as 0-
ary operations. To avoid confusion between these elements and the logical formulae
that pick them out of the crowd, we write the logical formulae in boldface.

Now, we can write our distributive map. Surprisingly, it is exactly a meaning
for our logic!
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[[true]] = L(m) [[¬c]] = L(m)\c [[c&d]] = [[c]] ∩ [[d]]

[[e]] = {m ∈ L(m) | m ≡ e} [[gi]] = {m ∈ L(m) | m ≡ gi}

[[c ∗ d]] = {m ∈ L(m) | m ≡ m1 ∗m2, m1 ∈ [[c]], m2 ∈ [[d]]}

Primes: an application Before going any further, let’s look at an example of
how to use these new operators. Suppose we wanted to pick out all the elements of
the monoid that were not expressible as a composition of other elements. Obviously,
for monoids with a finite set of generators, this is exactly just the generators, so we
could write g1||...||gn

1. However, when the set of generators is not finite, as it
is when the monoid is the integers under multiplication, we need another way to
write this down. That’s where our other operators come in handy. A moment’s
thought suggests that we could say that since true denotes any possible element in
the monoid, an element is not a composition using negation plus our composition
formula, i.e. ¬(true ∗ true). This is a little overkill, however. We just want to
eliminate non-trivial compositions. We know how to express the identity element,
that’s e, so we are interested in those elements that are not the identity, i.e. ¬e.
Then a formula that eliminates compositions of non-trivial elements is spelled out
¬(¬e ∗ ¬e) 2. Finally, we want to eliminate the identity as a solution. So, we arrive
at ¬(¬e ∗ ¬e)&¬e. There, that formula picks out the primes of any monoid.

Summary What have we done? We’ve illustrated a specific distributive map,
one that pulls the set monad through the monoid monad. We’ve shown that this
particular distributive map coincides with giving a semantics to a particular logic,
one whose structure is derived solely from the shape of the collection monad, i.e.
set, and the shape of the term language, in this case monoid.

The observation that the distributive map is also a semantics for a logic comes
about through a kind of factoring. We note that there is a language, the language
of Boolean algebra, that takes its meaning in the set monad. As with the monoid
monad, the syntax of Boolean algebra is given by a monad. The semantics of
Boolean algebra can expressed in terms of sets. That is, one can find models for the
syntax in terms of sets. In some sense, the distributive map is the unique extension
of that semantics map to an enrichment of the syntax with the constructors of the
monoid term language.

1We get the disjunction, ||, by the usual DeMorgan translation: c||d def
= ¬(¬c&¬d)

2Note the similarity of this construction to the DeMorgan construction of Boolean disjunction.
This is, in fact, another kind of disjunction.
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Patterns

The constructions of a language of patterns for our monoid expressions is also com-
pletely determined by monadic structure. All we are really doing is constructing the
data type of 1-holed contexts. In chapter 6 we showed how the derivative of a given
regular data type is exactly the 1-holed contexts for the data type. This provides our
first example of how to calculate the pattern language for our for-comprehensions.
After calculation we arrive at

expression

m, n ::=
hole

x
identity

| e
generators

| g1 | ... | gn

multiplication

| m ∗ n

In some sense, the story here, much like the Sherlock Holmes story, is that the
dog didn’t bark. The patterns we calculate from our term language are precisely the
sorts of patterns we expect if we modeled our term language via Scala case classes.

A first mini-query language

We can now use these pieces to flesh out some examples of the kinds of queries we
might build. The expression

for ( x <− d i f ¬(¬e ∗ ¬e)&¬e ) yield x

will result in a collection of primes residing in the data source d.

for ( x <− d i f (¬e ∗ g) ) yield x

will result in a collection of expressions residing in the data source d having g
as a factor in a non-trivial composition.

Iterating the design pattern

The whole point of working in this manner is that by virtue of its compositional
structure it provides a much higher level of abstraction and greater opportunities
for reuse. To illustrate the point, we will now iterate the construction using our
toy language, the lambda-calculus, as the term language. As we saw in chapter
1, the lambda-calculus also has a generators and relations presentation. Unlike a
monoid, however, the lambda calculus has another piece of machinery: reduction!
In addition to structural equivalence of terms (which is a bi-directional relation)
there is the beta-reduction rule that captures the behavioral aspect of the lambda
calculus.
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It is key to understand this underlying structure of language definitions. In
essence, when a DSL is purely about structure it is presented entirely in terms of
generators (read: a grammar) and relations (like the monoid laws). When the DSL
is also about behavior, i.e. the terms in the language somehow express some kind of
computation, then the language has a third component, some kind of reduction rela-
tion. 3 This organization, this common factoring of the specification of a language,
makes it possible to factor code that handles a wide range of semantic features. The
logic we derive below provides a great example.

A spatial-behavioral-style logic for λ-calculus

expression

c, d ::=
identity verity

true
negation

| ¬c
conjunction

| c&d

mention

| x
abstraction

| (x1,...,xk) => c
application

| c(c1,...,ck)

let

| val x = c;d
seq

| c;d
group

| { c }

probe

| 〈d〉c

The first category of formulae, included for completeness, is again, just the
language of Boolean algebra we get because our collection monad is Set. The next
category comes directly from the abstract syntax of the λ-calculus. The next group
is of interest because it shows that the construction faithfully supports syntactic
sugar. The semantics of the “sugar” formulae is the semantics of desugaring factored
through our distributive map. These latter two categories allow us to investigate
the structure of terms. The final category of formulae, which has only one entry,
PROBE, is the means of investigating behavior of terms.

Examples Before we get to the formal specification of the semantics of our logic,
let’s exercise intuition via a few examples.

3In some sense this is one of the central contributions of the theory of computation back to
mathematics. Algebraists have known for a long time about generators and relations presentations
of algebraic structures (of which algebraic data types are a subset). This collective wisdom is
studied, for example, in the field of universal algebra. Computational models like the lambda-
calculus and more recently the process calculi, like Milner’s π-calculus or Cardelli and Gordon’s
ambient calculus, take this presentation one step further and add a set of conditional rewrite
rules to express the computational content of the model. It was Milner who first recognized this
particular decomposition of language definitions in his seminal paper, Functions as Processes,
where he reformulated the presentation π-calculus along these lines.
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• for ( fn ( , . . . , ) <− d i f true(c1, ..., cn) ) yield fn

• for ( ( f i x p t ) <− d
i f ((f) => ((x) => f(x(x)))((x) => f(x(x))))(true) )

yield f i x p t

for ( a <− d i f 〈(x) => ((Y f)x)〉 a )
yield a

The first of these will return the expressions in “function” position applied the
actual parameters meeting the conditions ci respectively. The second will return all
actual parameters of expressions that calculate fixpoints. Both of these examples are
representative common code optimization schemes that are usually carefully hand-
coded. The third example finds all elements in d that are already fixpoints of a
given function, f .

Logical semantics

expression

c, d ::=
identity verity

[[true]] = L(m)
negation

| [[¬c]] = L(m)\[[c]]
conjunction

| c&d = [[c]] ∩ [[d]]

mention

| x = {m ∈ L(m) |m ≡ x}

abstraction

| [[(x1,...,xk) => c]] = {m ∈ L(m) | m ≡ (x1, ...,xk) => m′,m′ ∈ [[c]]}

application

| [[c(c1,...,ck)]] = {m ∈ L(m) | m ≡ m′(m1, ...,mn), m′ ∈ [[c]], mi ∈ [[ci]]}

let

| val x = c;d
seq

| c;d
group

| { c }

probe

| [[〈d〉c]] = {m ∈ L(m) | ∃m′ ∈ [[d]].m′(m) → m′′, m′′ ∈ [[c]]}

Other collection monads, other logics

Stateful collections
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•

}
{ form : form1 <- data1,..., formK <- dataK, constraint1, ,..., constraintN }

data1

form

form1

formK

constraint1

constraintN

dataK

{

Figure 10.2: Comprehensions and distributive maps
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10.3.1 Other logical operations

expression

c, d ::=
previous

| ...
quantification

| ∀v.c
fixpt defn

| rec X.c
fixpt mention

| X

10.4 Searching for programs

10.4.1 A new foundation for search

Monad composition via distributive laws

10.4.2 Examples
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