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ABSTRACT
The MapReduce architecture provides self-managed paral-
lelization with fault tolerance for large-scale data processing.
Stragglers, the tasks running slower than other tasks of a job,
could potentially degrade the overall cluster performance by
increasing the job completion time. The original MapRe-
duce paper [1] identified that Stragglers could arise due to
various reasons including software mis-configurations, hard-
ware degradation, overloaded nodes or resource contention.
Straggler mitigation techniques are mainly concentrated on
being agnostic to causes behind their occurrence and spawn-
ing speculative copies to mitigate them. A fundamental unan-
swered question though is “what really causes stragglers?".
Answering this question will not only open up proactive tech-
niques to avoid stragglers by smarter scheduling, but will
also give insights into the design of clusters.

In this work, we analyze a production level Facebook Hadoop
trace and perform regression using the node-level statistics
in order to predict the task-execution times. We show that
Machine Learning techniques are helpful in revealing the
non-trivial correlation between task-execution times and node-
level statistics such as CPU/memory utilization. We also
present results of our analysis on MapReduce logs that we
generated using the Berkeley cluster (icluster) with 11 nodes.
Using decision tree like approach further, we show how to
come up with interpretable rules that a cluster scheduler can
easily use. These rules can guide the scheduler to a task as-
signment that avoids or minimizes the number of stragglers.
Our evaluation shows that the proposed changes to scheduler
cause a negligible overhead. Additionally, we also discuss
observations and insights about the MapReduce framework,
task execution times that we think are important.

The key contributions of this work include (a) Given that
existing approaches assume the correlations between node-
status and task execution time are either too hard to find
or are non-existent, we show feasibility of finding correla-
tions and detecting stragglers using Machine Learning and
(b) We propose simple modifications to the Hadoop sched-
uler which are easy to accommodate and are low overhead.

1. INTRODUCTION
MapReduce is a data-intensive job processing frame-

work widely used by giant companies such as Facebook,
Google, and Yahoo!. The MapReduce model is to ex-
ploit inherent parallelism in the jobs by breaking them
up into smaller tasks and by executing them in parallel
on a massive cluster to gain performance benefits. The
aim is to achieve the overall job execution time lower
than it would be otherwise if the jobs are run sequen-
tially. Given the need and scale of the big data applica-
tions (ex. Facebook hosts over 260 billion images), such
simple and scalable large-scale data processing frame-
work is a necessity.

1.1 Challenges
Though widely used and highly successful, unleashing

full capacity of MapReduce environment still remains a
challenge. There are multiple factors adding to this
complexity including enormous cluster size (Facebook
trace we are analyzing shows 5578 nodes). Stragglers
are one of the potential causes behind cluster ineffi-
ciency. Straggler prediction is considered to be a hard
problem due to the following major factors particularly
challenging the prediction accuracy of task completion
times:
Dependency between Tasks MapReduce framework
divides a job into a sequence of time-ordered phases viz.
map and reduce. This inherently renders job comple-
tion times dependent on corresponding task completion
times. For example, reducers need to wait for all the
corresponding mappers to finish execution and generate
their output files. When some tasks take longer than
the other tasks of the job, the overall job-completion
time increases.
Dynamic changes in cluster environment Tasks of
a job may run slowly for multiple reasons, such as soft-
ware mis-configuration, hardware faults, imbalanced clus-
ter, overloaded machines, contention over resources. Since
the tasks continue to make progress unless they are
faced with fatal errors, it is considered to be difficult
to diagnose these failures.
Large variance in task execution time We observed
that there is large variation in finishing time behavior
of the same task. This is one of the biggest challenges
in predicting stragglers! Determining if there are good
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predictors for the long tail of finishing time is essential
for this study.

We analyzed a production level trace from Facebook.
We observed that the straggler-tasks are spread across
the whole cluster. Figure 1 shows sample graphs of
task execution times on randomly chosen jobs from ap-
proximately 27000 jobs running on the Facebook clus-
ter. Note that majority of jobs finish in the initial few
bins of duration but there is a long tail that indicates
some tasks run slower than others and could potentially
fault job’s progress. We define such slow-running tasks
to be Stragglers. Informally, a task that takes more
than a certain threshold time (a multiple of the median-
execution time taken by the other tasks of the job) is
called a Straggler.

1.2 Existing Approaches
Two of the widely used existing straggler mitigation

techniques, viz. ‘Blacklisting’ and ‘Speculative execu-
tion’ react in an ‘after-the-fact’ manner. Blacklist-
ing Hadoop blacklists TaskTrackers (slave nodes) de-
pending upon the number of task-failures experienced
on that node. No further tasks are then scheduled on
such nodes. Hadoop provides manual way of blacklist-
ing a node (by modifying the mapred-site.xml conf file).
This is intuitive, however, it is not trivial to decide
when to blacklist a node. Node could just be temporar-
ily overloaded and hence shouldn’t actually be black-
listed. In such cases, manual blacklisting could result
in wastage of resources. Other challenges to effective
blacklisting are offered by Complex interactions involv-
ing network interactions, resource contentions. Black-
listing is hence considered inefficient as simple counting-
based techniques or heuristics are incapable of finding
the exact reasons behind slower task-executions.

Speculative Execution Instead of fixing the strag-
glers, Hadoop tries to detect such tasks and launches
back-up copies. This is called speculative execution.
Speculative execution is an optimization with a hope
that these copies will finish faster. Though simple and
elegant, speculative execution raises difficulty in certain
contexts. Firstly, some tasks (e.g. tasks supporting in-
teractive analytics) are so small that there is no room
for straggler detection and speculation. If sequence of
such light weighted jobs are cascaded and form a big
analysis job as a whole, speculation has no way to pro-
tect it from stragglers. Secondly, there could be soft-
ware bugs or hardware faults (such as disk read errors)
due to which speculative execution may not be benefi-
cial, rather it might increase load on the node and may
cause further stragglers. Finally, speculative execution
increases contention over the available resources result-
ing into higher latencies for new tasks.

Finding causes behind stragglers, could achieve over-
all efficient clusters with significant performance gain by
avoiding speculative execution (i.e. redundant copies of

already running tasks). Secondly, looking at the enor-
mous scale of the cluster computing frameworks (tens
of thousands of nodes clusters used in production level
systems), slight improvement in efficiency could result
in huge monetary gain. Thirdly, knowing the exact rea-
sons behind slow task executions could enable better
SLO-management. Predicting stragglers proactively in-
stead of reacting after detection is thus highly desirable.

1.3 Proposal: Proactive Straggler Avoidance
We aim at proactive scheduling mechanism in or-

der to avoid or minimize the impact of stragglers on
the cluster. We analyze traces from two Hadoop clus-
ters to understand the causes of stragglers and fur-
ther, we propose modifications to Hadoop’s scheduling
mechanism according to our findings. Analysis of the
Facebook’s production cluster trace shows that Machine
Learning brings out the non-trivial correlations between
the task execution times and node-level statistics, such
as resource utilization (CPU and/or memory). We ob-
served that these correlations are node-specific; more-
over on the same node, they change dynamically due to
changes in workload and/or node-status. We confirm
our observation by analyzing a 4 hour trace that we
generated using the Berkeley EECS department’s local
Hadoop cluster (icluster). Finally, we propose modifi-
cations to the Hadoop scheduler to automatically in-
corporate our findings through Machine Learning tech-
niques. The new system periodically learns correlations
between node-level status and task-execution time in
the form of decision-trees. This being easy-to-interprete
allows scheduler to estimate task-execution time and,
consequently, make a better decision. Our evaluation
shows that the new design incurs only small overhead
on scheduler.

To our knowledge, this is the first attempt to ana-
lyze production traces to figure out causes of stragglers
and formulate interpretable rules which could be used
in order to schedule tasks with the aim of preventing
stragglers.
Paper Organization Section 2 discusses the relevant
work. Section 3 explains Machine Learning techniques
used. Section 4 presents analysis of the Facebook’s
trace. Section 5 explains the analysis on Berkeley EECS
department’s icluster in detail. In Section 6, we propose
a modified hadoop scheduler and verify feasibility of the
design. Section 7 concludes and presents the future di-
rection.

2. RELATED WORK
Stragglers continue to exist even after blacklisting

nodes. The MapReduce paper [1] noticed the prob-
lem of stragglers and suggested speculative execution as
an optimization. Further improvements were provided
including those by LATE [3], Mantri [4]. Mantri [4]
points out the possible categories of root causes behind
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Figure 1: Stragglers do exist!.

stragglers: (a) machine characteristics that includes sta-
tus aspects such as disk reliability and dynamic aspects
such as resource (processor/memory etc.) contention.
(b) network characteristics and (c) data skew. All the
proposed approaches deal with stragglers after they oc-
cur. Whereas, in this work, we are attempting a proac-
tive scheduling in order to avoid straggler tasks. We
believe this would result in improved task completion
times (as indicated by the initial results), higher over-
all system utilization and guarantee of meeting tighter
Service Level Objectives (SLO) bounds.

In most of the related attempts, it is considered very
difficult to model and find out correlations between task
running times and dynamic node-level characteristics.
Multiple papers [5, 6, 8, 7, 9] present that building mod-
els of running tasks and estimating task performance is
non-trivial and inaccuracies in them could cause further
degradation in performance. To our knowledge, this is
the first attempt to analyze production level Hadoop
traces to find out correlations between node statistics
and task completion times.

Lack of locality could be an essential reason behind
task’s slow progress. This was addressed in ‘delay-
scheduling’ [2] which aimed at achieving performance
by locality-aware scheduling. We plan to accommodate
our modifications to the scheduler in such a way that
they go hand-in-hand with the decisions made by de-
lay scheduling mechanism. We propose the following:
using the rules (through regression tree) that we devel-
oped, select a set of nodes satisfying certain criterion
for task-completion time. Then with delay scheduling
mechanism, schedule a task on a node amongst the se-
lected set of nodes that satisfies locality requirements
for performance. If none of them satisfy locality, wait
as per delay scheduling. As of now, we do not have
experimental evaluation using this implementation, but

we plan to verify this further.
Facebook cluster[10] employs Hadoop’s fair-scheduler

with modification to provide better resource isolation
for jobs. Specifically, the modified algorithm reflects
the status of each node on terms of CPU and physi-
cal/virtual memory utilization. Notice that other im-
portant factors defining node status, such as local disk
I/O and network traffic, are pointed out to be less crit-
ical for the considered workload and hence are ignored.
This fact supports our argument that node status is im-
portant in estimating task execution time, even though
their main purpose, providing resource isolation, is dif-
ferent from our interest which is to improve overall job
completion time by avoiding stragglers.

Number of attempts [18, 19, 20, 21] applied machine
learning in order to predict resource contention in var-
ious contexts. Our work differs from these approaches
in the sense that they estimate resource usage of appli-
cations whereas we aim at estimating execution time of
applications (tasks).

3. SYSTEM DESIGN
In this work, we analyze a production level Facebook

Hadoop trace and predict the task-execution times by
regressing on the node-level statistics. We further build
a regression tree to guide the scheduler. Figures 2 and 3
depicts the major components of our system which are
explained in this section.

3.1 Task-execution time prediction
Estimating task-completion times is an important step

for proactive scheduling. We use regression techniques
as explained below.

3.1.1 Problem Formulation
From the Facebook trace, we collected (and estimated)

a number of relevant parameters based on inputs from
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Figure 2: System Workflow.

experts in the MapReduce domain. Using these param-
eters, we posed the problem of predicting task-completion
times as an instance of regression. Let N denote the to-
tal number of nodes and let nk denote the total number
of tasks executing on kth node. Since, map and reduce
tasks differ in the nature of their work, we need dis-
tinct models for them on each node. We basically have
2N regression instances each with nk samples where
k = 1, . . . , N . Each of the N datasets is given by:

Dmap,k = {Xk, yk} and Dreduce,k = {Xk, yk}

where Xk ∈ Rd is a d-dimensional feature vector1,
yk ∈ R denotes the task duration. Also nk = nmk +nrk
where nmk = |(Dmap,k)| and nrk = |(Dreduce,k)|. |x|
denotes cardinality of x We want to learn the mapping
f : X → y s.t. f(xi) = yi ∀i

3.1.2 Regression Techniques Used
We attempted well-known regression techniques in-

cluding Linear Regression, Gaussian Processes, Support
Vector Regression. For the sake of completeness, we
briefly provide here some of the formulations we imple-
mented.
Linear Regression In linear regression, the output
variable Y is modeled as a linear function of real-valued
independent variables X plus noise.
Objective: Find function f : X −→ y that is a linear
combination of input variables.

f(x) = a0 + a1 ∗ x1 + a2 ∗ x2 + .+ ad ∗ xd

where x0 = 1, a0, a1, a2, . . . , ad are the weights/parameters.
Gaussian Process Regression Due to lack of space,
we briefly provide the GP regression formulation, for

1The features along with a brief definitive descriptions are
presented in Table 2.

details, please refer [12, 13, 14]. In the simplest form of
Gaussian Process regression, we assume that the output
variable is given as:

yi = f(xi) + εi where εi ∼ N(0, σ2
noise),

where σ2
noise is the variance of the noise. If we have

f(x) = xTw, where w are the vector of weights of the
features, the probability density of the observed data
points from the training data set can be factored as,

P (y|Xk, wk) =

nk∏
i=1

p(yi|xi, w) = N(XT
k w, σ

2
noiseI).

In the Bayesian formalism,we need to specify prior prob-
ability distribution, lets put a zero mean Gaussian prior
on weights w with covariance matrix Σp:

w ∼ N(0,Σp).

Using the Bayes’ rule, we can write the posterior:

p(w|Xk, yk) ∼ N(ŵ =
1

σ2
n

A−1Xkyk, A
−1).

where A = σ−2n XkX
T
k + Σ−1p . To make predictions, we

average over all possible parameter values weighted by
their posterior probability. Thus, the predictive distri-
bution for f∗ , f(x∗) at x∗ is obtained by averaging
the output of all possible linear models with respect to
Gaussian posterior,

p(f∗|x∗, Xk, yk) =

∫
p(f∗|x∗, w)p(w|Xk, yk)dw

= N(
1

σ2
n

xT∗A
−1Xkyk, x

T
∗A
−1x∗)(1)

We also evaluated Support Vector Machine Regres-
sion (ν − SV R). The results are shown in Table 2.
High accuracy using these techniques suggest that there
exist predictability in the node statistics. However, in-
terpretability is another major concern in this context
and hence, we next used regression trees for regression.
Decision Trees for Regression Regression Tree was
a natural choice for this work for the following reasons:

• Faster prediction facilitates inclusion of this code
in the critical path of scheduler

• It leads to finding out variables that are most sig-
nificant in prediction. Since this work focuses on
estimating causes of stragglers, this proves to be
important.

Decision trees are formed by a collection of rules based
on variables in the modeling data set:
• Rules based on variables’ values are selected to get

the best split to differentiate observations based
on the dependent variable. Various measure are
used in order to decide which feature to split the
dataset, such as entropy impurity, variance impu-
rity, Gini Impurity and misclassification impurity.
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We used variance impurity in our implementation.
We choose feature ‘x’ at tree-node ‘L’ that ren-
ders immediate child nodes as pure as possible.
If i(L) denotes the impurity of node L, then the
Gini/variance impurity is:

i(L) =
∑
k 6=m

P (wk)P (wm)

where P (wk) denotes the fraction of nodes in category k.

The minimum impurity is sought after and such a
feature is selected to split the data.

• Recursively, the same process is applied to each
child node.

• Splitting stops when no further gain can be made,
or some hard stopping criterion is met. Another
way is to first build the complete tree and then
prune it.

Each branch of the tree ends in a terminal node. Each
observation falls into one and exactly one terminal node,
and each terminal node is uniquely defined by a set of
rules.

3.2 Interpretability using Regression Tree
This phase aims at building rules that are easily in-

terpretable by the scheduler as explained in the section
above. We use regression trees to this end in order to
come up with a tree like structure on the node-statistics
based on thresholds that are determined as part of the
algorithm. Since Map and Reduce tasks are different by
the nature of work they perform, we build two trees per
node in the cluster. This task of building trees based on
past logged node-statistics could also be distributed to
individual nodes. These design alternatives are depicted
in Figure 3. For simplicity and since we have a small 11-
node cluster for testing, we have implemented design al-
ternative I where master collects the node-statistics and
learns regression trees. However, design alternative II
is an easy and efficient extension for huge clusters.

3.3 Proactive scheduling mechanism
The estimation of task execution times is computed

at regular time-intervals by walking both the trees gen-
erated in the previous phase, down as per the current
values of features. If the trees are built in a distributed
fashion on individual nodes, these estimates could then
be piggybacked with the heartbeat messages sent from
the TaskTrackers to the JobTrackers. In another option,
in case of small sized clusters, the JobTracker could gen-
erate the tress and use them in order to take schedul-
ing decisions. This also provides a ready framework
for SLO-aware scheduling as every node is “advertis-
ing” task-completion times! These two possibilities of
system architecture are shown in Figure 3. The figure
also shows the design we are currently building based on

Figure 3: The task of learning regression trees can be

performed at master (for smaller clusters) or it could be

distributed to the slaves (for huge clusters). Second half

of the figure shows the current implementation status.

design alternative I. Currently, we have the infrastruc-
ture for collecting logs and processing them ready with
us. We also have preliminary implementation of modi-
fied scheduler that verifies feasibility of our approach in
terms of overheads incurred.

4. FACEBOOK TRACE ANALYSIS
We first analyzes a trace generated in two days on

Facebook’s Hadoop cluster. The trace shows that there
are 5578 nodes.It notes information about ∼27,000 jobs,
and total of around 5.2 million tasks during the two
days.

4.1 Per Job Analysis
Initially, we analyzed job-level statistics to see their

impact on the task-execution times. Table 1 presents
the list of such features available in the Facebook trace.
Figure 4 shows the Pearson’s correlation coefficient for
each individual feature extracted from the trace. The
plot shows the average correlation coefficient of each
feature with the task execution time over all the 27000
jobs. The error bars indicate the standard deviation
across jobs. Note that most of the features show very
low correlation (less the 0.4) and very few which have a
correlation greater than that, show a high value of stan-
dard deviation indicating highly variable correlations.
This means that simple correlations do not exist

5



Figure 4: Pearson’s correlation coefficient: The value of the correlation coefficient between various features and the

task execution time. The columns plot the average value of the Pearson’s correlation coefficients and the error bars

indicate the standard deviation in the coefficients over approximately 27000 jobs.

Table 1: Features Directly Available from the Facebook

Trace
Feature Description

Task Id Identifier of task.
Job Id Corresponding Job Identifier.
Node ID Corresponding Node Identifier.
Type Map/Reduce
Status Success/Failure
Start time Starting time of the task
End time Finishing time of the task
CPU time Total cpu time consumed by the task
Physical Memory Peak physical memory consumed by the task
Virtual Memory Peak virtual memory consumed by the task
Local Read Amount of data read from the local disk
Local Write Amount of data written to the local disk
Remote Read Amount of data read from HDFS cluster
Remote Write Amount of data written to HDFS cluster

and job-level statistics do not matter. Hence, we
decided to focus more on the node-level statistics which
is described in the following section.

4.2 Per Node Analysis
We observed from the Facebook trace that at some

points in time, most of the tasks execute slowly as an
effect of overall load on that node. Figure 5 shows such
an example from Facebook trace. Limiting or restrict-
ing task assignment to such nodes (admission control),
or preventing nodes from entering such situation will

Figure 5: # of stragglers over time on a FB node.

reduce straggler tasks. In order to confirm our conjec-
ture that such situation arise due to contention over
resources, we decided to seek correlation between the
node status and execution times of the tasks.
Inferring Node Status Over Time

Since the original Facebook trace had per task infor-
mation, we processed it further to find out the status of
the node interim s of number of simultaneously execut-
ing tasks, total physical, virtual memory usage during
the execution of each task. Please see Table 2 for the
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Table 2: Features Inferred from the Facebook Trace
Category Feature Description

AtEntry(E)

CpuUsageAtEntry* CPU usage at the moment the snapshot was taken.
#MapTaskAtEntry Number of Map tasks already executing at the moment the snapshot was taken.
#ReduceTaskAtEntry Number of Map tasks already executing at the moment the snapshot was taken.
physicalMemoryAtEntry Physical memory utilization at the moment the snapshot was taken.
virtualMemoryAtEntry Virtual memory utilization at the moment the snapshot was taken.
localReadRateAtEntry Rate of local data read
localWriteRateAtEntry Rate of local data written
remoteReadRateAtEntry Rate of remote data read
remoteWriteRateAtEntry Rate of remote data written

Peak)P

#MapTaskPeak Max number of map tasks executing simultaneously at any point in time during considered task’s execution.
#ReduceTaskPeak Max number of reduce tasks executing simultaneously at any point in time during considered task’s execution.
#TaskPeak Max number of total tasks executing simultaneously at any point in time during considered task’s execution.
physicalMemoryPeak Max physical memory utilization at any point in time during considered task’s execution.
virtualMemoryPeak Max virtual memory utilization at any point in time during considered task’s execution.
localReadPeak Max number of bytes read locally at any point in time during considered task’s execution.
localWritePeak Max number of bytes written locally at any point in time during considered task’s execution.
remoteReadPeak Max number of bytes read form remote nodes at any point in time during considered task’s execution.
remoteWritePeak Max number of bytes written to remote nodes at any point in time during considered task’s execution.
localReadRatePeak Maximum local read rate during task execution time window
localWriteRatePeak Maximum local write rate during task execution time window
remoteReadRatePeak Maximum remote read rate during task execution time window
remoteWriteRatePeak Maximum remote read rate during task execution time window

Sum(S)

#MapTaskSum Total number of map tasks executing simultaneously.
#ReduceTaskSum Number of reduce tasks executing simultaneously.
physicalMemorySum Physical memory utilization during the task’s execution.
virtualMemorySum Virtual memory utilization during the task’s execution

RecentPeak(R)

CpuUsageRecentPeak* Max CPU usage during past 50 seconds.
#MapTaskRecentPeak* Max number of Rap task during past 50 seconds.
#ReduceTaskRecentPeak* Max number of Reduce task during past 50 seconds.
physicalMemoryRecentPeak* Max physical memory utilization during past 50 seconds.
virtualMemoryRecentPeak* Max virtual memory utilization during past 50 seconds.
localReadRateRecentPeak* Max local read rate during past 50 seconds.
localWriteRateRecentPeak* Max local write rate during past 50 seconds.
remoteReadRateRecentPeak* Max remote read rate during past 50 seconds.
remoteWriteRateRecentPeak* Max remote write rate during past 50 seconds.

Feature with * mark are available only if NMON log are provided

Table 3: Evaluating Regression on Facebook Trace

Method MAE. RMSE. Corr.

Linear Regression 0.014 0.0258 0.837
ν SVR (RBF Kernel) 0.011 0.030 0.849

ν SVR (Polynomial Kernel) 0.013 0.039 0.731
GP Regression 0.012 0.0346 0.663

complete list of features we extracted from the trace.
Note that these represent peak and aggregate (sum)
kind of features which is in fact an over-approximation
of the situation.
Evaluation results on the Facebook Trace We
evaluated different regression formulations with dura-
tion as the output real-valued variable. We evaluated
linear regression, SVR (Regression using Support Vec-
tor Machines) and regression using Gaussian Processes.
We also used different kernels such as RBF (Radial Ba-
sis Function) kernel and Polynomial kernel. Table 3
shows the results.

Though the correlation between predicted and actual
task execution times was high, this analysis resulted in
a high relative error. We believed that this is due to
overly approximated features in the log that only speci-
fies information at the JVM-level. We do not have more
architectural details about the nodes in the Facebook
cluster. Hence, we decided to systematically evaluate
regression techniques on carefully chosen set of features
on a local cluster to have more control to fetch finer
details of the nodes in the cluster.

5. LOCAL CLUSTER ANALYSIS
In this section we describe the experimental set up

for local cluster analysis along with the results. Our
aim is to confirm the existence of correlations between
node-status and the task execution times.

5.1 Experimental Setup
We used Berkeley EECS department’s Hadoop clus-

ter (icluster) which comprises of 11 nodes, each with 8
CPUs and 16GB RAM. All nodes have their own local
disk and are also connected to a networked storage.

Data Generation Data defining he status of a node
is collected using NMON system monitoring tool [17].
NMON periodically reads system status from \proc filesys-
tem and records in a flat file. The information includes
node’s resource utilization such as CPU usage, mem-
ory usage, and I/O rate. We installed NMON on all
the slave nodes and collected sampled status of each
node every 10 second. We then process these logs gen-
erated by NMON and saved them on the shared net-
worked storage. We extracted task level information
from Hadoop logs. Hadoop maintains various category
of logs, such as scheduler log, task-tracker log, and job
history log, to help cluster maintenance. Using these,
we were able to collect task information from job his-
tory logs. Finally, we combined the task level informa-
tion with node-status information. This presents richer
data as we have utilized NMON for the actual system
counter in addition to the Hadoop logs.

Benchmark Workloads We implemented a ran-
domized workload simulator in order to avoid a tightly
coupling of results with a specific benchmark. As an in-
put, our simulator takes running time, number of users,
and range of input file sizes. In the simulation, each user
submits a single job to actual Hadoop cluster, wait until
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the job is finished and submits the next job after a wait
for a random time interval. The benchmark workloads
we used are from the Hadoop’s example workloads:
• Sort: A program that sorts the data that is gen-

erated randomly. This represents an I/O bound
(Rad-Write intensive) set of jobs.

• WordCount: A program that counts the number
of words in the input files. Input files are cre-
ated by invoking TeraGen, a random file gener-
ator job. This set represents Read intensive jobs.

• MRBench: MRBench represents jobs composed
of lots of simple tasks. In our simulated workload,
a single MRBench job forks 50 to 100 child tasks.

• PI: A program that estimates pi(π) using Monte-
Carlo estimation method. This set represents a
CPU-intensive or compute-heavy jobs.

We ran a simulation experiment for 3 hours with 11
simulated users and input file sizes ranging from 10M
to 200M. (Workload running time was limited due to
limited storage quota: only 800M of network storage
space is allowed to student account.)

Table 4: Regression Result for Local Cluster
Map Reduce

FeatureSet Method RAE RRSE Corr RAE RRSE Corr

R
LR 0.24 4558.63 0.24 93.60 99.59 0.17
GP 95.89 96.35 0.24 91.48 95.93 0.32

E
LR 98.09 96.57 0.26 101.35 127.01 0.36
GP 76.58 81.07 0.60

S
LR 75.35 81.25 0.57 23.59 26.91 0.86
GP 72.81 78.78 0.61 29.76 32.85 0.85

P
LR 70.15 74.00 0.67 56.53 67.92 0.72
GP 64.07 68.79 0.72 46.92 52.47 0.79

R+E
LR 93.51 94.58 0.33 101.04 124.08 0.33
GP 89.29 91.34 0.41 76.26 80.68 0.62

R+S
LR 69.70 75.37 0.65 31.58 37.27 0.81
GP 65.16 72.00 0.69 38.82 42.84 0.80

R+P
LR 69.82 73.83 0.67 57.32 68.19 0.71
GP 64.07 68.78 0.72 48.10 53.52 0.78

E+S
LR 68.27 73.52 0.67 45.07 54.29 0.77
GP 63.06 70.01 0.72 55.08 59.30 0.80

E+P
LR 69.61 73.51 0.68 70.30 82.11 0.55
GP 63.14 67.80 0.74 61.38 65.16 0.77

S+P
LR 57.18 61.18 0.79 29.97 36.50 0.82
GP 46.73 52.31 0.85 42.52 46.80 0.82

R+E+S
LR 67.31 72.90 0.68 173.94 373.11 0.60
GP 62.64 69.88 0.72 57.42 61.41 0.79

R+E+P
LR 69.49 73.49 0.68 174.63 272.21 0.48
GP 63.13 67.79 0.74 61.94 65.60 0.76

R+S+P
LR 56.90 60.99 0.79 42.34 46.94 0.64
GP 46.71 52.29 0.85 44.05 48.32 0.82

E+S+P
LR 55.73 59.56 0.80 119.24 232.70 0.65
GP 45.48 51.07 0.86 59.05 62.49 0.80

All
LR 54.77 57.54 0.82 24.16 29.52 0.62
GP 42.08 45.15 0.90 58.74 64.86 0.51

5.2 Regression
Table 4 shows evaluation of task execution time pre-

diction using regression on the local cluster (icluster)
trace. The first column shows used feature sets. E, R,
P, S are acronyms for AtEntry, RecentPeak, Peak, and
Sum. Please refer Table 2 for brief description of each
feature set. TO carefully figure out the correlations
between the distinct set of features (E, R, P, S), we

Table 5: Regression Tree Evaluation on iCluster Trace
Map Reduce

FeatureSet RAE RRSE Corr RAE RRSE Corr
S 69.59 76.09 0.64 20.27 23.59 0.87

E+S+P 42.33 48.78 0.87 26.04 32.94 0.86
All 42.32 48.8 0.87 21.97 29.25 0.9

planned set of experiments where we tried all the com-
bination of the four feature sets. The second column
shows the regression algorithms we used. LR denotes
Linear Regression and GP denotes Gaussian Process.
Rest of the columns show relative absolute error, root
relative squared error, and correlation between features
and task execution time for Map and Reduce tasks re-
spectively.

Discussion We observe from these results that Sum
and Peak are significantly correlated to task execution
time. On the other hand, AtEntry set of features do
not show any strong correlation. RecentPeak set also
shows negligible correlations. In fact, RecentPeak de-
grades the prediction accuracy! Note that the set of
Sum features provide the highest accuracy especially
for reduce tasks. On the contrary, as we expected, for
map tasks, the accuracy i higher when most of the fea-
tures are used. In case of map tasks, even the set of Re-
centPeak features contribute to an improved prediction
accuracy. We conjecture that this is due to the large
variance in completion times of the same map task: the
Sum feature set represent overall resource utilization of
a node.Since reduce tasks often run for longer duration,
at least longer than map tasks, they are more sensitive
to overall node resource utilization rather then tempo-
rary statistics such as represented by Peak and AtEntry.
Similarly, we observed that the variance in the comple-
tion time for reducers was small as compared to that of
mappers, this also explains a better accuracy in predic-
tions for reducers. Further, we believe that categorizing
map tasks based on high-level job characteristic will im-
prove accuracy of execution-time prediction for reduce
tasks. We plan to explore this further.

Further, we used regression tree [15] to build inter-
pretable rules to guide scheduler. Figure 8 shows ex-
amples of the regression trees built. Table 5 shows the
results of using CART (Classification and Regression
Tree) algorithm on the trace from the local cluster. For
brevity, we only show the results using selected features
as indicated by our features selection mechanism pre-
sented in this section above; i.e. we present results using
S, E+S+P and All features (as these are the particular
sets of features with the best accuracies of all the sets).
Figures 6, 7 show results in pictorial manner. Note
that the false positives are almost none meaning that
we get reliable straggler predictions.

6. IMPLEMENTATION
We implemented preliminary version of modified sched-
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Figure 6: Results on icluster trace.

uler to verify feasibility of the proposed design. Im-
plementation mainly has three components: Scheduler,
Regression Tree Builder, and Data Collector. The crit-
ical aim of implementation is to minimize scheduling
overhead. Scheduler Hadoop’s fair-scheduler invokes
LoadManager to check whether the upcoming task as-
signment could overload the target node before actually
assigning the task. We modified LoadManager mod-
ule to invoke additional check procedure. Algorithm 1
shows algorithm of the additional check procedure we
implemented.

Algorithm 1 SchedulerAdviser Algorithm

function Adviser(trees, snapshot, threshold, node, type)
if outdated(trees) then

trees← reload()
end if
e← estimate(trees[node][type], snapshot)
return e ≤ threshold

end function

Regression Tree Builder Regression Tree Builder
is comprises of two daemon processes. The first one pe-
riodically reconstructs regression trees from newly col-
lected Hadoop logs and node’s snapshots using Weka[?]
Machine Learning library. The second daemon opti-
mizes the process by walking down the tree using only
a partial information of current node-status in order to
get an early estimates of task execution time.

Data Collector Processed Hadoop logs and node
snapshots are collected at the shared networked storage,
as described in Section 5. Local log processing greatly
reduces both network storage space consumption and
the communication overhead.

Figure 7: Results on icluster trace.

7. EVALUATING FEASIBILITY OF DESIGN
We configured the scheduler to rebuild trees every

second and executed simulated workload for 2 hours
to see the amount of overhead our scheduler modifica-
tion introduces. Following table shows brief summary
of the results. Column Sum denotes total amount of
time spent inside scheduler’s code and Average denotes
average time spent per scheduler function call.

#Scheduler Call Sum(ms) Average(ms)
Original 23896 12458 0.52
Modified 22572 12880 0.57(+0.05)
Modified2 23023 16149 0.70(+0.18)

Row Original shows result without modification and
row Modified shows result with modification. Row Mod-
ified2 shows another experimental result where we force
the scheduler to reload multiple trees to simulate the ef-
fect of huge number of nodes in the cluster. We see that
in both the cases minimal overhead is incurred.

8. CONCLUSIONS
We revisited the fundamental assumption behind the

existing straggler mitigation techniques that rely on
detecting and executing slow running tasks specula-
tively. Machine Learning proves to be helpful in au-
tomatically finding out complex correlations between
node/task characteristics and the task-completion times.

1. Simple correlations do not exist. We did not ob-
serve any correlation between individual task/node
characteristics with the task-completion times. It
agrees with previous observations by [3, 4].

9



Figure 8: Sample Reduce Tree.

2. We need to consider task characteristics and node
status together for better predictions.

3. We believe that considering higher level job clus-
tering will improve prediction accuracy especially
for map tasks.

• In the current approach we are combining all
the jobs on a node together without any dis-
tinction with respect to their inherent high
level characteristics such as CPU-bound vs.
memory-bound vs. IO-bound etc.

• We plan to analysis jobs according to their
above mentioned higher level characteristics
as future work.

This Machine Learning approach enables self-adaptive
cluster scheduling that is independent of node and work-
load characteristics.

9. FUTURE DIRECTIONS
Through this work, we have taken initial step to-

wards identifying proactive ways for straggler preven-
tion. Though initial results are only fairly good, the
direction looks promising. On the data we generated
in a controlled environment, we got encouraging results
which imply that instrumenting Hadoop logging mech-
anism to extract more information could be very help-
ful. At the same time, we also point out that errors
in predictions could harm job performance and cluster
throughput badly. Hence, we plan to work on feature
selection further. Importantly, since prediction errors
could lead to large performance degradation, it is highly
desirable to attach a confidence measure along with our
predictions of task completion times.

Learning to predict task execution times is highly de-
pendent on the cluster configuration, status of nodes,
their age and workload-characteristics. Hence, it is re-
quired to update models learnt with new information
as it becomes available. At the same time, the models

need to be available quickly. This calls for online learn-
ing algorithms. We plan to look into it in order to build
accurate models more efficiently.
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