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Machine Learning 10-601 
 Tom M. Mitchell 

Machine Learning Department 
Carnegie Mellon University 

 
September 20, 2011 

Today: 
•  Probability 
•  Bayes Rule 
•  Estimating parameters 

•  maximum likelihood 
•  max a posteriori 

Readings: 
 
Probability review 
•  Bishop Ch. 1 thru 1.2.3 
•  Bishop, Ch. 2 thru 2.2 
•  Andrew Moore’s online 

tutorial many of these slides are derived 
from William Cohen, Andrew 
Moore, Aarti Singh, Eric Xing, 
Carlos Guestrin.   - Thanks! 

Probability Overview 
•  Events  

–  discrete random variables, continuous random variables, 
compound events 

•  Axioms of probability 
–  What defines a reasonable theory of uncertainty 

•  Independent events 
•  Conditional probabilities 
•  Bayes rule and beliefs 
•  Joint probability distribution 
•  Expectations 
•  Independence, Conditional independence 
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Random Variables 

•  Informally, A is a random variable if 
–  A denotes something about which we are uncertain 
–  perhaps the outcome of a randomized experiment  

•  Examples 
A = True if a randomly drawn person from our class is female 
A = The hometown of a randomly drawn person from our class 
A = True if two randomly drawn persons from our class have same birthday 
 

•  Define P(A) as “the fraction of possible worlds in which A is true” or       
“the fraction of times A holds, in repeated runs of the random experiment” 
–  the set of possible worlds is called the sample space, S 
–  A random variable A is a function defined over S 

                        A: S à {0,1} 
 

A little formalism 

More formally, we have 
•  a sample space S (e.g., set of students in our class) 

–  aka the set of possible worlds 

•  a random variable is a function defined over the sample 
space 
–  Gender: S à { m, f } 
–  Height: S à Reals 

•  an event is a subset of S 
–  e.g., the subset of S for which Gender=f 
–  e.g., the subset of S for which (Gender=m) AND (eyeColor=blue) 

•  we’re often interested in probabilities of specific events 
•  and of specific events conditioned on other specific events  
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Visualizing A 

Sample space 
of all possible 
worlds 

Its area is 1 

 
 
 
 
 
 
 
 

 
 
 
 

Worlds in which A is False 

Worlds in which 
A is true 

P(A) = Area of 
reddish oval 

The Axioms of Probability 

•  0 <= P(A) <= 1 
•  P(True) = 1 
•  P(False) = 0 
•  P(A or B) = P(A) + P(B) - P(A and B) 

 

[di Finetti 1931]: 
 
when gambling based on “uncertainty formalism A” you can 
be exploited by an opponent 
 
iff 
 
your uncertainty formalism A violates these axioms 
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Interpreting the axioms 

•  0 <= P(A) <= 1 
•  P(True) = 1 
•  P(False) = 0 
•  P(A or B) = P(A) + P(B) - P(A and B) 

The area of A can’t 
get any smaller than 0 

And a zero area 
would mean no 
world could ever 
have A true  

Interpreting the axioms 
•  0 <= P(A) <= 1 
•  P(True) = 1 
•  P(False) = 0 
•  P(A or B) = P(A) + P(B) - P(A and B) 

The area of A can’t 
get any bigger than 1 

And an area of 1 
would mean all 
worlds will have A 
true  
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Interpreting the axioms 

•  0 <= P(A) <= 1 
•  P(True) = 1 
•  P(False) = 0 
•  P(A or B) = P(A) + P(B) - P(A and B) 

Theorems from the Axioms 

•  0 <= P(A) <= 1, P(True) = 1, P(False) = 0 
•  P(A or B) = P(A) + P(B) - P(A and B) 

è P(not A) = P(~A) = 1-P(A) 
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Theorems from the Axioms 

•  0 <= P(A) <= 1, P(True) = 1, P(False) = 0 
•  P(A or B) = P(A) + P(B) - P(A and B) 

è P(not A) = P(~A) = 1-P(A) 
 

P(A or ~A) = 1             P(A and ~A) = 0 

P(A or ~A) = P(A) + P(~A) - P(A and ~A) 

 

         1      = P(A) + P(~A) + 0 

Elementary Probability in 
Pictures 
•  P(~A) + P(A) = 1 

 
A 
 

~A 



7 

Another useful theorem 

•  0 <= P(A) <= 1, P(True) = 1, P(False) = 0, 
    P(A or B) = P(A) + P(B) - P(A and B) 
 

è P(A) = P(A ^ B) + P(A ^ ~B) 
 

A =  [A and (B or ~B)]  =  [(A and B) or (A and ~B)] 

P(A) = P(A and B) + P(A and ~B) – P((A and B) and (A and ~B)) 

P(A) = P(A and B) + P(A and ~B) – P(A and B and A and ~B) 

 

Elementary Probability in Pictures 
•  P(A) = P(A ^ B) + P(A ^ ~B) 

 
B 
 

A ^ ~B 

A ^ B 
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Multivalued Discrete Random 
Variables 

•  Suppose A can take on more than 2 values 
•  A is a random variable with arity k if it can take on 

exactly one value out of {v1,v2, ... vk} 
•  Thus… jivAvAP ji ≠==∧=  if 0)(

! 

P(A = v1" A = v2 " ..." A = vk ) =1

Elementary Probability in 
Pictures 

1)(
1

==∑
=

k

j
jvAP

A=1 

A=2 

A=3 

A=4 

A=5 
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Definition of Conditional 
Probability 

                     P(A ^ B)  
P(A|B)  =  ----------- 
                    P(B)  

Corollary: The Chain Rule 
P(A ^ B) = P(A|B) P(B)  

Conditional Probability in Pictures 

A=1 

A=2 

A=3 

A=4 

A=5 

picture:   P(B|A=2) 
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Independent Events 
•  Definition: two events A and B are 

independent if Pr(A and B)=Pr(A)*Pr(B) 
•  Intuition: knowing A tells us nothing 

about the value of B (and vice versa) 

Visualizing Probabilities 

Sample space 
of all possible 
worlds 

Its area is 1 

 
B 
 

A 

A ^ B 
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Definition of Conditional Probability 

                     P(A ^ B)  
P(A|B)  =  ----------- 
                    P(B)  

 
B 
 

A 

Definition of Conditional Probability 

                     P(A ^ B)  
P(A|B)  =  ----------- 
                    P(B)  

Corollary: The Chain Rule 
P(A ^ B) = P(A|B) P(B) 
 
P(C ^ A ^ B) = P(C|A ^ B) P(A|B) P(B) 
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Independent Events 
•  Definition: two events A and B are 

independent if   P(A ^ B)=P(A)*P(B) 
•  Intuition: knowing A tells us nothing 

about the value of B (and vice versa) 

Bayes Rule 

•  let’s write 2 expressions for P(A ^ B)  

 
B 
 

A 

A ^ B 
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P(B|A) * P(A) 

P(B) 
P(A|B) = 

Bayes, Thomas (1763) An essay 
towards solving a problem in the doctrine 
of chances. Philosophical Transactions of 
the Royal Society of London, 53:370-418 

…by no means merely a curious speculation in the doctrine of chances, 
but necessary to be solved in order to a sure foundation for all our 
reasonings concerning past facts, and what is likely to be hereafter…. 
necessary to be considered by any that would give a clear account of the 
strength of analogical or inductive reasoning… 

Bayes’ rule 

we call P(A) the “prior” 
 
and P(A|B) the “posterior” 

Other Forms of Bayes Rule 

)(~)|~()()|(
)()|()|(

APABPAPABP
APABPBAP

+
=
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)()|()|(
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XAPXABPXBAP

∧
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Applying Bayes Rule 

€ 

P(A |B) =
P(B | A)P(A)

P(B | A)P(A)+ P(B |~ A)P(~ A)

A = you have the flu,   B = you just coughed 
 
Assume: 
P(A) = 0.05 
P(B|A) = 0.80 
P(B| ~A) = 0.2 
 
what is P(flu | cough) = P(A|B)? 

what does all this have to do with 
function approximation? 
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The Joint Distribution 

Recipe for making a joint 
distribution of M variables: 

Example: Boolean 
variables A, B, C 

A B C Prob 
0 0 0 0.30 

0 0 1 0.05 

0 1 0 0.10 

0 1 1 0.05 

1 0 0 0.05 

1 0 1 0.10 

1 1 0 0.25 

1 1 1 0.10 

 
 
 

A 

B 

C 0.05 
0.25 

0.10 0.05 0.05 

0.10 

0.10 
0.30 

[A. Moore]  

The Joint Distribution 

Recipe for making a joint 
distribution of M variables: 

 
1.  Make a truth table listing all 

combinations of values of 
your variables (if there are 
M Boolean variables then 
the table will have 2M rows). 

Example: Boolean 
variables A, B, C 

A B C Prob 
0 0 0 0.30 

0 0 1 0.05 

0 1 0 0.10 

0 1 1 0.05 

1 0 0 0.05 

1 0 1 0.10 

1 1 0 0.25 

1 1 1 0.10 

 
 
 

A 

B 

C 0.05 
0.25 

0.10 0.05 0.05 

0.10 

0.10 
0.30 

[A. Moore]  
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The Joint Distribution 

Recipe for making a joint 
distribution of M variables: 

 
1.  Make a truth table listing all 

combinations of values of 
your variables (if there are 
M Boolean variables then 
the table will have 2M rows). 

2.  For each combination of 
values, say how probable it 
is. 

Example: Boolean 
variables A, B, C 

A B C Prob 
0 0 0 0.30 

0 0 1 0.05 

0 1 0 0.10 

0 1 1 0.05 

1 0 0 0.05 

1 0 1 0.10 

1 1 0 0.25 

1 1 1 0.10 

 
 
 

A 

B 

C 0.05 
0.25 

0.10 0.05 0.05 

0.10 

0.10 
0.30 

[A. Moore]  

The Joint Distribution 

Recipe for making a joint 
distribution of M variables: 

 
1.  Make a truth table listing all 

combinations of values of 
your variables (if there are 
M Boolean variables then 
the table will have 2M rows). 

2.  For each combination of 
values, say how probable it 
is. 

3.  If you subscribe to the 
axioms of probability, those 
numbers must sum to 1. 

Example: Boolean 
variables A, B, C 

A B C Prob 
0 0 0 0.30 

0 0 1 0.05 

0 1 0 0.10 

0 1 1 0.05 

1 0 0 0.05 

1 0 1 0.10 

1 1 0 0.25 

1 1 1 0.10 

 
 
 

A 

B 

C 0.05 
0.25 

0.10 0.05 0.05 

0.10 

0.10 
0.30 

[A. Moore]  
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Using the 
Joint 

One you have the JD 
you can ask for the 
probability of any logical 
expression involving 
your attribute 

∑=
E

PEP
 matching rows

)row()(

[A. Moore]  

Using the 
Joint 

P(Poor Male) = 0.4654 ∑=
E

PEP
 matching rows

)row()(

[A. Moore]  
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Using the 
Joint 

P(Poor) = 0.7604 ∑=
E

PEP
 matching rows

)row()(

[A. Moore]  

Inference 
with the 
Joint 

∑

∑
=

∧
=

2

 2 1

 matching rows

 and matching rows

2

21
21 )row(

)row(

)(
)()|(

E

EE

P

P

EP
EEPEEP

P(Male | Poor) = 0.4654 / 0.7604 = 0.612   

[A. Moore]  
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Learning and 
the Joint 
Distribution 

Suppose we want to learn the function f: <G, H> à W 
 
Equivalently, P(W | G, H) 
 
Solution: learn joint distribution from data, calculate P(W | G, H) 
 
e.g., P(W=rich | G = female, H = 40.5- ) = 

[A. Moore]  

sounds like the solution to 
learning F: X àY, 

or P(Y | X). 
 

Are we done? 
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[C. Guestrin]  

[C. Guestrin]  
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[C. Guestrin]  

Maximum Likelihood Estimate for Θ 

[C. Guestrin]  
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[C. Guestrin]  

[C. Guestrin]  
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[C. Guestrin]  

Beta prior distribution – P(θ) 

[C. Guestrin]  
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Beta prior distribution – P(θ) 

[C. Guestrin]  

[C. Guestrin]  
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[C. Guestrin]  

Conjugate priors 

[A. Singh]  
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Conjugate priors 

[A. Singh]  

Estimating Parameters 
•  Maximum Likelihood Estimate (MLE): choose 
θ that maximizes probability of observed data 

•  Maximum a Posteriori (MAP) estimate: 
choose θ that is most probable given prior 
probability and the data 
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Dirichlet distribution 
•  number of heads in N flips of a two-sided coin 

–  follows a binomial distribution 
–  Beta is a good prior (conjugate prior for binomial) 

•  what it’s not two-sided, but k-sided? 
–  follows a multinomial distribution 
–  Dirichlet distribution is the conjugate prior 

You should know 

•  Probability basics 
–  random variables, events, sample space, conditional probs, … 
–  independence of random variables 
–  Bayes rule 
–  Joint probability distributions 
–  calculating probabilities from the joint distribution 

•  Estimating parameters from data 
–  maximum likelihood estimates (MLE) 
–  maximum a posteriori estimates (MAP) 
–  distributions – binomial, Beta, Dirichlet, … 
–  conjugate priors 
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Extra slides 

Expected values 
Given discrete random variable X, the expected value of 

X, written E[X] is 
 
 
 
 
We also can talk about the expected value of functions 

of X 
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Covariance 
Given two discrete r.v.’s X and Y, we define the 

covariance of X and Y as 
 
 
e.g., X=gender, Y=playsFootball 
or     X=gender, Y=leftHanded 
 
 
Remember: 


