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Today: Readings:
* Probability
+ Bayes Rule Probability review
» Estimating parameters » Bishop Ch. 1 thru 1.2.3
* maximum likelihood » Bishop, Ch. 2 thru 2.2
* max a posteriori * Andrew Moore’s online
many of these slides are derived tutorial

from William Cohen, Andrew
Moore, Aarti Singh, Eric Xing,
Carlos Guestrin. - Thanks!

Probability Overview

 Events

— discrete random variables, continuous random variables,
compound events

* Axioms of probability
— What defines a reasonable theory of uncertainty

* Independent events

» Conditional probabilities

+ Bayes rule and beliefs

« Joint probability distribution

» Expectations

* Independence, Conditional independence




Random Variables

Informally, A is a random variable if
— A denotes something about which we are uncertain
— perhaps the outcome of a randomized experiment

Examples
A = True if a randomly drawn person from our class is female
A = The hometown of a randomly drawn person from our class
A = True if two randomly drawn persons from our class have same birthday

Define P(A) as “the fraction of possible worlds in which A is true” or

“the fraction of times A holds, in repeated runs of the random experiment”
— the set of possible worlds is called the sample space, S

— Arandom variable A is a function defined over S

A:S > {0,1)

A little formalism

More formally, we have

» asample space S (e.g., set of students in our class)
— aka the set of possible worlds

a random variable is a function defined over the sample
space
— Gender: S > {m, f}
— Height: S > Reals
* an eventis a subset of S

— e.g., the subset of S for which Gender=f

— e.g., the subset of S for which (Gender=m) AND (eyeColor=blue)
+ we’re often interested in probabilities of specific events

+ and of specific events conditioned on other specific events




Visualizing A

Sample space
of all possible

worlds  —_

/
Its area is 1

Worlds in which

Als true

Worlds in which A is False

P(A) = Area of
reddish oval

The Axioms of Probability

0<=P(A) <=1
P(True) =1
P(False) =0

[di Finetti 1931]:

P(A or B) = P(A) + P(B) - P(A and B)

when gambling based on “uncertainty formalism A” you can
be exploited by an opponent

iff

your uncertainty formalism A violates these axioms




Interpreting the axioms

+ 0<=PA)<=1

* P(True)=1

+ P(False)=0

* P(AorB)=P(A)+P(B)-P(AandB)

The area of Acan’t
get any smaller than 0

And a zero area
would mean no
world could ever
have A true

Interpreting the axioms

+ 0<=PA)<=1

* P(True)=1

+ P(False)=0

* P(AorB)=P(A)+P(B)-P(AandB)

- R

The area of Acan’ t
get any bigger than 1

And an area of 1
would mean all
N /| worlds will have A
true




Interpreting the axioms

+ 0<=PA)<=1

* P(True)=1

+ P(False)=0

* P(AorB)=P(A)+P(B)-P(AandB)

Theorems from the Axioms

. 0<=P(A) <=1, P(True) = 1, P(False) = 0
. P(AorB)=P(A) + P(B) - P(A and B)

= P(not A) = P(~A) = 1-P(A)




Theorems from the Axioms

* 0<=P(A)<=1,P(True) =1, P(False) =0
« P(AorB)=P(A)+P(B)-P(Aand B)

> P(not A) = P(~A) = 1-P(A)

P(Aor ~A) = 1 P(Aand ~A) = 0
P(A or ~A) = P(A) + P(~A) - P(A and ~A)

|

1 =P(A) +P(~A) + 0

Elementary Probability in

Pictures
e P(~A) + P(A) = 1

O -




Another useful theorem

* 0<=P(A) <=1, P(True) =1, P(False) = 0,
P(A or B) =P(A) + P(B) - P(A and B)

> P(A)=P(AAB) + P(A*~B)
A= [Aand (B or~B)] = [(Aand B) or (Aand ~B)]

P(A) = P(Aand B) + P(Aand ~B) — P((A and B) and (A and ~B))
P(A) = P(Aand B) + P(Aand ~B) — P(A and B and A and -B)

Elementary Probability in Pictures
« P(A)=P(A*B)+ P(A"~B)




Multivalued Discrete Random
Variables

» Suppose A can take on more than 2 values

* Ais a random variable with arity k if it can take on
exactly one value out of {v,,v,, ... v}

 Thus...

P(A=vl.AA=vj)=Oifi¢j
P(A=v,vA=v,v..vA=vy )=1

Elementary Probability in
Pictures

iP(A=vj)=1

A=2




Definition of Conditional
Probability

P(A* B)
P(A|B) = -----me-

Corollary: The Chain Rule
P(A* B) = P(A|B) P(B)

Conditional Probability in Pictures

picture: P(B|A=2)

A=1




Independent Events
« Definition: two events A and B are
independent if Pr(A and B)=Pr(A)*Pr(B)

* Intuition: knowing A tells us nothing
about the value of B (and vice versa)

Visualizing Probabilities

AAB
Sample space \
of all possible
worlds T m
Its area is 1
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Definition of Conditional Probability

Definition of Conditional Probability

Corollary: The Chain Rule
P(A* B) = P(A|B) P(B)

P(C*A”*B)=P(C|A*B)P(AB) P(B)

11



Independent Events

« Definition: two events A and B are
independent if P(A * B)=P(A)*P(B)

* Intuition: knowing A tells us nothing
about the value of B (and vice versa)

Bayes Rule

* let’s write 2 expressions for P(A * B)

A
A\B

(9
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P(BIA) * P(A) ,
P(A|B) =W Bayes’ rule

we call P(A) the “prior”
Bayes, Thomas (1763) An essay

. towards solving a problem in the doctrine

and P(AlB) the “posterlor” of chances. Philosophical Transactions of

the Royal Society of London, 53:370-418

...by no means merely a curious speculation in the doctrine of chances,
but necessary to be solved in order to a sure foundation for all our
reasonings concerning past facts, and what is likely to be hereafter....
necessary to be considered by any that would give a clear account of the
strength of analogical or inductive reasoning...

Other Forms of Bayes Rule

P(B| A)P(4)
P(B| A)P(A)+ P(B |~ 4)P(~ 4)

P(41B)=

P(B|ANX)P(ANX)
P(BAX)

P(AIBAX)=

13



Applying Bayes Rule

) P(BIA)P(A)
" P(BIAP(A) + P(BI~ A)P(~ A)

P(AB)

A = you have the flu, B = you just coughed

Assume:

P(A) = 0.05
P(BJA) = 0.80
P(B| ~A)=0.2

what is P(flu | cough) = P(A|B)?

what does all this have to do with
function approximation?

14



The Joint Distribution

Example: Boolean
variables A, B, C

Recipe for making a joint

distribution of M variables:

A B (o Prob
0 0 0 0.30
0 0 1 0.05
0 1 0 0.10
0 1 1 0.05
1 0 0 0.05
1 0 1 0.10
1 1 0 0.25
1 1 1 0.10

[A. Moore]

The Joint Distribution

Example: Boolean
variables A, B, C

Recipe for making a joint

distribution of M variables:

1. Make a truth table listing all

combinations of values of

your variables (if there are

M Boolean variables then

A B C Prob
0 0 0 0.30
0 0 1 0.05
0 1 0 0.10
0 1 1 0.05
1 0 0 0.05
1 0 1 0.10
1 1 0 0.25
1 1 1 0.10

the table will have 2V rows).

[A. Moore]

15



The Joint Distribution

Example: Boolean
variables A, B, C

@
(@]

Prob

Recipe for making a joint

0.30

distribution of M variables:

0.05

0.10

0.05

1. Make a truth table listing all

0.05

combinations of values of

0.10

your variables (if there are

HH»—‘HOOOO>

0.25

=|l=|lO|lO|l=|~=|lO| O
=lo|l~|lO|lR|lO|~|O

M Boolean variables then

0.10

the table will have 2Mrows).

2. For each combination of
values, say how probable it
is.

[A. Moore]

The Joint Distribution

Example: Boolean
variables A, B, C

-]
0

Prob

Recipe for making a joint

0.30

distribution of M variables:

0.05

0.10

1. Make a truth table listing all

0.05

combinations of values of

0.05

0.10

your variables (if there are

0.25

M Boolean variables then

HHHHOOOO>

=|l=lOoO|lO|l~=|~|O|O
=lOoO|lRm|lO|lR|O|~=|O

0.10

the table will have 2V rows).
2. For each combination of
values, say how probable it
is.
3. If you subscribe to the
axioms of probability, those
numbers must sum to 1.

[A. Moore]
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0253122 I

0.0245895 ||}

0.0421768 [l

0.0116293 |

0331313 [
0.0971295 [N

0.13410¢ [N

gender hours_worked wealth
" Female v0:40.5- poor
Using the
J H t v1:40.5+ poor
Oln rich
Male v0:40.5- poor
rich
v1:40.5+ poor
rich

0.105933 [N

One you have the JD
you can ask for the

probability of any logical

expression involving
your attribute

P(E) =

E P(row)

rows matching £

[A. Moore]

gender hours_worked wealth

. Female v0:40.5- poor 0253122 [N
USlng the rich  0.0245895 i
J . t v1:40.5+ poor 0.0421768 [l
OI n rich  0.0116293 ||
ale  v0:40.5- oor 0331313
rich  0.0971295 |
v1:40.5+ oor_ 0.134106 JINNNNEN
rich  0.105933 [N

P(Poor Male) = 0.4654

P(E) =

E P(row)

rows matching £

[A. Moore]

17



gender hours_worked wealth

emale v0:40.5- 0.253122

U Sl n g th e rich  0.0245895 i

J O| nt '¢ v1:40.5+ poor _ 0.0421765 il
rich  0.0116293 ||

ale  v0:40.5- 0.331313
rich  0.0971295 I
'd v1:40.5+ oor_ 0.134106

rich  0.105933 [

P(Poor) = 0.7604 P(E)= ) P(row)

rows matching £

[A. Moore]

gender hours_worked wealth

Inference

rich  0.0245895 [}

with the | ol
JO| nt tich  0.0116293 |

ale v0:40.5- oor  0.331313
rich  0.0971295 [
v1:40.5+ poor  0.134106

rich  0.105933 |

z P(row)
P(E |E )= P(E1 A EZ) — rows matching £, and £,
o P(E,) P(row)

rows matching £,

'P(Male | Poor) = 0.4654 / 0.7604 = 0,612

[A. Moore]
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gender hours_worked wealth

Learning and tich  0.0245895 [
the Joint v1:405+ poor 0.0421768 [l

rich  0.0116293 ||

Female v0:40.5- poor 0253122 |G

DiStribution Male  v0:40.5- poor 0331313 [N

rich  0.0971295 [
v1:40.5+ poor 0.134106 [N
rich  0.105933 [

Suppose we want to learn the function f: <G, H> > W

Equivalently, P(W | G, H)

Solution: learn joint distribution from data, calculate P(W | G, H)

e.g., P(W=rich | G = female, H =40.5-) =

[A. Moore]

sounds like the solution to
learning F: X =2,
or P(Y | X).

Are we done?

19



Your first consulting job
" J
m A billionaire from the suburbs of Seattle asks
you a question:

He says: | have thumbtack, if | flip it, what's the
probability it will fall with the nail up?

You say: Please flip it a few times:

~ LR L oL

You say: The probability is:
He says: Why???
You say: Because...
[C. Guestrin]

Thumbtack — Binomial Distribution
= B
m P(Heads) =0, P(Tails) =1-06

TNV GNP
Koo, R Xy K

Flips produce data set D with ay heads and aq tails

e Flips are independent, identically distributed 1’s and 0’s (Bernoulli)

e ay and a7 are counts that sum these outcomes (Binomial)

P(D|6) = P(ag, ar|d) = 6°% (1 — §)°r

[C. Guestrin]
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Maximum Likelihood Estimation
" JEE

m Data: Observed set D of ay Heads and a5 Tails

m Hypothesis: Binomial distribution

m Learning 0 is an optimization problem
What's the objective function?

m MLE: Choose 6 that maximizes the probability of
observed data:

A~

0 = arg meax P(D|0)
= arg rngax In P(D | 0)

[C. Guestrin]

Maximum Likelihood Estimate for O
" B
6 = arg moax In P(D | 0)

= argm@ax In 1 (1 — 0)T

m Set derivative to zero: |4 InP(D|0) =0

[C. Guestrin]
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| — m Set derivative to zero:
0 = arg méax In P(D | 0)

= arg meax Ing*H(1 — 6)°T

P9 =0

do

[C. Guestrin]
How many flips do | need?
" S
0 _ A"
MLE ag + ar
[C. Guestrin]
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Bayesian Learning
"= JE

m Use Bayes rule:

po| Dy = PPIOPO)

P(D)

m Or equivalently:
PO |D) «x P(D|0O)P(0)

[C. Guestrin]

Beta prior distribution — P(6)

9.’3;{—1(1 . 9)!3’]“—1

— ( 4
P(0) = BGn. 5 ~ Beta(By., Br)
B, Br)

Batal2,2) Batal3,2) 8 Beta(30,.20)
% %, 5
3 3 Lk
3 3 g

0
0 D4 0e 08 n:u 0.2 0 0e 08 v 0 D -
aramelnr valos paramelnr valos parametnr valos

[C. Guestrin]
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Beta prior distribution — P(8)
08n—1(1 — g)Pr—1
BBy, Br)

P(0) = ~ Beta(By, Br)

m Likelihood function: P(D|60) = 6“H(1 —6)°T
m Posterior: P (0 | D) x P(D | 0)P(0)

[C. Guestrin]

Posterior distribution
"

m Prior: Beta(By, 87)

m Data: ay heads and a tails

m Posterior distribution:

P(8 | D) ~ Beta(By + oy, br + o)

.............

[C. Guestrin]
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Bota(30.20)

MAP for Beta distribution

" JEE

9,3[1"‘&11—1(1 _ 0)31,+a1__1
BB + am, fr + ar)

rameter valve

~ Beta(By—+ay, Brtar)

P(0| D)=

m MAP: use most likely parameter:

6 = arg meaxP(Q | D) =

m Beta prior equivalent to extra thumbtack flips
m As N — oo, prior is “forgotten”
m But, for small sample size, prior is important! [C. Guestrin]

Conjugate priors
* P(0) and P(6|D) have the same form
Eg. 1 Coin flip problem

Likelihood is ~ Binomial

P(D|0) =0"H(1—0)T

If prior is Beta distribution,
68n—1(1 — g)Pr-1

B(By, Br)

Then posterior is Beta distribution
P(0|D) ~ Beta(By + ap, Br + ar)

P(0) = ~ Beta(By, Br)

For Binomial, conjugate prior is Beta distribution.
[A. Singh]
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Conjugate priors
* P(6)and P(0|D) have the same form
Eg. 2 Dice roll problem (6 outcomes instead of 2)
Likelihood is ~ Multinomial(0 = {0,, 0,, ..., 0,})
P(D|0) =6071052...0,"
If prior is Dirichlet distribution,
[Mh, 0"
B(Bl)" . ,/Bk‘)

Then posterior is Dirichlet distribution

P(0|D) ~ Dirichlet(81 + a1, ..., B + ax)

P(0) = ~ Dirichlet(s31,...,8)

For Multinomial, conjugate prior is Dirichlet distribution.
[A. Singh]

Estimating Parameters

* Maximum Likelihood Estimate (MLE): choose
6 that maximizes probability of observed data D

~

0 = arg meax P(D|#)

* Maximum a Posteriori (MAP) estimate:
choose 0 that is most probable given prior
probability and the data

0 = arg m@ax P(6 | D)
P(D|0)P(0)
P(D)

= arg mgx




Lejeune Dirichlet

Dirichlet distribution

* number of heads in N flips of a two-sided coin
— follows a binomial distribution
— Beta is a good prior (conjugate prior for binomial)

Johann Peter Gustav Lejeune Dirichlet

. . . Born 13 February 1805
+ what it's not two-sided, but k-sided? Duren Frscherove
Died 5 May 1859 (aged 54)
— follows a multinomial distribution Aosdence e e
— Dirichlet distribution is the conjugate prior natonalty P
Institutions University of Berlin
University of Breslau
University of Géttingen
1 K Alma mater University of Bonn
P 9 0 9 9 Q) — Doctoral advisor Simeon Poisson
rE— Joseph Fourier
( 1 ’ 2 ’e K B H Doctoral students Ferdinand Eisenstein
Leopold Kronecker
i Rudolf Lipschitz

Carl Wilhelm Borchardt

Known for Dirichlet function
Dirichlet eta function

You should know

* Probability basics

random variables, events, sample space, conditional probs, ...
independence of random variables

Bayes rule

Joint probability distributions

calculating probabilities from the joint distribution
» Estimating parameters from data

maximum likelihood estimates (MLE)

maximum a posteriori estimates (MAP)
distributions — binomial, Beta, Dirichlet, ...
conjugate priors




Extra slides

Expected values

Given discrete random variable X, the expected value of
X, written E[X] is

E[X]=) zP(X =z)

TeX

We also can talk about the expected value of functions
of X

E[f(X)]=)_ f(@)P(X =)

TeEX

28



Covariance

Given two discrete r.v.’s X and Y, we define the
covariance of X and Y as

Cov(X,Y)=E[X — EX))(Y — E(Y))]

e.g., X=gender, Y=playsFootball
or X=gender, Y=leftHanded

Remember: E[X]| = ZmP(X =x)
reX

Example: Bernoulli model

Data:
e We observed Niid coin tossing: 0={1,0, 1, ..., 0}

Representation:
Binary r.v: x ={0.1}
Model: Py 176 orx=0 .
x)= = )=60"(1-6)""
0 forx=1 P(x)=6"1-06)
How to write the likelihood of a single observation x;?

P(x,)=6%(1-6)"

The likelihood of datasetD={x,, ..., x\}:

N N \ V‘\‘ %17.\
P(xy. %ty |0) = [ [ P(x, 10) =] (0¥ A-0)"") =6= (1-0)7  =o"=1-0)**
i=1 i=1

29



