Machine Learning 10-601

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

September 20, 2011

Today:

- Probability
- Bayes Rule
- Estimating parameters
- maximum likelihood
- max a posteriori
many of these slides are derived from William Cohen, Andrew Moore, Aarti Singh, Eric Xing, Carlos Guestrin. - Thanks!

Readings:
Probability review

- Bishop Ch. 1 thru 1.2.3
- Bishop, Ch. 2 thru 2.2
- Andrew Moore's online tutorial

Probability Overview

- Events
- discrete random variables, continuous random variables, compound events
- Axioms of probability
- What defines a reasonable theory of uncertainty
- Independent events
- Conditional probabilities
- Bayes rule and beliefs
- Joint probability distribution
- Expectations
- Independence, Conditional independence

Random Variables

- Informally, A is a random variable if
- A denotes something about which we are uncertain
- perhaps the outcome of a randomized experiment
- Examples

A = True if a randomly drawn person from our class is female
$A=$ The hometown of a randomly drawn person from our class
A = True if two randomly drawn persons from our class have same birthday

- Define $P(A)$ as "the fraction of possible worlds in which A is true" or "the fraction of times A holds, in repeated runs of the random experiment"
- the set of possible worlds is called the sample space, S
- A random variable A is a function defined over S

$$
A: S \rightarrow\{0,1\}
$$

A little formalism

More formally, we have

- a sample space S (e.g., set of students in our class)
- aka the set of possible worlds
- a random variable is a function defined over the sample space
- Gender: $\mathrm{S} \rightarrow$ \{ m, f \}
- Height: $S \rightarrow$ Reals
- an event is a subset of S
- e.g., the subset of S for which Gender=f
- e.g., the subset of S for which (Gender=m) AND (eyeColor=blue)
- we're often interested in probabilities of specific events
- and of specific events conditioned on other specific events

Visualizing A

Sample space of all possible
worlds

$P(A)=$ Area of reddish oval

Its area is 1

The Axioms of Probability

- $0<=P(A)<=1$
- $P($ True $)=1$
- $P($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
[di Finetti 1931]:
when gambling based on "uncertainty formalism A" you can be exploited by an opponent
iff
your uncertainty formalism A violates these axioms

Interpreting the axioms

- $0<=P(A)<=1$
- $P($ True $)=1$
- $\mathrm{P}($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

The area of A can't get any smaller than 0

And a zero area would mean no world could ever have A true

Interpreting the axioms

- $0<=P(A)<=1$
- $P($ True $)=1$
- $\mathrm{P}($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

The area of A can't get any bigger than 1

And an area of 1 would mean all worlds will have A true

Interpreting the axioms

- $0<=P(A)<=1$
- $P($ True $)=1$
- $P($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Theorems from the Axioms

- $0<=P(A)<=1, P($ True $)=1, P($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

$$
\rightarrow P(\operatorname{not} A)=P(\sim A)=1-P(A)
$$

Theorems from the Axioms

- $0<=P(A)<=1, P($ True $)=1, P($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

$$
\rightarrow P(\operatorname{not} A)=P(\sim A)=1-P(A)
$$

$$
\begin{aligned}
P(A \text { or } \sim A) & =1 \quad P(A \text { and } \sim A)=0 \\
P(A \text { or } \sim A) & =P(A)+P(\sim A)-P(A \text { and } \sim A) \\
\square & \\
1 & =P(A)+P(\sim A)+0
\end{aligned}
$$

Elementary Probability in Pictures

- $P(\sim A)+P(A)=1$

Another useful theorem

- $0<=P(A)<=1, P($ True $)=1, P($ False $)=0$, $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

$$
\rightarrow P(A)=P\left(A^{\wedge} B\right)+P\left(A^{\wedge} \sim B\right)
$$

$A=[A$ and $(B$ or $\sim B)]=[(A$ and $B)$ or $(A$ and $\sim B)]$
$P(A)=P(A$ and $B)+P(A$ and $\sim B)-P((A$ and $B)$ and $(A$ and $\sim B))$
$P(A)=P(A$ and $B)+P(A$ and $\sim B)-P(A$ and B and A and $-B)$

Elementary Probability in Pictures

- $P(A)=P\left(A^{\wedge} B\right)+P\left(A^{\wedge} \sim B\right)$

Multivalued Discrete Random Variables

- Suppose A can take on more than 2 values
- A is a random variable with arity k if it can take on exactly one value out of $\left\{v_{1}, v_{2}, \ldots v_{k}\right\}$
- Thus...

$$
\begin{gathered}
P\left(A=v_{i} \wedge A=v_{j}\right)=0 \text { if } i \neq j \\
P\left(A=v_{1} \vee A=v_{2} \vee \ldots \vee A=v_{k}\right)=1
\end{gathered}
$$

Elementary Probability in Pictures

$$
\sum_{j=1}^{k} P\left(A=v_{j}\right)=1
$$

Definition of Conditional

 Probability$$
P(A \mid B)=\frac{P\left(A^{\wedge} B\right)}{P(B)}
$$

Corollary: The Chain Rule

$$
P\left(A^{\wedge} B\right)=P(A \mid B) P(B)
$$

Conditional Probability in Pictures

picture: $P(B \mid A=2)$

Independent Events

- Definition: two events A and B are independent if $\operatorname{Pr}(\mathrm{A}$ and B$)=\operatorname{Pr}(\mathrm{A})^{*} \operatorname{Pr}(\mathrm{~B})$
- Intuition: knowing A tells us nothing about the value of B (and vice versa)

Visualizing Probabilities

Definition of Conditional Probability

$$
P(A \mid B)=\frac{P\left(A^{\wedge} B\right)}{------}
$$

Definition of Conditional Probability

$$
P(A \mid B)=\frac{P\left(A^{\wedge} B\right)}{P(B)}
$$

Corollary: The Chain Rule

$$
\begin{aligned}
& P\left(A^{\wedge} B\right)=P(A \mid B) P(B) \\
& P\left(C^{\wedge} A^{\wedge} B\right)=P\left(C \mid A^{\wedge} B\right) P(A \mid B) P(B)
\end{aligned}
$$

Independent Events

- Definition: two events A and B are independent if $P\left(A{ }^{\wedge} B\right)=P(A)^{*} P(B)$
- Intuition: knowing A tells us nothing about the value of B (and vice versa)

Bayes Rule

- let's write 2 expressions for $\mathrm{P}\left(\mathrm{A}^{\wedge} \mathrm{B}\right)$

$$
P(A \mid B)=\frac{P(B \mid A) * P(A)}{P(B)} \text { Bayes' rule }
$$

we call $P(A)$ the "prior"
and $P(A \mid B)$ the "posterior"

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53:370-418
...by no means merely a curious speculation in the doctrine of chances, but necessary to be solved in order to a sure foundation for all our reasonings concerning past facts, and what is likely to be hereafter.... necessary to be considered by any that would give a clear account of the strength of analogical or inductive reasoning...

Other Forms of Bayes Rule

$$
\begin{gathered}
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \sim A) P(\sim A)} \\
P(A \mid B \wedge X)=\frac{P(B \mid A \wedge X) P(A \wedge X)}{P(B \wedge X)}
\end{gathered}
$$

Applying Bayes Rule
$P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \sim A) P(\sim A)}$
$A=$ you have the flu, $B=$ you just coughed
Assume:
$P(A)=0.05$
$P(B \mid A)=0.80$
$P(B \mid \sim A)=0.2$
what is $P($ flu \mid cough $)=P(A \mid B)$?

what does all this have to do with function approximation?

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

A	B	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

[A. Moore]

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^{M} rows).

A	B	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

[A. Moore]

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^{M} rows).
2. For each combination of values, say how probable it is.

A	B	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

[A. Moore]

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^{M} rows).
2. For each combination of values, say how probable it is.
3. If you subscribe to the axioms of probability, those

A	B	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

[A. Moore]

Using the Joint

gender hours_worked wealth			
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

One you have the JD you can ask for the

$$
P(E)=\sum_{\text {rows matching } E} P(\text { row })
$$ probability of any logical expression involving your attribute

[A. Moore]
(
$P($ Male \mid Poor $)=0.4654 / 0.7604=0.612$

Suppose we want to learn the function $\mathrm{f}:\langle\mathrm{G}, \mathrm{H}>\rightarrow \mathrm{W}$
Equivalently, P(W|G, H)
Solution: learn joint distribution from data, calculate P(W | G, H)
e.g., $P(W=$ rich $\mid G=$ female, $H=40.5-)=$

sounds like the solution to learning $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$, or $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$.

Are we done?

Your first consulting job

- A billionaire from the suburbs of Seattle asks you a question:
\square He says: I have thumbtack, if I flip it, what's the probability it will fall with the nail up?You say: Please flip it a few times:
You say: The probability is:
\square He says: Why???You say: Because...

Thumbtack - Binomial Distribution

- $P($ Heads $)=\theta, P($ Tails $)=1-\theta$

Flips produce data set D with α_{H} heads and α_{T} tails

- Flips are independent, identically distributed 1's and 0's (Bernoulli)
- α_{H} and α_{T} are counts that sum these outcomes (Binomial)

$$
P(D \mid \theta)=P\left(\alpha_{H}, \alpha_{T} \mid \theta\right)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
$$

Maximum Likelihood Estimation

- Data: Observed set D of α_{H} Heads and α_{T} Tails
- Hypothesis: Binomial distribution
- Learning θ is an optimization problem
\square What's the objective function?
- MLE: Choose θ that maximizes the probability of observed data:

$$
\begin{aligned}
\hat{\theta} & =\arg \max _{\theta} P(\mathcal{D} \mid \theta) \\
& =\arg \max _{\theta} \ln P(\mathcal{D} \mid \theta)
\end{aligned}
$$

- Set derivative to zero: $\quad \frac{d}{d \theta} \ln P(\mathcal{D} \mid \theta)=0$

How many flips do I need?

$\widehat{\theta}_{M L E}=\frac{\alpha_{H}}{\alpha_{H}+\alpha_{T}}$

Bayesian Learning

■ Use Bayes rule:

$$
P(\theta \mid \mathcal{D})=\frac{P(\mathcal{D} \mid \theta) P(\theta)}{P(\mathcal{D})}
$$

- Or equivalently:

$$
P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)
$$

Beta prior distribution - $\mathrm{P}(\theta)$

$$
P(\theta)=\frac{\theta^{\beta_{H}-1}(1-\theta)^{\beta_{T}-1}}{B\left(\beta_{H}, \beta_{T}\right)} \sim \operatorname{Beta}\left(\beta_{H}, \beta_{T}\right)
$$

■ Likelihood function: $\quad P(\mathcal{D} \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}$

- Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$

Posterior distribution

- Prior: $\operatorname{Beta}\left(\beta_{H}, \beta_{T}\right)$
- Data: α_{H} heads and α_{T} tails
- Posterior distribution:
$P(\theta \mid \mathcal{D}) \sim \operatorname{Beta}\left(\beta_{H}+\alpha_{H}, \beta_{T}+\alpha_{T}\right)$

Beta (1.1)

[C. Guestrin]

■ MAP: use most likely parameter:
$\widehat{\theta}=\arg \max _{\theta} P(\theta \mid \mathcal{D})=$

- Beta prior equivalent to extra thumbtack flips
- As $N \rightarrow \infty$, prior is "forgotten"
- But, for small sample size, prior is important!

Conjugate priors

- $P(\theta)$ and $P(\theta \mid D)$ have the same form

Eg. 1 Coin flip problem
Likelihood is ~ Binomial

$$
P(\mathcal{D} \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
$$

If prior is Beta distribution,

$$
P(\theta)=\frac{\theta^{\beta_{H}-1}(1-\theta)^{\beta_{T}-1}}{B\left(\beta_{H}, \beta_{T}\right)} \sim \operatorname{Beta}\left(\beta_{H}, \beta_{T}\right)
$$

Then posterior is Beta distribution

$$
P(\theta \mid D) \sim \operatorname{Beta}\left(\beta_{H}+\alpha_{H}, \beta_{T}+\alpha_{T}\right)
$$

For Binomial, conjugate prior is Beta distribution.

Conjugate priors

- $P(\theta)$ and $P(\theta \mid D)$ have the same form

Eg. 2 Dice roll problem (6 outcomes instead of 2)
Likelihood is $\sim \operatorname{Multinomial}\left(\theta=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{\mathrm{k}}\right\}\right)$

$$
P(\mathcal{D} \mid \theta)=\theta_{1}^{\alpha_{1}} \theta_{2}^{\alpha_{2}} \ldots \theta_{k}^{\alpha_{k}}
$$

If prior is Dirichlet distribution,

$$
P(\theta)=\frac{\prod_{i=1}^{k} \theta_{i}^{\beta_{i}-1}}{B\left(\beta_{1}, \ldots, \beta_{k}\right)} \sim \operatorname{Dirichlet}\left(\beta_{1}, \ldots, \beta_{k}\right)
$$

Then posterior is Dirichlet distribution

$$
P(\theta \mid D) \sim \operatorname{Dirichlet}\left(\beta_{1}+\alpha_{1}, \ldots, \beta_{k}+\alpha_{k}\right)
$$

For Multinomial, conjugate prior is Dirichlet distribution.

Estimating Parameters

- Maximum Likelihood Estimate (MLE): choose θ that maximizes probability of observed data \mathcal{D}

$$
\hat{\theta}=\arg \max _{\theta} P(\mathcal{D} \mid \theta)
$$

- Maximum a Posteriori (MAP) estimate: choose θ that is most probable given prior probability and the data

$$
\begin{aligned}
\hat{\theta} & =\arg \max _{\theta} P(\theta \mid \mathcal{D}) \\
& =\arg \max _{\theta}=\frac{P(\mathcal{D} \mid \theta) P(\theta)}{P(\mathcal{D})}
\end{aligned}
$$

Dirichlet distribution

- number of heads in N flips of a two-sided coin
- follows a binomial distribution
- Beta is a good prior (conjugate prior for binomial)
- what it's not two-sided, but k-sided?
- follows a multinomial distribution
- Dirichlet distribution is the conjugate prior

$$
P\left(\theta_{1}, \theta_{2}, \ldots \theta_{K}\right)=\frac{1}{B(\alpha)} \prod_{i}^{K} \theta_{i}^{\left(\alpha_{1}-1\right)}
$$

You should know

- Probability basics
- random variables, events, sample space, conditional probs, ...
- independence of random variables
- Bayes rule
- Joint probability distributions
- calculating probabilities from the joint distribution
- Estimating parameters from data
- maximum likelihood estimates (MLE)
- maximum a posteriori estimates (MAP)
- distributions - binomial, Beta, Dirichlet, ...
- conjugate priors

Extra slides

Expected values

Given discrete random variable X, the expected value of X, written $E[X]$ is

$$
E[X]=\sum_{x \in \mathcal{X}} x P(X=x)
$$

We also can talk about the expected value of functions of X

$$
E[f(X)]=\sum_{x \in \mathcal{X}} f(x) P(X=x)
$$

Covariance

Given two discrete r.v.'s X and Y, we define the covariance of X and Y as

$$
\operatorname{Cov}(X, Y)=E[(X-E(X))(Y-E(Y))]
$$

e.g., $X=$ gender, $Y=$ playsFootball or $X=$ gender, $Y=$ leftHanded

Remember: $E[X]=\sum_{x \in \mathcal{X}} x P(X=x)$

Example: Bernoulli model

- Data:
- We observed N iid coin tossing: $D=\{1,0,1, \ldots, 0\}$
- Representation:

Binary r.v:

$$
x_{n}=\{0,1\}
$$

- Model:

$$
P(x)=\left\{\begin{array}{ll}
1-\theta & \text { for } x=0 \\
\theta & \text { for } x=1
\end{array} \quad \Rightarrow \quad P(x)=\theta^{x}(1-\theta)^{1-x}\right.
$$

- How to write the likelihood of a single observation x_{i} ?

$$
P\left(x_{i}\right)=\theta^{x_{i}}(1-\theta)^{1-x_{i}}
$$

- The likelihood of dataset $D=\left\{x_{1}, \ldots, x_{N}\right\}$:

$$
P\left(x_{1}, x_{2}, \ldots, x_{N} \mid \theta\right)=\prod_{i=1}^{N} P\left(x_{i} \mid \theta\right)=\prod_{i=1}^{N}\left(\theta^{x_{i}}(1-\theta)^{1-x_{i}}\right)=\theta^{\sum_{i-1}^{N} x_{i}}(1-\theta)^{\sum_{i-1}^{N} 1-x_{i}}=\theta^{\# \text { head }}(1-\theta)^{\# \text { tails }}
$$

