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Abstract—The article deals with the analysis and interpretation of dynamic scenes typical of urban 
driving. The key objective is to assess risks of collision for the ego-vehicle. We describe our concept 
and methods, which we have integrated and tested on our experimental platform on a Lexus car and 
a driving simulator. The on-board sensors deliver visual, telemetric and inertial data for environ-
ment monitoring. The sensor fusion uses our Bayesian Occupancy Filter for a spatio-temporal grid 
representation of the traffic scene. The underlying probabilistic approach is capable of dealing with 
uncertainties when modeling the environment as well as detecting and tracking dynamic objects. 
The collision risks are estimated as stochastic variables and are predicted for a short period ahead 
with the use of Hidden Markov Models and Gaussian processes. The software implementation takes 
advantage of our methods, which allow for parallel computation. Our tests have proven the relevance 
and feasibility of our approach for improving the safety of car driving.
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I. Introduction

A. Automotive and Technological Context

D
riving a car assumes some level of risk of collision in any traffic scenario. The 
modern technologies help mitigate the effects of accidents (e.g. seat belts, airbags, 
safety glass, energy absorbing frames) or reduce their likelihood (e.g. anti-lock 
braking system, dynamic stability control). Concurrently, the exploitation of the 

synergies between mechatronics, drive-by-wire, perception, real-time data processing 
and communication facilitates the risk management by traffic participants toward zero-
collision driving. The key problem is to correctly interpret the traffic scene by means of 
processing information from a variety of sensors. 

Improvement of driving safety remains a highly relevant topic, with significant accom-
plishments being reported, from obstacle detection and driver warning to active response 
leading to modifying the driving parameters when a collision becomes imminent. Auto-
mated maneuvering represents a strong advantage over manual driving since it reduces 
the required reaction time (in comparison to a human driver) to avoid collisions or mitigate 
their impact. Various successful automated maneuvers were reported, using world-first 
prototypes such as: an automated platooning system in the scope of the PATH Program 
[1], or the automated parking systems at INRIA [2, 3]. Recent promising results in more 
complex scenarios are the CityCars concept [4], the DARPA Urban Challenge [5, 6], or the 
Google Cars [7]. 

Another approach to reduce driving accidents is to assist the driver in avoiding colli-
sions, e.g. a parking assistance by producing audible alarms to the human driver while 
the car approaches obstacles [8]. More advanced systems anticipate the car motion on the 
parking lot and display the situation to the driver during a human-driven parking [9]. 
Such warning signals along with the modification of velocity and steering angle during 
the maneuvers assist the driver to smoothly perform the maneuver while avoiding colli-
sions. Other devices allow for alerting the driver when drifting out of the traffic lane, or 
provide an adaptive cruise control function [10]. 

Assessing the risks of collision in real driving situations is a challenging problem. At 
present, the common measure of collision risk is time-to-collision (TTC) [11]. It is cal-
culated by assuming all objects being detected, their positions being computed and their 
velocities remaining constant relative to the ego-vehicle. For a time horizon within a 
second on a straight road, the TTC is used effectively in accident mitigation systems (e.g. 
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 pretension of seat belts) just before impact. However, it 
becomes less efficient for the time horizon of a few seconds. 
Fig. 1 illustrates its limitation as the sole estimate of risk. 
If all of the cars are stopped at the intersection, as shown 
in Fig. 1-a, the TTC is calculated as infinite. Thus, a case of 
relatively high-risk (many accidents occur in intersections) 
is estimated as very low-risk, i.e. this is a false negative. The 
situation on a curved road in Fig. 1-b gives an example of 
the TTC calculated as very low, implying a very high risk. 
But because the most likely result is the both cars moving 
in their lanes, this case is a false positive, i.e. reporting very 
high risk when in fact the risk is relatively low. 

The above scenarios indicate that TTC alone is insuf-
ficient as a risk indicator for managing complex situations. 
The road context (road shape, speed limit, intersection 
layout, etc.) can add relevant information. Predicting the 
future actions (behaviors) of other traffic participants, like 
a car or a pedestrian in Fig. 1-a, can further improve esti-
mation of collision risk. Since these future behaviors can 
never be known exactly in advance, their probabilistic pre-
diction is required [12]. 

B. State of the Art
Much research has focused on directly modeling and 
detecting objects in the scene and various approaches 
have been proposed, depending on the sensor involved: 
telemeter like radar [13] or laser scanner [14], cooperative 
detection systems [15], or vision systems. Most monocular 
vision approaches suppose recognition of specific objects, 
like vehicles or pedestrians, using a model which is gener-
ally built through statistical learning [16]. Stereo-vision is 
particularly suitable for generic obstacle detection [17, 18] 
and object classification [19], because it provides a three-
dimensional representation of the road scene. 

The computational complexity has been a critical 
feature of stereo-vision, but recent algorithms, like 
[20], as well as progress in Graphics Processing Unit 
(GPU) computing [21] now allow for processing of ste-
reo images in real time. Advanced approaches combine 
stereo-vision and movement to make perception more 
robust [22]. It should also be noted that most of the suc-
cessful vehicles in the DARPA Urban Challenge used a 
three-dimensional laser scanner Velodyne to assist in 
finding obstacles [23]. 

Many approaches rely on sensor fusion to attain suf-
ficient reliability for automotive applications, with some 
methods being designed for particular sensors [24, 25], or 
offering a generic framework [26]. Most of them are at the 
object level and must therefore deal with the difficult task 
of data association. Rather than start with obstacle models, 
various approaches take advantage of a grid representation 
of the scene [27, 28, 29]. In order to work efficiently with 
occupancy grids, we have previously developed a proba-
bilistic framework with the Bayesian Occupancy Filter 
(BOF) [30, 31, 32], which provides filtering, data fusion, 
and velocity estimation capabilities while allowing for 
parallel computation. The Fast Clustering and Tracking 
Algorithm (FCTA) [33] is then used to identify and track 
individual objects. The BOF is designed with the intent of 
its implementation in hardware as a system-on-chip. Like 
other grid based approaches, the BOF framework performs 
sensor fusion at the cell level [30]. 

Collision risk assessment employs the information from 
sensor fusion and uses models in order to estimate poten-
tial threats [34, 35, 36]. The information about the road 
geometry and the communication between the vehicles 
and with the infrastructure provide to improve risk assess-
ment [37, 38]. In addition to the knowledge about an object 
detected at a certain location at a specific time in the traffic 
scene, the prediction of its likely future behavior leads to 
more adequate interpretation of its possible impact on the 
ego-vehicle [12, 39, 40, 41]. 

C. Problem Statement and Approach
This article focuses on the probabilistic modeling and 
analysis of dynamic traffic scenes by means of sensor data 

FIG 1 Limitation of TTC as a risk measure: (a) under-estimation of 
collision risk at intersection with stopped cars, (b) over-estimation of 
collision risk on a curved road.

Collision Expected Due to TTCCollision Expected Due to TTC

(a)

(b)
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fusion from on-board sensors and continuous assessment of 
collision risk [42]. Among the relevant sensors for monitor-
ing the local environment, we use stereo-vision and lidars, 
mounted on-board of the ego-vehicle [43]. The environment 
is represented by a grid, and the fusion of sensor data is 
accomplished by means of the BOF [30, 31]. The BOF evalu-
ates probabilities of both cell occupancy and cell velocity for 
each cell in a four-dimensional spatio-temporal grid. The 
monitoring of traffic scenes includes detection and tracking 
of objects by the FCTA [33]. The collision risks are consid-
ered as stochastic variables. Hidden Markov Model (HMM) 
and Gaussian process (GP) are used to estimate and predict 
collision risks and the likely behaviors of multiple dynamic 
agents in road scenes. 

The main contribution of this article is to present two 
main components of our conceptual framework: traffic 
scene modeling and collision risk assessment for the ego-
vehicle. To deal with uncertainties (e.g. possible noise on 
sensor data) and with the complexity of road scenes, these 
functionalities have been developed in our probabilis-
tic framework ProBT©. The corresponding methods are 
implemented into the software that runs on our experi-
mental platform on a Lexus car and Toyota’s driving simu-
lator allowing for damage-free collision situations. 

The article is organized as follow: Section II describes 
our approach to model and monitor the dynamic traffic 
environment, Section III explains the approach to collision 
risk assessment, Section IV discusses our experimental 
results and Section V lists conclusions and indicates our 
ongoing work. 

II. Online Traffic Scene Modeling and Monitoring
An overview of our environment-modeling module is 
shown in Fig. 2. The inputs to this module are sensor data. 
The combined use of two lidars and stereo-vision helps 
mitigate uncertainty and allows for detection of partially 
occluded objects. The output of the module is an estima-
tion of the position, velocity and associated uncertainty of 
each observed object, which are used as input to the risk 
assessment module. 

A. Occupancy Grid from Lidar
An occupancy grid from lidar data is constructed using 
a beam-based probabilistic sensor model, similar to that 
described in [28], where each beam in a lidar detection frame 
is considered as independent from the other beams. Static 
and dynamic entities of the environment are separated, by 
using a local-SLAM based algorithm. Let m denote the map, 
Z0:t 5 1z0, c , zt 2  be the sensor observations, where zi is the 
frame of observation at time step i, U1:t 5 1u1, c , ut 2  denote 
the odometer data and X0:t 5 1x0, c , xt 2  be the vehicle 
states. The objective of a full sequential SLAM algorithm is to 
estimate the posterior P 1m, xt | Z0:t, U1:t, x0 2 . Since we build a 
map of a local area, which moves with the ego-vehicle, we 
are not concerned with the precision of the vehicle’s global 
states. Therefore, we use a maximum likelihood localization 
and apply a log-odds filtering scheme to update the map. The 
maximum likelihood state can be estimated for the localiza-
tion step as: 

 xt 5 argmax
x rt

 P 1zt | m, x rt 2  P 1x rt | xt21, ut 2 , (1)

Sensor 1

Sensor 2

Sensor S

Occupancy Grid

Occupancy Grid

Occupancy Grid

.

.

.
.
.
.

Bayesian
Occupancy
Filter (BoF)

Fast
Clustering

and Tracking
Algorithm
(FCTA)

N Objects

Probabilistic Modeling of the Scene

FIG 2 Architecture of the environment modeling module.
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where x rt  denotes a state sample at time t. Then, based 
on the new state of the vehicle, the occupancy map is 
updated. Let 

 l 1mi | X0:t, Z0:t 2 5 log
P 1mi | X0:t, Z0:t 2

P 1 mi | X0:t, Z0:t 2  (2)

denote the log-odds value of a cell mi in m. The update for-
mula can be written as: 

 l 1mi | X0:t, Z0:t 2 5 l 1mi | xt, zt 2 2 l 1mi 2 1 l 1mi | X0:t21, Z0:t21 2 , 
 (3)

where l 1mi 2  is the prior value, and l 1mi | xt, zt 2  is obtained 
from the beam-based inverse sensor model. 

Given the occupancy grid map and the current state of 
the vehicle, the laser impacts generated from stationary 
objects or moving objects can be discriminated. For this 
purpose, clusters are created from connected regions of 
the grid, and clusters with a high average occupancy prob-
ability are classified as static. Additionally, while using a 
multi-layer laser scanner, only cells containing multiple 
laser impacts are considered as occupied. This intends to 
remove laser hits on the road surface. 

B. Occupancy Grids from Stereo-Vision
Our stereoscopic sensor is equipped with two cameras in 
a “rectified” geometrical configuration, where the image 
planes are assumed to be perfectly parallel and aligned. 

To compute the disparity map, we use a double correlation 
framework, which exploits different matching hypotheses for 
vertical and horizontal objects [44, 45]. Horizontal hypoth-
eses are generated by applying an homography to the right 
image of the pair, according to the road surface. This method 
provides an immediate classification of pixels during the 
matching process, resulting in two disparity images contain-
ing disparity pixels from obstacles and the road surface. 

The u-Disparity Representation
The u-disparity (similar to v-disparity [17]) is computed by 
projecting the disparity map along the columns with accu-
mulation, see an example in Fig. 3. If the disparity map pro-
vides a representation of the scene in the disparity space, 
then the u-disparity representation is equivalent to a bird-
eye view in this space, as illustrated in Fig. 3-b. Vertical 
objects appear as portions of lines in this image, e.g. the rear 
of the vehicle. 

Working in the u-disparity plane has three main advan-
tages. First, it allows us to make use of equally-spaced mea-
surement points, with constant pixel-wise uncertainty. By 
contrast, moving to a Cartesian space before processing 
the data would give a varying density of measurements. 
Second, the u-disparity calculation is computationally effi-
cient and allows for highly parallel processing. Third, it 
allows for optical directions to be seen as parallel during 
the calculation. In fact, a set of rays belonging to the same 
vertical plane is represented by a column in the u-dispar-
ity image. Consequently, it allows us to consider the visible 
and occluded portions of the image directly, similar to the 
common approaches used for range finders. 

Occupancy Grid in u-Disparity
To benefit from the above advantages of the u-disparity repre-
sentation, we compute the occupancy grid in the u- disparity 
plane. This type of approach has been studied in [46], but our 
approach is novel in providing a probabilistic management 
of the visible and occluded areas of the scene and in using 
the information given by the road/obstacle pixel classifica-
tion. Here we give an overview of the approach, while its 
detailed description can be found in [47]. 

Let us denote a detection plane in Cartesian coordi-
nates as p, which is the support of the grid. p is chosen 
to be parallel to the plane defined by the camera baseline 
and the optical axes. This configuration provides a direct 
invertible transformation between a cell U 5 1u, d 2  in the 
u-disparity plane and a cell X ( p. 

For building the grid, our objective is to obtain a probability 
P 1OU 2  for a cell U  being occupied by an obstacle in the u-dis-
parity plane. This probability depends on the visibility, VU, 
and the confidence of observation, CU, where VU and CU are 
binary random variables (e.g. either it is visible or not). P 1VU 2  
and P 1CU 2  are calculated for a given cell, and the laws of 
 probability are used to obtain the full decomposition of P 1OU 2 : 

FIG 3 Computation of the occupancy grid in the u-disparity plane: (a) left 
image from the stereo camera, (b) obstacle u-disparity image, (c) road 
u-disparity image, (d) occupancy grid in the u-disparity plane.

(a)

(b)

(c)

(d)
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 P 1OU 2 5 a
v,c

 P 1VU 5 v 2  P 1CU 5 c 2  P 1OU | VU 5 v, CU 5 c 2 . (4)

The probability density function P 1OU | VU, CU 2  is ob -
tained from P 1VU 2  and P 1CU 2  and the following bound-
ary  conditions: 

 
P 1OU | VU 5 0, CU 2 5 0.5, 
P 1OU | VU 5 1, CU 5 1 2 5 1 2 PFP, 
P 1OU | VU 5 1, CU 5 0 2 5 PFN,

 (5)

where PFP and PFN are respectively the probability of a false 
positive or a false negative in the matching process. These 
are assumed to be constant and known empirically. Tun-
ing these parameters sets the confidence we have in the 
stereoscopic data. While the range of occupancy values is 
reduced as these parameters increase, the overall solution 
(relative values of one cell compared to another) does not 
change significantly. 

Because of the separation of the disparity image into obsta-
cle and road images, we can further improve the occupancy 
grid by taking into account the road pixels. Call P 1TU 2  the total 
occupancy probability for cell U, considering both road and 
obstacle pixels, and RU the binary random variable meaning 
that cell U  only belongs to the road surface. We begin with the 
logical assertion that the cell is totally occupied if it is occu-
pied by an obstacle and not by the road surface: 

 P 1TU 2 5 P 1OU 2 11 2 P 1RU 2 2 . (6)

To compute P 1RU 2 , we consider both obstacle and road pixels. 
This is because road pixels are often found at the base of 
obstacles, meaning that P 1RU 2 must remain low when P 1OU 2 is high. 
This formulation allows us to be more certain that regions 
of the image where the road can be seen are not occupied. 

The basic application of this algorithm is depicted in 
Fig. 3. The fronts of obstacles result in (mostly) straight black 
lines, as shown in Fig. 3-b. The road u-disparity image (c), 
meanwhile, shows much more detail where there is dense 
information on the road, such as the crosswalk. You can 
see that in the occupancy grid in Fig. 3-d where black color 
represents high probability of occupancy, and white color 
corresponds to very low probability. This grid maintains 
strong information about the obstacles (they remain black 
lines), while a cell is empty (white) in areas where the road 
was detected. Most areas behind obstacles are unknown, 
meaning they are assigned a value of P 1TU 2 5 0.5 and are 
represented by gray color. 

Occupancy Grid in Cartesian Space
The Cartesian occupancy grid requires the calculation of 
those pixels in the u-disparity grid, which affect a given 
cell of the Cartesian grid. Let us define the surface SU 1U 2  
of a cell U  as the region of the u-disparity image delimited 
by the intervals 3 u 2 0.5, u 1 0.5 3  and 3 d 2 0.5, d 1 0.5 3. 

Call SX 1U 2 ( p the image of SU 1U 2  in the detection plane 
p. To compute the occupancy grid, the occupancy prob-
ability of cell U  is simply attributed to the area SX 1U 2  of 
the detection plane. For short distances from the camera, 
several pixels can affect the same cell X ( p of the metric 
grid. The occupancy is estimated according to this set of 
data by using a max estimator, which ensures a conserva-
tive estimation of the occupancy probability: 

 P 1OX 2 5 max 5 P 1OU 2  | X [ SX 1U 2 ( p 6. (7)

The occupancy grid presents strong discretization 
effects, due to the pixel-level sampling and the disparity 
estimation on integer values. In order to obtain a smoother 
and more realistic representation, an image-like filter, 
based on the convolution with a Gaussian kernel, is used. 
We compute a Gaussian kernel for each value in the occu-
pancy grid, considering a constant Gaussian kernel in the 
u-disparity plane. Thanks to the non-constant kernel size, 
details are preserved at short distances, while smoothness 
is added at longer distances. 

C. Bayesian Occupancy Filter (BOF)
The BOF operates with a grid representing the environ-
ment. Each cell of the grid contains a probability distribu-
tion of the cell occupancy and a probability distribution of 
the cell velocity. Given a set of observations, the BOF algo-
rithm updates the estimates of the occupancy and velocity 
for each cell in the grid. As it is shown in Fig. 4, the infer-
ence leads to a Bayesian filtering process. The BOF model 
is described in detail in [30] and [31]. 

In this context, the prediction step propagates cell occu-
pancy and antecedent (velocity) distributions of each cell 
in the grid and obtains the prediction P 1Oc

t Ac
t 2  where P 1Oc

t 2  
denotes the occupancy distribution and P 1Ac

t 2  denotes the 
antecedent (velocity) distribution of a cell c at time t. In the 
estimation step, P 1Oc

t Ac
t 2  is updated by taking into account 

the observations Zi
t, i 5 1, 2, c, S yielded by the sensors at 

time t: q
S
i51

P 1Zi
t | Ac

t  Oc
t 2 , where P 1Zi

t | Ac
t  Oc

t 2  is the model of 
sensor i, in order to obtain the a posteriori state estimate 

Z t

Prediction
P(OcAc)

t t

Estimation
P(OcAc |Z t )t t

P(Z t
 |OcAc )

tt

Bayesian
Filtering

FIG 4 Bayesian filtering in the estimation of occupancy and velocity 
distributions in the BOF grid.
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P 1Oc
t Ac

t  | 3 Z1
t 
c

 ZS
t  4 2 . This allows us to compute by margin-

alization P 1Oc
t | 3Z1

t 
c

 ZS
t 4 2  and P 1Ac

t  | 3Z1
t 
c

 ZS
t 4 2 , which will 

be used for prediction in the next iteration. 

D. Fast Clustering and Tracking Algorithm (FCTA)
The FCTA works at the level of object representation to track 
objects [33] and it can be roughly divided into three mod-
ules: a clustering module, a data association module, and 
a tracking and tracks management module. The clustering 
module takes two inputs: the occupancy/velocity grids esti-
mated by the BOF, and the prediction of the tracker which 
provides a region of interest (ROI) for each object being 
tracked. We then try to extract a cluster in each ROI and 
associate it with the corresponding object. This ROI based 
approach is designed to improve the computational effi-
ciency of the algorithm. 

There could be a variety of cluster extracting algorithms, 
however, we have found that a simple neighborhood-based 
algorithm provides satisfactory result. The eight-neighbor 
cells are connected according to an occupancy threshold 
and additionally a threshold of the Mahalanobis distance 
between the velocity distributions is employed to distin-
guish the objects that are close to each other but move at 
different velocities. 

The output of this clustering module leads to three possible 
cases, as shown in Fig. 5: (a) no observation, where the object 
is not observed in the ROI, (b) ambiguity free, where one and 
only one cluster is extracted and is implicitly associated with 
the given object, and (c) ambiguity, where the extracted clus-
ter is associated with multiple objects. The data association 
module is designed to remove the ambiguity. Let Nk be the 
number of objects associated with a single cluster. The causes 
of the ambiguity are further analyzed as twofold: (a) objects 
are too close to each other and the observed cluster is the 
union of more than one observations generated by Nk differ-
ent real objects, (b) Nk different objects correspond to a  single 
object in the real world and they should be merged into one. 

We employ a re-clustering strategy to the first situation 
and a cluster merging strategy to the second one. The re-
clustering step divides the cluster into Nk sub-clusters and 
associates them with the Nk objects, respectively. Because 
the number Nk is known from the prediction step, we apply 
a K-means based algorithm [48]. The cluster merging step 
is based on a probabilistic approach. Whenever an ambigu-
ous association Fij between two tracks Ti and Tj is observed, 
a random variable Sij is updated to indicate the probability 
of Ti and Tj to be parts of a single object in the real world. 

The probability values P 1Fij | Sij 2  and P 1Fij | Sij 2  are 
parameters of the algorithm which are constant with regard 
to i and j. Similarly, the probability Pt 1Sij | Fij 2  is updated 
when no ambiguity between Ti and Tj is observed. Then, by 
thresholding the probability Pt 1Sij 2 , the decision of merging 
the tracks Ti and Tj can be made by calculating the Maha-
lanobis distance between them. Now we arrive at a set of 
clusters which are associated with the objects being tracked 
without ambiguity. Then, it is straightforward to apply a gen-
eral tracks management algorithm to create and delete the 
tracks, and use a Kalman filter to update their states [49]. 

III. Collision Risk Estimation
Consider vehicle A and the ego-vehicle B traveling in the 
same direction on the adjacent lanes, as shown in Fig. 6. The 
risk of collision has to be estimated for vehicle B. From the 
driver’s viewpoint, the road structure is described implicitly 
by such maneuvers as: move straight, turn left, turn right or 
change a lane, which define a set of possible behaviors. Each 
behavior is represented as a probability distribution over the 
possible future realizations of the vehicle’s paths. 

The GP samples for such behaviors as “lane change” 
and “moving straight” are depicted in Fig. 6, where the 
dotted lines represent the paths sampled from the GPs. The 
set of GPs for each feasible behavior and the probability of 
vehicle A executing a certain behavior, give a probabilistic 
model of the evolution of vehicle A in the scene. In contrast 

Predicted ROI for Object 1 Predicted ROI for Object 1

Predicted ROI for Object 2 Predicted ROI for Object 2

Predicted ROI for Object 1

Cluster 1 Cluster 1

Cluster 2 Cluster 2

Predicted ROI for Object 2

Predicted ROI for Object 1

Cluster 1

Cluster 2

Predicted ROI for Object 1 Predicted ROI for Object 1

Predicted ROI for Object 2

Cluster 1

Cluster 2

(a) (b) (c)

FIG 5 Cases of the clustering result, ROIs are predicted from the previous timestep to speed-up data association: (a) no observation, (b) no ambiguity, 
(c) ambiguous association.
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to the TTC’s linearity assumption about the future paths, 
we evaluate the collision risk of the intended path of vehi-
cle B against all possible paths of vehicle A. The weights 
are assigned according to the probabilistic model of the 
behaviors’ evolution of vehicle A, and the collision risk is a 
weighted sum of the paths leading to a collision. 

An overall architecture of our risk estimation module 
is sketched in Fig. 7. It comprises three sub-modules, such 
as: driving behavior recognition, driving behavior realiza-
tion, and collision risk estimation [12, 50]. 

A. Behavior Recognition and Modeling
The behavior recognition aims at estimating the probability 
for a vehicle to perform one of its feasible behaviors. The 
behaviors are high-level representations of road structure, 
which contain semantics. The probability distribution over 
behaviors is obtained by HMM. Our current model includes 
the following four behaviors: move straight, turn left, turn 
right, and overtake. The algorithm assigns a label and a 
probability measure to sequential data, i.e. observations 
from the sensors. Examples of sensor values are: distance to 
lane borders, signaling light status or a proximity to an inter-
section. The objective is to obtain the probability values over 
behaviors, i.e. the behaviors are hidden variables. 

The behavior modeling contains two hierarchical lay-
ers, and each layer consists of one or more HMMs. The 
upper layer is a single HMM where its hidden states repre-

sent high-level behaviors, such as: move straight, turn left, 
turn right, and overtake. For each hidden state or behavior 
in the upper layer HMM, there is a corresponding HMM in 
the lower layer which represents the sequence of finer state 
transitions of a single behavior, as depicted in Fig. 8. 

Define the following hidden state semantics in the lower 
layer HMMs for each behavior of the higher layer HMM: 

 ■ Move straight (1 hidden state): move forward. 

Proba = 0.3
Intended Path
of Vehicle B

Gaussian Process
(Lane Change)

Gaussian Process (Moving Straight)

Vehicle B
(Risk Estimation for

This Vehicle)

Vehicle A

( g )

Vehicle B
Risk Estimation for

This Vehicle)

Vehicle A

FIG 6 Example of collision risk estimation by predicting the path of vehicle 
A: sampling from the GPs for two possible behaviors “moving straight” 
and “lane change.”

Additional Sensors
(Light Indicators, etc.)

Road Geometry

Object
Tracker

N Objects

N Objects

Probabilistic Evolution of Vehicle’s Motion

Behavior Recognition
Behavior Realization

Ego-Vehicle
Path Collision Risk

Assessment

Estimated Risk Vector

Risk Estimation

FIG 7 Architecture of the risk assessment module.
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 ■ Turn left or turn right (3 hidden states): Decelerate be-
fore a turn, execute a turn, and resume a cruise speed. 

 ■ Overtake (4 hidden states): lane change, accelerate 
(while overtaking a car), lane change to return to the 
original lane, resume a cruise speed. 
In order to infer the behaviors, we maintain a prob-

ability distribution over the behaviors represented by the 
hidden states of the upper layer HMM. The observations 
of cars (i.e. sensor data) interact with the HMM in the 
lower layer and the information is then propagated up to 
the upper layer. In the lower layer, there is a correspond-
ing HMM for each higher level behavior description. Each 
HMM in the lower layer, indexed by h 5 1, c, H, updates 
its current state by: 

 P 1St, h Q1:t 2 ~ P 1Qt | St, h 2 a
St21, h

P 1St21, h 2 P 1St, h | St21, h 2 , (8)

where St, h is the hidden state variable of HMM h at time t, 
Q1:t 5 5Qt, Qt21, c, Q16  and Qt are the observations at time 
t. Then, the observation likelihood for each lower level 
HMM is: 

 Lh 1Q1:t 2 5 a
St, h

P 1St, h Q1:t 2 . (9)

The observation likelihoods Lh 1Q1:t 2  are the “observa-
tions” for the upper layer HMM. The inference of the upper 
level behaviors takes a similar form: 

 P 1Bt | Q1:t 2 5 P 1Q1:t | Bt 2a
Bt21

P 1Bt21 2P 1Bt | Bt21 2  (10)

 5 LBt
1Q1:t 2a

Bt21

P 1Bt21 2P 1Bt | Bt21 2 , (11)

where Bt is the hidden state variable of the upper level HMM 
at time t, and P 1Bt | Bt21 2  is the upper level behavior transi-
tion matrix. In order to distinguish whether the change of 
the high-level behavior occurs after the completion of the 
low-level behavioral sequence, two transition matrices are 
used: Tfinal corresponds to the high-level behavior transition 
when the lower level behavioral sequence is completed, oth-
erwise the transition matrix Tnot2final is used. The upper level 
behavior transition matrix depends on the lower level states: 

 P 1Bt | Bt21 2 5 a
St, Bt 2 1

P 1St, Bt21
2P 1Bt | St, Bt21 Bt21 2 , (12)

where St, Bt21
 is the state at time t of the lower level HMM, cor-

responding to the previous behavior Bt21, and by  definition: 

 P 1Bt | St, Bt21
Bt21 2 5 eTfinal, if St, Bt21 is a final state, 

Tnot2final otherwise.
 (13)

Upper-Layer HMM

Bt−1 Bt Bt+1

Lt−1 Lt Lt+1

Bt+2

Lt+2

Lower-Layer HMMs

HMM Behavior 1

HMM Behavior H

Likelihood Vector Lt
for Each Time Step

L1(Q1:t )

LH(Q1:t )

FIG 8 Layered HMM where each lower layer HMM’s observation likelihood is the upper layer HMM’s observation.
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The probability distributions over high-level behaviors 
P 1Bt |Q1:t 2  are maintained iteratively, and the layered HMM 
is updated according to Algorithm 1. 

B. Driving Behavior Realization
A behavior is an abstract representation of the vehicle 
motion. Driving behavior realization is modeled as GP, i.e. 
a probabilistic representation of the possible evolution of 
the vehicle motion for a given behavior [51]. This model 
allows us to obtain the probability distribution over the 
physical realization of the vehicle motion by assuming a 
usual driving represented by GP, i.e. lane following without 
drifting too far off to the lane sides. On a straight road, this 
is a canonical GP with the mean corresponding to the lane 
middle. 

To deal with variations of lane curvature or such behav-
iors as “turn left” or “turn right”, we propose an adaptation 
procedure, where the canonical GP serves as a basis and it 
is deformed according to the road geometry. The deforma-
tion method is based on the Least Squares Conformal Map 
(LSCM) [52]. Its advantage is a compact and flexible rep-
resentation of the road geometry. The canonical GP can be 
calculated once and then can be reused for different lane 
configurations, thus, resulting in a better computational 
efficiency. An example is shown in Fig. 9 for a curved road. 

C. Estimation of Risk
A complete probabilistic model of the possible future 
motion of the vehicle is given by the probability distribu-
tion over behaviors from driving behavior recognition and 
driving behavior realization. The layered HMM approach 
assigns a probability distribution over behaviors at each 
time instance, and a GP gives the probability distribution 
over the physical realization for each behavior. Because 
the behavioral semantics are propagated from the layered 
HMM down to the physical level, it is now possible to assign 
semantics to risk values. Note that the definition of risk can 
take a variety of forms, depending on how the risk output is 
going to be used. A risk scalar value might be sufficient for 
a crash warning system, or an application might require 
the risk values against each vehicle in the traffic scene. 

The risk calculation is performed by first sampling 
of the paths from the GP. The fraction of the samples in 
collision gives the risk of collision, which corresponds to 
the behavior represented by the GP. A general risk value 
is obtained by marginalizing over behaviors based on the 
probability distribution over behaviors obtained from the 
layered HMM. It is possible to calculate risk of taking a cer-
tain path, a certain behavior, or a general risk value of a 
certain vehicle against another vehicle. The flexibility of 
this estimation is due to HMMs in identifying behaviors 
and the use of GPs for behavior realization, while taking 
into account the road geometry and topology. Intuitively, 
the result of our risk estimation can be explained as “col-

lision risk for a few seconds ahead.” A systematic frame-
work for evaluation of different types of collision risk can 
be found in [12]. 

IV. Experimental Results
The relevance and feasibility of the two main functional-
ities have been evaluated experimentally. For environment 
modeling, early experiments have been performed on real 
urban data obtained with our experimental vehicle. The 
collision risk assessment has been evaluated on a driving 
simulator, and behavior estimation has also been tested 
during a highway driving. 

A. Experimental Setup
Our experimental platform is a Lexus LS600h car shown 
in Fig. 10. The vehicle is equipped with a variety of sensors 
including two IBEO Lux lidars placed toward the edges of 
the front bumper, a TYZX stereo camera situated behind the 
windshield, and an Xsens MTi-G inertial sensor with GPS. 
Extrinsic calibration of these sensors is done manually for 
this work. Note that, thanks to the grid-based approach and 
considering the resolution of the grid, a slight calibration 
error has very little impact on the final results. 

The stereo camera baseline is 22 cm, with a field of view 
of 62°. Camera resolution is 512 3 320 pixels with a focal 
length of 410 pixels. Each lidar provides four layers of up to 
200 impacts with a sampling period of 20 ms. The  angular 
range is 100°, and the angular resolution is 0.5°. The 

FIG 9 Deformed GP model example for a lane turning left.

Lane Turning Left
Lane Middle

GP Samples
for a Lane Turning Left

Input: Current observation Qt

Output: P(Bt | Q1:t )
foreach Lower layer HMM h do 
 Update P(St,h Q1:t ) (Eqn. 8); 
 Calculate log-likelihood Lh(Q1:t ) (Eqn. 9); 
end 
Update upper layer HMM P(Bt | Q1:t ) (Eqn. 11). 

Algorithm 1. Layered HMM Updates.
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 on-board computer is equipped with 8 GB of RAM, an Intel 
Xeon 3.4 GHz processor and an NVIDIA GeForce GTX 480 
for GPU. The observed region is 40 m long by 40 m wide, 
with a maximum height of 2 m. Cell size of the occupancy 
grids is 0.2 3 0.2 m. For stereo-vision, the correlation win-
dow measures 11 pixels in width and 21 pixels in height. 

B. Occupancy Grid Mapping
Fig. 11 shows examples of occupancy grid mapping with 
the proposed approach. The arrows indicate the pedes-
trian, the car, and the bicycle, which appear in the camera 
images and the occupancy grids. Because the accuracy 

of stereo-vision tends to become poor at large distance, 
the corresponding grid has been attenuated beyond 
20 m and the system is tuned to give more confidence to 
the lidars than to the stereo-vision. One of advantages 
of sensor fusion is a larger viewfield so that the vehicles 
overtaking the ego-vehicle (they are not seen in the cam-
era images) are correctly mapped on the resulting BOF 
grid. Moreover, the sensor fusion as well as the Bayes-
ian estimation provide to filter out the laser impacts with 
the road surface, e.g. right lidar in Fig. 11. Note that a 
large number of dynamic objects in the traffic scenes 
may lead to a failure of object-based fusion because of a 
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0.6
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0.2

0

(a) (b) (c) (d) (e) (f)

Left Camera Image Left Lidar Right Lidar Stereo Vision Data Fusion with the BOF

FIG 11 Examples (a)–(f) of occupancy grid mapping in typical urban traffic scenes: (a) left image from the stereo pair, (b) an occupancy grid from the left 
lidar, (c) an occupancy grid from the right lidar, (d) an occupancy grid from stereo-vision, (e) an occupancy grid estimated by data fusion with the BOF, 
and (f) a probability scale.

(b)

(c)(a)

FIG 10 (a) Lexus LS600h car equipped with two IBEO Lux lidars, (b) a TYZX stereo camera, and (c) an Xsens MTi-G inertial sensor with GPS.
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large number of association hypotheses. The grid-based 
approach allows us to avoid the object association prob-
lem for sensor fusion. 

C. Object Detection and Tracking
The object level representation is obtained from the BOF, 
by clustering the occupancy and velocity grids by means of 
the FCTA. Examples of detections in typical urban scenes 
are shown in Fig. 12. The output of FCTA being a set of 
ellipses in the detection plane, the ROIs in the images are 
obtained by using a ground plane hypothesis. The height 
of ROI is set empirically to 1.8 m, and the width is double 
of the lateral standard deviation of the detected object. As 
it is shown in Fig. 12-a, both vehicles and a pedestrian are 
correctly detected and tracked. An advantage of the BOF 
over other occupancy grid approaches is illustrated by 
Fig. 12-b: the estimated velocity of the white vehicle and of 
the bicycle being very different (here the bicycle is faster), 
they are correctly detected as two different objects, even if 
they are very close (adjacent cells in the grid). 

D. Computation Time
Two critical stages of the algorithm have been imple-
mented on GPU: the BOF and the stereo processing, includ-
ing matching and occupancy grid computation. FCTA has 
not, since it has been shown in [31] and [33] that its com-
putational cost can be neglected, compared with the com-
putational cost of the BOF. The BOF being designed to be 
highly parallelizable, it runs on GPU in 20 ms, without spe-
cific optimization. Concerning stereo-vision, the matching 
process is performed in 6 ms and the occupancy grid com-
putation in 0.1 ms. This level of performance is reached 
thanks to the u-disparity approach, which allows for highly 
parallel computation on GPU. 

E. Collision Risk Assessment
The simulation of crash situations in performed a virtual 
environment. This environment is a 3D geometric model 
of a road network, where each vehicle is driven by a human 
driver. The simulator was developed by Toyota Motor 
Europe (TME). Each human driver controls his or her 
virtual vehicle by means of a steering wheel, the accelera-
tion and brake pedals. Recording a scenario with multiple 
vehicles, which are driven concurrently, requires a large 
number of human drivers. An alternative is to generate the 
scenario iteratively, with one human-driven vehicle at a 
time and “adding” human drivers iteratively, with a replay 
of the previously recorded human-driven vehicles. The 
resulting virtual environment allows us to simulate crash 
situations safely. 

The layered HMM evaluates the behavior of every 
vehicle in the scene for different time horizons, except the 
ego-vehicle. The training data are obtained by collecting 
sequences for a series of human-driven cases, where each 

driver uses the steering wheel as an interface to the vir-
tual environment of the simulator. The driving sequences 
are annotated manually by means of an annotation tool of 
ProBayes. Then, the annotated data are used to train the 
layered HMM. 

The TME simulator provides a 3D road view for the driver 
and a 2D view of the road network, as shown in Fig. 13. The 
collision risk is calculated for a yellow vehicle, while other 
vehicles are shown by red rectangles (relevant area is inside 
a large yellow circle). The right-hand traffic rule is assumed. 
The trail behind the yellow vehicle in 2D view indicates the 

FIG 13 Virtual environment of the TME simulator.

(a)

(b)

FIG 12 Example of the objects detected using BOF and FCTA: (a) cars 
and a pedestrian, (b) cars, a bicycle and a bus.
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risk levels estimated previously. At each instant, the prob-
abilities of the possible behaviors of the nearest neighbor 
(red vehicle) are estimated by the layered HMM and are dis-
played by the vertical white bars. The speed of the yellow 
vehicle is shown in 3D view, where the right-side vertical 
bar shows the risk encoding by color from “low” (green) to 
“high” (red). The left-side vertical bar in 3D view indicates 
the current risk value for the yellow vehicle. 

The speed warning about a potential danger of frontal 
collision is available in most commercial systems. Addition-

ally to this functionality, our algorithm 
evaluates risk at intersections, where 
the linearity assumption about the 
vehicle motion would result in under-
estimated values of risk. The combina-
tion of the behavior estimation by the 
layered HMM and the use of semantics 
(e.g. turn right or move straight) at the 
geometric level allows us to obtain the 
appropriate risk values. 

The training data for the layered 
HMM were collected with ten human 
drivers who were asked to show differ-
ent driving behaviors. The data is split 
by the uniform distribution into the 
training data and the test data (30% of 
the samples). The behavior recognition 
is trained on the training data and is 
evaluated against the test data. 

Fig. 14 summarizes the recogni-
tion performance of the layered HMM. 
The results are presented as a confu-
sion matrix, where the columns cor-
respond to the true class and the rows 
correspond to the estimated class. 
The diagonal values of the confusion 

matrix give the correctly predicted class, while non-diag-
onal values show the percentage of mislabelling for each 
class. The highest recognition rate is for “move straight” 
behavior (91.9%) as well as “turn right” or “turn left” ones 
(82.5% and 81.1%, respectively). The “overtake” behavior 
has a relatively low recognition rate of 61.6%. Intuitively, 
this lower rate can be explained by a composite structure 
of the overtaking maneuver because it consists of such 
behaviors as: accelerating, lane  changing, returning to the 
original lane, and resuming a cruise speed. Consequently, 

FIG 15 Example of collision risk assessment for ten human-driven 
scenarios and a three-second prediction horizon.
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FIG 16 Example of behavior estimation on a highway where a vehicle on 
the middle lane performs a lane change to the right.
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it also takes longer than a three-second period (current 
prediction horizon) to complete an overtaking maneuver. 

The approach to risk assessment is illustrated by Fig. 15, 
where the probability of collision is estimated for a period of 
three seconds ahead of each collision for ten different traf-
fic scenarios. The rapid increase in the probability of colli-
sion and its certainty are observed when the collision instant 
approaches. 

F. Behavior Estimation on a Highway
The first phase is to gather sensor data when driving on a 
highway to estimate behaviors of other vehicles. The experi-
ments have been conducted jointly by the TME and ProBayes 
on a different vehicle. The data acquisition was performed for 
four scenarios on a highway, with each scenario lasting for 
ten minutes approximately and the sensor data (stereo cam-
era images, vehicle odometry, and GPS information) being 
recorded. The behaviors to be estimated are: move straight, 
a lane change to the left, and a lane change to the right. 

The detection of vehicles is performed by clustering 
of the disparity points obtained from the stereo camera 
mounted behind the windshield. The clustering is per-
formed in the image areas, which are indicated by the 
image based detection using support vector machines. 
The positions of vehicles are tracked on the road plane by 
means of the BOF. 

The observation variables for behavior recognition 
include the vehicle’s speed, the distances to the lane borders, 
and the information about the presence of other vehicles on 
the adjacent lanes. In order to obtain the observation vari-
ables in a global reference frame, a particle filter is used for 
localizing the vehicle on the highway map obtained from the 
Geographic Information System. The particle filter allows us 
to estimate the position and direction of the vehicle at each 
time instant and to employ the observations from stereo-
vision (lanes detection), GPS and vehicle odometry. A similar 
approach is used for the training phase, when the acquired 
data is divided into the training and evaluation sets anno-
tated manually to indicate the current behavior for each time 
instance of the data acquired. 

An example of the behavior estimation on a highway is 
shown in Fig. 16. The positions of the tracked vehicles are 
projected onto the image plane and are represented by the 
rectangles. The probability distribution of the estimated 
behaviors is shown by the height of the color bars above the 
vehicles, e.g. the “lane change to the right” behavior of the 
vehicle on the middle lane and the “move straight” behav-
ior of the two vehicles on the left lane are evaluated cor-
rectly. These results illustrate the validity of the proposed 
approach for behavior estimation. The different probability 
decomposition of the observation variables, the selection of 
the observation variables and the reactivity of the behavior 
estimation are topics of our ongoing work to generalize the 
approach. 

V. Conclusion
We proposed a conceptual framework to analyze and inter-
pret the dynamic traffic scenes by means of sensor fusion 
with the BOF and risk evaluation for the ego-vehicle. Our 
concept differs from other approaches due to its underly-
ing probabilistic methods and its computational efficiency 
because of the parallel implementation of data processing 
from stereo-vision and lidars. The experimental platform 
was built on a Lexus car with embedded sensors and the 
dedicated software modules. This system is capable of moni-
toring its local environment, detecting and tracking static 
and dynamic objects in real traffic scenarios. The analysis 
and interpretation of traffic scenes rely on evaluation of driv-
ing behaviors as stochastic variables to estimate and predict 
collision risks for the ego-vehicle for a short period ahead, 
in order to alert the driver and help improve the safety of 
car driving. The experiments and simulation have shown 
promising results. The discussed conceptual framework will 
be extended to deal with complex traffic scenarios, and the 
experimental system will be used to create a database to 
allow for benchmarking, quantitative evaluation and com-
parison with alternative approaches. 
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