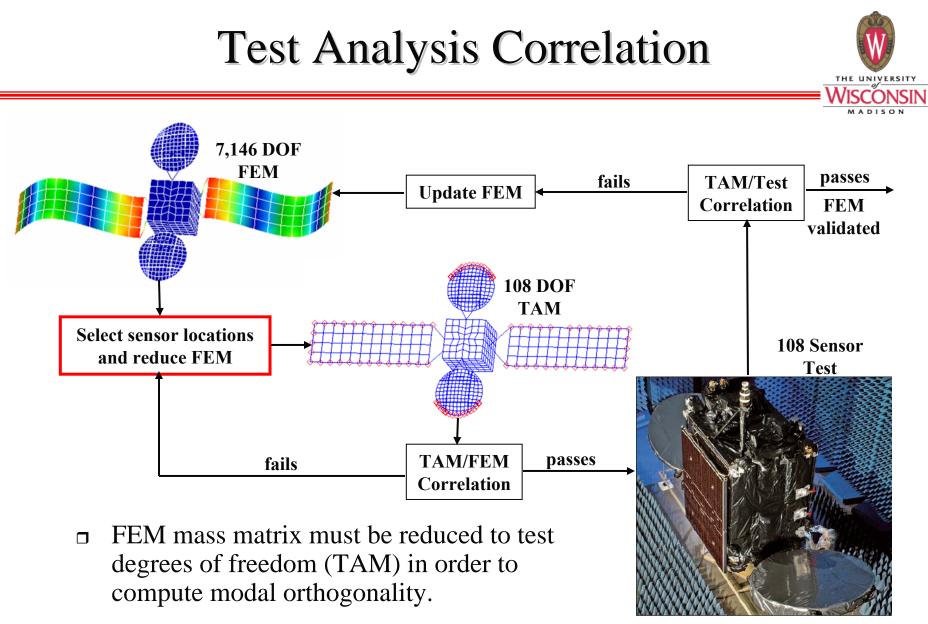
Probabilistic Investigation of Sensitivities of Advanced Test-Analysis Model Correlation Methods

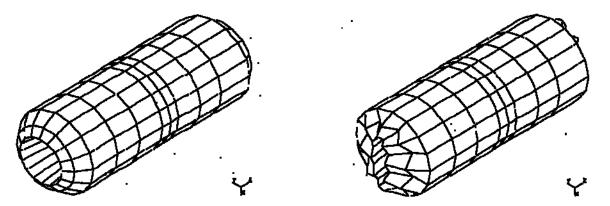
> Liz Bergman, Matthew S. Allen, and Daniel C. Kammer Dept. of Engineering Physics University of Wisconsin-Madison Randall L. Mayes Sandia National Laboratories



Orbital Sciences

The Controversy

- Current FEM reduction algorithms
 - □ Static TAM: fails for heavy, soft structures. May be difficult to achieve good TAM/FEM correlation



Fundamental FEM propellant mode (left) and fundamental FEM propellant mode predicted by Static TAM (right)

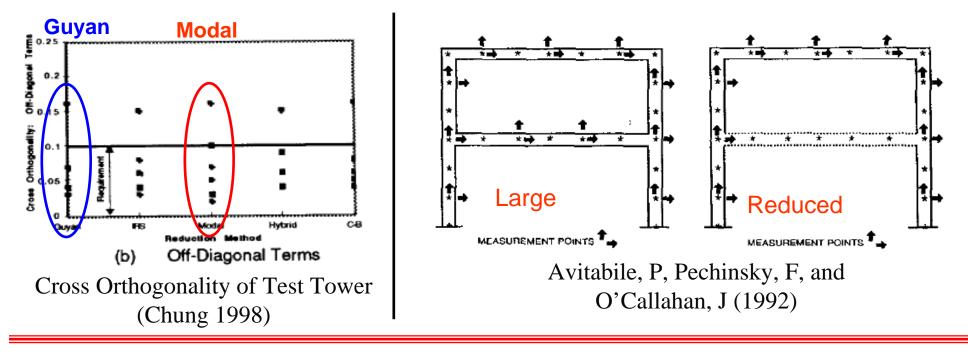
- Improved Reduced Static (IRS) TAM: ill-conditioned under certain circumstances
- Modal TAM: Trivial to achieve perfect TAM/FEM correlation, however it has a reputation of being highly sensitive to experimental or modal-mismatch errors

Purpose of Research

- Study the sensitivity of various TAMs to gain insight into factors that strongly affect sensitivity
- A probabilistic analysis will be used to characterize the effect of measurement errors on TAM sensitivity

Relevant Literature

- □ Freed, AM and Flanigan, CC (1990): Modal TAM most sensitive, sensors placed using modal kinetic energy
- Avitabile, P, Pechinsky, F, and O'Callahan, J (1992): Sensor placement is vital to TAM performance, SEREP and Hybrid perform better than Static TAM for small sensor sets
- Chung, YT (1998): Sensor placement was not discussed and no significant difference could be seen between the TAMs



Relevant Literature

- Gordis, JH (1992), Blelloch, P and Vold, H (2005) :
 - □ Notes ill-conditioning in dynamic reduction equation:

$$\left\{\phi_{io}\right\} = -\left[K_{oo} - \omega_i^2 M_{oo}\right]^{-1}\left[K_{oa} - \omega_i^2 M_{oa}\right]\left\{\phi_{ia}\right\}$$

- Proposes that IRS TAM will be ill conditioned if the natural frequencies of the structure with the o-set DOF pinned are similar to the frequencies of the structure of interest.
- Recently, this theory seems to have been applied to other TAM techniques such as the Modal TAM.

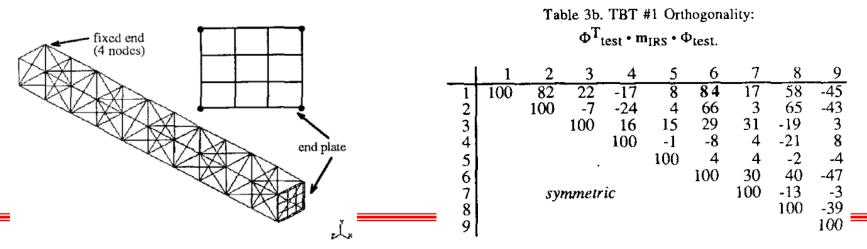
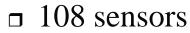


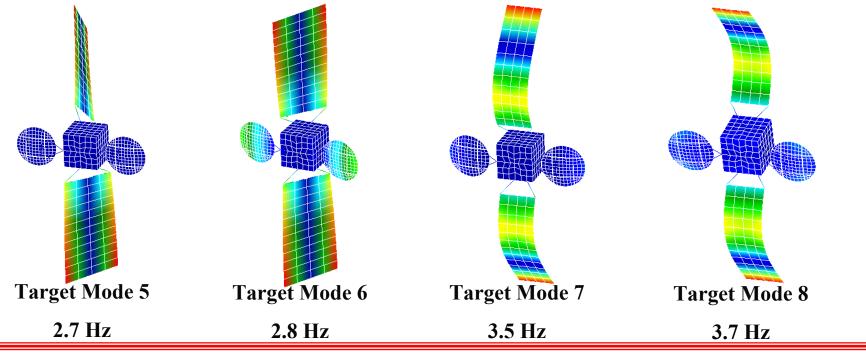
Figure 1. The NASA/Langley 10-Bay Truss.

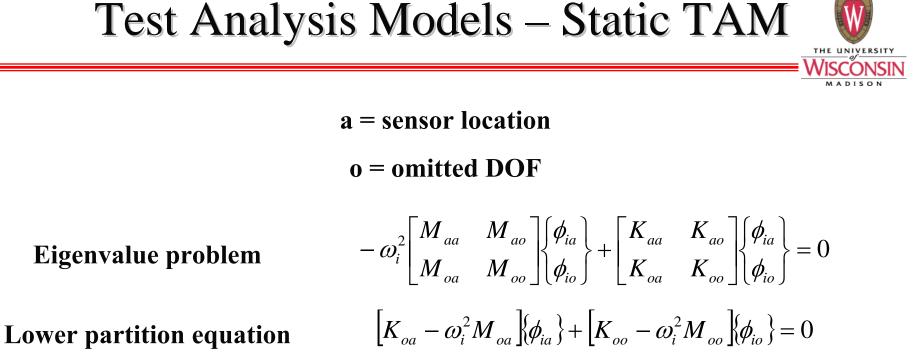
Model

□ Generic Satellite

- **7,146 DOF**
- Target modes: first 18 consecutive flexible modes (0.3-11.8 Hz)







Neglect the mass of the o-set DOF

$$\{\phi_{io}\} = -\left[K_{oo} - \omega_i^2 M_{oo}\right]^{-1} \left[K_{oa} - \omega_i^2 M_{oa}\right] \{\phi_{ia}\}$$

Static Transformation Matrix (each column represents a constraint mode)

$$\begin{bmatrix} I \\ -K_{oo}^{-1}K_{oa} \end{bmatrix}$$

Test Analysis Models – IRS TAM

$$\left\{\phi_{io}\right\} = \left[\left[K_{oo} - \omega_i^2 M_{oo}\right]^{-1}\right] K_{oa} - \omega_i^2 M_{oa}\right] \left\{\phi_{ia}\right\}$$

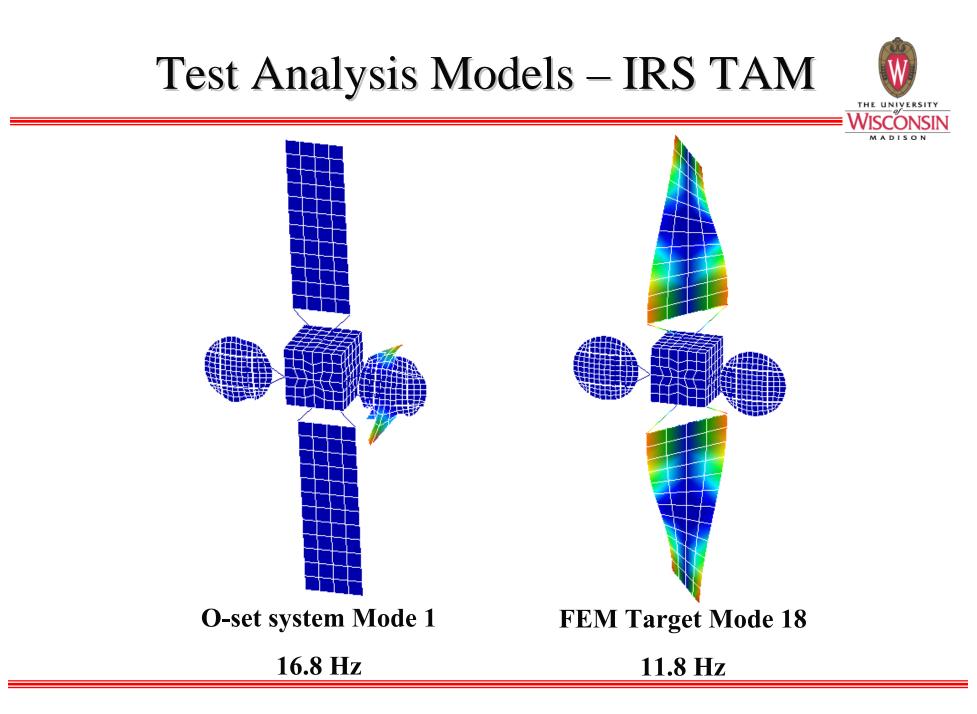
Ill-conditioned when ω_i^2 is near any of the eigenvalues of the *Koo*, *Moo* system

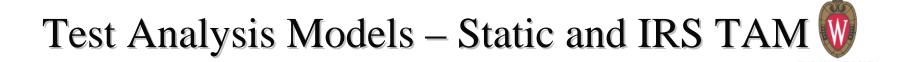
Approximate the
frequency terms $\omega_i^2 \{\phi_{ia}\} = \widetilde{M}_S \widetilde{K}_S^{-1} \{\phi_{ia}\}$

Calculate the IRS [transformation matrix

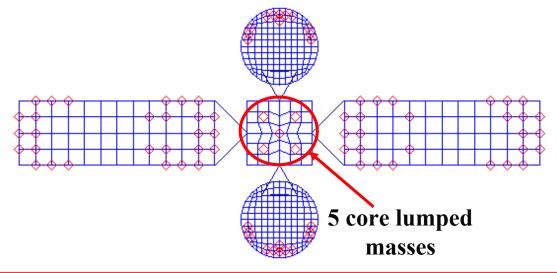
$$\left[T_{IRS}\right] = \left[T_{S}\right] + \left[T_{i}\right]$$

$$\begin{bmatrix} T_i \end{bmatrix} = -\begin{bmatrix} 0 & 0 \\ 0 & -K_{oo}^{-1} \end{bmatrix} \begin{bmatrix} M_{aa} & M_{ao} \\ M_{oa} & M_{oo} \end{bmatrix} \begin{bmatrix} I \\ -K_{oo}^{-1}K_{oa} \end{bmatrix} \widetilde{M}_S^{-1} \widetilde{K}_S$$





- Mass weighted effective independence did not select the lumped masses (the lumped masses were essential to TAM-FEM correlation)
- Modal kinetic energy applied to all 18 target modes was not sufficient
- A significant amount of hand selection and engineering judgment was used (modified modal kinetic energy method)



Test Analysis Models – Modal TAM

Physical coordinates in terms of modal coordinates

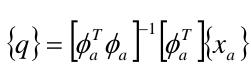
Partitioned Equations

Solve for modal coordinates in terms of the sensor DOF

Modal transformation matrix

 $\begin{bmatrix} I \\ \phi_o(\phi_a^T \phi_a)^{-1} \phi_a^T \end{bmatrix}$

 $\{x_o\} = [\phi_o]\{q\}$

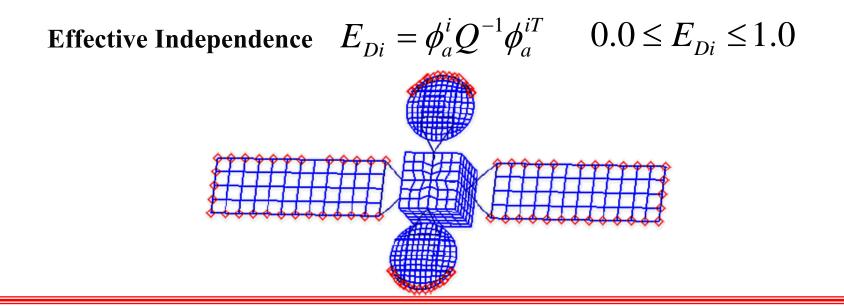


 $\begin{cases} x_a \\ x \end{cases} = \begin{vmatrix} \phi_a \\ \phi \end{vmatrix} \{q\}$

 $\{x_a\} = [\phi_a] \{q\}$

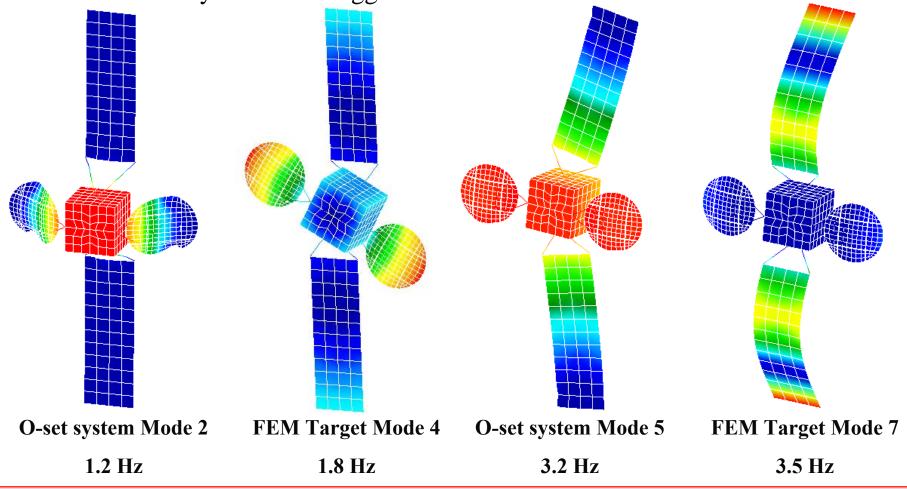
Sensor placement achieved with Effective Independence

Maximize the determinant of the Fisher information matrix $\max \|Q\| = \max \|\phi_a^T \phi_a\|$



Test Analysis Models – Modal TAM

Modal TAM o-set frequencies are similar to the FEM frequencies, so the theory of Gordis suggests that this TAM will be sensitive.

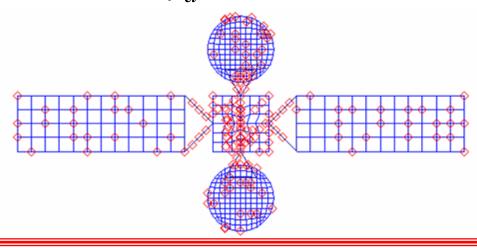


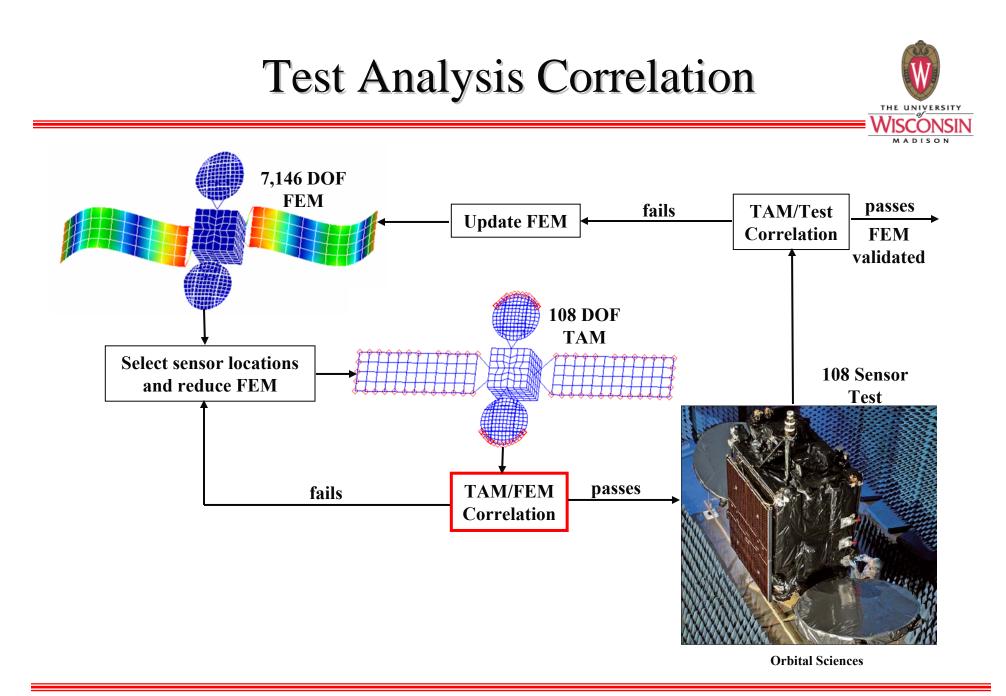
Modal coordinates in terms of the sensor DOF

$$\{q\} = \left[\phi_a^T \phi_a\right]^{-1} \phi_a^T \left\{x_a\right\}$$

Solution is more sensitive if the condition number of ϕ_a , is large.

Begin with a visualization set, and add sensors that minimize the condition number of ϕ_a





Correlation Metrics

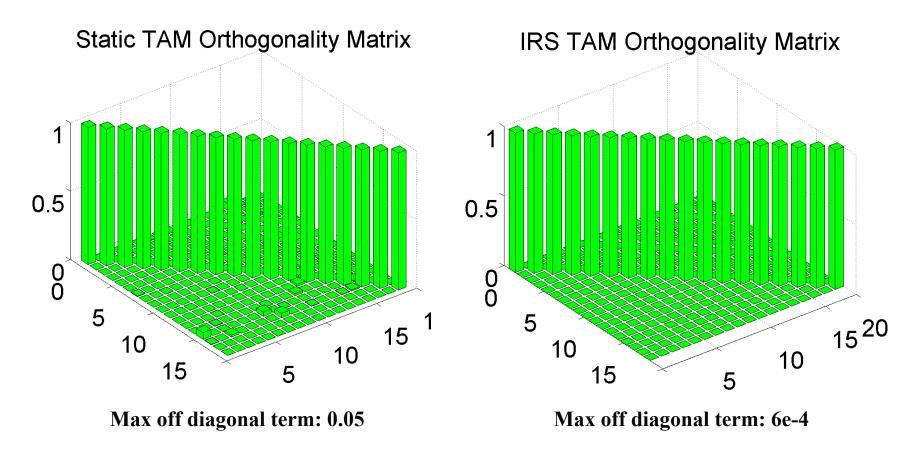
Orthogonality

■ Criteria: $0 \le \text{off diagonal term} \le 0.1$ $O = \begin{bmatrix} \phi_{FEM} \end{bmatrix}^T \begin{bmatrix} \widetilde{M}_{TAM} \end{bmatrix} \phi_{FEM} \end{bmatrix}$ ■ Cross Orthogonality ■ Criteria: $0 \le \text{off diagonal term} \le 0.1$ $0.95 \le \text{diagonal term} \le 1.0$ $CO = \begin{bmatrix} \phi_{FEM} \end{bmatrix}^T \begin{bmatrix} \widetilde{M}_{TAM} \end{bmatrix} \phi_{TAM} \end{bmatrix}$

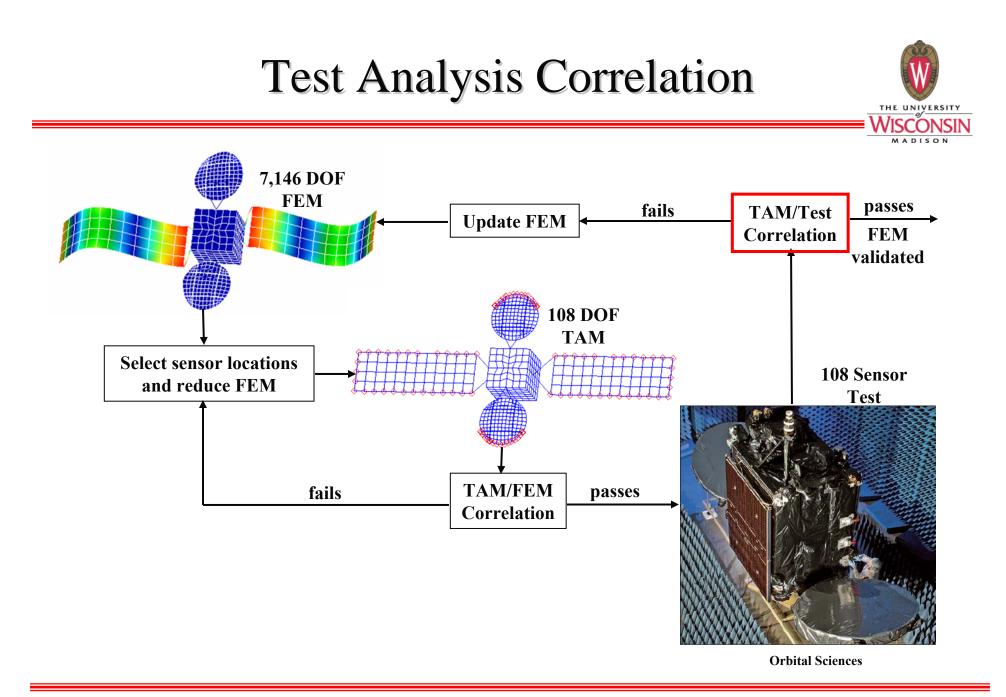
□ Frequency Comparison

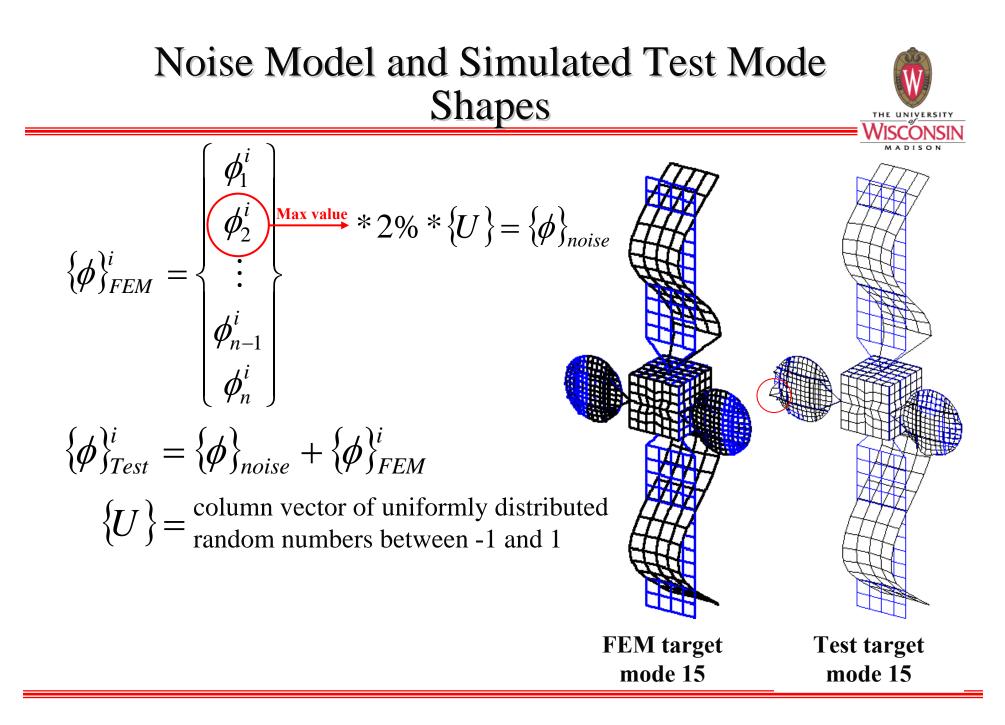
$$\Box \text{ Criteria:} \qquad f_{error} = \frac{f_{FEM} - f_{TAM}}{f_{FEM}} * 100 \le 3\%$$

TAM-FEM Correlation

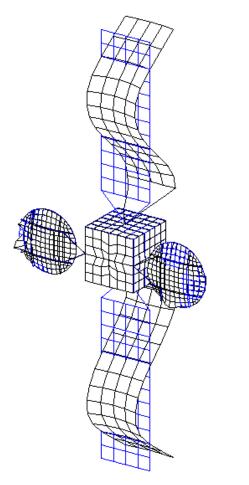


*Modal TAM always produces perfect orthogonality for TAM-FEM correlation





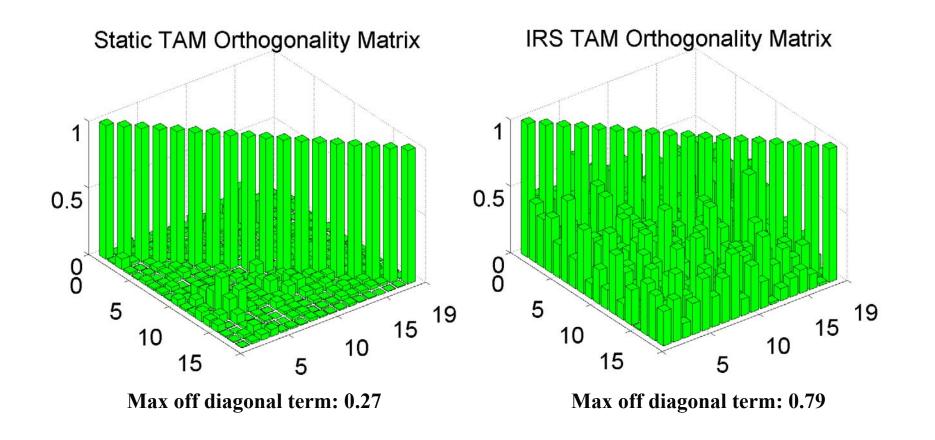
Noise Model



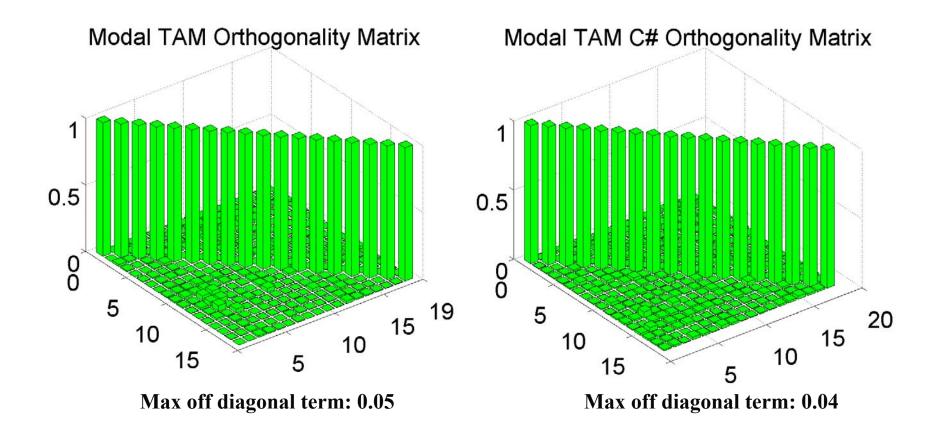
Noise contaminated mode shape

- □ FEM assumed to be perfect
- Noise vector models the net effect of all errors that cause the FEM mode shapes to disagree with the test mode shapes.
 - Noise Distribution: Uniform no assumption is made about the distribution of noise
 - Noise Amplitude: Sensors with the smallest motion have the largest noise to signal ratio
 - Noise is small on average: ± 2% at sensor locations with the largest motion.

TAM-Test Correlation Results (1 case of Random Noise)

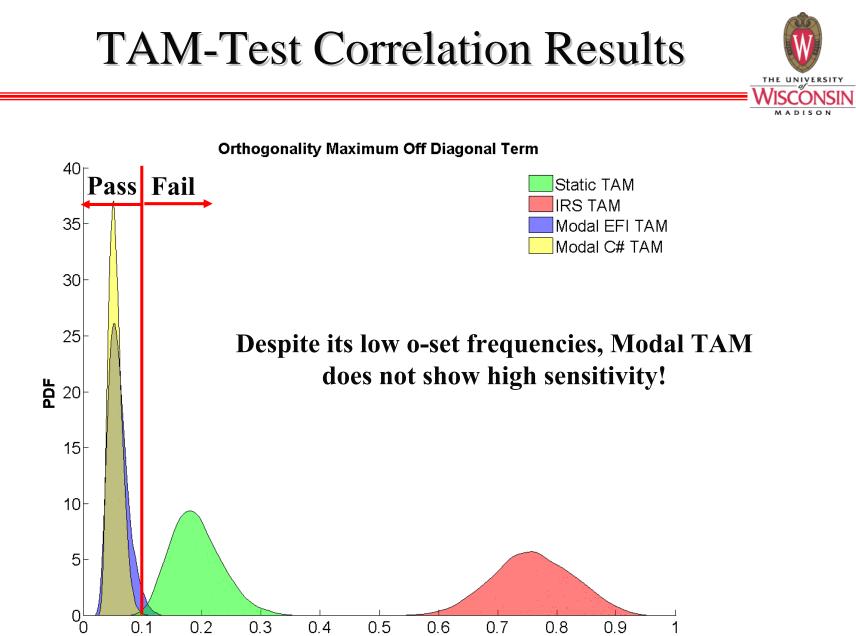


TAM-Test Correlation Results (1 case of Random Noise)



Thus far, TAM-Test correlation has been studied using only one noise profile

- □ Random noise added in 10,000 iterations
- Orthogonality computed for each iteration
- Maximum off-diagonal term of orthogonality was stored



0.3 0.4 0.5 0.6 0.7 Orthogonality Maximum Off Diagonal Term

0.1

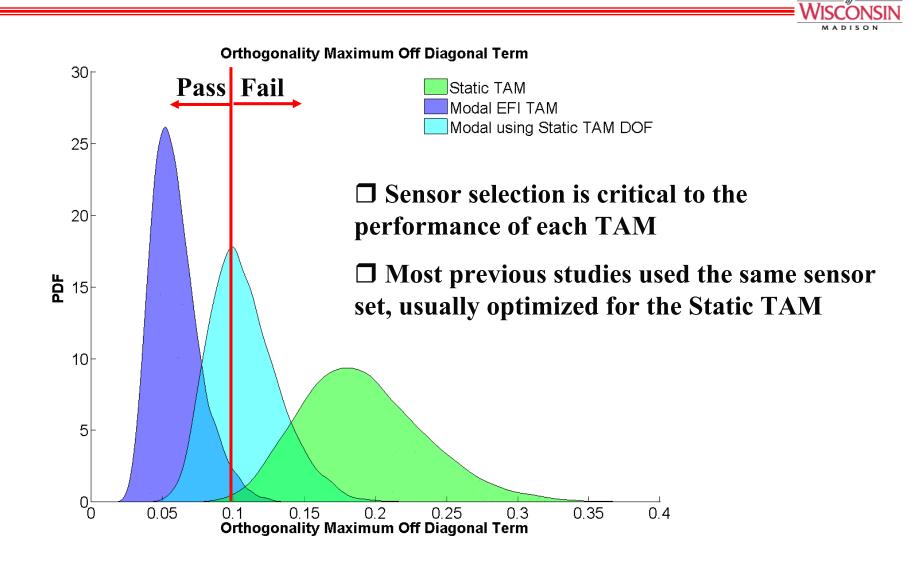
0.2

0.9

1

0.8

- \Box If Orthogonality > 0.1 one might
 - □ Refine FEM before exiting test
 - □ Repeat test and/or look for errors
 - □ Update the FEM
- In this case, the FEM was perfect (errors in test modes were purely random)
- Note: The specific ranking of different TAM methods may depend on:
 - □ The structure of interest
 - □ The characteristics of the noise
 - □ Systematic errors between the test and FEM



THE UNIVERSIT

- Recently, we have developed formulas to analytically predict sensitivity of a TAM based on simple metrics
- □ For example, for the noise model used in this study:

$$O_{ij} = \left[\phi_i + n_i\right]^T \left[\tilde{M}_{TAM}\right] \left[\phi_i + n_i\right] \qquad n_i = noise$$

$$\sigma(O_{ij}) = \sqrt{\sum_{m} \left(\tilde{M}_{TAM} \phi_{j}\right)_{m}^{2} \sigma_{i}^{2}} + \sum_{m} \left(\phi_{i}^{T} \tilde{M}_{TAM}\right)_{m}^{2} \sigma_{j}^{2} + \sum_{m} \sum_{n} \left(\tilde{M}_{TAM}\right)_{mn}^{2} \sigma_{i} \sigma_{j}$$

	Maximum Orthogonality Off-Diagonal	
	Predicted STD	Actual STD
Static	0.03	0.03
Modal EFI	0.009	0.01
Modal C#TAM	0.006	0.006
Modal with Static DOF	0.02	0.02

Conclusions

- □ IRS TAM was ill-conditioned, as predicted by Gordis
- Modal TAM did not show high sensitivity even though its o-set frequencies were near those of the target modes
- Probabilistic analysis more fully explains TAM sensitivity
 - One can even predict the sensitivity of the TAMs analytically given the TAM Mass matrix, mode shapes and noise model.
- **Future Work**
 - Develop more accurate noise models
 - □ Study the effect of systematic mismatch between FEM and test due to modeling errors.
 - □ May need the Hybrid TAM in these cases
 - □ Apply these methods to other physical systems, analytically and experimentally.

□ Investigate systems with non-consecutive target modes