
Probabilistic Learning – Classification using Naïve Bayes 

 

Weather forecasts are usually provided in terms such as “70 

percent chance of rain”. These forecasts are known as probabilities 

of precipitation reports. But how are they calculated? It is an 

interesting question because in reality, it will either rain or it will 

not. 

These estimates are based on probabilistic methods. Probabilistic 

methods are concerned about describing uncertainty. They use data 

on past events to extrapolate future events. In the case of weather, 

the chance of rain describes the proportion of prior (previous) days 

with similar atmospheric conditions in which precipitation 

occurred. So a 70% chance of rain means that out of 10 days with 

similar atmospheric patterns, it rained in 7 of them.  

 

Naïve Bayes machine learning algorithm uses principles of 

probabilities for classification. Naïve Bayes uses data about prior 

events to estimate the probability of future events.  For example, a 

common application of naïve Bayes uses frequency of words in 

junk email messages to identify new junk mail.  We will learn: 

- Basic principle of probabilities that are used for naïve Bayes. 

- Specialized methods, visualizations and data structures used for 

analyzing text using R. 

- How to employ an R implementation of naïve Bayes classifier to 

build an SMS message filter. 

 

Understanding naïve Bayes: 

A probability is a number between 0 and 1 that captures the 

chances that an event will occur given the available evidence. A 

probability of 0% means that the event will not occur, while a 

probability of 100% indicates that the event will certainly occur. 



 

Classifiers based on Bayesian methods utilize training data to 

calculate an observed probability of each class based on feature 

values. When the classifier is used later on unlabeled data, it uses 

the observed probabilities to predict the most likely class for the 

new features. 

Bayesian classifiers are best applied to problems in which there are 

numerous features and they all contribute simultaneously and in 

some way to the outcome.  If a large number of features have 

relatively minor effects, taken together, their combined impact 

could be large. 

 

Basic concepts of Bayesian Methods: 

Bayesian methods are based on the concept that the estimated 

likelihood of an event should be based on the evidence at hand. 

Events are possible outcomes, such as sunny or rainy weather or 

spam or not spam emails.  A trial is a single opportunity for the 

event to occur, such as today’s weather or an email message. 

 

Probability 

The probability of an event can be estimated from observed data 

by dividing the number of trials in which an event occurred by the 

total number of trials. For example if it rained 3 out of 10 days, the 

probability of rain can be estimated to 30%. Similarly if 10 out of 

50 emails are spam, then the probability of spam can be estimated 

as 20%. The notation P(A)  is used to denote the probability of 

event A,  as in P(spam)=0.20 

The total probability of all possible outcomes of a trial must 

always be 100%. Thus, if the trial has only 2 outcomes that cannot 

occur simultaneously, such as rain or shine, spam or not spam, then 

knowing the probability of either outcome reveals the probability 

of the other.  



When two events are mutually exclusive and exhaustive ( they 

cannot occur at the same time and are the only two possible 

outcomes) and P(A)= q, then P(A)= 1-q. 

Joint Probability: 

We may be interested in monitoring several non-mutually 

exclusive events for the same trial. If the events occur with the 

event of interest, we may be able to use them to make predictions. 

Consider, for instance, a second event based on the outcome that 

the email message contains the word Viagra.  For most people, this 

word is only likely to show up in a spam message; its presence 

would be strong evidence that the email is spam.  The probability 

that an email contains the word “Viagra” is 5%. 

We know that 20% of all messages were spam , and 5% of all 

messages contained Viagra. We need to quantify the degree of 

overlap between the two proportions, that is we hope to estimate 

the probability of both Spam and Viagra occurring , which can be 

written as P(spam  Viagra). 

Calculating P( spam  Viagra) depends on the joint probability  

of the two events.  If the two events are totally unrelated, they are 

called independent events. On the other hand,  dependent events 

are the basis of predictive modeling.  For instance, the presence of 

clouds  is likely to be predictive of a rainy day.  

If we assume that P(spam)  and P(Viagra)  are independent, we 

could then calculate  

P(spam  Viagra)  as the product of probabilities of each  

P(spam  Viagra)= P(spam)*P(Viagra) = .2*.05= 0.01, or 1% of 

all spam messages contain the word Viagra. 

In reality, it is more likely that P(spam)  and P(Viagra)  are highly 

dependent, which means that the above calculation is incorrect. 

 

 



Conditional probability with Bayes’ theorem: 

The relationship between dependent events can be described using 

Bayes’ theorem.  The notation P(A|B) is read as the probability of 

event A given that event B has occurred. This is known as 

conditional probability,  since the probability of A is dependent 

(that is, conditional) on what happened with event B. 

𝑷(𝑨|𝑩) =
𝑷(𝑩|𝑨)𝑷(𝑨)

𝑷(𝑩)
=

𝑷(𝑨 ∩ 𝑩)

𝑷(𝑩)
 

To understand a little better how the Bayes’ theorem works, 

suppose we are tasked with guessing the probability that an 

incoming email was spam. without any additional evidence, the 

most reasonable guess would be the probability that any prior 

message was spam (20%). This estimate is known as the prior 

probability. 

Now suppose that we obtained an additional piece of evidence, that 

is that the incoming message the term Viagra was used. The 

probability that the world Viagra was used in previous spam 

messages is called the likelihood and the probability that Viagra 

appeared in any message at all is known as marginal likelihood. 

By applying Bayes’ theorem to this evidence, we can compute a 

posterior probability  that measures how likely the message is to 

be spam. If the posterior probability is more than 50%, the 

message is more likely to be spam. 

𝑷(𝒔𝒑𝒂𝒎 𝑽𝒊𝒂𝒈𝒓𝒂⁄ ) =
𝑷(𝑽𝒊𝒂𝒈𝒓𝒂 𝒔𝒑𝒂𝒎) ∗ 𝑷(𝒔𝒑𝒂𝒎)⁄   

𝑷(𝑽𝒊𝒂𝒈𝒓𝒂)
 

 

To calculate the components of Bayes’s theorem, we must 

construct a frequency table that records the number of times 

Viagra appeared in spam and non-spam messages. The cells 

indicate the number of instances having a particular combination 

of class value and feature value.  



 Viagra  

Frequency Yes No Total 

spam 4 16 20 

non spam 1 79 80 

Total 5 95 100 

 

The frequency table is used to construct the likelihood table: 

 

 Viagra  

Frequency Yes No Total 

spam 4/20 16/20 20 

non spam 1/80 79/80 80 

Total 5/100 95/100 100 

 

The likelihood table reveals that P(Viagra/spam)=4/20=.20.  This 

indicates that probability is 20% that a spam email contains the 

term Viagra. Additionally, since the theorem says that  

P(B|A)*P(A)= P(AB),   we can calculate P(spam Viagra) as 

P(Viagra|spam)*P(spam)= (4/20) *(20/100)=0.04.  

This is 4 times the probability under independence. 

To compute the posterior probability P(spam|Viagra), we take   

P(Viagra|spam)*P(spam)/P(Viagra)=(4/20)*(20/100)/(5/100)= 

.80. 

Therefore, the probability is 80% that a message is spam, given 

that it contains the word Viagra. 



This is how commercial spam filters work in general, although 

they consider a much larger number of words simultaneously, 

when computing the frequency and likelihood tables. 

 

The naïve Bayes algorithm 

The naïve Bayes(NB) algorithm describes a simple application 

using Bayes’ theorem for classification. It is the most common 

algorithm, particularly for text classification where it has become 

the standard.  Strengths and weaknesses of this algorithm are as 

follows: 

Strengths Weaknesses 

 Simple, fast and very 

effective. 

 Does well with missing or 

noisy data 

 Requires relatively few 

examples for training, but 

works well with very large 

numbers of examples. 

 Easy to obtain the 

estimated probability for a 

prediction 

 Assumes that all features 

are equally important and 

independent  

 Not ideal for datasets with 

large numbers of numeric 

features 

 Estimated probabilities are 

less reliable than the 

predicted classes 

 

The naïve Bayes algorithm is named as such because it makes a 

couple of “naïve” assumptions about the data. In particular, NB 

assumes that all of the features in the dataset are equally important 

and independent. These assumptions are often not true. 

The naïve Bayes classification 

Let’s extend our spam filter by adding a few additional terms to be 

monitored: money, groceries and unsubscribe. The NB learner is 



trained by constructing a likelihood table for the appearance of 

these four words (W1, W2, W3 and W4) as in the following: 

 Viagra 

(W1) 

Money 

(W2) 

Groceries 

(W3) 

Unsubscribe 

(W4) 

 

Likelihood Yes No Yes No Yes No Yes No Total 

spam 4/20 16/20 10/20 10/20 0/20 20/20 12/20 8/20 20 

not spam 1/80 79/80 14/80 66/80 8/80 71/80 23/80 57/80 80 

Total 5% 95% 24% 76% 8% 91% 35% 65% 100 

 

As new messages arrive, the posterior probability must be calculated to 

determine whether they are more likely spam or not spam, given the 

likelihood of the words found in the message. For example, suppose that a 

message contains the terms Viagra and Unsubscribe, but does not contain 

either Money or Groceries. 

Using Bayes theorem we can define the problem as shown in the following 

formula which captures that a message is spam, given that Viagra=yes, 

Money= No, Groceries= No and Unsubscribe=yes : 

𝑃(𝑆𝑝𝑎𝑚|𝑊1 ∩ ¬𝑊2 ∩ ¬𝑊3 ∩ 𝑊4) = 

𝑃(𝑊1 ∩ ¬𝑊2 ∩ ¬𝑊3 ∩ 𝑊4|𝑆𝑝𝑎𝑚)𝑃(𝑆𝑝𝑎𝑚)

𝑃(𝑊1 ∩ ¬𝑊2 ∩ ¬𝑊3 ∩ 𝑊4)
 

 

 

This formula is computationally difficult to solve. As additional features are 

added, large amounts of memory are needed to store the probabilities of all 

possible intersection events. 

However, this becomes easier with the assumption that events are 

independent. Specifically, NB assumes that events are independent so long 

as they are related to the same class values. Assuming conditional 

independence allows us to simplify the formula using the probability rule for 

independent events P(AB)= P(A) * P(B). 

So our formula becomes: 



𝑃(𝑆𝑝𝑎𝑚|𝑊1 ∩ ¬𝑊2 ∩ ¬𝑊3 ∩ 𝑊4)

=  
𝑃(𝑊1|𝑆𝑝𝑎𝑚)𝑃(¬𝑊2|𝑆𝑝𝑎𝑚)𝑃(¬𝑊3|𝑆𝑝𝑎𝑚)𝑃(𝑊4|𝑆𝑝𝑎𝑚)𝑃(𝑆𝑝𝑎𝑚)

𝑃(𝑊1)𝑃(¬𝑊2)𝑃(¬𝑊3)𝑃(𝑊4)
 

The result of this formula is then compared to the probability that the 

message is not spam:  

 

(𝑁𝑜𝑆𝑝𝑎𝑚|𝑊1 ∩ ¬𝑊2 ∩ ¬𝑊3 ∩ 𝑊4)

=  
𝑃(𝑊1|𝑁𝑜𝑡𝑆𝑝𝑎𝑚)𝑃(¬𝑊2|𝑁𝑜𝑡𝑆𝑝𝑎𝑚)𝑃(¬𝑊3|𝑁𝑜𝑡𝑆𝑝𝑎𝑚)𝑃(𝑊4|𝑁𝑜𝑡𝑆𝑝𝑎𝑚)𝑃(𝑁𝑜𝑡𝑆𝑝𝑎𝑚)

𝑃(𝑊1)𝑃(¬𝑊2)𝑃(¬𝑊3)𝑃(𝑊4)
 

 

Using the values in the likelihood table, we can start filling the numbers in 

these equations.  Because the denominator is the same, we will ignore it for 

now.  

The overall likelihood of spam is then 

(4/20)*(10/20)*(20/20)*(12/20)*(20/100)=0.012. 

While the likelihood of non spam given this pattern of words is: 

(1/80)*(66/80)*(71/80)*(23/80)*(80/100)=0.002 

Since 0.012/0.002= 6, this says that an email with this pattern of words is 6 

times more likely to be spam than non spam. 

To convert these numbers to probabilities, we apply the formula= 

0.012/(0.012+0.002)= 0.857=85.7% 

The probability that the message is spam is equal to the likelihood that the 

message is spam divided by the sum of likelihoods that the message is either 

spam or non spam. 

Similarly, the probability of non spam is : 0.002/(0.012+0.002)=0.143 

Given the pattern of words in the message, we expect that the message is 

spam with 85.7% probability and non-spam with 14.3% probability. 

 

 

 



The naïve Bayes classification algorithm used can be summarized by the 

following formula. The probability of  level L for class C, given the 

evidence provided by features F1, F2,…, Fn, is equal to the product of 

probabilities of each piece of evidence conditioned on the class level, the 

prior probabilities of the class level and a scaling factor 1/Z which converts 

the result to a probability: 

𝑃(𝐶𝐿|𝐹1, 𝐹2, … , 𝐹𝑛) =
1

𝑍
𝑝(𝐶𝐿) ∏ 𝑝(𝐹𝑖|𝐶𝐿)

𝑛

𝑖=1

 

 

The Laplace Estimator: 

Let us look at one more example. Suppose we received another message, 

this time containing the terms: Viagra, Groceries, Money and Unsubscribe. 

Using the naïve Bayes algorithm, as before, we can compute the likelihood 

of spam as: 

(4/20)*(10/20)*(0/20)*(12/20)*(20/100)=0 

And the likelihood of non-spam as: 

(1/80)*(14/80)*(8/80)*(23/80)*(80/100)=0.00005 

Therefore the probability of spam = 0/(0+0.00005)=0 

And the probability of non spam = 1 

This result suggests that the message is spam with 0% probability and non 

spam with 100% probability. This prediction probably does not make sense, 

since it includes words that are very rarely used in legitimate messages. It is 

therefore likely that the classification is not correct. 

 

This problem might arise if an event never occurs for one or more levels of 

the class in the training set. For example, the term Groceries had never 

previously appeared in a spam message. Consequently P(spam|groceries)=0 

Because probabilities in NB are multiplies, this 0 value causes the posterior 

probability of spam to be 0, giving a word the ability to nullify and overrule 

all of the other evidence.  

A solution to this problem involves using the Laplace estimator.  The 

Laplace estimator adds a small number to each of the counts in the 

frequency table, which ensures that each feature has a non zero probability 



of occurring with each class. Typically, the estimator is set to 1, which 

ensures that every feature has a non-zero probability. 

Let us see how this affects our prediction for this message. Using a Laplace 

value of 1, we add 1 to each numerator in the likelihood function. The total 

number of 1’s must also be added to each denominator. The likelihood of 

spam becomes: 

(4/20)*(10/20)*(0/20)*(12/20)*(20/100)=0 

 

(5/24)*(11/24)*(1/24)*(13/24)*(20/100)= 0.0004 

And the likelihood of non spam is: 

(2/84)*(15/84)*(9/84)*(24/84)*(80/100)=0.0001 

Probability of spam = 0.0004/0.0005=.8= 80% 

Probability of non spam = 20% 

Using numeric features with naïve Bayes 

Because naïve Bayes uses frequency tables for learning the data, each 

feature must be categorical in order to create the combinations of class and 

feature values. Since numeric features do not have categories of values, the 

NB algorithm would not work without modification.  

One easy and effective solution is to discretize a numeric feature, which 

means that the numbers are put in categories known as bins.  For this reason, 

discretization is often called binning.  

There are several different ways of binning a numeric value. The most 

common is to explore the data for natural categories or cut points in the 

distribution. For example, suppose you added a feature to the spam dataset 

that recorded the time (on a 24 hours clock) the email was sent. 

We might want to divide the day into 4 bins of 6 hours based on the fact that 

in the early hours of morning, messages frequency is low. Activity picks up 

during business hours, and tapers off in the evening. This seems to validate 

the choice of 4 natural bins of activity. Each email will have a feature stating 

which bin the email belongs to.  

Note if there are no obvious cut points, one option is to discretize the feature 

using quantiles.  

 

 



 

Practice exercises on Naïve Bayes 

Exercise 1: 

Using the data above find the probability that an email is spam or not if it has:  

- “groceries”, “Money” and “unsubscribe” and not containing “Viagra”   

-“Viagra” and “groceries”, but not “money” or “unsubscribe” 

 

Exercise 2: 

A retail store carries a product that is supplied by three manufactures, A, B, and C, and 

30% from A, 20% from B and 50% from C.  

It is known that 2% of the products from A are defective, 3% from B are defective, and 

5% from C are defective.  

A) If a product is randomly selected from this store, what is the probability that it is 

defective?  

 

B) If a defective product is found what is the probability that it was from B? 


