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Abstract: Non-negative matrix factorization is used to find a basic matrix and a weight matrix to
approximate the non-negative matrix. It has proven to be a powerful low-rank decomposition
technique for non-negative multivariate data. However, its performance largely depends on the
assumption of a fixed number of features. This work proposes a new probabilistic non-negative
matrix factorization which factorizes a non-negative matrix into a low-rank factor matrix with {0, 1}
constraints and a non-negative weight matrix. In order to automatically learn the potential binary
features and feature number, a deterministic Indian buffet process variational inference is introduced
to obtain the binary factor matrix. Further, the weight matrix is set to satisfy the exponential prior. To
obtain the real posterior distribution of the two factor matrices, a variational Bayesian exponential
Gaussian inference model is established. The comparative experiments on the synthetic and real-
world datasets show the efficacy of the proposed method.

Keywords: Indian buffet process; binary components; non-negative matrix factorization; exponential
Gaussian model

1. Introduction

Non-negative matrix factorization (NMF) is an important nonlinear technique to find
purely additive, parts-based representations of non-negative multivariate data [1]. It aims
to reveal the latent structure or pattern in the data. Compared with the classical low-rank
matrix factorization methods, such as the singular value decomposition and principal
component analysis, NMF has turned out to be a powerful tool in data-mining analysis
because of its stronger explanatory properties (parts constitute the whole) and rationality
(decomposing factors must be non-negative in some real scenarios). For example, image
information can be compressed and summarized into a combination of some features [2],
and some feature words can be learned from the document to represent the document
for clustering tasks [3]. This original information is generally stored in the computer as a
data matrix, which is decomposed by NMF into the product of a basis factor matrix and
a weight.

Most research on the NMF algorithm is based on the specific expected characteristics
to impose other restrictions except negativity on the factorization factor matrix [4–6].
Although these works have made some achievements, some significant problems remain
to be solved, such as the way to construct efficient algorithm to avoid complex iterative
calculation, and the initialization problem which greatly weaken the flexibility of the
model due to its unknowability. Wild et al. [7] proposed that the use of a structured initial
value can improve the efficiency of the NMF algorithm at the cost of converging to a poor
local solution.

The probability non-negative matrix factorization from statistical view may be en-
lightening. Bayesian NMF is the NMF model with KL penalty that was extended to the
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Bayesian setting [8]. Using the Bayesian nonparametric model of infinite dimensional
parameter space, the number of features is determined as a random quantity in the process
of posterior inference. Indian buffet process (IBP) is a classical latent feature model. This
method generates a prior of a binary matrix, which has finite dimensional rows (number of
objects) and infinite dimensional columns (number of features) [9]. The real latent finite
element information can be obtained completely by the posterior inference with IBP. Many
studies have proposed the application of IBP in NMF. For example, Yang et al. projected
a non-negative binary matrix tri-factorization model that better reveals the underlying
structure between samples and features, including two binary matrices and a weight
matrix [10].

In this work, we come up with a new special probabilistic non-negative matrix factor-
ization which requires the basis matrix Z atisfies {0, 1} constraints and the weighted matrix
A is non-negative. This is clearer and more intuitive than the definition of tri-factorization
proposed in [10]. For the binary matrix Z, the IBP is introduced to solve, and we as-
sume that the weight matrix A obeys the exponential distribution under the non-negative
constraint. In addition, based on synthetic dataset and real-world datasets, we compare
our approach with benchmark methods to verify its flexibility and effectiveness. Main
contributions are following three aspects:

(1) We present a pNMF with single binary component. Compared with other methods,
the binary matrix can be regarded as the mapping from real object to binary codes,
which is more intuitive.

(2) IBP is applied to the pNMF and we explain its use as a prior in the variational Bayesian
exponential Gaussian model. The real latent information is completely obtained
by inference and the sensitivity of the model to initialization parameter setting is
greatly reduced.

(3) The experiments on the synthesized dataset and real-world datasets show the validity
of the proposed method.

The rest of this paper is organized as follows: the related work is outlined in the next
section. Section 3 explains the proposed method and the derivation process. Section 4 gives
the empirical research results on four different types of dataset. The last section concludes
the work.

2. Related Work

Recent research has inspired us to consider pNMF with single components on the
basis of IBP. This section lists the literature review of NMF and IBP.

2.1. Non-Negative Matrix Factorization

NMF was firstly posed by Paatero and tapper [1], but enjoyed wide popularity due
to the research results of Lee and Seung [2]. According to its definition, the factor ele-
ments after factorization must be non-negative, and simultaneously achieves nonlinear
dimension reduction. Mathematically, given the non-negative matrix V, the problem is
to find two factor matrices W ≥ 0 and H ≥ 0 to approximate V, so that V ≈ WH. It is
also usually interpreted as V = WH + ε by researchers with blind source signal separation
background [11], where ε is a noise matrix. Lee and Seung [2] also introduced two simpler
algorithms whose objective functions are based on Euclid distance and Kullback–Leibler
divergence (KL), respectively, and they proved the convergence of iterative rules. As an
unsupervised learning method, NMF is widely used in many fields.

Many improved NMF algorithms have been advocated in recent years.
Hoyer et al. [12] combined sparse penalty term with NMF to construct the sparse NMF
model, in which parameters were solved by the gradient projection method and the EM
algorithm. Wang et al. [13] combined Fisher’s discriminant criterion with the objective
function of non-negative matrix factorization to extract local features. Lin et al. [14] brought
forth an optimization algorithm of NMF based on projection gradient method, which re-
fined the convergence rate of factorization. Liu et al. [6] found a restrictive NMF algorithm
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under semi-supervised learning that effectively combined the category information. Guil-
lamet et al. [15] pointed out a weighted NMF algorithm to solve the image classification
problem by better representation ability of local features.

For many NMF methods, the rank needs to be determined in advance, and its value
was adjusted and searched through trial and error. Hinrich et al. [16] mentioned a prob-
abilistic sparse NMF model that extends the variational Bayesian NMF and explicitly
considers sparsity. Mohammadiha et al. [17] developed a hidden Markov model whose
output density function is a gamma distribution. This model was reformulated as a proba-
bilistic NMF, and it can capture the time dependence internally. To derive the maximum
a posterior (MAP) of the non-negative factors, Shterenberg et al. [18] extended the NMF
deterministic framework to the probabilistic such that the original data are no longer
deterministic, which is considered to be a sample drawn from a multinomial distribution.

2.2. Indian Buffet Process

Griffiths et al. [9] proposed the IBP in 2005. They defined the probability distribution
over equivalence classes of a binary matrix with a finite number of rows and an unbounded
number of columns, and illustrated the use of it as a prior in an infinite binary linear–
Gaussian model. At the same time, they have proved that this distribution as a prior is
suitable for probabilistic models that use potentially infinite feature arrays to represent
objects [19]. Many studies have been extended on the basis of IBP to generate more general
distribution categories.

Ghahramani et al. [20] introduced a two-parameter generalization of the IBP that
focused on separating the coupling relationship between the total number of features
and the distribution on the feature number of each object. The et al. [21] analyzed the
stick-breaking construction of IBP and developed a slice sampler with higher efficiency and
easier application. Thibaux and Jordan [22] demonstrated the exchangeable distribution
produced by IBP corresponds to the use of a latent measure based on the beta process.
Gael et al. [23] rendered a strategy for modifying the IBP to capture the dependency which
can arise as the observations being generated in a specific sequence. Miller et al. [24] used
the phylogenetic IBP to seek a dependency that is taken as the result of known degrees of
relatedness among observations.

The significance of IBP is to produce a distribution of infinite sparse binary matrix,
which can be used to define many new non-parametric Bayesian models with different
likelihood functions. Miller et al. [25] defined a class of non-parametric latent feature
models that can be used for link prediction. Meeds et al. [26] presented a model of
dyadic data based on the two-parameter IBP and developed some novel Metropolis-
Hasting proposals for inference. Wood et al. [27] adopted a non-parametric Bayesian
approach based on the IBP to model the structure graphs with many hidden causes.
Navarro et al. [28] proposed a non-parametric Bayesian model for inferring features from
similarity judgements.

3. The Proposed Methods
3.1. Model Framework

Given a non-negative matrix X ∈ RN×D, the product of two non-negative factor
matrices Z and A is expected to be as close to X as possible. Our data model is shown
in Figure 1.
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Figure 1. Non-negative matrix factorization with a single binary component.

Where Z is a binary matrix of N × K dimension, and A is a non-negative weight
matrix of K× D dimension. In this model, X follows the Gaussian conditional distribution:

X ≈ ZA s.t. Z ∈ {0, 1}N×Kand A ∈ RK×D
+ . (1)

Xn ∼ Normal
(

Zn A, σ2
n

)
, f or n ∈ {1, . . . , N}. (2)

According to Bayesian rule:

p(Z, A|X) ∝ p(X|Z, A)p(A)︸ ︷︷ ︸
model speci f ic

× p(Z)︸ ︷︷ ︸
prior on binary matrix

. (3)

It can be seen that each column in Z corresponds to the existence of a latent feature,
and all elements of Z are non-negative due to the {0, 1} constraints. p(Z) is just the prior
probability function defined by IBP on the binary matrix Z in (1). For A, we need a prior
to express rules about its value, so we assumed that A obeys the exponential distribution
to meet the non-negative limitation. Thus, each element of A obeys the exponential
distribution [8].

Therefore, the defined model can be considered as an exponential Gaussian model,
and the prior representation of these two matrices is:

Ajk ∼ ε
(

Ajk

∣∣∣λk

)
, λk ∼ G(λk|α0, β0), znk ∼ Bernoulli(πk),

s.t. k ∈ {1, . . . , ∞}, j ∈ {1, . . . , D}, n ∈ {1, . . . , N}.
(4)

In accordance with the automatic association determination algorithm proposed by
Thomas et al. [29], the parameter λ is set using gamma prior, which helps the automatic
selection of the model. The whole factor k is either “activated” or “off”, and only a few
effective factors are set to 0 based on the magnitude of λ. Figure 2 indicates the graph
structure of the exponential Gaussian model.
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Figure 2. The exponential Gaussian model.

According to (3), the goal of our model is to obtain the true posterior distribution
ln(p(Z, A

∣∣X, σ2
n , α, λ)) of factor matrices. It is very difficult to solve this problem with

conventional methods, but the variational approximation algorithm is likely to be an
effective method. Many studies have revealed that this algorithm simplifies inference
process and guarantees accuracy to a certain extent.

Like Gibbs sampling, the mean field variational inference is a common approxi-
mate Bayesian inference method, which is to simplify the calculation when the intro-
duced variational distribution q(θ) is as close to the real distribution p(θ|X) as possible.
The theory assumes that the variational distribution q can be completely decomposed as
q(θ) = ∏i q(θi), and all variables are calculated independently in the process of posteriori
inference. It has been proved in [30] that the optimal distribution q∗(θi) of the ith parameter
can be expressed as follows:

log q∗(θi) = Eq(−θi)
[log p(θ, X)] + C. (5)

where C is a constant. The objective function is usually to maximize the lower bound of
evidence (ELBO) or minimize the KL divergence as much as possible, and it is essential to
choose a suitable approximate distribution q for solving the variational problems.

On the basis of the model framework, our work is mainly to find the best approximate
distribution of two factor matrices that are consistent with the constraints.

3.2. The Solution of Weighted Matrix A

For the weight matrix A, the exponential distribution is used as a prior in the model
to limit its non-negativity. According to Bayes’ rule, the posterior of A is approximately a
truncated normal distribution if Z is fixed. The formula is as follows:



Mathematics 2021, 9, 1189 6 of 17

q∗
(

Ajk

)
∝ exp

{
Eq(θ−Ajk

)[log p(X|θ)] + log p(θ)
}

∝ exp

{
Eq(θ−Ajk

)

[
∑

i∈Ωj

log
[√

τ
2π exp

{
− τ

2 (Xij − Zi Aj)
2
}]

+ log
[
λk exp

{
−λk Ajk

}]]}
× u(x)

∝ exp

{
Eq(θ−Ajk

)

[
∑

i∈Ωj

− τ
2 (Xij − Zi Aj)

2 − λk Ajk

]}
× u(x)

∝ exp

{
Eq(θ−Ajk

)

[
− τ

2 ∑
i∈Ωj

[
Z2

ik A2
jk − 2Zik Ajk

(
Xij − ∑

k′ 6=k
Zik′Ajk′

)]]
− Ajkλ̃k

}
× u(x)

∝ exp

{
Ajk

[
−λ̃k + τ̃ ∑

i∈Ωj

(
Xij − ∑

k′ 6=k
Z̃ik′ Ãjk′

)
Z̃ik

]
−

A2
jk

2

[
τ̃ ∑

i∈Ωj

Z̃2
ik

]
× u(x)

}
∝ exp

{
− τjk

2

(
Ajk − µjk

)2
}
× u(x)

∝ T N (Ajk

∣∣∣µjk, τjk).

(6)

Here,

T N (x|µ, τ) =


√

τ
2π exp

{
− τ

2 (x−µ) 2
}

1−Φ(−µ
√

τ)
i f x ≥ 0

0 i f x < 0
, (7)

where A−jk represents all elements in the matrix Ajk except the k − th column, and
it can be seen that the posterior probabilities of non-positive elements are all set to 0.
This process is not a strict optimization of A, which may cause some errors in the final
reconstruction results.

According to the derivation process of (6), the mean and variance of the true posterior
q∗
(

Ajk

)
can be obtained as follows:

τjk = τ̃ ∑
i∈Ωj

Z̃2
ik, µjk =

1
τjk

−λ̃k + τ̃ ∑
i∈Ωj

(
Xij − ∑

k′ 6=k
Z̃ik′ Ãjk′

)
Z̃ik

. (8)

It can be found that the smaller the mean (negative), the larger the variance. The
truncated distribution is closest to the exponential distribution when the expected scale
parameter is |µ ∗ τ|. In order to prevent the calculation of mean and variance effectively
from being invalidated by numerical errors, it is necessary to restrict |µ|. The setting of
parameter λ is also an important factor affecting the lower bound of X. We assume that it
satisfies the following distribution and update the relevant parameters:

q
(

Ajk

)
= T N

(
Ajk; µjk, τjk

)
, q(λk) = G(λk; α∗k , β∗k),α

∗
k = α0 + D, β∗k = β0 +

D

∑
j=1

Ãjk. (9)

3.3. The Solution of Binary Matrix Z

The generation process of IBP is similar to many Indian cafeterias in London. Endless
plates line up, and customers enter one by one, choosing food from left to right. If selected
by a customer, this dish is marked as “1”, otherwise “0”. The number of dishes selected by
each customer satisfies the Poisson distribution [9]. The process is shown in Figure 3.
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Figure 3. Illustration of Indian Buffet process.

As shown in Figure 3, the binary sequence representing the choice of the third customer
can be expressed as [1, 0, 1, 0, 0, ‖]. By connecting N pieces of such sequence vertically,
IBP generates a priori of a binary matrix with finite number of rows (number of data) and
infinite number of columns (number of latent features) to define many new non-parametric
Bayesian models with different likelihood functions. Combined with the analysis of the
model framework, IBP is used to approximate the binary basis matrix Z. In order to
facilitate the process of variational derivation, the stick breaking construction based on the
research of The et al. [16] is introduced as follows:

vj ∼ Beta(α, 1), πk =
k

∏
j=1

vj, znk ∼ Bernoulli(πk). (10)

where vj is the variable, α is a parameter of the beta distribution and πk is the truncated
weight of column k. The basis matrix Z in our model adopts the approximate form similar
to the infinite variational approach of linear Gaussian model proposed by Doshi et al. [12]:

qvnk (znk) = Bernoulli(znk; vnk), qτk (vk) = Beta(vk; τk1, τk2). (11)

To facilitate calculation, the π is replaced by v. The derivation of v and its parameters
are given in [12]. We will present this information in detail in the following derivation.

3.4. Variational Inference Process

Based on the above analysis, the variation distribution of our model is shown
in Figure 4.

Figure 4. Approximate variational distribution diagram.
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Since it is difficult to take the real expectation of the log joint likelihood log p(X|θ) ,
this paper gives its lower bound through reasoning. The variational objective function of
our model is as follows:

log p(X|θ) ≥
K
∑

k=1
Ev[log p(vk|α)] +

K
∑

k=1

N
∑

n=1
Ev,Z[log p(Znk|v)]

+
K
∑

k=1
Eλ[log p(λk|α0, β0)] +

K
∑

k=1

D
∑

j=1
Eλ,A[log p(Ajk|λjk)]

+
N
∑

n=1
EZ,A[log p(Xn|Z, A, σ2

n)] + H[q],

(12)

where θ =
{

α, α0, β0, σ2
n
}

is the parameter. From (12), It can be found from (12) that except
the second term, all items are calculated by exponential distribution family, and their
expected value derivation can refer to the study of Doshi et al. [12]. The Eλ[∗] is:

K

∏
k=1

Eλ[log p(λk|α0, β0)] = α0 log β0 − ln Γ(α0) + (α0 − 1)
K

∑
k=1

ψ(αk) + β0

K

∑
k=1

αk
βk

. (13)

According to the research results of Chopin and Mazet [31,32], we can draw the
truncated distribution formula and simulate the Gaussian distribution defined on the finite
interval [a, b]. The semi finite interval can still be considered by setting b = +∞. The
principle of this method is to divide the interval into the same area and use a properly
distributed accept–reject algorithm. Since the Ajk is a truncated normal distribution, the
Eλ,A[∗] is:

Eλ,A[log p(Ak|λk)] = Eλ,A[log(λk·exp(−λk Ak))]= Eλ,A[log λk − λk Ak]

= log λk − λkE[Ak]

= log αk
βk
− αk

βk

(
µk + τk· 1√

2π·τk
· exp

(
− u2

k
2τk

)
/ 1

2 er f c
(
−
√

τk
2 ·µk

))
.

(14)

For the lower truncated normal distribution, the expectation is as follows:

E(x|x < c) = µ + σ2 f (c)
S(c)

. (15)

Here f (x) is the probability density function and S(x) is the complementary cumula-
tive distribution function, and their formulas are as follows:

f (x) =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
,S(x) = 1− F(x) = 1− cd f (x) = 0.5∗erfc

(
x√
2

)
. (16)

The entropy H[q] in (11) is:

H[q] = −Eqlog
[

K
∏

k=1
qτk (πk)

K
∏

k=1
q(λk)

K
∏

k=1
qµk (Ak)

K
∏

k=1

N
∏

n=1
qvnk (znk)

]
=

K
∑

k=1
Eπ

(
−log qτk (πk)

)
+

K
∑

k=1
Eλ(−log q(λk))

+
K
∑

k=1
EA
(
−log qµk (Ak)

)
+

K
∑

k=1

N
∑

n=1
EZ
(
−log qvnk (znk)

) (17)
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where,

Eπ

(
−log qτk (πk)

)
= log

(
Γ(τk1)Γ(τk2)
Γ(τk1+τk2)

)
− (τk1 − 1)ψ(τk1)− (τk2 − 1)ψ(τk2)

+(τk1 + τk2 − 2)ψ(τk1 + τk2),
Eλ(−log q(λk)) = ln Γ

(
α∗k
)
−
(
α∗k − 1

)
ψ
(
α∗k
)
− ln β∗k + α∗k ,

EA
(
−log qµk (Ak)

)
= 0.5 ∗ log(

(
2πe)D|τk|

)
,

EZ
(
−log qvnk (znk)

)
= −(1− vnk)log(1− vnk)− vnklog vnk .

(18)

The ψ(·) is a digamma function. According to the analysis, the derivation formula of
the final objective function of (12) is as follows:

log p(X|θ) ≥
K
∑

k=1
[log α + (α− 1)(ψ(τk1)− ψ(τk1 + τk2))]

+
K
∑

k=1

N
∑

n=1

[
vnk

(
k
∑

m=1
ψ(τk2)− ψ(τk1 + τk2)

)
+ (1− vnk)Eυ

[
log
(

1−
k

∏
m=1

υm

)]]
+ α0log β0 − ln Γ(α0) + (α0 − 1)

K
∑

k=1
ψ(αk) + β0

K
∑

k=1

αk
βk

+log αk
βk
− αk

βk

(
µk + τk· 1√

2π·τk
· exp

(
− u2

k
2τk

)
/ 1

2 er f c
(
−
√

τk
2 · µk

))
+

N
∑

n=1

[
−D

2 log
(
2πσ2

n
)]

+
N
∑

n=1

[
− 1

2σ2
n

(
XnXT

n − 2
K
∑

k=1
vnkµkXT

n + 2 ∑
k<k′

vnkvnk′µkµT
k +

K
∑

k=1
vnk
(
tr(τk) + µkµT

k
))]

+
K
∑

k=1

[
log
(

Γ(τk1)Γ(τk2)
Γ(τk1+τk2)

)
− (τk1 − 1)ψ(τk1)− (τk2 − 1)ψ(τk2) + (τk1 + τk2 − 2)ψ(τk1 + τk2)

]
+

K
∑

k=1

1
2 log(

(
2πe)D|τk|

)
+

K
∑

k=1
ln Γ

(
α∗k
)
−
(
α∗k − 1

)
ψ
(
α∗k
)
− lnβ∗k + α∗k

+
K
∑

k=1

N
∑

n=1
[−vnklog vnk − (1− vnk)log(1− vnk)].

(19)

4. Experimental Result

The ability of the proposed method to perform matrix factorization and learn the
number of latent features through the synthetic dataset is first demonstrated, and then
the performance of the proposed method is verified by comparing with the benchmark
methods on real datasets, including Swimmer dataset, Cora document dataset, and CBCL
face dataset. While showing the effect of the model, we list the initialization setting of the
parameters in each task, which have a great impact on the quality of convergence.

The main parameters involved in the experiment include IBP parameter α, lambda
parameter α0, β0, Gaussian parameter σn and truncated feature number K. The optimal
effect parameter will be given for reference at the end of each experiment. The algorithm
experiment is carried out in the environment of Matlab2015b.

4.1. Sythetic Dataset

We apply the model to a simple composite dataset generated from known features.
The dataset is simple enough, and the accuracy of graph reconstruction can reach almost
100%, and there are enough differences to resolve the qualitative features of latent feature
inference. We have generated a specific 20× 16-dimensional non-negative matrix, some of
which is shown in Figure 5.
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Figure 5. The analysis and reconstruction results on synthetic dataset: (a) the binary matrix Z, (b) the
extracted latent features, (c) the original sample, (d) the reconstructed result. Here the white part
indicates that the object has this feature while the black part indicates the opposite.

Figure 5a shows the basis matrix Z with 20 × 4 dimension. Figure 5b shows the
extracted latent features, there are four in total. The original image is sufficient to justify it.
For example, the first image is made up of three feature elements in Figure 5b except for
the item in the upper right corner, while the third image contains that single item.

Figure 5d shows the reconstructed image using the extracted latent features, and the
comparison shows that the accuracy can reach almost 100%.

The above analysis fully proves the effectiveness of our algorithm for automatic
learning of latent features. Then, the parameters are initialized as α = 1, α0 = 0.1, β0 = 10,
K = 6.

4.2. Swimmer Dataset

The swimmer dataset contains all possible combinations of swimmer’s body pos-
tures (including limbs and trunk), with a total of 256 grayscale images. Figure 6 shows
some samples of the dataset, depicting four simplified human figures with limbs and
showing the different joints of the limbs. In this paper, the dataset is represented as a
256× 1024-dimensional matrix X, and each column represents a 32× 32-dimensional image.

Figure 6. Samples of the swimmer dataset.
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The experiment is designed to observe 16 variable limb features and 1 fixed trunk
feature through model learning. The trunk and limbs should be separate parts. According
to our model, 17 features are accurately extracted, as shown in Figure 7.

Figure 7. The extracted latent feature information.

On the contrary, most previous studies cannot successfully separate the backbone
part. Since our algorithm is based on the NMF framework, the result of the basic NMF is
first shown in Figure 8a. This result is derived from the research results of Gao Liang et al.
in [33]. It can be seen that the eighth base image in the first line is almost identical to the
sixth in the second line. The body part exists in each extracted feature, so the basic NMF
method cannot independently extract the inherent or variable features of the dataset, and
there is obvious overlap between the base feature values.

Figure 8. Analysis and comparison results on swimmer dataset: (a) basic NMF decomposition results, (b) the comparative
decomposition results including various combinations of limbs and the trunk.
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Figure 8b shows the result of feature extraction in [34]. It can be seen that the four
basic images that have been specially labeled are all a combination of limbs and the trunk.
This is contrary to common sense.

Referring to two comparative experimental methods, a series of actual factors have
been “polluted” to a certain extent. The results show that the proposed method has good
data representation and feature recognition ability.

In addition, Figure 9 shows the basis matrix Z. The parameters are initialized as
α = 1, σn = 0.1, α0 = 1, β0 = 1, K = 20.

Figure 9. Binary matrix Z of the swimmer dataset.

4.3. Document Clustering

In this subsection, we apply the proposed model to a practical task: document cluster-
ing. The Cora dataset is used for experimental data that contains 2708 papers, including
1433 unique words after removing the stop words and the words that appear less than
10 times in the literature. The labels of these documents are their research field, about
7 categories. In order to better measure the effect of clustering task, we use three evaluation
indicators: Jaccard coefficient (JC), Fowlkes and Mallows (FM), and F-measurement (F1).
The larger their value, the better the clustering effect is, and their formulas are as follows:

JC = a/(a + b + c),

FM =
√

a/(a + b) ·
√

a/(a + c) ,

F1 = 2a2/
(
2a2 + ac + ab

)
.

(20)

where a is the number of point pairs belonging to the same cluster in the benchmark results
and test results, b is the number of point pairs in the same benchmark but different cluster,
and c is the number of point pairs in the same cluster but different benchmark cluster.

The results of our method are compared with some parametric models, such as spectral
clustering (SP), sparse NMF (SNMF), NMF, and also some Bayesian non-parametric models,
which will be described in Table 1.
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Table 1. Clustering result of the Cora dataset.

Index JC FM F1

Parametric Model or
Algorithms

SNMF 0.1678 0.2882 0.2870
NMF 0.1524 0.2729 0.2688

SP 0.1691 0.3123 0.2737

Bayesian
Non-parametric NMF

Models

IBP 0.1650 0.2770 0.2890
Bivariate-Beta doubly IBP 0.1720 0.2790 0.2930
Gaussian process doubly

IBP 0.1650 0.2630 0.2610

Ours 0.1749 0.3173 0.2977

The benchmark comparison data are obtained from [35]. The Bivariate-Beta distribu-
tion (BB-dIBP-NMF) and Gaussian process (GP-dIBP-NMF) are proposed based on doubly
IBP. Finally, in our model, 14 latent features are obtained from the dataset, others are 17
(from BB-dIBP-NMF), 22 (from GP-dIBP-NMF). It can be seen that, compared with various
methods mentioned in other papers, our algorithm obtains the best clustering results with
the least features. Figure 10 shows this result more visually.

Figure 10. Comparative display of clustering results related to Cora dataset.

The parameters are initialized as α = 20, σn = 0.1, λ = 100. And the square difference
σ of spectral clustering is set to 0.2.

4.4. Face Feature Extraction

Not only can NMF decompose quickly and accurately, but the decomposition result
has definite physical meaning. Lee and Seung [2] took face recognition as an example to
decompose the face into separate parts such as nose, eyes, mouth and eyebrows. This is
consistent with the intuitive visual concept of “the parts constitute the whole” in human
thinking. And they compared the decomposition results of the NMF algorithm with those
of common matrix factorization methods such as vector quantization (VQ) and PCA. The
difference is that NMF is based on partial facial representations, while VQ and PCA are
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global representations. Therefore, we aim to apply the proposed model to the same face
dataset (CBCL Face Database) [36] and observe whether our model can accurately extract
similar local features and completely reconstruct the entire face, which is conducive to
verifying the effectiveness of our model.

The CBCL Face Database contains many face and non-face images. It is widely used
in the Biology and Computing Learning Center of the MIT. We use 2429 face images in the
training set. Figure 11 shows some face images in this dataset.

Figure 11. The samples of CBCL Face Database.

According to the algorithm model, we extracte 51 “local” facial features from
2429 images, while 49 features are extracted by Lee and Seung [2]. Figure 12 shows
facial feature extracted by our model, where white pixels represent features and the black
is set as background.

Figure 12. Extracted local features of human face.

Figure 13 shows the comparison between the reconstructed specific face image and
the original image. By calculation, the mean square error rate of the reconstruction of the
whole dataset is only 8%.
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Figure 13. Comparison of original face and reconstructed result.

The parameters are initialized as α = 12, σn = 1, α0 = 3, β0 = 1.

5. Conclusions

As we know, traditional NMF models need to assume the number of basis to be fixed
which makes them less flexible for many applications. IBP provides a priori of an infinite
binary matrix, which is usually used to infer latent features and their quantities from a
set of observation data. In this paper, we propose an improved IBP based probabilistic
NMF framework, which uses exponential distribution and {0, 1} onstraints to limit the
non-negativity of the weight matrix and the basis matrix. This method allows us to flexibly
choose appropriate parameters as the basis to avoid the problems caused by the initial
decomposition rank setting, and to automatically learn the latent features. At the same
time, an exponential Gaussian model is constructed based on this framework, and the true
posterior of two factor matrices is derived with the variational Bayes method. Compared
with the benchmark methods, the proposed method has achieved better results on both
synthetic and real datasets, and it shows higher decomposition efficiency. However, the
proposed model has great computational complexity. The efficiency of execution and the
reduction of model complexity may be one of the future research contents.

Author Contributions: Conceptualization, X.M. and T.Z.; methodology, X.M., J.G., and T.Z.; writing—
original draft preparation, X.M. and J.G.; writing—review and editing, X.M., X.L., and J.G.; visual-
ization, X.M. and X.L.; supervision, T.Z. and Y.T. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(No.62076043) and the Science and Technology Research Program of Chongqing Municipal Education
Commission (No. KJQN201900110).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No data available.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of

data values. Environmetrics 1994, 5, 111–126. [CrossRef]
2. Lee, D.; Seung, H. Learning the parts of objects by nonnegative matrix factorization. Nature 1999, 401, 788–791. [CrossRef]

[PubMed]
3. Ramsay, J.O. Functional Data Analysis. In Encyclopedia of Statistical Sciences; Everitt, B.S., Howell, D.C., Eds.; John Wiley & Sons,

Inc.: Hoboken, NJ, USA, 2004; p. 4.
4. Bach, F.; Mairal, J.; Ponce, J. Convex sparse matrix factorizations. arXiv 2008, arXiv:0812.1869.
5. Zafeiriou, S.; Tefas, A.; Buciu, I.; Pitas, I. Exploiting discriminant information in nonnegative matrix factorization with application

to frontal face verification. IEEE Trans. Neural. Netw. Learn Syst. 2006, 17, 683–695. [CrossRef] [PubMed]
6. Liu, H. Constrained nonnegative matrix factorization for image representation. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34,

1299–1311. [CrossRef]
7. Cai, D.; He, X.; Han, J.; Huang, T.S. Graph regularized nonnegative matrix factorization for data representation. IEEE Trans.

Pattern Anal. Mach. Intell. 2011, 33, 1548–1560.

http://doi.org/10.1002/env.3170050203
http://doi.org/10.1038/44565
http://www.ncbi.nlm.nih.gov/pubmed/10548103
http://doi.org/10.1109/TNN.2006.873291
http://www.ncbi.nlm.nih.gov/pubmed/16722172
http://doi.org/10.1109/TPAMI.2011.217


Mathematics 2021, 9, 1189 16 of 17

8. Schmidt, M.N.; Winther, O.; Hansen, L.K. Bayesian Non-Negative Matrix Factorization. In Independent Component Analysis and
Signal Separation, Proceedings of the 8th International Conference on Independent Component Analysis and Signal Separation, Paraty,
Brazil, 15 March 2009; Adali, T., Christian, J., Romano, J.M.T., Barros, A.K., Eds.; Springer: Berlin, Germany, 2009; pp. 540–547.

9. Wild, S.; Curry, J.; Dougherty, A. Improving non-negative matrix factorizations through structured initialization. Pattern Recognit.
2004, 37, 2217–2232. [CrossRef]

10. Yang, X.; Huang, K.; Zhang, R.; Hussain, A. Learning latent features with infinite nonnegative binary matrix trifactorization.
IEEE Trans. Emerg. Top. Comput. 2018, 2, 450–463. [CrossRef]

11. Zhang, Y.; Fang, Y. A NMF algorithm for blind separation of uncorrelated signals. In Proceedings of the International Conference
on Wavelet Analysis and Pattern Recognition, Beijing, China, 2 November 2007; Curran Associates Inc.: New York, NY, USA,
2007; pp. 999–1003.

12. Hoyer, P.O. Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 2004, 5, 1457–1469.
13. Jia, Y.W.Y.; Turk, C.H.M. Fisher non-negative matrix factorization for learning local features. In Proceedings of the Asian

Conference on Computer Vision, Seoul, Korea, 27 January 2004; Hong, K.S., Zhang, Z.Y., Eds.; Asian Federation of Computer
Vision Societies: Seoul, Korea, 2004; pp. 27–30.

14. Lin, C.J. Projected gradient methods for nonnegative matrix factorization. Neural Comput. 2007, 19, 2756–2779. [CrossRef]
[PubMed]

15. Guillamet, D.; Vitria, J.; Schiele, B. Introducing a weighted non-negative matrix factorization for image classification. Pattern
Recogn. Lett. 2003, 24, 2447–2454. [CrossRef]

16. Hinrich, J.L.; Mørup, M. Probabilistic Sparse Non-Negative Matrix Factorization. In Latent Variable Analysis and Signal Separation,
Proceedings of the International Conference on Latent Variable Analysis and Signal Separation, Guildford, UK, 2 July 2018; Deville, Y.,
Gannot, S., Mason, R., Plumbley, M., Ward, D., Eds.; Springer: Berlin, Germany, 2018; pp. 488–498.

17. Mohammadiha, N.; Kleijn, W.B.; Leijon, A. Gamma hidden Markov model as a probabilistic nonnegative matrix factorization. In
Proceedings of the 21st European Signal Processing Conference (EUSIPCO 2013), Marrakech, Morocco, 9 September 2013; IEEE:
New York, NY, USA, 2013; pp. 1–5.

18. Bayar, B.; Bouaynaya, N.; Shterenberg, R. Probabilistic non-negative matrix factorization: Theory and application to microarray
data analysis. J. Bioinform. Comput. Biol. 2014, 12, 1450001. [CrossRef] [PubMed]

19. Griffiths, T.L.; Ghahramani, Z. The Indian buffet process: An introduction and review. J. Mach. Learn. Res. 2011, 12, 1185–1224.
20. Knowles, D.; Ghahramani, Z. Infinite Sparse Factor Analysis and Infinite Independent Components Analysis. In International

Conference on Independent Component Analysis and Signal Separation, ICA’07, Proceedings of the 7th International Conference on
Independent Component Analysis and Signal Separation, London, UK, 12 August 2007; Davies, M.E., James, C.J., Abdallah, S.A.,
Plumbley, M.D., Eds.; Springer: Berlin, Germany, 2007; pp. 381–388.

21. Teh, Y.W.; Grür, D.; Ghahramani, Z. Stick-Breaking Construction for the Indian Buffet Process. In Artificial Intelligence and Statistics,
Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistic, San Juan, PR, USA, 21–24 March 2007; Meila,
M., Shen, X., Eds.; PMLR: San Juan, PR, USA, 2007; pp. 556–563.

22. Thibaux, R.; Jordan, M.I. Hierarchical Beta Processes and the Indian Buffet Process. In Artificial Intelligence and Statistics, Proceedings
of the Eleventh International Conference on Artificial Intelligence and Statistic, San Juan, PR, USA, 21–24 March 2007; Meila, M., Shen,
X., Eds.; PMLR: San Juan, PR, USA, 2007; pp. 564–571.

23. Gael, J.V.; The, Y.; Ghahramani, Z. The infinite factorial hidden Markov model. In Proceedings of the 21th International Conference
on Neural Information Processing Systems, Vancouver, BC, Canada, 8–10 December 2008; Koller, D., Schuurmans, D., Bengio, Y.,
Bottou, L., Eds.; Curran Associates Inc.: New York, NY, USA, 2008; pp. 1697–1704.

24. Miller, K.T.; Griffiths, T.L.; Jordan, M.I. The phylogenetic Indian buffet process: A non-exchangeable nonparametric prior for
latent features. In Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence, Helsinki, Finland, 9–12 July 2008;
Mcallester, D., Myllymaki, P., Eds.; AUAI Press: Arlington, VA, USA, 2008; pp. 403–407.

25. Miller, K.T.; Griffiths, T.L.; Jordan, M.I. Nonparametric latent feature models for link prediction. In Proceedings of the 22nd
International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 7–10 December 2009; Bengio,
Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A., Eds.; Curran Associates Inc.: New York, NY, USA, 2009; pp.
1276–1284.

26. Meeds, E.; Ghahramani, Z.; Neal, R.; Roweis, S.T. Modeling dyadic data with binary latent factors. In Proceedings of the 19th
International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 4–7 December 2006; Schölkopf, B.,
Platt, J.C., Hoffman, T., Eds.; MIT Press: Cambridge, MA, USA, 2006; pp. 977–984.

27. Wood, F.; Griffiths, T.L.; Ghahramani, Z.A. Non-parametric Bayesian method for inferring hidden causes. In Proceedings of the
22nd Conference in Uncertainty in Artificial Intelligence, Cambridge, MA, USA, 13–16 July 2006; AUAI Press: Cambridge, MA,
USA, 2006; pp. 536–543.

28. Navarro, D.; Griffiths, T. A nonparametric Bayesian method for inferring features from similarity judgments. In Proceedings
of the 19th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 4–7 December 2006;
Schölkopf, B., Platt, J.C., Hoffman, T., Eds.; MIT Press: Cambridge, MA, USA, 2006; pp. 1033–1040.

29. Brouwer, T.; Frellsen, J.; Lió, P. Comparative study of inference methods for Bayesian nonnegative matrix factorization. In
Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Skopje, Macedonia,
18 September 2017; Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S., Eds.; Springer: Berlin, Germany, 2017; pp. 513–529.

http://doi.org/10.1016/j.patcog.2004.02.013
http://doi.org/10.1109/TETCI.2018.2806934
http://doi.org/10.1162/neco.2007.19.10.2756
http://www.ncbi.nlm.nih.gov/pubmed/17716011
http://doi.org/10.1016/S0167-8655(03)00089-8
http://doi.org/10.1142/S0219720014500012
http://www.ncbi.nlm.nih.gov/pubmed/24467759


Mathematics 2021, 9, 1189 17 of 17

30. Bernardo, J.M.; Bayarri, M.J.; Berger, J.O.; Dawid, A.P.; Heckerman, D.; Smith, A.F.; West, M. The variational Bayesian EM
algorithm for incomplete data: With application to scoring graphical model structures. Bayesian Stat. 2003, 7, 210.

31. Chopin, N. Fast simulation of truncated Gaussian distributions. Stat. Comput. 2012, 21, 275–288. [CrossRef]
32. Mazet, V. Simulation d’une Distribution Gaussienne Tronquée sur un Intervalle Fini; Université de Strasbourg: Strasbourg, France, 2012.
33. Gao, L.; Yu, J.; Pan, J. Feature Re-factorization-based data sparse representation. J. Beijing Univ. Technol. 2017, 43, 1666–1672.
34. Pan, W.; Doshi-Velez, F. A characterization of the non-uniqueness of nonnegative matrix factorizations. arXiv 2016,

arXiv:1604.00653.
35. Xuan, J.; Lu, J.; Zhang, G.; Da Xu, R.Y.; Luo, X. Doubly nonparametric sparse nonnegative matrix factorization based on dependent

Indian buffet processes. IEEE Trans. Neural. Netw. Learn. Syst. 2018, 29, 1835–1849. [CrossRef] [PubMed]
36. MIT Center for Biological and Computation Learning. Available online: http://www.ai.mit.edu/projects/cbcl.old (accessed on

8 May 2020).

http://doi.org/10.1007/s11222-009-9168-1
http://doi.org/10.1109/TNNLS.2017.2676817
http://www.ncbi.nlm.nih.gov/pubmed/28422690
http://www.ai.mit.edu/projects/cbcl.old

	Introduction 
	Related Work 
	Non-Negative Matrix Factorization 
	Indian Buffet Process 

	The Proposed Methods 
	Model Framework 
	The Solution of Weighted Matrix A 
	The Solution of Binary Matrix Z 
	Variational Inference Process 

	Experimental Result 
	Sythetic Dataset 
	Swimmer Dataset 
	Document Clustering 
	Face Feature Extraction 

	Conclusions 
	References

