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PREFACE

This book is both a tutorial and a textbook. In this book we present an
introduction to probability and mathematical statistics and it is intended for
students already having some elementary mathematical background. It is
intended for a one-year senior level undergraduate and beginning graduate
level course in probability theory and mathematical statistics. The book
contains more material than normally would be taught in a one-year course.
This should give the teacher flexibility with respect to the selection of the
content and level at which the book is to be used. It has arisen from over 15
years of lectures in senior level calculus based courses in probability theory
and mathematical statistics at the University of Louisville.

Probability theory and mathematical statistics are difficult subjects both
for students to comprehend and teachers to explain. A good set of exam-
ples makes these subjects easy to understand. For this reason alone we have
included more than 350 completely worked out examples and over 165 illus-
trations. We give a rigorous treatment of the fundamentals of probability
and statistics using mostly calculus. We have given great attention to the
clarity of the presentation of the materials. In the text theoretical results
are presented as theorems, proposition or lemma, of which as a rule rigorous
proofs are given. In the few exceptions to this rule references are given to
indicate where details can be found. This book contains over 450 problems
of varying degrees of difficulty to help students master their problem solving
skill. To make this less wordy we have

There are several good books on these subjects and perhaps there is
no need to bring a new one to the market. So for several years, this was
circulated as a series of typeset lecture notes among my students who were
preparing for the examination 110 of the Actuarial Society of America. Many
of my students encouraged me to formally write it as a book. Actuarial
students will benefit greatly from this book. The book is written in simple
English; this might be an advantage to students whose native language is not
English.
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I cannot claim that all the materials I have written in this book are mine.
I have learned the subject from many excellent books, such as Introduction
to Mathematical Statistics by Hogg and Craig, and An Introduction to Prob-
ability Theory and Its Applications by Feller. In fact, these books have had a
profound impact on me, and my explanations are influenced greatly by these
textbooks. If there are some resemblances, then it is perhaps due to the fact
that I could not improve the original explanations I have learned from these
books. I am very thankful to the authors of these great textbooks. I am
also thankful to the Actuarial Society of America for letting me use their
test problems. I thank all my students in my probability theory and math-
ematical statistics courses from 1988 to 2003 who helped me in many ways
to make this book possible in the present form. Lastly, if it wasn’t for the
infinite patience of my wife, Sadhna, for last several years, this book would
never gotten out of the hard drive of my computer.

The entire book was typeset by the author on a Macintosh computer
using TEX, the typesetting system designed by Donald Knuth. The figures
were generated by the author using MATHEMATICA, a system for doing
mathematics designed by Wolfram Research, and MAPLE, a system for doing
mathematics designed by Maplesoft. The author is very thankful to the
University of Louisville for providing many internal financial grants while
this book was under preparation.

Prasanna Sahoo, Louisville



xi



xii

TABLE OF CONTENTS

1. Probability of Events . . . . . . . . . . . . . . . . . . . 1

1.1. Introduction

1.2. Counting Techniques

1.3. Probability Measure

1.4. Some Properties of the Probability Measure

1.5. Review Exercises

2. Conditional Probability and Bayes’ Theorem . . . . . . . 27

2.1. Conditional Probability

2.2. Bayes’ Theorem

2.3. Review Exercises

3. Random Variables and Distribution Functions . . . . . . . 45

3.1. Introduction

3.2. Distribution Functions of Discrete Variables

3.3. Distribution Functions of Continuous Variables

3.4. Percentile for Continuous Random Variables

3.5. Review Exercises

4. Moments of Random Variables and Chebychev Inequality . 73

4.1. Moments of Random Variables

4.2. Expected Value of Random Variables

4.3. Variance of Random Variables

4.4. Chebychev Inequality

4.5. Moment Generating Functions

4.6. Review Exercises



xiii

5. Some Special Discrete Distributions . . . . . . . . . . . 107

5.1. Bernoulli Distribution

5.2. Binomial Distribution

5.3. Geometric Distribution

5.4. Negative Binomial Distribution

5.5. Hypergeometric Distribution

5.6. Poisson Distribution

5.7. Riemann Zeta Distribution

5.8. Review Exercises

6. Some Special Continuous Distributions . . . . . . . . . 141

6.1. Uniform Distribution

6.2. Gamma Distribution

6.3. Beta Distribution

6.4. Normal Distribution

6.5. Lognormal Distribution

6.6. Inverse Gaussian Distribution

6.7. Logistic Distribution

6.8. Review Exercises

7. Two Random Variables . . . . . . . . . . . . . . . . . 185

7.1. Bivariate Discrete Random Variables

7.2. Bivariate Continuous Random Variables

7.3. Conditional Distributions

7.4. Independence of Random Variables

7.5. Review Exercises

8. Product Moments of Bivariate Random Variables . . . . 213

8.1. Covariance of Bivariate Random Variables

8.2. Independence of Random Variables

8.3. Variance of the Linear Combination of Random Variables

8.4. Correlation and Independence

8.5. Moment Generating Functions

8.6. Review Exercises



xiv

9. Conditional Expectations of Bivariate Random Variables 237

9.1. Conditional Expected Values

9.2. Conditional Variance

9.3. Regression Curve and Scedastic Curves

9.4. Review Exercises

10. Functions of Random Variables and Their Distribution . 257

10.1. Distribution Function Method

10.2. Transformation Method for Univariate Case

10.3. Transformation Method for Bivariate Case

10.4. Convolution Method for Sums of Random Variables

10.5. Moment Method for Sums of Random Variables

10.6. Review Exercises

11. Some Special Discrete Bivariate Distributions . . . . . 289

11.1. Bivariate Bernoulli Distribution

11.2. Bivariate Binomial Distribution

11.3. Bivariate Geometric Distribution

11.4. Bivariate Negative Binomial Distribution

11.5. Bivariate Hypergeometric Distribution

11.6. Bivariate Poisson Distribution

11.7. Review Exercises

12. Some Special Continuous Bivariate Distributions . . . . 317

12.1. Bivariate Uniform Distribution

12.2. Bivariate Cauchy Distribution

12.3. Bivariate Gamma Distribution

12.4. Bivariate Beta Distribution

12.5. Bivariate Normal Distribution

12.6. Bivariate Logistic Distribution

12.7. Review Exercises



xv

13. Sequences of Random Variables and Order Statistics . . 351

13.1. Distribution of Sample Mean and Variance

13.2. Laws of Large Numbers

13.3. The Central Limit Theorem

13.4. Order Statistics

13.5. Sample Percentiles

13.6. Review Exercises

14. Sampling Distributions Associated with

the Normal Population . . . . . . . . . . . . . . . . . 389

14.1. Chi-square distribution

14.2. Student’s t-distribution

14.3. Snedecor’s F -distribution

14.4. Review Exercises

15. Some Techniques for Finding Point

Estimators of Parameters . . . . . . . . . . . . . . . 407

15.1. Moment Method

15.2. Maximum Likelihood Method

15.3. Bayesian Method

15.3. Review Exercises

16. Criteria for Evaluating the Goodness

of Estimators . . . . . . . . . . . . . . . . . . . . . 447

16.1. The Unbiased Estimator

16.2. The Relatively Efficient Estimator

16.3. The Minimum Variance Unbiased Estimator

16.4. Sufficient Estimator

16.5. Consistent Estimator

16.6. Review Exercises



xvi

17. Some Techniques for Finding Interval

Estimators of Parameters . . . . . . . . . . . . . . . 487

17.1. Interval Estimators and Confidence Intervals for Parameters

17.2. Pivotal Quantity Method

17.3. Confidence Interval for Population Mean

17.4. Confidence Interval for Population Variance

17.5. Confidence Interval for Parameter of some Distributions

not belonging to the Location-Scale Family

17.6. Approximate Confidence Interval for Parameter with MLE

17.7. The Statistical or General Method

17.8. Criteria for Evaluating Confidence Intervals

17.9. Review Exercises

18. Test of Statistical Hypotheses . . . . . . . . . . . . . 531

18.1. Introduction

18.2. A Method of Finding Tests

18.3. Methods of Evaluating Tests

18.4. Some Examples of Likelihood Ratio Tests

18.5. Review Exercises

19. Simple Linear Regression and Correlation Analysis . . 575

19.1. Least Squared Method

19.2. Normal Regression Analysis

19.3. The Correlation Analysis

19.4. Review Exercises

20. Analysis of Variance . . . . . . . . . . . . . . . . . . 611
20.1. One-way Analysis of Variance with Equal Sample Sizes
20.2. One-way Analysis of Variance with Unequal Sample Sizes
20.3. Pair wise Comparisons
20.4. Tests for the Homogeneity of Variances
20.5. Review Exercises



xvii

21. Goodness of Fits Tests . . . . . . . . . . . . . . . . . 643
21.1. Chi-Squared test
21.2. Kolmogorov-Smirnov test
21.3. Review Exercises

References . . . . . . . . . . . . . . . . . . . . . . . . . 659

Answers to Selected Review Exercises . . . . . . . . . . . 665



Probability and Mathematical Statistics 351

Chapter 13

SEQUENCES

OF
RANDOM VARIABLES

AND
ORDER STASTISTICS

In this chapter, we generalize some of the results we have studied in the
previous chapters. We do these generalizations because the generalizations
are needed in the subsequent chapters relating mathematical statistics. In
this chapter, we also examine the weak law of large numbers, the Bernoulli’s
law of large numbers, the strong law of large numbers, and the central limit
theorem. Further, in this chapter, we treat the order statistics and per-
centiles.

13.1. Distribution of sample mean and variance

Consider a random experiment. Let X be the random variable associ-
ated with this experiment. Let f(x) be the probability density function of X.
Let us repeat this experiment n times. Let Xk be the random variable asso-
ciated with the kth repetition. Then the collection of the random variables
{X1, X2, ..., Xn } is a random sample of size n. From here after, we simply
denote X1, X2, ..., Xn as a random sample of size n. The random variables
X1, X2, ..., Xn are independent and identically distributed with the common
probability density function f(x).

For a random sample, functions such as the sample mean X, the sample
variance S2 are called statistics. In a particular sample, say x1, x2, ..., xn, we
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observed x and s2. We may consider

X =
1
n

n∑
i=1

Xi

and

S2 =
1

n − 1

n∑
i=1

(
Xi − X

)2

as random variables and x and s2 are the realizations from a particular
sample.

In this section, we are mainly interested in finding the probability distri-
butions of the sample mean X and sample variance S2, that is the distribution
of the statistics of samples.

Example 13.1. Let X1 and X2 be a random sample of size 2 from a distri-
bution with probability density function

f(x) =
{

6x(1 − x) if 0 < x < 1
0 otherwise.

What are the mean and variance of sample sum Y = X1 + X2?

Answer: The population mean

µX = E (X)

=
∫ 1

0

x 6x(1 − x) dx

= 6
∫ 1

0

x2 (1 − x) dx

= 6 B(3, 2) (here B denotes the beta function)

= 6
Γ(3) Γ(2)

Γ(5)

= 6
(

1
12

)
=

1
2
.

Since X1 and X2 have the same distribution, we obtain µX1 = 1
2 = µX2 .

Hence the mean of Y is given by

E(Y ) = E(X1 + X2)

= E(X1) + E(X2)

=
1
2

+
1
2

= 1.
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Next, we compute the variance of the population X. The variance of X is
given by

V ar(X) = E
(
X2

)
− E(X)2

=
∫ 1

0

6x3(1 − x) dx −
(

1
2

)2

= 6
∫ 1

0

x3 (1 − x) dx −
(

1
4

)
= 6B(4, 2) −

(
1
4

)
= 6

Γ(4) Γ(2)
Γ(6)

−
(

1
4

)
= 6

(
1
20

)
−

(
1
4

)
=

6
20

− 5
20

=
1
20

.

Since X1 and X2 have the same distribution as the population X, we get

V ar(X1) =
1
20

= V ar(X2).

Hence, the variance of the sample sum Y is given by

V ar(Y ) = V ar (X1 + X2)

= V ar (X1) + V ar (X2) + 2Cov (X1, X2)

= V ar (X1) + V ar (X2)

=
1
20

+
1
20

=
1
10

.

Example 13.2. Let X1 and X2 be a random sample of size 2 from a distri-
bution with density

f(x) =

{ 1
4 for x = 1, 2, 3, 4

0 otherwise.

What is the distribution of the sample sum Y = X1 + X2 ?
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Answer: Since the range space of X1 as well as X2 is {1, 2, 3, 4}, the range
space of Y = X1 + X2 is

RY = {2, 3, 4, 5, 6, 7, 8}.

Let g(y) be the density function of Y . We want to find this density function.
First, we find g(2), g(3) and so on.

g(2) = P (Y = 2)

= P (X1 + X2 = 2)

= P (X1 = 1 and X2 = 1)

= P (X1 = 1) P (X2 = 1) (by independence of X1 and X2)

= f(1) f(1)

=
(

1
4

) (
1
4

)
=

1
16

.

g(3) = P (Y = 3)

= P (X1 + X2 = 3)

= P (X1 = 1 and X2 = 2) + P (X1 = 2 and X2 = 1)

= P (X1 = 1) P (X2 = 2)

+ P (X1 = 2) P (X2 = 1) (by independence of X1 and X2)

= f(1) f(2) + f(2) f(1)

=
(

1
4

) (
1
4

)
+

(
1
4

) (
1
4

)
=

2
16

.
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g(4) = P (Y = 4)

= P (X1 + X2 = 4)

= P (X1 = 1 and X2 = 3) + P (X1 = 3 and X2 = 1)

+ P (X1 = 2 and X2 = 2)

= P (X1 = 3) P (X2 = 1) + P (X1 = 1) P (X2 = 3)

+ P (X1 = 2) P (X2 = 2) (by independence of X1 and X2)

= f(1) f(3) + f(3) f(1) + f(2) f(2)

=
(

1
4

) (
1
4

)
+

(
1
4

) (
1
4

)
+

(
1
4

) (
1
4

)
=

3
16

.

Similarly, we get

g(5) =
4
16

, g(6) =
3
16

, g(7) =
2
16

, g(8) =
1
16

.

Thus, putting these into one expression, we get

g(y) = P (Y = y)

=
y−1∑
k=1

f(k) f(y − k)

=
4 − |y − 5|

16
, y = 2, 3, 4, ..., 8.

Remark 13.1. Note that g(y) =
y−1∑
k=1

f(k) f(y−k) is the discrete convolution

of f with itself. The concept of convolution was introduced in chapter 10.

The above example can also be done using the moment generating func-
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tion method as follows:

MY (t) = MX1+X2(t)

= MX1(t) MX2(t)

=
(

et + e2t + e3t + e4t

4

) (
et + e2t + e3t + e4t

4

)
=

(
et + e2t + e3t + e4t

4

)2

=
e2t + 2e3t + 3e4t + 4e5t + 3e6t + 2e7t + e8t

16
.

Hence, the density of Y is given by

g(y) =
4 − |y − 5|

16
, y = 2, 3, 4, ..., 8.

Theorem 13.1. If X1, X2, ..., Xn are mutually independent random vari-
ables with densities f1(x1), f2(x2), ..., fn(xn) and E[ui(Xi)], i = 1, 2, ..., n

exist, then

E

[
n∏

i=1

ui(Xi)

]
=

n∏
i=1

E[ui(Xi)],

where ui (i = 1, 2, ..., n) are arbitrary functions.

Proof: We prove the theorem assuming that the random variables
X1, X2, ..., Xn are continuous. If the random variables are not continuous,
then the proof follows exactly in the same manner if one replaces the integrals
by summations. Since

E

(
n∏

i=1

ui(Xi)

)
= E(u1(X1) · · ·un(Xn))

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
u1(x1) · · ·un(xn)f(x1, ..., xn)dx1 · · · dxn

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
u1(x1) · · ·un(xn)f1(x1) · · · fn(xn)dx1 · · · dxn

=
∫ ∞

−∞
u1(x1)f1(x1)dx1 · · ·

∫ ∞

−∞
un(x1)fn(xn)dxn

= E (u1(X1)) · · ·E (un(Xn))

=
n∏

i=1

E (ui(Xi)) ,
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the proof of the theorem is now complete.

Example 13.3. Let X and Y be two random variables with the joint density

f(x, y) =

{
e−(x+y) for 0 < x, y < ∞

0 otherwise.

What is the expected value of the continuous random variable Z = X2Y 2 +
XY 2 + X2 + X?

Answer: Since
f(x, y) = e−(x+y)

= e−x e−y

= f1(x) f2(y),

the random variables X and Y are mutually independent. Hence, the ex-
pected value of X is

E(X) =
∫ ∞

0

x f1(x) dx

=
∫ ∞

0

xe−x dx

= Γ(2)

= 1.

Similarly, the expected value of X2 is given by

E
(
X2

)
=

∫ ∞

0

x2 f1(x) dx

=
∫ ∞

0

x2e−x dx

= Γ(3)

= 2.

Since the marginals of X and Y are same, we also get E(Y ) = 1 and E(Y 2) =
2. Further, by Theorem 13.1, we get

E [Z] = E
[
X2Y 2 + XY 2 + X2 + X

]
= E

[(
X2 + X

) (
Y 2 + 1

)]
= E

[
X2 + X

]
E

[
Y 2 + 1

]
(by Theorem 13.1)

=
(
E

[
X2

]
+ E [X]

) (
E

[
Y 2

]
+ 1

)
= (2 + 1) (2 + 1)

= 9.
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Theorem 13.2. If X1, X2, ..., Xn are mutually independent random vari-
ables with respective means µ1, µ2, ..., µn and variances σ2

1 , σ2
2 , ..., σ2

n, then
the mean and variance of Y =

∑n
i=1 ai Xi, where a1, a2, ..., an are real con-

stants, are given by

µY =
n∑

i=1

ai µi and σ2
Y =

n∑
i=1

a2
i σ2

i .

Proof: First we show that µY =
∑n

i=1 ai µi. Since

µY = E(Y )

= E

(
n∑

i=1

ai Xi

)

=
n∑

i=1

aiE(Xi)

=
n∑

i=1

aiµi

we have asserted result. Next we show σ2
Y =

∑n
i=1 a2

i σ2
i . Consider

σ2
Y = V ar(Y )

= V ar (ai Xi)

=
n∑

i=1

a2
i V ar (Xi)

=
n∑

i=1

a2
i σ2

i .

This completes the proof of the theorem.

Example 13.4. Let the independent random variables X1 and X2 have
means µ1 = −4 and µ2 = 3, respectively and variances σ2

1 = 4 and σ2
2 = 9.

What are the mean and variance of Y = 3X1 − 2X2?

Answer: The mean of Y is

µY = 3µ1 − 2µ2

= 3(−4) − 2(3)

= −18.
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Similarly, the variance of Y is

σ2
Y = (3)2 σ2

1 + (−2)2 σ2
2

= 9σ2
1 + 4σ2

2

= 9(4) + 4(9)

= 72.

Example 13.5. Let X1, X2, ..., X50 be a random sample of size 50 from a
distribution with density

f(x) =

{ 1
θ e−

x
θ for 0 ≤ x < ∞

0 otherwise.
What are the mean and variance of the sample mean X?

Answer: Since the distribution of the population X is exponential, the mean
and variance of X are given by

µX = θ, and σ2
X = θ2.

Thus, the mean of the sample mean is

E
(
X

)
= E

(
X1 + X2 + · · · + X50

50

)
=

1
50

50∑
i=1

E (Xi)

=
1
50

50∑
i=1

θ

=
1
50

50 θ = θ.

The variance of the sample mean is given by

V ar
(
X

)
= V ar

(
50∑

i=1

1
50

Xi

)

=
50∑

i=1

(
1
50

)2

σ2
Xi

=
50∑

i=1

(
1
50

)2

θ2

= 50
(

1
50

)2

θ2

=
θ2

50
.
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Theorem 13.3. If X1, X2, ..., Xn are independent random variables with
respective moment generating functions MXi

(t), i = 1, 2, ..., n, then the mo-
ment generating function of Y =

∑n
i=1 aiXi is given by

MY (t) =
n∏

i=1

MXi (ait) .

Proof: Since
MY (t) = M∑n

i=1
aiXi

(t)

=
n∏

i=1

MaiXi
(t)

=
n∏

i=1

MXi(ait)

we have the asserted result and the proof of the theorem is now complete.

Example 13.6. Let X1, X2, ..., X10 be the observations from a random
sample of size 10 from a distribution with density

f(x) =
1√
2π

e−
1
2 x2

, −∞ < x < ∞.

What is the moment generating function of the sample mean?

Answer: The density of the population X is a standard normal. Hence, the
moment generating function of each Xi is

MXi
(t) = e

1
2 t2 , i = 1, 2, ..., 10.

The moment generating function of the sample mean is

MX(t) = M∑10

i=1
1
10 Xi

(t)

=
10∏

i=1

MXi

(
1
10

t

)

=
10∏

i=1

e
t2
200

=
[
e

t2
200

]10

= e

(
1
10

t2
2

)
.

Hence X ∼ N
(
0, 1

10

)
.
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The last example tells us that if we take a sample of any size from a
normal population, then the sample mean also has a normal distribution.

The following theorem says that a linear combination of random variables
with normal distributions is again normal.

Theorem 13.4. If X1, X2, ..., Xn are mutually independent random vari-
ables such that

Xi ∼ N
(
µi, σ2

i

)
, i = 1, 2, ..., n.

Then the random variable Y =
n∑

i=1

aiXi is a normal random variable with

mean

µY =
n∑

i=1

ai µi and σ2
Y =

n∑
i=1

a2
i σ2

i ,

that is Y ∼ N
(∑n

i=1 aiµi,
∑n

i=1 a2
i σ

2
i

)
.

Proof: Since each Xi ∼ N
(
µi, σ

2
i

)
, the moment generating function of each

Xi is given by
MXi(t) = eµit+

1
2 σ2

i t2 .

Hence using Theorem 13.3, we have

MY (t) =
n∏

i=1

MXi
(ait)

=
n∏

i=1

eµit+
1
2 σ2

i t2

= e
∑n

i=1
µit+

1
2

∑n

i=1
σ2

i t2 .

Thus the random variable Y ∼ N

(
n∑

i=1

aiµi,

n∑
i=1

a2
i σ

2
i

)
. The proof of the

theorem is now complete.

Example 13.7. Let X1, X2, ..., Xn be the observations from a random sam-
ple of size n from a normal distribution with mean µ and variance σ2 > 0.
What are the mean and variance of the sample mean X?

Answer: The expected value (or mean) of the sample mean is given by

E
(
X

)
=

1
n

n∑
i=1

E (Xi)

=
1
n

n∑
i=1

µ

= µ.
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Similarly, the variance of the sample mean is

V ar
(
X

)
=

n∑
i=1

V ar

(
Xi

n

)
=

n∑
i=1

(
1
n

)2

σ2 =
σ2

n
.

This example along with the previous theorem says that if we take a random
sample of size n from a normal population with mean µ and variance σ2,
then the sample mean is also normal with mean µ and variance σ2

n , that is

X ∼ N
(
µ, σ2

n

)
.

Example 13.8. Let X1, X2, ..., X64 be a random sample of size 64 from a
normal distribution with µ = 50 and σ2 = 16. What are P (49 < X8 < 51)
and P

(
49 < X < 51

)
?

Answer: Since X8 ∼ N(50, 16), we get

P (49 < X8 < 51) = P (49 − 50 < X8 − 50 < 51 − 50)

= P

(
49 − 50

4
<

X8 − 50
4

<
51 − 50

4

)
= P

(
−1

4
<

X8 − 50
4

<
1
4

)
= P

(
−1

4
< Z <

1
4

)
= 2P

(
Z <

1
4

)
− 1

= 0.1974 (from normal table).

By the previous theorem, we see that X ∼ N
(
50, 16

64

)
. Hence

P
(
49 < X < 51

)
= P

(
49 − 50 < X − 50 < 51 − 50

)
= P

49 − 50√
16
64

<
X − 50√

16
64

<
51 − 50√

16
64


= P

−2 <
X − 50√

16
64

< 2


= P (−2 < Z < 2)

= 2P (Z < 2) − 1

= 0.9544 (from normal table).
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This example tells us that X has a greater probability of falling in an interval
containing µ, than a single observation, say X8 (or in general any Xi).

Theorem 13.5. Let the distributions of the random variables X1, X2, ..., Xn

be χ2(r1), χ2(r2), ..., χ2(rn), respectively. If X1, X2, ..., Xn are mutually in-
dependent, then Y = X1 + X2 + · · · + Xn ∼ χ2 (

∑n
i=1 ri).

Proof: Since each Xi ∼ χ2(ri), the moment generating function of each Xi

is given by
MXi

(t) = (1 − 2t)−
ri
2 .

By Theorem 13.3, we have

MY (t) =
n∏

i=1

MXi(t) =
n∏

i=1

(1 − 2t)−
ri
2 = (1 − 2t)−

1
2

∑n

i=1
ri .

Hence Y ∼ χ2 (
∑n

i=1 ri) and the proof of the theorem is now complete.

The proof of the following theorem is an easy consequence of Theorem
13.5 and we leave the proof to the reader.

Theorem 13.6. If Z1, Z2, ..., Zn are mutually independent and each one
is standard normal, then Z2

1 + Z2
2 + · · · + Z2

n ∼ χ2(n), that is the sum is
chi-square with n degrees of freedom.

The following theorem is very useful in mathematical statistics and its
proof is beyond the scope of this introductory book.

Theorem 13.7. If X1, X2, ..., Xn are observations of a random sample of
size n from the normal distribution N

(
µ, σ2

)
, then the sample mean X =

1
n

∑n
i=1 Xi and the sample variance S2 = 1

n−1

∑n
i=1(Xi − X)2 have the

following properties:
(A) X and S2 are independent, and
(B) (n − 1) S2

σ2 ∼ χ2(n − 1).

Remark 13.2. At first sight the statement (A) might seem odd since the
sample mean X occurs explicitly in the definition of the sample variance
S2. This remarkable independence of X and S2 is a unique property that
distinguishes normal distribution from all other probability distributions.

Example 13.9. Let X1, X2, ..., Xn denote a random sample from a normal
distribution with variance σ2 > 0. If the first percentile of the statistics
W =

∑n
i=1

(Xi−X)2

σ2 is 1.24, where X denotes the sample mean, what is the
sample size n?
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Answer:
1

100
= P (W ≤ 1.24)

= P

(
n∑

i=1

(Xi − X)2

σ2
≤ 1.24

)

= P

(
(n − 1)

S2

σ2
≤ 1.24

)
= P

(
χ2(n − 1) ≤ 1.24

)
.

Thus from χ2-table, we get
n − 1 = 7

and hence the sample size n is 8.

Example 13.10. Let X1, X2, ..., X4 be a random sample from a nor-
mal distribution with unknown mean and variance equal to 9. Let S2 =
1
3

∑4
i=1

(
Xi − X

)
. If P

(
S2 ≤ k

)
= 0.05, then what is k?

Answer:
0.05 = P

(
S2 ≤ k

)
= P

(
3S2

9
≤ 3

9
k

)
= P

(
χ2(3) ≤ 3

9
k

)
.

From χ2-table with 3 degrees of freedom, we get

3
9

k = 0.35

and thus the constant k is given by

k = 3(0.35) = 1.05.

13.2. Laws of Large Numbers

In this section, we mainly examine the weak law of large numbers. The
weak law of large numbers states that if X1, X2, ..., Xn is a random sample
of size n from a population X with mean µ, then the sample mean X rarely
deviates from the population mean µ when the sample size n is very large. In
other words, the sample mean X converges in probability to the population
mean µ. We begin this section with a result known as Markov inequality
which is need to establish the weak law of large numbers.
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Theorem 13.8 (Markov Inequality). Suppose X is a nonnegative random
variable with mean E(X). Then

P (X ≥ t) ≤ E(X)
t

for all t > 0.

Proof: We assume the random variable X is continuous. If X is not con-
tinuous, then a proof can be obtained for this case by replacing the integrals
with summations in the following proof. Since

E(X) =
∫ ∞

−∞
xf(x)dx

=
∫ t

−∞
xf(x)dx +

∫ ∞

t

xf(x)dx

≥
∫ ∞

t

xf(x)dx

≥
∫ ∞

t

tf(x)dx because x ∈ [t,∞)

= t

∫ ∞

t

f(x)dx

= t P (X ≥ t),

we see that

P (X ≥ t) ≤ E(X)
t

.

This completes the proof of the theorem.

In Theorem 4.4 of the chapter 4, Chebychev inequality was treated. Let
X be a random variable with mean µ and standard deviation σ. Then Cheby-
chev inequality says that

P (|X − µ| < kσ) ≥ 1 − 1
k2

for any nonzero positive constant k. This result can be obtained easily using
Theorem 13.8 as follows. By Markov inequality, we have

P ((X − µ)2 ≥ t2) ≤ E((X − µ)2)
t2

for all t > 0. Since the events (X − µ)2 ≥ t2 and |X − µ| ≥ t are same, we
get

P ((X − µ)2 ≥ t2) = P (|X − µ| ≥ t) ≤ E((X − µ)2)
t2
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for all t > 0. Hence

P (|X − µ| ≥ t) ≤ σ2

t2
.

Letting k = σ
t in the above equality, we see that

P (|X − µ| ≥ kσ) ≤ 1
k2

.

Hence
1 − P (|X − µ| < kσ) ≤ 1

k2
.

The last inequality yields the Chebychev inequality

P (|X − µ| < kσ) ≥ 1 − 1
k2

.

Now we are ready to treat the weak law of large numbers.

Theorem 13.9. Let X1, X2, ... be a sequence of independent and identically
distributed random variables with µ = E(Xi) and σ2 = V ar(Xi) < ∞ for
i = 1, 2, ...,∞. Then

lim
n→∞

P (|Sn − µ| ≥ ε) = 0

for every ε. Here Sn denotes X1+X2+···+Xn

n .

Proof: By Theorem 13.2 (or Example 13.7) we have

E(Sn) = µ and V ar(Sn) =
σ2

n
.

By Chebychev’s inequality

P (|Sn − E(Sn)| ≥ ε) ≤ V ar(Sn)
ε2

for ε > 0. Hence

P (|Sn − µ| ≥ ε) ≤ σ2

n ε2
.

Taking the limit as n tends to infinity, we get

lim
n→∞

P (|Sn − µ| ≥ ε) ≤ lim
n→∞

σ2

n ε2

which yields
lim

n→∞
P (|Sn − µ| ≥ ε) = 0

and the proof of the theorem is now complete.
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It is possible to prove the weak law of large numbers assuming only E(X)
to exist and finite but the proof is more involved.

The weak law of large numbers says that the sequence of sample means{
Sn

}∞
n=1

from a population X stays close to population mean E(X) most
of the times. Let us consider an experiment that consists of tossing a coin
infinitely many times. Let Xi be 1 if the ith toss results in a Head, and 0
otherwise. The weak law of large numbers says that

Sn =
X1 + X2 + · · · + Xn

n
→ 1

2
as n → ∞ (13.0)

but it is easy to come up with sequences of tosses for which (13.0) is false:

H H H H H H H H H H H H · · · · · ·
H H T H H T H H T H H T · · · · · ·

The strong law of large numbers (Theorem 13.11) states that the set of “bad
sequences” like the ones given above has probability zero.

Note that the assertion of Theorem 13.9 for any ε > 0 can also be written
as

lim
n→∞

P (|Sn − µ| < ε) = 1.

The type of convergence we saw in the weak law of large numbers is not
the type of convergence discussed in calculus. This type of convergence is
called convergence in probability and defined as follows.

Definition 13.1. Suppose X1, X2, ... is a sequence of random variables de-
fined on a sample space S. The sequence converges in probability to the
random variable X if, for any ε > 0,

lim
n→∞

P (|Xn − X| < ε) = 1.

In view of the above definition, the weak law of large numbers states that
the sample mean X converges in probability to the population mean µ.

The following theorem is known as the Bernoulli law of large numbers
and is a special case of the weak law of large numbers.

Theorem 13.10. Let X1, X2, ... be a sequence of independent and identically
distributed Bernoulli random variables with probability of success p. Then,
for any ε > 0,

lim
n→∞

P (|Sn − p| < ε) = 1
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where Sn denotes X1+X2+···+Xn

n .

The fact that the relative frequency of occurrence of an event E is very
likely to be close to its probability P (E) for large n can be derived from
the weak law of large numbers. Consider a repeatable random experiment
repeated large number of time independently. Let Xi = 1 if E occurs on the
ith repetition and Xi = 0 if E does not occur on ith repetition. Then

µ = E(Xi) = 1 · P (E) + 0 · P (E) = P (E) for i = 1, 2, 3, ...

and
X1 + X2 + · · · + Xn = n N(E)

where N(E) denotes the number of times E occurs. Hence by the weak law
of large numbers, we have

lim
n→∞

P

(∣∣∣∣N(E)
n

− P (E)
∣∣∣∣ > ε

)
= lim

n→∞
P

(∣∣∣∣X1 + X2 + · · · + Xn

n
− µ

∣∣∣∣ > ε

)
= lim

n→∞
P

(∣∣Sn − µ
∣∣ > ε

)
= 0.

Hence, for large n, the relative frequency of occurrence of the event E is very
likely to be close to its probability P (E).

Now we present the strong law of large numbers without a proof.

Theorem 13.11. Let X1, X2, ... be a sequence of independent and identically
distributed random variables with µ = E(Xi) and σ2 = V ar(Xi) < ∞ for
i = 1, 2, ...,∞. Then

lim
n→∞

P (|Sn − µ) ≥ ε) = 0

for every ε. Here Sn denotes X1+X2+···+Xn

n .

The type convergence in Theorem 13.11 is called almost sure convergence.
The notion of almost sure convergence is defined as follows.

Definition 13.2 Suppose the random variable X and the sequence
X1, X2, ..., of random variables are defined on a sample space S. The se-
quence Xn(w) converges almost surely to X(w) if

P
({

w ∈ S
∣∣ lim

n→∞
Xn(w) = X(w)

})
= 1.

It can be shown that the convergence in probability implies the almost
sure convergence but not the converse.
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13.3. The Central Limit Theorem

Consider a random sample of measurement {Xi}n
i=1. The Xi’s are iden-

tically distributed and their common distribution is the distribution of the
population. We have seen that if the population distribution is normal, then
the sample mean X is also normal. More precisely, if X1, X2, ..., Xn is a
random sample from a normal distribution with density

f(x) =
1

σ
√

2π
e−

1
2 ( x−µ

σ )2

then

X ∼ N

(
µ,

σ2

n

)
.

The central limit theorem (also known as Lindeberg-Levy Theorem) states
that even though the population distribution may be far from being normal,
still for large sample size n, the distribution of the standardized sample mean
is approximately standard normal with better approximations obtained with
the larger sample size. Mathematically this can be stated as follows.

Theorem 13.12 (Central Limit Theorem). Let X1, X2, ..., Xn be a ran-
dom sample of size n from a distribution with mean µ and variance σ2 < ∞,
then the limiting distribution of

Zn =
X − µ

σ√
n

is standard normal, that is Zn converges in distribution to Z where Z denotes
a standard normal random variable.

The type of convergence used in the central limit theorem is called the
convergence in distribution and is defined as follows.

Definition 13.3. Suppose X is a random variable with cumulative den-
sity function F (x) and the sequence X1, X2, ... of random variables with
cumulative density functions F1(x), F2(x), ..., respectively. The sequence Xn

converges in distribution to X if

lim
n→∞

Fn(x) = F (x)

for all values x at which F (x) is continuous. The distribution of X is called
the limiting distribution of Xn.
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Whenever a sequence of random variables X1, X2, ... converges in distri-
bution to the random variable X, it will be denoted by Xn

d→X.

Example 13.11. Let Y = X1 + X2 + · · · + X15 be the sum of a random
sample of size 15 from the distribution whose density function is

f(x) =

{ 3
2 x2 if −1 < x < 1

0 otherwise.

What is the approximate value of P (−0.3 ≤ Y ≤ 1.5) when one uses the
central limit theorem?

Answer: First, we find the mean µ and variance σ2 for the density function
f(x). The mean for this distribution is given by

µ =
∫ 1

−1

3
2
x3 dx

=
3
2

[
x4

4

]1

−1

= 0.

Hence the variance of this distribution is given by

V ar(X) = E(X2) − [E(X) ]2

=
∫ 1

−1

3
2
x4 dx

=
3
2

[
x5

5

]1

−1

=
3
5

= 0.6.

P (−0.3 ≤ Y ≤ 1.5) = P (−0.3 − 0 ≤ Y − 0 ≤ 1.5 − 0)

= P

(
−0.3√
15(0.6)

≤ Y − 0√
15(0.6)

≤ 1.5√
15(0.6)

)
= P (−0.10 ≤ Z ≤ 0.50)

= P (Z ≤ 0.50) + P (Z ≤ 0.10) − 1

= 0.6915 + 0.5398 − 1

= 0.2313.
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Example 13.12. Let X1, X2, ..., Xn be a random sample of size n = 25 from
a population that has a mean µ = 71.43 and variance σ2 = 56.25. Let X be
the sample mean. What is the probability that the sample mean is between
68.91 and 71.97?

Answer: The mean of X is given by E
(
X

)
= 71.43. The variance of X is

given by

V ar
(
X

)
=

σ2

n
=

56.25
25

= 2.25.

In order to find the probability that the sample mean is between 68.91 and
71.97, we need the distribution of the population. However, the population
distribution is unknown. Therefore, we use the central limit theorem. The
central limit theorem says that X−µ

σ√
n

∼ N (0, 1) as n approaches infinity.

Therefore

P
(
68.91 ≤ X ≤ 71.97

)
=

(
68.91 − 71.43√

2.25
≤ X − 71.43√

2.25
≤ 71.97 − 71.43√

2.25

)
= P (−0.68 ≤ W ≤ 0.36)

= P (W ≤ 0.36) + P (W ≤ 0.68) − 1

= 0.5941.

Example 13.13. Light bulbs are installed successively into a socket. If we
assume that each light bulb has a mean life of 2 months with a standard
deviation of 0.25 months, what is the probability that 40 bulbs last at least
7 years?

Answer: Let Xi denote the life time of the ith bulb installed. The 40 light
bulbs last a total time of

S40 = X1 + X2 + · · · + X40.

By the central limit theorem∑40
i=1 Xi − nµ√

nσ2
∼ N(0, 1) as n → ∞.

Thus
S40 − (40)(2)√

(40)(0.25)2
∼ N(0, 1).
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That is
S40 − 80

1.581
∼ N(0, 1).

Therefore
P (S40 ≥ 7(12))

= P

(
S40 − 80

1.581
≥ 84 − 80

1.581

)
= P (Z ≥ 2.530)

= 0.0057.

Example 13.14. Light bulbs are installed into a socket. Assume that each
has a mean life of 2 months with standard deviation of 0.25 month. How
many bulbs n should be bought so that one can be 95% sure that the supply
of n bulbs will last 5 years?

Answer: Let Xi denote the life time of the ith bulb installed. The n light
bulbs last a total time of

Sn = X1 + X2 + · · · + Xn.

The total average life span Sn has

E (Sn) = 2n and V ar(Sn) =
n

16
.

By the central limit theorem, we get

Sn − E (Sn)
√

n
4

∼ N(0, 1).

Thus, we seek n such that

0.95 = P (Sn ≥ 60)

= P

(
Sn − 2n

√
n

4

≥ 60 − 2n
√

n
4

)

= P

(
Z ≥ 240 − 8n√

n

)
= 1 − P

(
Z ≤ 240 − 8n√

n

)
.

From the standard normal table, we get

240 − 8n√
n

= −1.645
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which implies
1.645

√
n + 8n − 240 = 0.

Solving this quadratic equation for
√

n, we get

√
n = −5.375 or 5.581.

Thus n = 31.15. So we should buy 32 bulbs.

Example 13.15. American Airlines claims that the average number of peo-
ple who pay for in-flight movies, when the plane is fully loaded, is 42 with a
standard deviation of 8. A sample of 36 fully loaded planes is taken. What
is the probability that fewer than 38 people paid for the in-flight movies?

Answer: Here, we like to find P (X < 38). Since, we do not know the
distribution of X, we will use the central limit theorem. We are given that
the population mean is µ = 42 and population standard deviation is σ = 8.
Moreover, we are dealing with sample of size n = 36. Thus

P (X < 38) = P

(
X − 42

8
6

<
38 − 42

8
6

)
= P (Z < −3)

= 1 − P (Z < 3)

= 1 − 0.9987

= 0.0013.

Since we have not yet seen the proof of the central limit theorem, first
let us go through some examples to see the main idea behind the proof of the
central limit theorem. Later, at the end of this section a proof of the central
limit theorem will be given. We know from the central limit theorem that if
X1, X2, ..., Xn is a random sample of size n from a distribution with mean µ

and variance σ2, then

X − µ
σ√
n

d→Z ∼ N(0, 1) as n → ∞.

However, the above expression is not equivalent to

X
d→Z ∼ N

(
µ,

σ2

n

)
as n → ∞
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as the following example shows.

Example 13.16. Let X1, X2, ..., Xn be a random sample of size n from
a gamma distribution with parameters θ = 1 and α = 1. What is the
distribution of the sample mean X? Also, what is the limiting distribution
of X as n → ∞?

Answer: Since, each Xi ∼ GAM(1, 1), the probability density function of
each Xi is given by

f(x) =

{
e−x if x ≥ 0

0 otherwise

and hence the moment generating function of each Xi is

MXi(t) =
1

1 − t
.

First we determine the moment generating function of the sample mean X,
and then examine this moment generating function to find the probability
distribution of X. Since

MX(t) = M 1
n

∑n

i=1
Xi

(t)

=
n∏

i=1

MXi

(
t

n

)

=
n∏

i=1

1(
1 − t

n

)
=

1(
1 − t

n

)n ,

therefore X ∼ GAM
(

1
n , n

)
.

Next, we find the limiting distribution of X as n → ∞. This can be
done again by finding the limiting moment generating function of X and
identifying the distribution of X. Consider

lim
n→∞

MX(t) = lim
n→∞

1(
1 − t

n

)n

=
1

limn→∞
(
1 − t

n

)n

=
1

e−t

= et.
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Thus, the sample mean X has a degenerate distribution, that is all the prob-
ability mass is concentrated at one point of the space of X.

Example 13.17. Let X1, X2, ..., Xn be a random sample of size n from
a gamma distribution with parameters θ = 1 and α = 1. What is the
distribution of

X − µ
σ√
n

as n → ∞

where µ and σ are the population mean and variance, respectively?

Answer: From Example 13.7, we know that

MX(t) =
1(

1 − t
n

)n .

Since the population distribution is gamma with θ = 1 and α = 1, the
population mean µ is 1 and population variance σ2 is also 1. Therefore

MX−1
1√
n

(t) = M√
nX−√

n (t)

= e−
√

nt MX

(√
n t

)
= e−

√
nt 1(

1 −
√

nt
n

)n

=
1

e
√

nt
(
1 − t√

n

)n .

The limiting moment generating function can be obtained by taking the limit
of the above expression as n tends to infinity. That is,

lim
n→∞

MX−1
1√
n

(t) = lim
n→∞

1

e
√

nt
(
1 − t√

n

)n

= e
1
2 t2 (using MAPLE)

=
X − µ

σ√
n

∼ N(0, 1).

The following theorem is used to prove the central limit theorem.

Theorem 13.13 (Lévy Continuity Theorem). Let X1, X2, ... be a se-
quence of random variables with distribution functions F1(x), F2(x), ... and
moment generating functions MX1(t), MX2(t), ..., respectively. Let X be a
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random variable with distribution function F (x) and moment generating
function MX(t). If for all t in the open interval (−h, h) for some h > 0

lim
n→∞

MXn
(t) = MX(t),

then at the points of continuity of F (x)

lim
n→∞

Fn(x) = F (x).

The proof of this theorem is beyond the scope of this book.

The following limit

lim
n→∞

[
1 +

t

n
+

d(n)
n

]n

= et, if lim
n→∞

d(n) = 0, (13.1)

whose proof we leave it to the reader, can be established using advanced
calculus. Here t is independent of n.

Now we proceed to prove the central limit theorem assuming that the
moment generating function of the population X exists. Let MX−µ(t) be
the moment generating function of the random variable X − µ. We denote
MX−µ(t) as M(t) when there is no danger of confusion. Then

M(0) = 1,

M ′(0) = E(X − µ) = E(X) − µ = µ − µ = 0,

M ′′(0) = E
(
(X − µ)2

)
= σ2.

 (13.2)

By Taylor series expansion of M(t) about 0, we get

M(t) = M(0) + M ′(0) t +
1
2

M ′′(η) t2

where η ∈ (0, t). Hence using (13.2), we have

M(t) = 1 +
1
2

M ′′(η) t2

= 1 +
1
2

σ2 t2 +
1
2

M ′′(η) t2 − 1
2

σ2 t2

= 1 +
1
2

σ2 t2 +
1
2

[
M ′′(η) − σ2

]
t2.

Now using M(t) we compute the moment generating function of Zn. Note
that

Zn =
X − µ

σ√
n

=
1

σ
√

n

n∑
i=1

(Xi − µ).
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Hence

MZn(t) =
n∏

i=1

MXi−µ

(
t

σ
√

n

)

=
n∏

i=1

MX−µ

(
t

σ
√

n

)
=

[
M

(
t

σ
√

n

) ]n

=
[

1 +
t2

2 n
+

(M ′′(η) − σ2) t2

2 n σ2

]n

for 0 < |η| < 1
σ
√

n
|t|. Note that since 0 < |η| < 1

σ
√

n
|t|, we have

lim
n→∞

t

σ
√

n
= 0, lim

n→∞
η = 0, and lim

n→∞
M ′′(η) − σ2 = 0. (13.3)

Letting

d(n) =
(M ′′(η) − σ2) t2

2 σ2

and using (13.3), we see that lim
n→∞

d(n) = 0, and

MZn
(t) =

[
1 +

t2

2 n
+

d(n)
n

]n

. (13.4)

Using (13.1) we have

lim
n→∞

MZn
(t) = lim

n→∞

[
1 +

t2

2 n
+

d(n)
n

]n

= e
1
2 t2 .

Hence by the Lévy continuity theorem, we obtain

lim
n→∞

Fn(x) = Φ(x)

where Φ(x) is the cumulative density function of the standard normal distri-
bution. Thus Zn

d→Z and the proof of the theorem is now complete.

Remark 13.3. In contrast to the moment generating function, since the
characteristic function of a random variable always exists, the original proof
of the central limit theorem involved the characteristic function (see for ex-
ample An Introduction to Probability Theory and Its Applications, Volume II
by Feller). In 1988, Brown gave an elementary proof using very clever Taylor
series expansions, where the use characteristic function has been avoided.
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13.4. Order Statistics

Often, sample values such as the smallest, largest, or middle observation
from a random sample provide important information. For example, the
highest flood water or lowest winter temperature recorded during the last
50 years might be useful when planning for future emergencies. The median
price of houses sold during the previous month might be useful for estimating
the cost of living. The statistics highest, lowest or median are examples of
order statistics.

Definition 13.4. Let X1, X2, ..., Xn be observations from a random sam-
ple of size n from a distribution f(x). Let X(1) denote the smallest of
{X1, X2, ..., Xn}, X(2) denote the second smallest of {X1, X2, ..., Xn}, and
similarly X(r) denote the rth smallest of {X1, X2, ..., Xn}. Then the ran-
dom variables X(1), X(2), ..., X(n) are called the order statistics of the sam-
ple X1, X2, ..., Xn. In particular, X(r) is called the rth-order statistic of
X1, X2, ..., Xn.

The sample range, R, is the distance between the smallest and the largest
observation. That is,

R = X(n) − X(1).

This is an important statistic which is defined using order statistics.

The distribution of the order statistics are very important when one uses
these in any statistical investigation. The next theorem gives the distribution
of an order statistic.

Theorem 13.14. Let X1, X2, ..., Xn be a random sample of size n from a dis-
tribution with density function f(x). Then the probability density function
of the rth order statistic, X(r), is

g(x) =
n!

(r − 1)! (n − r)!
[F (x)]r−1

f(x) [1 − F (x)]n−r
,

where F (x) denotes the cdf of f(x).

Proof: Let h be a positive real number. Let us divide the real line into three
segments, namely

IR = (−∞, x)
⋃

[x, x + h]
⋃

(x + h, ∞).
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The probability, say p1, of a sample value falls into the first interval (−∞, x]
and is given by

p1 =
∫ x

−∞
f(t) dt.

Similarly, the probability p2 of a sample value falls into the second interval
and is

p2 =
∫ x+h

x

f(t) dt.

In the same token, we can compute the probability of a sample value which
falls into the third interval

p3 =
∫ ∞

x+h

f(t) dt.

Then the probability that (r − 1) sample values fall in the first interval, one
falls in the second interval, and (n − r) fall in the third interval is(

n

r − 1, 1, n − r

)
pr−1
1 p1

2 pn−r
3 =

n!
(r − 1)! (n − r)!

pr−1
1 p2 pn−r

3 =: Ph(x).

Since

g(x) = lim
h→0

Ph(x)
h

,

the probability density function of the rth statistics is given by

g(x) = lim
h→0

Ph(x)
h

= lim
h→0

[
n!

(r − 1)! (n − r)!
pr−1
1

p2

h
pn−r
3

]
=

n!
(r − 1)! (n − r)!

[(
lim
h→0

∫ x

−∞
f(t) dt

)r−1
]

[
lim
h→0

1
h

∫ x+h

x

f(t) dt

] [(
lim
h→0

∫ ∞

x+h

f(t) dt

)n−r
]

=
n!

(r − 1)! (n − r)!
[F (x)]r−1

f(x) [1 − F (x)]n−r
.

The second limit is obtained as f(x) due to the fact that

lim
h→0

1
h

∫ x+h

x

f(t) dt

= lim
h→0

∫ x+h

a
f(t) dt −

∫ x

a
f(t) dt

h
, where x < a < x + h

=
d

dx

∫ x

a

f(t) dt

= f(x)
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Example 13.18. Let X1, X2 be a random sample from a distribution with
density function

f(x) =

{
e−x for 0 ≤ x < ∞

0 otherwise.

What is the density function of Y = min{X1, X2} where nonzero?

Answer: The cumulative distribution function of f(x) is

F (x) =
∫ x

0

e−t dt

= 1 − e−x

In this example, n = 2 and r = 1. Hence, the density of Y is

g(y) =
2!

0! 1!
[F (y)]0 f(y) [1 − F (y)]

= 2f(y) [1 − F (y)]

= 2 e−y
(
1 − 1 + e−y

)
= 2 e−2y.

Example 13.19. Let Y1 < Y2 < · · · < Y6 be the order statistics from a
random sample of size 6 from a distribution with density function

f(x) =

{ 2x for 0 < x < 1

0 otherwise.

What is the expected value of Y6?

Answer:
f(x) = 2x

F (x) =
∫ x

0

2t dt

= x2.

The density function of Y6 is given by

g(y) =
6!

5! 0!
[F (y)]5 f(y)

= 6
(
y2

)5
2y

= 12y11.
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Hence, the expected value of Y6 is

E (Y6) =
∫ 1

0

y g(y) dy

=
∫ 1

0

y 12y11 dy

=
12
13

[
y13

]1
0

=
12
13

.

Example 13.20. Let X, Y and Z be independent uniform random variables
on the interval (0, a). Let W = min{X, Y, Z}. What is the expected value of(
1 − W

a

)2
?

Answer: The probability distribution of X (or Y or Z) is

f(x) =

{ 1
a if 0 < x < a

0 otherwise.

Thus the cumulative distribution of function of f(x) is given by

F (x) =


0 if x ≤ 0

x
a if 0 < x < a

1 if x ≥ a.

Since W = min{X, Y, Z}, W is the first order statistic of the random sample
X, Y, Z. Thus, the density function of W is given by

g(w) =
3!

0! 1! 2!
[F (w)]0 f(w) [1 − F (w)]2

= 3f(w) [1 − F (w)]2

= 3
(
1 − w

a

)2
(

1
a

)
=

3
a

(
1 − w

a

)2

.

Thus, the pdf of W is given by

g(w) =


3
a

(
1 − w

a

)2 if 0 < w < a

0 otherwise.
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The expected value of W is

E

[(
1 − W

a

)2
]

=
∫ a

0

(
1 − w

a

)2

g(w) dw

=
∫ a

0

(
1 − w

a

)2 3
a

(
1 − w

a

)2

dw

=
∫ a

0

3
a

(
1 − w

a

)4

dx

= −3
5

[(
1 − w

a

)5
]a

0

=
3
5
.

Example 13.21. Let X1, X2, ..., Xn be a random sample from a population
X with uniform distribution on the interval [0, 1]. What is the probability
distribution of the sample range W := X(n) − X(1)?

Answer: To find the distribution of W , we need the joint distribution of the
random variable

(
X(n), X(1)

)
. The joint distribution of

(
X(n), X(1)

)
is given

by
h(x1, xn) = n(n − 1)f(x1)f(xn) [F (xn) − F (x1)]

n−2
,

where xn ≥ x1 and f(x) is the probability density function of X. To de-
termine the probability distribution of the sample range W , we consider the
transformation

U = X(1)

W = X(n) − X(1)

}
which has an inverse

X(1) = U

X(n) = U + W.

}
The Jacobian of this transformation is

J = det

(
1 0
1 1

)
= 1.

Hence the joint density of (U, W ) is given by

g(u, w) = |J |h(x1, xn)

= n(n − 1)f(u)f(u + w)[F (u + w) − F (u)]n−2
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where w ≥ 0. Since f(u) and f(u+w) are simultaneously nonzero if 0 ≤ u ≤ 1
and 0 ≤ u + w ≤ 1. Hence f(u) and f(u + w) are simultaneously nonzero if
0 ≤ u ≤ 1 − w. Thus, the probability of W is given by

j(w) =
∫ ∞

−∞
g(u, w) du

=
∫ ∞

−∞
n(n − 1)f(u)f(u + w)[F (u + w) − F (u)]n−2 du

=
∫ 1−w

0

wn−2du

= n(n − 1)(1 − w)wn−2

where 0 ≤ w ≤ 1.

13.5. Sample Percentiles

The sample median, M , is a number such that approximately one-half
of the observations are less than M and one-half are greater than M .

Definition 13.5. Let X1, X2, ..., Xn be a random sample. The sample
median M is defined as

M =


X(n+1

2 ) if n is odd

1
2

[
X(n

2 ) + X(n+2
2 )

]
if n is even.

The median is a measure of location like sample mean.

Recall that for continuous distribution, 100pth percentile, πp, is a number
such that

p =
∫ πp

−∞
f(x) dx.

Definition 13.6. The 100pth sample percentile is defined as

πp =


X([np]) if p < 0.5

X(n+1−[n(1−p)]) if p > 0.5.

where [b] denote the number b rounded to the nearest integer.

Example 13.22. Let X1, X2, ..., X12 be a random sample of size 12. What
is the 65th percentile of this sample?
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Answer:
100p = 65

p = 0.65

n(1 − p) = (12)(1 − 0.65) = 4.2

[n(1 − p)] = [4.2] = 4

Hence by definition of 65th percentile is

π0.65 = X(n+1−[n(1−p)])

= X(13−4)

= X(9).

Thus, the 65th percentile of the random sample X1, X2, ..., X12 is the 9th-
order statistic.

For any number p between 0 and 1, the 100pth sample percentile is an
observation such that approximately np observations are less than this ob-
servation and n(1 − p) observations are greater than this.

Definition 13.7. The 25th percentile is called the lower quartile while the
75th percentile is called the upper quartile. The distance between these two
quartiles is called the interquartile range.

Example 13.23. If a sample of size 3 from a uniform distribution over [0, 1]
is observed, what is the probability that the sample median is between 1

4 and
3
4?

Answer: When a sample of (2n + 1) random variables are observed, the
(n + 1)th smallest random variable is called the sample median. For our
problem, the sample median is given by

X(2) = 2nd smallest {X1, X2, X3}.

Let Y = X(2). The density function of each Xi is given by

f(x) =

{ 1 if 0 ≤ x ≤ 1

0 otherwise.

Hence, the cumulative density function of f(x) is

F (x) = x.
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Thus the density function of Y is given by

g(y) =
3!

1! 1!
[F (y)]2−1

f(y) [1 − F (y)]3−2

= 6 F (y) f(y) [1 − F (y)]

= 6y (1 − y).

Therefore

P

(
1
4

< Y <
3
4

)
=

∫ 3
4

1
4

g(y) dy

=
∫ 3

4

1
4

6 y (1 − y) dy

= 6
[
y2

2
− y3

3

] 3
4

1
4

=
11
16

.

13.6. Review Exercises

1. Suppose we roll a die 1000 times. What is the probability that the sum
of the numbers obtained lies between 3000 and 4000?

2. Suppose Kathy flip a coin 1000 times. What is the probability she will
get at least 600 heads?

3. At a certain large university the weight of the male students and female
students are approximately normally distributed with means and standard
deviations of 180, and 20, and 130 and 15, respectively. If a male and female
are selected at random, what is the probability that the sum of their weights
is less than 280?

4. Seven observations are drawn from a population with an unknown con-
tinuous distribution. What is the probability that the least and the greatest
observations bracket the median?

5. If the random variable X has the density function

f(x) =

 2 (1 − x) for 0 ≤ x ≤ 1

0 otherwise,

what is the probability that the larger of 2 independent observations of X

will exceed 1
2?
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6. Let X1, X2, X3 be a random sample from the uniform distribution on the
interval (0, 1). What is the probability that the sample median is less than
0.4?

7. Let X1, X2, X3, X4, X5 be a random sample from the uniform distribution
on the interval (0, θ), where θ is unknown, and let Xmax denote the largest
observation. For what value of the constant k, the expected value of the
random variable kXmax is equal to θ?

8. A random sample of size 16 is to be taken from a normal population having
mean 100 and variance 4. What is the 90th percentile of the distribution of
the sample mean?

9. If the density function of a random variable X is given by

f(x) =


1
2x for 1

e < x < e

0 otherwise,

what is the probability that one of the two independent observations of X is
less than 2 and the other is greater than 1?

10. Five observations have been drawn independently and at random from
a continuous distribution. What is the probability that the next observation
will be less than all of the first 5?

11. Let the random variable X denote the length of time it takes to complete
a mathematics assignment. Suppose the density function of X is given by

f(x) =

 e−(x−θ) for θ < x < ∞

0 otherwise,

where θ is a positive constant that represents the minimum time to complete
a mathematics assignment. If X1, X2, ..., X5 is a random sample from this
distribution. What is the expected value of X(1)?

12. Let X and Y be two independent random variables with identical prob-
ability density function given by

f(x) =

{
e−x for x > 0

0 elsewhere.

What is the probability density function of W = max{X, Y } ?
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13. Let X and Y be two independent random variables with identical prob-
ability density function given by

f(x) =


3 x2

θ3 for 0 ≤ x ≤ θ

0 elsewhere,

for some θ > 0. What is the probability density function of W = min{X, Y }?

14. Let X1, X2, ..., Xn be a random sample from a uniform distribution on
the interval from 0 to 5. What is the limiting moment generating function
of X−µ

σ√
n

as n → ∞?

15. Let X1, X2, ..., Xn be a random sample of size n from a normal distri-
bution with mean µ and variance 1. If the 75th percentile of the statistic
W =

∑n
i=1

(
Xi − X

)2
is 28.24, what is the sample size n ?

16. Let X1, X2, ..., Xn be a random sample of size n from a Bernoulli distri-
bution with probability of success p = 1

2 . What is the limiting distribution
the sample mean X ?

17. Let X1, X2, ..., X1995 be a random sample of size 1995 from a distribution
with probability density function

f(x) =
e−λ λx

x!
x = 0, 1, 2, 3, ...,∞.

What is the distribution of 1995X ?

18. Suppose X1, X2, ..., Xn is a random sample from the uniform distribution
on (0, 1) and Z be the sample range. What is the probability that Z is less
than or equal to 0.5?

19. Let X1, X2, ..., X9 be a random sample from a uniform distribution on
the interval [1, 12]. Find the probability that the next to smallest is greater
than or equal to 4?

20. A machine needs 4 out of its 6 independent components to operate. Let
X1, X2, ..., X6 be the lifetime of the respective components. Suppose each is
exponentially distributed with parameter θ. What is the probability density
function of the machine lifetime?

21. Suppose X1, X2, ..., X2n+1 is a random sample from the uniform dis-
tribution on (0, 1). What is the probability density function of the sample
median X(n+1)?
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22. Let X and Y be two random variables with joint density

f(x, y) =
{ 12x if 0 < y < 2x < 1

0 otherwise.

What is the expected value of the random variable Z = X2Y 3+X2−X−Y 3?

23. Let X1, X2, ..., X50 be a random sample of size 50 from a distribution
with density

f(x) =

{ 1
Γ(α) θα xα−1e−

x
θ for 0 < x < ∞

0 otherwise.

What are the mean and variance of the sample mean X?

24. Let X1, X2, ..., X100 be a random sample of size 100 from a distribution
with density

f(x) =
{

e−λ λx

x! for x = 0, 1, 2, ...,∞
0 otherwise.

What is the probability that X greater than or equal to 1?
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Chapter 14

SAMPLING
DISTRIBUTIONS

ASSOCIATED WITH THE
NORMAL

POPULATIONS

Given a random sample X1, X2, ..., Xn from a population X with proba-
bility distribution f(x; θ), where θ is a parameter, a statistic is a function T

of X1, X2, ..., Xn, that is

T = T (X1, X2, ..., Xn)

which is free of the parameter θ. If the distribution of the population is
known, then sometimes it is possible to find the probability distribution of
the statistic T . The probability distribution of the statistic T is called the
sampling distribution of T . The joint distribution of the random variables
X1, X2, ..., Xn is called the distribution of the sample. The distribution of
the sample is the joint density

f(x1, x2, ..., xn; θ) = f(x1; θ)f(x2; θ) · · · f(xn; θ) =
n∏

i=1

f(xi; θ)

since the random variables X1, X2, ..., Xn are independent and identically
distributed.

Since the normal population is very important in statistics, the sampling
distributions associated with the normal population are very important. The
most important sampling distributions which are associated with the normal



Sampling Distributions Associated with the Normal Population 390

population are the followings: the chi-square distribution, the student’s t-
distribution, the F-distribution, and the beta distribution. In this chapter,
we only consider the first three distributions, since the last distribution was
considered earlier.

14.1. Chi-square distribution

In this section, we treat the Chi-square distribution, which is one of the
very useful sampling distributions.

Definition 14.1. A continuous random variable X is said to have a chi-
square distribution with r degrees of freedom if its probability density func-
tion is of the form

f(x; r) =


1

Γ( r
2 ) 2

r
2

x
r
2−1 e−

x
2 if 0 ≤ x < ∞

0 otherwise,

where r > 0. If X has chi-square distribution, then we denote it by writing
X ∼ χ2(r). Recall that a gamma distribution reduces to chi-square distri-
bution if α = r

2 and θ = 2. The mean and variance of X are r and 2r,
respectively.

Thus, chi-square distribution is also a special case of gamma distribution.
Further, if r → ∞, then chi-square distribution tends to normal distribution.

Example 14.1. If X ∼ GAM(1, 1), then what is the probability density
function of the random variable 2X?

Answer: We will use the moment generating method to find the distribution
of 2X. The moment generating function of a gamma random variable is given
by

M(t) = (1 − θ t)−α
, if t <

1
θ
.
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Since X ∼ GAM(1, 1), the moment generating function of X is given by

MX(t) =
1

1 − t
, t < 1.

Hence, the moment generating function of 2X is

M2X(t) = MX(2t)

=
1

1 − 2t

=
1

(1 − 2t)
2
2

= MGF of χ2(2).

Hence, if X is GAM(1, 1) or is an exponential with parameter 1, then 2X is
chi-square with 2 degrees of freedom.

Example 14.2. If X ∼ χ2(5), then what is the probability that X is between
1.145 and 12.83?

Answer: The probability of X between 1.145 and 12.83 can be calculated
from the following:

P (1.145 ≤ X ≤ 12.83)

= P (X ≤ 12.83) − P (X ≤ 1.145)

=
∫ 12.83

0

f(x) dx −
∫ 1.145

0

f(x) dx

=
∫ 12.83

0

1
Γ

(
5
2

)
2

5
2

x
5
2−1 e−

x
2 dx −

∫ 1.145

0

1
Γ

(
5
2

)
2

5
2

x
5
2−1 e−

x
2 dx

= 0.975 − 0.050 (from χ2 table)

= 0.925.

This above integrals are hard to evaluate and thus their values are taken from
the chi-square table.

Example 14.3. If X ∼ χ2(7), then what are values of the constants a and
b such that P (a < X < b) = 0.95?

Answer: Since

0.95 = P (a < X < b) = P (X < b) − P (X < a),

we get
P (X < b) = 0.95 + P (X < a).
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We choose a = 1.690, so that

P (X < 1.690) = 0.025.

From this, we get

P (X < b) = 0.95 + 0.025 = 0.975

Thus, from chi-square table, we get b = 16.01.

The following theorems were studied earlier in Chapters 6 and 13 and
they are very useful in finding the sampling distributions of many statistics.
We state these theorems here for the convenience of the reader.

Theorem 14.1. If X ∼ N(µ, σ2), then
(

X−µ
σ

)2

∼ χ2(1).

Theorem 14.2. If X ∼ N(µ, σ2) and X1, X2, ..., Xn is a random sample
from the population X, then

n∑
i=1

(
Xi − µ

σ

)2

∼ χ2(n).

Theorem 14.3. If X ∼ N(µ, σ2) and X1, X2, ..., Xn is a random sample
from the population X, then

(n − 1) S2

σ2
∼ χ2(n − 1).

Theorem 14.4. If X ∼ GAM(θ, α), then

2
θ

X ∼ χ2(2α).

Example 14.4. A new component is placed in service and n spares are
available. If the times to failure in days are independent exponential variable,
that is Xi ∼ EXP (100), how many spares would be needed to be 95% sure
of successful operation for at least two years ?

Answer: Since Xi ∼ EXP (100),

n∑
i=1

Xi ∼ GAM(100, n).
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Hence, by Theorem 14.4, the random variable

Y =
2

100

n∑
i=1

Xi ∼ χ2(2n).

We have to find the number of spares n such that

0.95 = P

(
n∑

i=1

Xi ≥ 2 years

)

= P

(
n∑

i=1

Xi ≥ 730 days

)

= P

(
2

100

n∑
i=1

Xi ≥
2

100
730 days

)

= P

(
2

100

n∑
i=1

Xi ≥
730
50

)
= P

(
χ2(2n) ≥ 14.6

)
.

2n = 25 (from χ2 table)

Hence n = 13 (after rounding up to the next integer). Thus, 13 spares are
needed to be 95% sure of successful operation for at least two years.

Example 14.5. If X ∼ N(10, 25) and X1, X2, ..., X501 is a random sample
of size 501 from the population X, then what is the expected value of the
sample variance S2 ?

Answer: We will use the Theorem 14.3, to do this problem. By Theorem
14.3, we see that

(501 − 1) S2

σ2
∼ χ2(500).

Hence, the expected value of S2 is given by

E
[
S2

]
= E

[(
25
500

) (
500
25

)
S2

]
=

(
25
500

)
E

[(
500
25

)
S2

]
=

(
1
20

)
E

[
χ2(500)

]
=

(
1
20

)
500

= 25.
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14.2. Student’s t-distribution

Here we treat the Student’s t-distribution, which is also one of the very
useful sampling distributions.

Definition 14.2. A continuous random variable X is said to have a t-
distribution with ν degrees of freedom if its probability density function is of
the form

f(x; ν) =
Γ

(
ν+1
2

)
√

π ν Γ
(

ν
2

) (
1 + x2

ν

)( ν+1
2 )

, −∞ < x < ∞

where ν > 0. If X has a t-distribution with ν degrees of freedom, then we
denote it by writing X ∼ t(ν).

The t-distribution was discovered by W.S. Gosset (1876-1936) of Eng-
land who published his work under the pseudonym of student. Therefore,
this distribution is known as Student’s t-distribution. This distribution is a
generalization of the Cauchy distribution and the normal distribution. That
is, if ν = 1, then the probability density function of X becomes

f(x; 1) =
1

π (1 + x2)
−∞ < x < ∞,

which is the Cauchy distribution. Further, if ν → ∞, then

lim
ν→∞

f(x; ν) =
1√
2π

e−
1
2 x2 −∞ < x < ∞,

which is the probability density function of the standard normal distribution.
The following figure shows the graph of t-distributions with various degrees
of freedom.

Example 14.6. If T ∼ t(10), then what is the probability that T is at least
2.228 ?
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Answer: The probability that T is at least 2.228 is given by

P (T ≥ 2.228) = 1 − P (T < 2.228)

= 1 − 0.975 (from t − table)

= 0.025.

Example 14.7. If T ∼ t(19), then what is the value of the constant c such
that P (|T | ≤ c) = 0.95 ?

Answer:
0.95 = P (|T | ≤ c)

= P (−c ≤ T ≤ c)

= P (T ≤ c) − 1 + P (T ≤ c)

= 2P (T ≤ c) − 1.

Hence
P (T ≤ c) = 0.975.

Thus, using the t-table, we get for 19 degrees of freedom

c = 2.093.

Theorem 14.5. If the random variable X has a t-distribution with ν degrees
of freedom, then

E[X] =

{ 0 if ν ≥ 2

DNE if ν = 1

and

V ar[X] =

{ ν
ν−2 if ν ≥ 3

DNE if ν = 1, 2

where DNE means does not exist.

Theorem 14.6. If Z ∼ N(0, 1) and U ∼ χ2(ν) and in addition, Z and U

are independent, then the random variable W defined by

W =
Z√

U
ν

has a t-distribution with ν degrees of freedom.
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Theorem 14.7. If X ∼ N(µ, σ2) and X1, X2, ..., Xn be a random sample
from the population X, then

X − µ
S√
n

∼ t(n − 1).

Proof: Since each Xi ∼ N(µ, σ2),

X ∼ N

(
µ,

σ2

n

)
.

Thus,
X − µ

σ√
n

∼ N(0, 1).

Further, from Theorem 14.3 we know that

(n − 1)
S2

σ2
∼ χ2(n − 1).

Hence

X − µ
S√
n

=

X−µ
σ2√

n√
(n−1) S2

(n−1) σ2

∼ t(n − 1) (by Theorem 14.6).

This completes the proof of the theorem.

Example 14.8. Let X1, X2, X3, X4 be a random sample of size 4 from a
standard normal distribution. If the statistic W is given by

W =
X1 − X2 + X3√

X2
1 + X2

2 + X2
3 + X2

4

,

then what is the expected value of W ?

Answer: Since Xi ∼ N(0, 1), we get

X1 − X2 + X3 ∼ N(0, 3)

and
X1 − X2 + X3√

3
∼ N(0, 1).
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Further, since Xi ∼ N(0, 1), we have

X2
i ∼ χ2(1)

and hence
X2

1 + X2
2 + X2

3 + X2
4 ∼ χ2(4)

Thus,
X1−X2+X3√

3√
X2

1+X2
2+X2

3+X2
4

4

=
(

2√
3

)
W ∼ t(4).

Now using the distribution of W , we find the expected value of W .

E [W ] =

(√
3

2

)
E

[
2√
3

W

]

=

(√
3

2

)
E [t(4)]

=

(√
3

2

)
0

= 0.

Example 14.9. If X ∼ N(0, 1) and X1, X2 is random sample of size two from
the population X, then what is the 75th percentile of the statistic W = X1√

X2
2

?

Answer: Since each Xi ∼ N(0, 1), we have

X1 ∼ N(0, 1)

X2
2 ∼ χ2(1).

Hence
W =

X1√
X2

2

∼ t(1).

The 75th percentile a of W is then given by

0.75 = P (W ≤ a)

Hence, from the t-table, we get

a = 1.0
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Hence the 75th percentile of W is 1.0.

Example 14.10. Suppose X1, X2, ...., Xn is a random sample from a normal
distribution with mean µ and variance σ2. If X = 1

n

∑n
i=1 Xi and V 2 =

1
n

∑n
i=1

(
Xi − X

)2
, and Xn+1 is an additional observation, what is the value

of m so that the statistics m(X−Xn+1)
V has a t-distribution.

Answer: Since

Xi ∼ N(µ, σ2)

⇒ X ∼ N

(
µ,

σ2

n

)
⇒ X − Xn+1 ∼ N

(
µ − µ,

σ2

n
+ σ2

)
⇒ X − Xn+1 ∼ N

(
0,

(
n + 1

n

)
σ2

)
⇒ X − Xn+1

σ
√

n+1
n

∼ N(0, 1)

Now, we establish a relationship between V 2 and S2. We know that

(n − 1)S2 = (n − 1)
1

(n − 1)

n∑
i=1

(Xi − X)2

=
n∑

i=1

(Xi − X)2

= n

(
1
n

n∑
i=1

(Xi − X)2
)

= n V 2.

Hence, by Theorem 14.3

n V 2

σ2
=

(n − 1) S2

σ2
∼ χ2(n − 1).

Thus (√
n − 1
n + 1

)
X − Xn+1

V
=

X−Xn+1

σ
√

n+1
n√

n V 2

σ2

(n−1)

∼ t(n − 1).

Thus by comparison, we get

m =

√
n − 1
n + 1

.
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14.3. Snedecor’s F -distribution

The next sampling distribution to be discussed in this chapter is
Snedecor’s F -distribution. This distribution has many applications in math-
ematical statistics. In the analysis of variance, this distribution is used to
develop the technique for testing the equalities of sample means.

Definition 14.3. A continuous random variable X is said to have a F -
distribution with ν1 and ν2 degrees of freedom if its probability density func-
tion is of the form

f(x; ν1, ν2) =


Γ( ν1+ν2

2 )
(

ν1
ν2

) ν1
2 x

ν1
2 −1

Γ( ν1
2 )Γ( ν2

2 )
(
1+

ν1
ν2

x
)( ν1+ν2

2 ) if 0 ≤ x < ∞

0 otherwise,

where ν1, ν2 > 0. If X has a F -distribution with ν1 and ν2 degrees of freedom,
then we denote it by writing X ∼ F (ν1, ν2).

The F -distribution was named in honor of Sir Ronald Fisher by George
Snedecor. F -distribution arises as the distribution of a ratio of variances.
Like, the other two distributions this distribution also tends to normal dis-
tribution as ν1 and ν2 become very large. The following figure illustrates the
shape of the graph of this distribution for various degrees of freedom.

The following theorem gives us the mean and variance of Snedecor’s F -
distribution.

Theorem 14.8. If the random variable X ∼ F (ν1, ν2), then

E[X] =

{ ν2
ν2−2 if ν2 ≥ 3

DNE if ν2 = 1, 2

and

V ar[X] =


2 ν2

2 (ν1+ν2−2)
ν1 (ν2−2)2 (ν2−4) if ν2 ≥ 5

DNE if ν2 = 1, 2, 3, 4.
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Here DNE means does not exist.

Example 14.11. If X ∼ F (9, 10), what P (X ≥ 3.02) ? Also, find the mean
and variance of X.

Answer:
P (X ≥ 3.02) = 1 − P (X ≤ 3.02)

= 1 − P (F (9, 10) ≤ 3.02)

= 1 − 0.95 (from F − table)

= 0.05.

Next, we determine the mean and variance of X using the Theorem 14.8.
Hence,

E(X) =
ν2

ν2 − 2
=

10
10 − 2

=
10
8

= 1.25

and

V ar(X) =
2 ν2

2 (ν1 + ν2 − 2)
ν1 (ν2 − 2)2 (ν2 − 4)

=
2 (10)2 (19 − 2)

9 (8)2 (6)

=
(25) (17)
(27) (16)

=
425
432

= 0.9838.

Theorem 14.9. If X ∼ F (ν1, ν2), then the random variable 1
X ∼ F (ν2, ν1).

This theorem is very useful for computing probabilities like P (X ≤
0.2439). If you look at a F -table, you will notice that the table start with val-
ues bigger than 1. Our next example illustrates how to find such probabilities
using Theorem 14.9.

Example 14.12. If X ∼ F (6, 9), what is the probability that X is less than
or equal to 0.2439 ?
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Answer: We use the above theorem to compute

P (X ≤ 0.2439) = P

(
1
X

≥ 1
0.2439

)
= P

(
F (9, 6) ≥ 1

0.2439

)
(by Theorem 14.9)

= 1 − P

(
F (9, 6) ≤ 1

0.2439

)
= 1 − P (F (9, 6) ≤ 4.10)

= 1 − 0.95

= 0.05.

The following theorem says that F -distribution arises as the distribution
of a random variable which is the quotient of two independently distributed
chi-square random variables, each of which is divided by its degrees of free-
dom.

Theorem 14.10. If U ∼ χ2(ν1) and V ∼ χ2(ν2), and the random variables
U and V are independent, then the random variable

U
ν1
V
ν2

∼ F (ν1, ν2) .

Example 14.13. Let X1, X2, ..., X4 and Y1, Y2, ..., Y5 be two random samples
of size 4 and 5 respectively, from a standard normal population. What is the
variance of the statistic T =

(
5
4

) X2
1+X2

2+X2
3+X2

4
Y 2
1 +Y 2

2 +Y 2
3 +Y 2

4 +Y 2
5

?

Answer: Since the population is standard normal, we get

X2
1 + X2

2 + X2
3 + X2

4 ∼ χ2(4).

Similarly,
Y 2

1 + Y 2
2 + Y 2

3 + Y 2
4 + Y 2

5 ∼ χ2(5).

Thus

T =
(

5
4

)
X2

1 + X2
2 + X2

3 + X2
4

Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 + Y 2
5

=
X2

1+X2
2+X2

3+X2
4

4
Y 2
1 +Y 2

2 +Y 2
3 +Y 2

4 +Y 2
5

5

= T ∼ F (4, 5).
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Therefore
V ar(T ) = V ar[F (4, 5) ]

=
2 (5)2 (7)
4 (3)2 (1)

=
350
36

= 9.72.

Theorem 14.11. Let X ∼ N(µ1, σ2
1) and X1, X2, ..., Xn be a random sam-

ple of size n from the population X. Let Y ∼ N(µ2, σ2
2) and Y1, Y2, ..., Ym

be a random sample of size m from the population Y . Then the statistic

S2
1

σ2
1

S2
2

σ2
2

∼ F (n − 1, m − 1),

where S2
1 and S2

2 denote the sample variances of the first and the second
sample, respectively.

Proof: Since,
Xi ∼ N(µ1, σ

2
1)

we have by Theorem 14.3, we get

(n − 1)
S2

1

σ2
1

∼ χ2(n − 1).

Similarly, since
Yi ∼ N(µ2, σ

2
2)

we have by Theorem 14.3, we get

(m − 1)
S2

2

σ2
2

∼ χ2(m − 1).

Therefore
S2

1
σ2
1

S2
2

σ2
2

=
(n−1) S2

1
(n−1) σ2

1

(m−1) S2
2

(m−1) σ2
2

∼ F (n − 1, m − 1).

This completes the proof of the theorem.

Because of this theorem, the F -distribution is also known as the variance-
ratio distribution.
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14.4. Review Exercises

1. Let X1, X2, ..., X5 be a random sample of size 5 from a normal distribution
with mean zero and standard deviation 2. Find the sampling distribution of
the statistic X1 + 2X2 − X3 + X4 + X5.

2. Let X1, X2, X3 be a random sample of size 3 from a standard normal
distribution. Find the distribution of X2

1 + X2
2 + X2

3 . If possible, find the
sampling distribution of X2

1 −X2
2 . If not, justify why you can not determine

it’s distribution.

3. Let X1, X2, X3 be a random sample of size 3 from a standard normal
distribution. Find the sampling distribution of the statistics X1+X2+X3√

X2
1+X2

2+X2
3

and X1−X2−X3√
X2

1+X2
2+X2

3

.

4. Let X1, X2, X3 be a random sample of size 3 from an exponential distri-
bution with a parameter θ > 0. Find the distribution of the sample (that is
the joint distribution of the random variables X1, X2, X3).

5. Let X1, X2, ..., Xn be a random sample of size n from a normal population
with mean µ and variance σ2 > 0. What is the expected value of the sample
variance S2 = 1

n−1

∑n
i=1

(
Xi − X̄

)2?

6. Let X1, X2, X3, X4 be a random sample of size 4 from a standard normal
population. Find the distribution of the statistic X1+X4√

X2
2+X2

3

.

7. Let X1, X2, X3, X4 be a random sample of size 4 from a standard normal
population. Find the sampling distribution (if possible) and moment gener-
ating function of the statistic 2X2

1 +3X2
2 +X2

3 +4X2
4 . What is the probability

distribution of the sample?

8. Let X equal the maximal oxygen intake of a human on a treadmill, where
the measurement are in milliliters of oxygen per minute per kilogram of
weight. Assume that for a particular population the mean of X is µ = 54.03
and the standard deviation is σ = 5.8. Let X̄ be the sample mean of a random
sample X1, X2, ..., X47 of size 47 drawn from X. Find the probability that
the sample mean is between 52.761 and 54.453.
9. Let X1, X2, ..., Xn be a random sample from a normal distribution with
mean µ and variance σ2. What is the variance of V 2 = 1

n

∑n
i=1

(
Xi − X

)2
?

10. If X is a random variable with mean µ and variance σ2, then µ − 2σ is
called the lower 2σ point of X. Suppose a random sample X1, X2, X3, X4 is
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drawn from a chi-square distribution with two degrees of freedom. What is
the lower 2σ point of X1 + X2 + X3 + X4 ?

11. Let X and Y be independent normal random variables such that the
mean and variance of X are 2 and 4, respectively, while the mean and vari-
ance of Y are 6 and k, respectively. A sample of size 4 is taken from the
X-distribution and a sample of size 9 is taken from the Y -distribution. If
P

(
Y − X > 8

)
= 0.0228, then what is the value of the constant k ?

12. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
density function

f(x;λ) =

{
λe−λx if 0 < x < ∞

0 otherwise.

What is the distribution of the statistic Y = 2λ
∑n

i=1 Xi ?

13. Suppose X has a normal distribution with mean 0 and variance 1, Y

has a chi-square distribution with n degrees of freedom, W has a chi-square
distribution with p degrees of freedom, and W, X, and Y are independent.
What is the sampling distribution of the statistic V = X√

W+Y
p+n

?

14. A random sample X1, X2, ..., Xn of size n is selected from a normal
population with mean µ and standard deviation 1. Later an additional in-
dependent observation Xn+1 is obtained from the same population. What
is the distribution of the statistic (Xn+1 − µ)2 +

∑n
i=1(Xi − X)2, where X

denote the sample mean?

15. Let T = k(X+Y )√
Z2+W 2 , where X, Y , Z, and W are independent normal

random variables with mean 0 and variance σ2 > 0. For exactly one value
of k, T has a t-distribution. If r denotes the degrees of freedom of that
distribution, then what is the value of the pair (k, r)?

16. Let X and Y be joint normal random variables with common mean 0,
common variance 1, and covariance 1

2 . What is the probability of the event(
X + Y ≤

√
3
)
, that is P

(
X + Y ≤

√
3
)
?

17. Suppose Xj = Zj − Zj−1, where j = 1, 2, ..., n and Z0, Z1, ..., Zn are
independent and identically distributed with common variance σ2. What is
the variance of the random variable 1

n

∑n
j=1 Xj ?

18. A random sample of size 5 is taken from a normal distribution with mean
0 and standard deviation 2. Find the constant k such that 0.05 is equal to the
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probability that the sum of the squares of the sample observations exceeds
the constant k.

19. Let X1, X2, ..., Xn and Y1, Y2, ..., Yn be two random sample from the
independent normal distributions with V ar[Xi] = σ2 and V ar[Yi] = 2σ2, for
i = 1, 2, ..., n and σ2 > 0. If U =

∑n
i=1

(
Xi − X

)2
and V =

∑n
i=1

(
Yi − Y

)2
,

then what is the sampling distribution of the statistic 2U+V
2σ2 ?

20. Suppose X1, X2, ..., X6 and Y1, Y2, ..., Y9 are independent, identically
distributed normal random variables, each with mean zero and variance σ2 >

0. What is the 95th percentile of the statistics W =

[
6∑

i=1

X2
i

]
/

 9∑
j=1

Y 2
j

?

21. Let X1, X2, ..., X6 and Y1, Y2, ..., Y8 be independent random sam-
ples from a normal distribution with mean 0 and variance 1, and Z =[
4

6∑
i=1

X2
i

]
/

3
8∑

j=1

Y 2
j

?
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Chapter 15

SOME TECHNIQUES
FOR FINDING

POINT ESTIMATORS
OF

PARAMETERS

A statistical population consists of all the measurements of interest in
a statistical investigation. Usually a population is described by a random
variable X. If we can gain some knowledge about the probability density
function f(x; θ) of X, then we also gain some knowledge about the population
under investigation.

A sample is a portion of the population usually chosen by method of
random sampling and as such it is a set of random variables X1, X2, ..., Xn

with the same probability density function f(x; θ) as the population. Once
the sampling is done, we get

X1 = x1, X2 = x2, · · · , Xn = xn

where x1, x2, ..., xn are the sample data.
Every statistical method employs a random sample to gain information

about the population. Since the population is characterized by the proba-
bility density function f(x; θ), in statistics one makes statistical inferences
about the population distribution f(x; θ) based on sample information. A
statistical inference is a statement based on sample information about the
population. There three types of statistical inferences such as: (1) the esti-
mation (2) the hypothesis testing and (3) the prediction. The goal of this
chapter is to examine some well known point estimation methods.
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In point estimation, we try to find the parameter θ of the population
distribution f(x; θ) from the sample information. Thus, in the parametric
point estimation one assumes the functional form of the pdf f(x; θ) to be
known and only estimate the unknown parameter θ of the population using
information available from the sample.

Definition 15.1. Let X be a population with the density function f(x; θ),
where θ is an unknown parameter. The set of all admissible values of θ is
called a parameter space and it is denoted by Ω, that is

Ω = {θ ∈ IRn | f(x; θ) is a pdf }

for some natural number m.

Example 15.1. If X ∼ EXP (θ), then what is the parameter space of θ ?

Answer: Since X ∼ EXP (θ), the density function of X is given by

f(x; θ) =
1
θ

e−
x
θ .

If θ is zero or negative then f(x; θ) is not a density function. Thus, the
admissible values of θ are all the positive real numbers. Hence

Ω = {θ ∈ IR | 0 < θ < ∞}
= IR+.

Example 15.2. If X ∼ N
(
µ, σ2

)
, what is the parameter space?

Answer: The parameter space Ω is given by

Ω =
{
θ ∈ IR2 | f(x; θ) ∼ N

(
µ, σ2

)}
=

{
(µ, σ) ∈ IR2 | −∞ < µ < ∞, 0 < σ < ∞

}
= IR × IR+

= upper half plane.

In general, a parameter space is a subset of IRm. Statistics concerns
with the estimation of the unknown parameter θ from a random sample
X1, X2, ..., Xn. Recall that a statistic is a function of X1, X2, ..., Xn and free
of the population parameter θ.

Definition 15.2. Let X ∼ f(x; θ) and X1, X2, ..., Xn be a random sample
from the population X. Any statistic that can be used to guess the parameter
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θ is called an estimator of θ. The numerical value of this statistic is called
an estimate of θ. The estimator of the parameter θ is denoted by θ̂.

One of the basic problems is how to find an estimator of population
parameter θ. There are several methods for finding an estimator of θ. Some
of these methods are:

(1) Moment Method
(2) Maximum Likelihood Method
(3) Bayes Method
(4) Least Squares Method
(5) Minimum Chi-Squares Method
(6) Minimum Distance Method

In this chapter, we only discuss the first three methods of estimating a
population parameter.

15.1. Moment Method

Let X1, X2, ..., Xn be a random sample from a population X with proba-
bility density function f(x; θ1, θ2, ..., θm), where θ1, θ2, ..., θm are m unknown
parameters. Let

E
(
Xk

)
=

∫ ∞

−∞
xk f(x; θ1, θ2, ..., θm) dx

be the kth population moment about 0. Further, let

Mk =
1
n

n∑
i=1

Xk
i

be the kth sample moment about 0.
In moment method, we find the estimator for the parameters θ1, θ2, ..., θm

by equating the first m population moments (if they exist) to the first m

sample moments, that is
E (X) = M1

E
(
X2

)
= M2

E
(
X3

)
= M3

...

E (Xm) = Mm

The moment method is one of the classical methods for estimating pa-
rameters and motivation comes from the fact that the sample moments are
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in some sense estimates for the population moments. The moment method
was first discovered by British statistician Karl Pearson in 1902. Now we
provide some examples to illustrate this method.

Example 15.3. Let X ∼ N
(
µ, σ2

)
and X1, X2, ..., Xn be a random sample

of size n from the population X. What are the estimators of the population
parameters µ and σ2 if we use the moment method?

Answer: Since the population is normal, that is

X ∼ N
(
µ, σ2

)
we know that

E (X) = µ

E
(
X2

)
= σ2 + µ2.

Hence
µ = E (X)

= M1

=
1
n

n∑
i=1

Xi

= X.

Therefore, the estimator of the parameter µ is X, that is

µ̂ = X.

Next, we find the estimator of σ2 equating E(X2) to M2. Note that

σ2 = σ2 + µ2 − µ2

= E
(
X2

)
− µ2

= M2 − µ2

=
1
n

n∑
i=1

X2
i − X

2

=
1
n

n∑
i=1

(
Xi − X

)2
.

The last line follows from the fact that
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1
n

n∑
i=1

(
Xi − X

)2
=

1
n

n∑
i=1

(
X2

i − 2 Xi X + X
2
)

=
1
n

n∑
i=1

X2
i − 1

n

n∑
i=1

2 Xi X +
1
n

n∑
i=1

X
2

=
1
n

n∑
i=1

X2
i − 2 X

1
n

n∑
i=1

Xi + X
2

=
1
n

n∑
i=1

X2
i − 2 X X + X

2

=
1
n

n∑
i=1

X2
i − X

2
.

Thus, the estimator of σ2 is 1
n

n∑
i=1

(
Xi − X

)2
, that is

σ̂2 =
1
n

n∑
i=1

(
Xi − X

)2
.

Example 15.4. Let X1, X2, ..., Xn be a random sample of size n from a
population X with probability density function

f(x; θ) =

 θ xθ−1 if 0 < x < 1

0 otherwise,

where 0 < θ < ∞ is an unknown parameter. Using the method of moment
find an estimator of θ ? If x1 = 0.2, x2 = 0.6, x3 = 0.5, x4 = 0.3 is a random
sample of size 4, then what is the estimate of θ ?

Answer: To find an estimator, we shall equate the population moment to
the sample moment. The population moment E(X) is given by

E(X) =
∫ 1

0

x f(x; θ) dx

=
∫ 1

0

x θ xθ−1 dx

= θ

∫ 1

0

xθ dx

=
θ

θ + 1
[
xθ+1

]1
0

=
θ

θ + 1
.
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We know that M1 = X. Now setting M1 equal to E(X) and solving for θ,
we get

X =
θ

θ + 1
that is

θ =
X

1 − X
,

where X is the sample mean. Thus, the statistic X

1−X
is an estimator of the

parameter θ. Hence

θ̂ =
X

1 − X
.

Since x1 = 0.2, x2 = 0.6, x3 = 0.5, x4 = 0.3, we have X = 0.4 and

θ̂ =
0.4

1 − 0.4
=

2
3

is an estimate of the θ.

Example 15.5. What is the basic principle of the moment method?

Answer: To choose a value for the unknown population parameter for which
the observed data have the same moments as the population.

Example 15.6. Suppose X1, X2, ..., X7 is a random sample from a popula-
tion X with density function

f(x;β) =

 x6 e
− x

β

Γ(7) β7 if 0 < x < ∞

0 otherwise.
Find an estimator of β by the moment method.

Answer: Since, we have only one parameter, we need to compute only the
first population moment E(X) about 0. Thus,

E(X) =
∫ ∞

0

x f(x;β) dx

=
∫ ∞

0

x
x6 e−

x
β

Γ(7)β7
dx

=
1

Γ(7)

∫ ∞

0

(
x

β

)7

e−
x
β dx

= β
1

Γ(7)

∫ ∞

0

y7 e−y dy

= β
1

Γ(7)
Γ(8)

= 7β.
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Since M1 = X, equating E(X) to M1, we get

7 β = X

that is
β =

1
7

X.

Therefore, the estimator of β by the moment method is given by

β̂ =
1
7

X.

Example 15.7. Suppose X1, X2, ..., Xn is a random sample from a popula-
tion X with density function

f(x; θ) =

{ 1
θ if 0 < x < θ

0 otherwise.

Find an estimator of θ by the moment method.

Answer: Examining the density function of the population X, we see that
X ∼ UNIF (0, θ). Therefore

E(X) =
θ

2
.

Now, equating this population moment to the sample moment, we obtain

θ

2
= E(X) = M1 = X.

Therefore, the estimator of θ is

θ̂ = 2X.

Example 15.8. Suppose X1, X2, ..., Xn is a random sample from a popula-
tion X with density function

f(x;α, β) =

{ 1
β−α if α < x < β

0 otherwise.

Find the estimators of α and β by the moment method.
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Answer: Examining the density function of the population X, we see that
X ∼ UNIF (α, β). Since, the distribution has two unknown parameters, we
need the first two population moments. Therefore

E(X) =
α + β

2
and E(X2) =

(β − α)2

12
+ E(X)2.

Equating these moments to the corresponding sample moments, we obtain

α + β

2
= E(X) = M1 = X

that is
α + β = 2X (1)

and
(β − α)2

12
+ E(X)2 = E(X2) = M2 =

1
n

n∑
i=1

X2
i

which is

(β − α)2 = 12

[
1
n

n∑
i=1

X2
i − E(X)2

]

= 12

[
1
n

n∑
i=1

X2
i − X

2

]

= 12

[
1
n

n∑
i=1

(
X2

i − X
)2

]
.

Hence, we get

β − α =

√√√√ 12
n

n∑
i=1

(
X2

i − X
)2

. (2)

Adding equation (1) to equation (2), we obtain

2β = 2X ± 2

√√√√ 3
n

n∑
i=1

(
X2

i − X
)2

that is

β = X ±

√√√√ 3
n

n∑
i=1

(
X2

i − X
)2

.

Similarly, subtracting (2) from (1), we get

α = X ∓

√√√√ 3
n

n∑
i=1

(
X2

i − X
)2

.
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Since, α < β, we see that the estimators of α and β are

α̂ = X −

√√√√ 3
n

n∑
i=1

(
X2

i − X
)2

and β̂ = X +

√√√√ 3
n

n∑
i=1

(
X2

i − X
)2

.

15.2. Maximum Likelihood Method

The maximum likelihood method was first time used by Sir Ronald Fisher
in 1912 for finding estimator of a unknown parameter. However, the method
originated in the works of Gauss and Bernoulli. Next, we describe the method
in details.

Definition 15.3. Let X1, X2, ..., Xn be a random sample from a population
X with probability density function f(x; θ), where θ is an unknown param-
eter. The likelihood function, L(θ), is the distribution of the sample. That
is

L(θ) =
n∏

i=1

f(xi; θ).

This definition says that the likelihood function of a random sample
X1, X2, ..., Xn is the joint density of the random variables X1, X2, ..., Xn.

The θ that maximizes the likelihood function L(θ) is called the maximum
likelihood estimator of θ, and it is denoted by θ̂. Hence

θ̂ = Arg sup
θ∈Ω

L(θ),

where Ω is the parameter space of θ so that L(θ) is the joint density of the
sample.

The method of maximum likelihood in a sense picks out of all the possi-
ble values of θ the one most likely to have produced the given observations
x1, x2, ..., xn. The method is summarized below: (1) Obtain a random sample
x1, x2, ..., xn from the distribution of a population X with probability density
function f(x; θ); (2) define the likelihood function for the sample x1, x2, ..., xn

by L(θ) = f(x1; θ)f(x2; θ) · · · f(xn; θ); (3) find the expression for θ that max-
imizes L(θ). This can be done directly or by maximizing lnL(θ); (4) replace
θ by θ̂ to obtain an expression for the maximum likelihood estimator for θ;
(5) find the observed value of this estimator for a given sample.
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Example 15.9. If X1, X2, ..., Xn is a random sample from a distribution
with density function

f(x; θ) =

 (1 − θ) x−θ if 0 < x < 1

0 elsewhere,

what is the maximum likelihood estimator of θ ?

Answer: The likelihood function of the sample is given by

L(θ) =
n∏

i=1

f(xi; θ).

Therefore

lnL(θ) = ln

(
n∏

i=1

f(xi; θ)

)

=
n∑

i=1

ln f(xi; θ)

=
n∑

i=1

ln
[
(1 − θ) xi

−θ
]

= n ln(1 − θ) − θ

n∑
i=1

lnxi.

Now we maximize ln L(θ) with respect to θ.

d lnL(θ)
dθ

=
d

dθ

(
n ln(1 − θ) − θ

n∑
i=1

lnxi

)

= − n

1 − θ
−

n∑
i=1

lnxi.

Setting this derivative d ln L(θ)
dθ to 0, we get

d lnL(θ)
dθ

= − n

1 − θ
−

n∑
i=1

lnxi = 0

that is
1

1 − θ
= − 1

n

n∑
i=1

lnxi
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or
1

1 − θ
= − 1

n

n∑
i=1

lnxi = lnx.

or
θ = 1 − 1

lnx
.

This θ can be shown to be maximum by the second derivative test and we
leave this verification to the reader. Therefore, the estimator of θ is

θ̂ = 1 − 1
lnX

.

Example 15.10. If X1, X2, ..., Xn is a random sample from a distribution
with density function

f(x;β) =


x6 e

− x
β

Γ(7) β7 if 0 < x < ∞

0 otherwise,

then what is the maximum likelihood estimator of β ?

Answer: The likelihood function of the sample is given by

L(β) =
n∏

i=1

f(xi;β).

Thus,

lnL(β) =
n∑

i=1

ln f(xi, β)

= 6
n∑

i=1

lnxi −
1
β

n∑
i=1

xi − n ln(6!) − 7n ln(β).

Therefore
d

dβ
lnL(β) =

1
β2

n∑
i=1

xi −
7n

β
.

Setting this derivative d
dβ lnL(β) to zero, we get

1
β2

n∑
i=1

xi −
7n

β
= 0

which yields

β =
1
7n

n∑
i=1

xi.



Some Techniques for finding Point Estimators of Parameters 418

This β can be shown to be maximum by the second derivative test and again
we leave this verification to the reader. Hence, the estimator of β is given by

β̂ =
1
7

X.

Remark 15.1. Note that this maximum likelihood estimator of β is same
as the one found for β using the moment method in Example 15.6. However,
in general the estimators by different methods are different as the following
example illustrates.

Example 15.11. If X1, X2, ..., Xn is a random sample from a distribution
with density function

f(x; θ) =


1
θ if 0 < x < θ

0 otherwise,

then what is the maximum likelihood estimator of θ ?

Answer: The likelihood function of the sample is given by

L(θ) =
n∏

i=1

f(xi; θ)

=
n∏

i=1

(
1
θ

)
θ > xi (i = 1, 2, 3, ..., n)

=
(

1
θ

)n

θ > max{x1, x2, ..., xn}.

Hence the parameter space of θ with respect to L(θ) is given by

Ω = {θ ∈ IR | xmax < θ < ∞} = (xmax, ∞).

Now we maximize L(θ) on Ω. First, we compute lnL(θ) and then differentiate
it to get

lnL(θ) = −n ln(θ)

and
d

dθ
lnL(θ) = −n

θ
< 0.

Therefore lnL(θ) is a decreasing function of θ and as such the maximum of
lnL(θ) occurs at the left end point of the interval (xmax, ∞). Therefore, at
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θ = xmax the likelihood function achieve maximum. Hence the likelihood
estimator of θ is given by

θ̂ = X(n)

where X(n) denotes the nth order statistic of the given sample.

Thus, Example 15.7 and Example 15.11 say that the if we estimate the
parameter θ of a distribution with uniform density on the interval (0, θ), then
the maximum likelihood estimator is given by

θ̂ = X(n)

where as
θ̂ = 2 X

is the estimator obtained by the method of moment. Hence, in general these
two methods do not provide the same estimator of an unknown parameter.

Example 15.12. Let X1, X2, ..., Xn be a random sample from a distribution
with density function

f(x; θ) =


√

2
π e−

1
2 (x−θ)2 if x ≥ θ

0 elsewhere.

What is the maximum likelihood estimator of θ ?

Answer: The likelihood function L(θ) is given by

L(θ) =

(√
2
π

)n n∏
i=1

e−
1
2 (xi−θ)2 xi ≥ θ (i = 1, 2, 3, ..., n).

Hence the parameter space of θ is given by

Ω = {θ ∈ IR | 0 ≤ θ ≤ xmin} = [0, xmin], ,

where xmin = min{x1, x2, ..., xn}. Now we evaluate the logarithm of the
likelihood function.

lnL(θ) =
n

2
ln

(
2
π

)
− 1

2

n∑
i=1

(xi − θ)2,

where θ is on the interval [0, xmin ]. Now we maximize ln L(θ) subject to the
condition 0 ≤ θ ≤ xmin. Taking the derivative, we get

d

dθ
lnL(θ) = −1

2

n∑
i=1

(xi − θ) 2(−1) =
n∑

i=1

(xi − θ).
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In this example, if we equate the derivative to zero, then we get θ = x. But
this value of θ is not on the parameter space Ω. Thus, θ = x is not the
solution. Hence to find the solution of this optimization process, we examine
the behavior of the lnL(θ) on the interval [0, xmin ]. Note that

d

dθ
lnL(θ) = −1

2

n∑
i=1

(xi − θ) 2(−1) =
n∑

i=1

(xi − θ) > 0

since each xi is bigger than θ. Therefore, the function lnL(θ) is an increasing
function on the interval [0, xmin ] and as such it will achieve maximum at the
right end point of the interval [0, xmin ]. Therefore, the maximum likelihood
estimator of θ is given by

X̂ = X(1)

where X(1) denotes the smallest observation in the random sample
X1, X2, ..., Xn.

Example 15.13. Let X1, X2, ..., Xn be a random sample from a normal
population with mean µ and variance σ2. What are the maximum likelihood
estimators of µ and σ2 ?

Answer: Since X ∼ N(µ, σ2), the probability density function of X is given
by

f(x;µ, σ) =
1

σ
√

2π
e−

1
2 ( x−µ

σ )2

.

The likelihood function of the sample is given by

L(µ, σ) =
n∏

i=1

1
σ
√

2π
e−

1
2 (

xi−µ

σ )2

.

Hence, the logarithm of this likelihood function is given by

lnL(µ, σ) = −n

2
ln(2π) − n ln(σ) − 1

2σ2

n∑
i=1

(xi − µ)2.

Taking the partial derivatives of lnL(µ, σ) with respect to µ and σ, we get

∂

∂µ
lnL(µ, σ) = − 1

2σ2

n∑
i=1

(xi − µ) (−2) =
1
σ2

n∑
i=1

(xi − µ).

and
∂

∂σ
lnL(µ, σ) = −n

σ
+

1
σ3

n∑
i=1

(xi − µ)2.



Probability and Mathematical Statistics 421

Setting ∂
∂µ lnL(µ, σ) = 0 and ∂

∂σ lnL(µ, σ) = 0, and solving for the unknown
µ and σ, we get

µ =
1
n

n∑
i=1

xi = x.

Thus the maximum likelihood estimator of µ is

µ̂ = X.

Similarly, we get

−n

σ
+

1
σ3

n∑
i=1

(xi − µ)2 = 0

implies

σ2 =
1
n

n∑
i=1

(xi − µ)2.

Again µ and σ2 found by the first derivative test can be shown to be maximum
using the second derivative test for the functions of two variables. Hence,
using the estimator of µ in the above expression, we get the estimator of σ2

to be

σ̂2 =
1
n

n∑
i=1

(Xi − X)2.

Example 15.14. Suppose X1, X2, ..., Xn is a random sample from a distri-
bution with density function

f(x;α, β) =

{ 1
β−α if α < x < β

0 otherwise.

Find the estimators of α and β by the method of maximum likelihood.

Answer: The likelihood function of the sample is given by

L(α, β) =
n∏

i=1

1
β − α

=
(

1
β − α

)n

for all α ≤ xi for (i = 1, 2, ..., n) and for all β ≥ xi for (i = 1, 2, ..., n). Hence,
the domain of the likelihood function is

Ω = {(α, β) | 0 < α ≤ x(1) and x(n) ≤ β < ∞}.
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It is easy to see that L(α, β) is maximum if α = x(1) and β = x(n). Therefore,
the maximum likelihood estimator of α and β are

α̂ = X(1) and β̂ = X(n).

The maximum likelihood estimator θ̂ of a parameter θ has a remarkable
property known as the invariance property. This invariance property says
that if θ̂ is a maximum likelihood estimator of θ, then g(θ̂) is the maximum
likelihood estimator of g(θ), where g is a function from IRk to a subset of IRm.
This result was proved by Zehna in 1966. We state this result as a theorem
without a proof.

Theorem 15.1. Let θ̂ be a maximum likelihood estimator of a parameter θ

and let g(θ) be a function of θ. Then the maximum likelihood estimator of
g(θ) is given by g

(
θ̂
)
.

Now we give two examples to illustrate the importance of this theorem.

Example 15.15. Let X1, X2, ..., Xn be a random sample from a normal
population with mean µ and variance σ2. What are the maximum likelihood
estimators of σ and µ − σ?

Answer: From Example 15.13, we have the maximum likelihood estimator
of µ and σ2 to be

µ̂ = X

and

σ̂2 =
1
n

n∑
i=1

(Xi − X)2 =: Σ2 (say).

Now using the invariance property of the maximum likelihood estimator we
have

σ̂ = Σ

and
µ̂ − σ = X − Σ.

Example 15.16. Suppose X1, X2, ..., Xn is a random sample from a distri-
bution with density function

f(x;α, β) =

{ 1
β−α if α < x < β

0 otherwise.

Find the estimator of
√

α2 + β2 by the method of maximum likelihood.
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Answer: From Example 15.14, we have the maximum likelihood estimator
of α and β to be

α̂ = X(1) and β̂ = X(n),

respectively. Now using the invariance property of the maximum likelihood
estimator we see that the maximum likelihood estimator of

√
α2 + β2 is√

X2
(1) + X2

(n).

First time, the concept of information in statistics was introduced by Sir
Ronald Fisher and now a day it is known as Fisher information.

Definition 15.4. Let X be an observation from a population with proba-
bility density function f(x; θ). Suppose f(x; θ) is continuous, twice differen-
tiable and it’s support of does not depend on θ. Then the Fisher information,
I(θ), in a single observation X about θ is given by

I(θ) =
∫ ∞

−∞

[
d ln f(x; θ)

dθ

]2

f(x; θ) dx.

Thus I(θ) is the expected value of the random variable d ln f(X;θ)
dθ . Hence

I(θ) = E

([
d ln f(X; θ)

dθ

]2
)

.

In the following lemma, we give an alternative formula for the Fisher
information.

Lemma 15.1. The Fisher information contained in a single observation
about the unknown parameter θ can be given alternatively as

I(θ) = −
∫ ∞

−∞

[
d2 ln f(x; θ)

dθ2

]
f(x; θ) dx.

Proof: Since f(x; θ) is a probability density function,∫ ∞

−∞
f(x; θ) dx = 1. (3)

Differentiating (3) with respect to θ, we get

d

dθ

∫ ∞

−∞
f(x; θ) dx = 0.
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Rewriting the last equality, we obtain∫ ∞

−∞

df(x; θ)
dθ

1
f(x; θ)

f(x; θ) dx = 0

which is ∫ ∞

−∞

d ln f(x; θ)
dθ

f(x; θ) dx = 0. (4)

Now differentiating (4) with respect to θ, we see that∫ ∞

−∞

[
d2 ln f(x; θ)

dθ2
f(x; θ) +

d ln f(x; θ)
dθ

df(x; θ)
dθ

]
dx = 0.

Rewriting the last equality, we have∫ ∞

−∞

[
d2 ln f(x; θ)

dθ2
f(x; θ) +

d ln f(x; θ)
dθ

df(x; θ)
dθ

1
f(x; θ)

f(x; θ)
]

dx = 0

which is ∫ ∞

−∞

(
d2 ln f(x; θ)

dθ2
+

[
d ln f(x; θ)

dθ

]2
)

f(x; θ) dx = 0.

The last equality implies that∫ ∞

−∞

[
d ln f(x; θ)

dθ

]2

f(x; θ) dx = −
∫ ∞

−∞

[
d2 ln f(x; θ)

dθ2

]
f(x; θ) dx.

Hence using the definition of Fisher information, we have

I(θ) = −
∫ ∞

−∞

[
d2 ln f(x; θ)

dθ2

]
f(x; θ) dx

and the proof of the lemma is now complete.

The following two examples illustrate how one can determine Fisher in-
formation.

Example 15.17. Let X be a single observation taken from a normal pop-
ulation with unknown mean µ and known variance σ2. Find the Fisher
information in a single observation X about µ.

Answer: Since X ∼ N(µ, σ2), the probability density of X is given by

f(x;µ) =
1√

2πσ2
e−

1
2σ2 (x−µ)2 .
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Hence

ln f(x;µ) = −1
2

ln(2πσ2) − (x − µ)2

2σ2
.

Therefore
d ln f(x;µ)

dµ
=

x − µ

σ2

and
d2 ln f(x;µ)

dµ2
= − 1

σ2
.

Hence

I(µ) = −
∫ ∞

−∞

(
− 1

σ2

)
f(x;µ) dx =

1
σ2

.

Example 15.18. Let X1, X2, ..., Xn be a random sample from a normal
population with unknown mean µ and known variance σ2. Find the Fisher
information in this sample of size n about µ.

Answer: Let In(µ) be the required Fisher information. Then from the
definition, we have

In(µ) = −E

(
d2 ln f(X1, X2, ..., Xn;µ

dµ2

)
= −E

(
d

dµ2
{ln f(X1;µ) + · · · + ln f(Xn;µ)}

)
= −E

(
d2 ln f(X1;µ)

dµ2

)
− · · · − E

(
d2 ln f(Xn;µ)

dµ2

)
= I(θ) + · · · + I(θ)

= n I(θ)

= n
1
σ2

(using Example 15.17).

This example shows that if X1, X2, ..., Xn is a random sample from a
population X ∼ f(x; θ), then the Fisher information, In(θ), in a sample of
size n about the parameter θ is equal to n times the Fisher information in X

about θ. Thus
In(θ) = n I(θ).

If X is a random variable with probability density function f(x; θ), where
θ = (θ1, ..., θn) is an unknown parameter vector then the Fisher information,
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I(θ), is a n × n matrix given by

I(θ) = (Iij(θ))

=
(
−E

(
∂2 ln f(X; θ)

∂θi ∂θj

))
.

Example 15.19. Let X1, X2, ..., Xn be a random sample from a normal
population with mean µ and variance σ2. What is the Fisher information
matrix, In(µ, σ2), of the sample of size n about the parameters µ and σ2?

Answer: Let us write θ1 = µ and θ2 = σ2. The Fisher information, In(θ),
in a sample of size n about the parameter (θ1, θ2) is equal to n times the
Fisher information in the population about (θ1, θ2), that is

In(θ1, θ2) = n I(θ1, θ2). (5)

Since there are two parameters θ1 and θ2, the Fisher information matrix
I(θ1, θ2) is a 2 × 2 matrix given by

I(θ1, θ2) =

 I11(θ1, θ2) I12(θ1, θ2)

I21(θ1, θ2) I22(θ1, θ2)

 (6)

where

Iij(θ1, θ2) = −E

(
∂2 ln f(X; θ1, θ2)

∂θi ∂θj

)
for i = 1, 2 and j = 1, 2. Now we proceed to compute Iij . Since

f(x; θ1, θ2) =
1√

2 π θ2

e−
(x−θ1)2

2 θ2

we have

ln f(x; θ1, θ2) = −1
2

ln(2π θ2) −
(x − θ1)2

2 θ2
.

Taking partials of ln f(x; θ1, θ2), we have

∂ ln f(x; θ1, θ2)
∂θ1

=
x − θ1

θ2
,

∂ ln f(x; θ1, θ2)
∂θ2

= − 1
2 θ2

+
(x − θ1)2

2 θ2
2

,

∂2 ln f(x; θ1, θ2)
∂θ2

1

= − 1
θ2

,

∂2 ln f(x; θ1, θ2)
∂θ2

2

=
1

2 θ2
2

+
(x − θ1)2

θ3
2

,

∂2 ln f(x; θ1, θ2)
∂θ1 ∂θ2

= −x − θ1

θ2
2

.
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Hence

I11(θ1, θ2) = −E

(
− 1

θ2

)
=

1
θ2

=
1
σ2

.

Similarly,

I12(θ1, θ2) = −E

(
X − θ1

θ2
2

)
=

E(X)
θ2
2

− θ1

θ2
2

=
θ1

θ2
2

− θ1

θ2
2

= 0

and

I12(θ1, θ2) = −E

(
− (X − θ1)2

θ3
2

+
1

2θ2
2

)
=

E
(
(X − θ1)2

)
θ3
2

− 1
2θ2

2

=
θ2

θ3
2

− 1
2θ2

2

=
1

2θ2
2

=
1

2σ4
.

Thus from (5), (6) and the above calculations, the Fisher information matrix
is given by

In(θ1, θ2) = n

 1
σ2 0

0 1
2σ4

 =

 n
σ2 0

0 n
2σ4

 .

Now we present an important theorem about the maximum likelihood
estimator without a proof.

Theorem 15.2. Under certain regularity conditions on the f(x; θ) the max-
imum likelihood estimator θ̂ of θ based on a random sample of size n from
a population X with probability density f(x; θ) is asymptotically normally
distributed with mean θ and variance 1

n I(θ) . That is

θ̂ML ∼ N

(
θ,

1
n I(θ)

)
as n → ∞.

The following example shows that the maximum likelihood estimator of
a parameter is not necessarily unique.

Example 15.20. If X1, X2, ..., Xn is a random sample from a distribution
with density function

f(x; θ) =


1
2 if θ − 1 ≤ x ≤ θ + 1

0 otherwise,

then what is the maximum likelihood estimator of θ?
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Answer: The likelihood function of this sample is given by

L(θ) =

{(
1
2

)n if max{x1, ..., xn} − 1 ≤ θ ≤ min{x1, ..., xn} + 1

0 otherwise.

Since the likelihood function is a constant, any value in the interval
[max{x1, ..., xn} − 1, min{x1, ..., xn} + 1] is a maximum likelihood estimate
of θ.

Example 15.21. What is the basic principle of maximum likelihood esti-
mation?

Answer: To choose a value of the parameter for which the observed data
have as high a probability or density as possible. In other words a maximum
likelihood estimate is a parameter value under which the sample data have
the highest probability.

15.3. Bayesian Method

In the classical approach, the parameter θ is assumed to be an unknown,
but fixed quantity. A random sample X1, X2, ..., Xn is drawn from a pop-
ulation with probability density function f(x; θ) and based on the observed
values in the sample, knowledge about the value of θ is obtained.

In Bayesian approach θ is considered to be a quantity whose variation can
be described by a probability distribution (known as the prior distribution).
This is a subjective distribution, based on the experimenter’s belief, and is
formulated before the data are seen (and hence the name prior distribution).
A sample is then taken from a population where θ is a parameter and the
prior distribution is updated with this sample information. This updated
prior is called the posterior distribution. The updating is done with the help
of Bayes’ theorem and hence the name Bayesian method.

In this section, we shall denote the population density f(x; θ) as f(x/θ),
that is the density of the population X given the parameter θ.

Definition 15.5. Let X1, X2, ..., Xn be a random sample from a distribution
with density f(x/θ), where θ is the unknown parameter to be estimated.
The probability density function of the random variable θ is called the prior
distribution of θ and usually denoted by h(θ).

Definition 15.6. Let X1, X2, ..., Xn be a random sample from a distribution
with density f(x/θ), where θ is the unknown parameter to be estimated. The
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conditional density, k(θ/x1, x2, ..., xn), of θ given the sample x1, x2, ..., xn is
called the posterior distribution of θ.

Example 15.22. Let X1 = 1, X2 = 2 be a random sample of size 2 from a
distribution with probability density function

f(x/θ) =
(

3
x

)
θx(1 − θ)3−x, x = 0, 1, 2, 3.

If the prior density of θ is

h(θ) =

 k if 1
2 < θ < 1

0 otherwise,

what is the posterior distribution of θ ?

Answer: Since h(θ) is the probability density of θ, we should get

∫ 1

1
2

h(θ) dθ = 1

which implies ∫ 1

1
2

k dθ = 1.

Therefore k = 2. The joint density of the sample and the parameter is given
by

u(x1, x2, θ) = f(x1/θ)f(x2/θ)h(θ)

=
(

3
x1

)
θx1(1 − θ)3−x1

(
3
x2

)
θx2(1 − θ)3−x2 2

= 2
(

3
x1

)(
3
x2

)
θx1+x2(1 − θ)6−x1−x2 .

Hence,

u(1, 2, θ) = 2
(

3
1

)(
3
2

)
θ3(1 − θ)3

= 18 θ3(1 − θ)3.
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The marginal distribution of the sample

g(1, 2) =
∫ 1

1
2

u(1, 2, θ) dθ

=
∫ 1

1
2

18 θ3(1 − θ)3 dθ

= 18
∫ 1

1
2

θ3
(
1 + 3θ2 − 3θ − θ3

)
dθ

= 18
∫ 1

1
2

(
θ3 + 3θ5 − 3θ4 − θ6

)
dθ

=
9

140
.

The conditional distribution of the parameter θ given the sample X1 = 1 and
X2 = 2 is given by

k(θ/x1 = 1, x2 = 2) =
u(1, 2, θ)
g(1, 2)

=
18 θ3 (1 − θ)3

9
140

= 280 θ3 (1 − θ)3.

Therefore, the posterior distribution of θ is

k(θ/x1 = 1, x2 = 2) =

{
280 θ3 (1 − θ)3 if 1

2 < θ < 1

0 otherwise.

Remark 15.2. If X1, X2, ..., Xn is a random sample from a population with
density f(x/θ), then the joint density of the sample and the parameter is
given by

u(x1, x2, ..., xn, θ) = h(θ)
n∏

i=1

f(xi/θ).

Given this joint density, the marginal density of the sample can be computed
using the formula

g(x1, x2, ..., xn) =
∫ ∞

−∞
h(θ)

n∏
i=1

f(xi/θ) dθ.
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Now using the Bayes rule, the posterior distribution of θ can be computed
as follows:

k(θ/x1, x2, ..., xn) =
h(θ)

∏n
i=1 f(xi/θ)∫ ∞

−∞ h(θ)
∏n

i=1 f(xi/θ) dθ
.

In Bayesian method, we use two types of loss functions.

Definition 15.7. Let X1, X2, ..., Xn be a random sample from a distribution
with density f(x/θ), where θ is the unknown parameter to be estimated. Let
θ̂ be an estimator of θ. The function

L2

(
θ̂, θ

)
=

(
θ̂ − θ

)2

is called the squared error loss. The function

L1

(
θ̂, θ

)
=

∣∣∣θ̂ − θ
∣∣∣

is called the absolute error loss.

The loss function L represents the ‘loss’ incurred when θ̂ is used in place
of the parameter θ.

Definition 15.8. Let X1, X2, ..., Xn be a random sample from a distribution
with density f(x/θ), where θ is the unknown parameter to be estimated. Let
θ̂ be an estimator of θ and let L

(
θ̂, θ

)
be a given loss function. The expected

value of this loss function with respect to the population distribution f(x/θ),
that is

RL(θ) =
∫

L
(
θ̂, θ

)
f(x/θ) dx

is called the risk.
The posterior density of the parameter θ given the sample x1, x2, ..., xn,

that is
k(θ/x1, x2, ..., xn)

contains all information about θ. In Bayesian estimation of parameter one
chooses an estimate θ̂ for θ such that

k(θ̂/x1, x2, ..., xn)

is maximum subject to a loss function. Mathematically, this is equivalent to
minimizing the integral∫

Ω

L
(
θ̂, θ

)
k(θ/x1, x2, ..., xn) dθ
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with respect to θ̂, where Ω denotes the support of the prior density h(θ) of
the parameter θ.

Example 15.23. Suppose one observation was taken of a random variable
X which yielded the value 2. The density function for X is

f(x/θ) =


1
θ if 0 < x < θ

0 otherwise,

and prior distribution for parameter θ is

h(θ) =

{ 3
θ4 if 1 < θ < ∞

0 otherwise.
If the loss function is L(z, θ) = (z − θ)2, then what is the Bayes’ estimate for
θ ?

Answer: The prior density of the random variable θ is

h(θ) =

{ 3
θ4 if 1 < θ < ∞

0 otherwise.
The probability density function of the population is

f(x/θ) =

{ 1
θ if 0 < x < θ

0 otherwise.
Hence, the joint probability density function of the sample and the parameter
is given by

u(x, θ) = h(θ) f(x/θ)

=
3
θ4

1
θ

=

{
3 θ−5 if 0 < x < θ and 1 < θ < ∞

0 otherwise.
The marginal density of the sample is given by

g(x) =
∫ ∞

x

u(x, θ) dθ

=
∫ ∞

x

3 θ−5 dθ

=
3
4

x−4

=
3

4 x4
.
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Thus, if x = 2, then g(2) = 3
64 . The posterior density of θ when x = 2 is

given by

k(θ/x = 2) =
u(2, θ)
g(2)

=
64
3

3 θ−5

=

{
64 θ−5 if 2 < θ < ∞

0 otherwise .
Now, we find the Bayes estimator by minimizing the expression
E [L(θ, z)/x = 2]. That is

θ̂ = Arg max
z∈Ω

∫
Ω

L(θ, z) k(θ/x = 2) dθ.

Let us call this integral ψ(z). Then

ψ(z) =
∫

Ω

L(θ, z) k(θ/x = 2) dθ

=
∫ ∞

2

(z − θ)2 k(θ/x = 2) dθ

=
∫ ∞

2

(z − θ)2 64θ−5 dθ.

We want to find the value of z which yields a minimum of ψ(z). This can be
done by taking the derivative of ψ(z) and evaluating where the derivative is
zero.

d

dz
ψ(z) =

d

dz

∫ ∞

2

(z − θ)2 64θ−5 dθ

= 2
∫ ∞

2

(z − θ) 64θ−5 dθ

= 2
∫ ∞

2

z 64θ−5 dθ − 2
∫ ∞

2

θ 64θ−5 dθ

= 2 z − 16
3

.

Setting this derivative of ψ(z) to zero and solving for z, we get

2z − 16
3

= 0

⇒ z =
8
3
.

Since d2ψ(z)
dz2 = 2, the function ψ(z) has a minimum at z = 8

3 . Hence, the
Bayes’ estimate of θ is 8

3 .
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In Example 15.23, we have found the Bayes’ estimate of θ by di-
rectly minimizing the

∫
Ω
L

(
θ̂, θ

)
k(θ/x1, x2, ..., xn) dθ with respect to θ̂.

The next result is very useful while finding the Bayes’ estimate using
a quadratic loss function. Notice that if L(θ̂, θ) = (θ − θ̂)2, then∫
Ω
L

(
θ̂, θ

)
k(θ/x1, x2, ..., xn) dθ is E

(
(θ − θ̂)2 /x1, x2, ..., xn

)
. The follow-

ing theorem is based on the fact that the function φ defined by φ(c) =
E

[
(X − c)2

]
attains minimum if c = E[X].

Theorem 15.3. Let X1, X2, ..., Xn be a random sample from a distribution
with density f(x/θ), where θ is the unknown parameter to be estimated. If
the loss function is squared error, then the Bayes’ estimator θ̂ of parameter
θ is given by

θ̂ = E(θ/x1, x2, ..., xn),

where the expectation is taken with respect to density k(θ/x1, x2, ..., xn).

Now we give several examples to illustrate the use of this theorem.

Example 15.24. Suppose the prior distribution of θ is uniform over the
interval (0, 1). Given θ, the population X is uniform over the interval (0, θ).
If the squared error loss function is used, find the Bayes’ estimator of θ based
on a sample of size one.

Answer: The prior density of θ is given by

h(θ) =

{ 1 if 0 < θ < 1

0 otherwise .

The density of population is given by

f(x/θ) =

{ 1
θ if 0 < x < θ

0 otherwise.

The joint density of the sample and the parameter is given by

u(x, θ) = h(θ) f(x/θ)

= 1
(

1
θ

)
=

{ 1
θ if 0 < x < θ < 1

0 otherwise .
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The marginal density of the sample is

g(x) =
∫ 1

x

u(x, θ) dθ

=
∫ 1

x

1
θ

dθ

=
{− lnx if 0 < x < 1

0 otherwise.

The conditional density of θ given the sample is

k(θ/x) =
u(x, θ)
g(x)

=

{− 1
θ ln x if 0 < x < θ < 1

0 elsewhere .

Since the loss function is quadratic error, therefore the Bayes’ estimator of θ

is
θ̂ = E[θ/x]

=
∫ 1

x

θ k(θ/x) dθ

=
∫ 1

x

θ
−1

θ lnx
dθ

= − 1
lnx

∫ 1

x

dθ

=
x − 1
lnx

.

Thus, the Bayes’ estimator of θ based on one observation X is

θ̂ =
X − 1
lnX

.

Example 15.25. Given θ, the random variable X has a binomial distribution
with n = 2 and probability of success θ. If the prior density of θ is

h(θ) =

 k if 1
2 < θ < 1

0 otherwise,

what is the Bayes’ estimate of θ for a squared error loss if X = 1 ?

Answer: Note that θ is uniform on the interval
(

1
2 , 1

)
, hence k = 2. There-

fore, the prior density of θ is

h(θ) =

{
2 if 1

2 < θ < 1

0 otherwise.
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The population density is given by

f(x/θ) =
(

n

x

)
θx (1 − θ)n−x =

(
2
x

)
θx (1 − θ)2−x, x = 0, 1, 2.

The joint density of the sample and the parameter θ is

u(x, θ) = h(θ) f(x/θ)

= 2
(

2
x

)
θx (1 − θ)2−x

where 1
2 < θ < 1 and x = 0, 1, 2. The marginal density of the sample is given

by

g(x) =
∫ 1

1
2

u(x, θ) dθ.

This integral is easy to evaluate if we substitute X = 1 now. Hence

g(1) =
∫ 1

1
2

2
(

2
1

)
θ (1 − θ) dθ

=
∫ 1

1
2

(
4θ − 4θ2

)
dθ

= 4
[
θ2

2
− θ3

3

]1

1
2

=
2
3

[
3θ2 − 2θ3

]1
1
2

=
2
3

[
(3 − 2) −

(
3
4
− 2

8

)]
=

1
3
.

Therefore, the posterior density of θ given x = 1, is

k(θ/x = 1) =
u(1, θ)
g(1)

= 12 (θ − θ2),

where 1
2 < θ < 1. Since the loss function is quadratic error, therefore the



Probability and Mathematical Statistics 437

Bayes’ estimate of θ is

θ̂ = E[θ/x = 1]

=
∫ 1

1
2

θ k(θ/x = 1) dθ

=
∫ 1

1
2

12 θ (θ − θ2) dθ

=
[
4 θ3 − 3 θ4

]1
1
2

= 1 − 5
16

=
11
16

.

Hence, based on the sample of size one with X = 1, the Bayes’ estimate of θ

is 11
16 , that is

θ̂ =
11
16

.

The following theorem help us to evaluate the Bayes estimate of a sample
if the loss function is absolute error loss. This theorem is based the fact that
a function φ(c) = E [ |X − c| ] is minimum if c is the median of X.

Theorem 15.4. Let X1, X2, ..., Xn be a random sample from a distribution
with density f(x/θ), where θ is the unknown parameter to be estimated. If
the loss function is absolute error, then the Bayes estimator θ̂ of the param-
eter θ is given by

θ̂ = median of k(θ/x1, x2, ..., xn)

where k(θ/x1, x2, ..., xn) is the posterior distribution of θ.

The followings are some examples to illustrate the above theorem.

Example 15.26. Given θ, the random variable X has a binomial distribution
with n = 3 and probability of success θ. If the prior density of θ is

h(θ) =

 k if 1
2 < θ < 1

0 otherwise,

what is the Bayes’ estimate of θ for an absolute difference error loss if the
sample consists of one observation x = 3?
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Answer: Since, the prior density of θ is

h(θ) =

 2 if 1
2 < θ < 1

0 otherwise ,

and the population density is

f(x/θ) =
(

3
x

)
θx(1 − θ)3−x,

the joint density of the sample and the parameter is given by

u(3, θ) = h(θ) f(3/θ) = 2 θ3,

where 1
2 < θ < 1. The marginal density of the sample (at x = 3) is given by

g(3) =
∫ 1

1
2

u(3, θ) dθ

=
∫ 1

1
2

2 θ3 dθ

=
[
θ4

2

]1

1
2

=
15
32

.

Therefore, the conditional density of θ given X = 3 is

k(θ/x = 3) =
u(3, θ)
g(3)

=

{ 64
15 θ3 if 1

2 < θ < 1

0 elsewhere.

Since, the loss function is absolute error, the Bayes’ estimator is the median
of the probability density function k(θ/x = 3). That is

1
2

=
∫ θ̂

1
2

64
15

θ3 dθ

=
64
60

[
θ4

]θ̂
1
2

=
64
60

[(
θ̂
)4

− 1
16

]
.
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Solving the above equation for θ̂, we get

θ̂ = 4

√
17
32

= 0.8537.

Example 15.27. Suppose the prior distribution of θ is uniform over the
interval (2, 5). Given θ, X is uniform over the interval (0, θ). What is the
Bayes’ estimator of θ for absolute error loss if X = 1 ?

Answer: Since, the prior density of θ is

h(θ) =


1
3 if 2 < θ < 5

0 otherwise ,

and the population density is

f(x/θ) =


1
θ if 0 < x < θ

0 elsewhere,

the joint density of the sample and the parameter is given by

u(x, θ) = h(θ) f(x/θ) =
1
3θ

,

where 2 < θ < 5 and 0 < x < θ. The marginal density of the sample (at
x = 1) is given by

g(1) =
∫ 5

1

u(1, θ) dθ

=
∫ 2

1

u(1, θ) dθ +
∫ 5

2

u(1, θ) dθ

=
∫ 5

2

1
3θ

dθ

=
1
3

ln
(

5
2

)
.

Therefore, the conditional density of θ given the sample x = 1, is

k(θ/x = 1) =
u(1, θ)
g(1)

=
1

θ ln
(

5
2

) .
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Since, the loss function is absolute error, the Bayes estimate of θ is the median
of k(θ/x = 1). Hence

1
2

=
∫ θ̂

2

1
θ ln

(
5
2

) dθ

=
1

ln
(

5
2

) ln

(
θ̂

2

)
.

Solving for θ̂, we get
θ̂ =

√
10 = 3.16.

Example 15.28. What is the basic principle of Bayesian estimation?

Answer: The basic principle behind the Bayesian estimation method con-
sists of choosing a value of the parameter θ for which the observed data have
as high a posterior probability k(θ/x1, x2, ..., xn) of θ as possible subject to
a loss function.

15.4. Review Exercises

1. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
a probability density function

f(x; θ) =


1
2θ if −θ < x < θ

0 otherwise,

where 0 < θ is a parameter. Using the moment method find an estimator for
the parameter θ.

2. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
a probability density function

f(x; θ) =

 (θ + 1)x−θ−2 if 1 < x < ∞

0 otherwise,

where 0 < θ is a parameter. Using the moment method find an estimator for
the parameter θ.

3. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
a probability density function

f(x; θ) =

 θ2 x e−θ x if 0 < x < ∞

0 otherwise,
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where 0 < θ is a parameter. Using the moment method find an estimator for
the parameter θ.

4. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
a probability density function

f(x; θ) =

 θ xθ−1 if 0 < x < 1

0 otherwise,

where 0 < θ is a parameter. Using the maximum likelihood method find an
estimator for the parameter θ.

5. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
a probability density function

f(x; θ) =

 (θ + 1)x−θ−2 if 1 < x < ∞

0 otherwise,

where 0 < θ is a parameter. Using the maximum likelihood method find an
estimator for the parameter θ.

6. Let X1, X2, ..., Xn be a random sample of sizen from a distribution with
a probability density function

f(x; θ) =

 θ2 x e−θ x if 0 < x < ∞

0 otherwise,

where 0 < θ is a parameter. Using the maximum likelihood method find an
estimator for the parameter θ.

7. Let X1, X2, X3, X4 be a random sample from a distribution with density
function

f(x) =


1
β e

−(x−4)
β for x > 4

0 otherwise,
where β > 0. If the data from this random sample are 8.2, 9.1, 10.6 and 4.9,
respectively, what is the maximum likelihood estimate of β?

8. Given θ, the random variable X has a binomial distribution with n = 2
and probability of success θ. If the prior density of θ is

h(θ) =

 k if 1
2 < θ < 1

0 otherwise,
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what is the Bayes’ estimate of θ for a squared error loss if the sample consists
of x1 = 1 and x2 = 2.

9. Suppose two observations were taken of a random variable X which yielded
the values 2 and 3. The density function for X is

f(x/θ) =


1
θ if 0 < x < θ

0 otherwise,

and prior distribution for the parameter θ is

h(θ) =

{
3 θ−4 if θ > 1

0 otherwise.

If the loss function is quadratic, then what is the Bayes’ estimate for θ?

10. The Pareto distribution is often used in study of incomes and has the
cumulative density function

F (x;α, θ) =

 1 −
(

α
x

)θ if α ≤ x

0 otherwise,

where 0 < α < ∞ and 1 < θ < ∞ are parameters. Find the maximum likeli-
hood estimates of α and θ based on a sample of size 5 for value 3, 5, 2, 7, 8.

11. The Pareto distribution is often used in study of incomes and has the
cumulative density function

F (x;α, θ) =

 1 −
(

α
x

)θ if α ≤ x

0 otherwise,

where 0 < α < ∞ and 1 < θ < ∞ are parameters. Using moment methods
find estimates of α and θ based on a sample of size 5 for value 3, 5, 2, 7, 8.

12. Suppose one observation was taken of a random variable X which yielded
the value 2. The density function for X is

f(x/µ) =
1√
2π

e−
1
2 (x−µ)2 −∞ < x < ∞,

and prior distribution of µ is

h(µ) =
1√
2π

e−
1
2 µ2 −∞ < µ < ∞.
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If the loss function is quadratic, then what is the Bayes’ estimate for µ?

13. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
probability density

f(x) =


1
θ if 2θ ≤ x ≤ 3θ

0 otherwise,

where θ > 0. What is the maximum likelihood estimator of θ?

14. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
probability density

f(x) =

 1 − θ2 if 0 ≤ x ≤ 1
1−θ2

0 otherwise,

where θ > 0. What is the maximum likelihood estimator of θ?

15. Given θ, the random variable X has a binomial distribution with n = 3
and probability of success θ. If the prior density of θ is

h(θ) =

 k if 1
2 < θ < 1

0 otherwise,

what is the Bayes’ estimate of θ for a absolute difference error loss if the
sample consists of one observation x = 1?

16. Suppose the random variable X has the cumulative density function
F (x). Show that the expected value of the random variable (X − c)2 is
minimum if c equals the expected value of X.

17. Suppose the continuous random variable X has the cumulative density
function F (x). Show that the expected value of the random variable |X − c|
is minimum if c equals the median of X (that is, F (c) = 0.5).

18. Eight independent trials are conducted of a given system with the follow-
ing results: S, F, S, F, S, S, S, S where S denotes the success and F denotes
the failure. What is the maximum likelihood estimate of the probability of
successful operation p ?

19. What is the maximum likelihood estimate of β if the 5 values 4
5 , 2

3 , 1,
3
2 , 5

4 were drawn from the population for which f(x;β) = 1
2 (1 + β)5

(
x
2

)β ?
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20. If a sample of five values of X is taken from the population for which
f(x; t) = 2(t − 1)tx, what is the maximum likelihood estimator of t ?

21. A sample of size n is drawn from a gamma distribution

f(x;β) =

 x3 e
− x

β

6β4 if 0 < x < ∞

0 otherwise.

What is the maximum likelihood estimator of β ?

22. The probability density function of the random variable X is defined by

f(x;λ) =

{
1 − 2

3λ + λ
√

x if 0 ≤ x ≤ 1

0 otherwise.

What is the maximum likelihood estimate of the parameter λ based on two
independent observations x1 = 1

4 and x2 = 9
16 ?

23. Let X1, X2, ..., Xn be a random sample from a distribution with density
function f(x;σ) = σ

2 e−σ|x−µ|. Let Y1, Y2, ..., Yn be the order statistics of
this sample and assume n is odd and µ is known. What is the maximum
likelihood estimator of σ ?

24. Suppose X1, X2, ... are independent random variables, each with proba-
bility of success p and probability of failure 1 − p, where 0 ≤ p ≤ 1. Let N

be the number of observation needed to obtain the first success. What is the
maximum likelihood estimator of p in term of N ?

25. Let X1, X2, X3 and X4 be a random sample from the discrete distribution
X such that

P (X = x) =


θ2x e−θ2

x! for x = 0, 1, 2, ...,∞

0 otherwise,

where θ > 0. If the data are 17, 10, 32, 5, what is the maximum likelihood
estimate of θ ?

26. Let X1, X2, ..., Xn be a random sample of size n from a population with
a probability density function

f(x;α, λ) =


λα

Γ(α) xα−1e−λ x if 0 < x < ∞

0 otherwise,
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where α and λ are parameters. Using the moment method find the estimators
for the parameters α and λ.

27. Let X1, X2, ..., Xn be a random sample of size n from a population
distribution with the probability density function

f(x; p) =
(

10
x

)
px (1 − p)10−x

for x = 0, 1, ..., 10, where p is a parameter. Find the Fisher information in
the sample about the parameter p.

28. Let X1, X2, ..., Xn be a random sample of size n from a population
distribution with the probability density function

f(x; θ) =

 θ2 x e−θ x if 0 < x < ∞

0 otherwise,

where 0 < θ is a parameter. Find the Fisher information in the sample about
the parameter θ.

29. Let X1, X2, ..., Xn be a random sample of size n from a population
distribution with the probability density function

f(x;µ, σ2) =


1

x σ
√

2 π
e
− 1

2

(
ln(x)−µ

σ

)2

, if 0 < x < ∞

0 otherwise ,

where −∞ < µ < ∞ and 0 < σ2 < ∞ are unknown parameters. Find the
Fisher information matrix in the sample about the parameters µ and σ2.

30. Let X1, X2, ..., Xn be a random sample of size n from a population
distribution with the probability density function

f(x;µ, λ) =


√

λ
2π x− 3

2 e
−λ(x−µ)2

2µ2x , if 0 < x < ∞

0 otherwise ,

where 0 < µ < ∞ and 0 < λ < ∞ are unknown parameters. Find the Fisher
information matrix in the sample about the parameters µ and λ.

31. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
a probability density function

f(x) =


1

Γ(α) θα xα−1 e−
x
θ if 0 < x < ∞

0 otherwise,
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where α > 0 and θ > 0 are parameters. Using the moment method find
estimators for parameters α and β.

32. Let X1, X2, ..., Xn be a random sample of sizen from a distribution with
a probability density function

f(x; θ) =
1

π [1 + (x − θ)2]
, −∞ < x < ∞,

where 0 < θ is a parameter. Using the maximum likelihood method find an
estimator for the parameter θ.

33. Let X1, X2, ..., Xn be a random sample of sizen from a distribution with
a probability density function

f(x; θ) =
1
2

e−|x−θ|, −∞ < x < ∞,

where 0 < θ is a parameter. Using the maximum likelihood method find an
estimator for the parameter θ.

34. Let X1, X2, ..., Xn be a random sample of size n from a population
distribution with the probability density function

f(x;λ) =


λx e−λ

x! if x = 0, 1, ...,∞

0 otherwise,

where λ > 0 is an unknown parameter. Find the Fisher information matrix
in the sample about the parameter λ.

35. Let X1, X2, ..., Xn be a random sample of size n from a population
distribution with the probability density function

f(x; p) =

 (1 − p)x−1p if x = 1, ...,∞

0 otherwise,

where 0 < p < 1 is an unknown parameter. Find the Fisher information
matrix in the sample about the parameter p.
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Chapter 16

CRITERIA
FOR

EVALUATING
THE GOODNESS OF

ESTIMATORS

We have seen in Chapter 15 that, in general, different parameter estima-
tion methods yield different estimators. For example, if X ∼ UNIF (0, θ) and
X1, X2, ..., Xn is a random sample from the population X, then the estimator
of θ obtained by moment method is

θ̂MM = 2X

where as the estimator obtained by the maximum likelihood method is

θ̂ML = X(n)

where X and X(n) are the sample average and the nth order statistic, respec-
tively. Now the question arises: which of the two estimators is better? Thus,
we need some criteria to evaluate the goodness of an estimator. Some well
known criteria for evaluating the goodness of an estimator are: (1) Unbiased-
ness, (2) Efficiency and Relative Efficiency, (3) Uniform Minimum Variance
Unbiasedness, (4) Sufficiency, and (5) Consistency.

In this chapter, we shall examine only the first four criteria in details.
The concepts of unbiasedness, efficiency and sufficiency were introduced by
Sir Ronald Fisher.
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16.1. The Unbiased Estimator

Let X1, X2, ..., Xn be a random sample of size n from a population with
probability density function f(x; θ). An estimator θ̂ of θ is a function of
the random variables X1, X2, ..., Xn which is free of the parameter θ. An
estimate is a realized value of an estimator that is obtained when a sample
is actually taken.

Definition 16.1. An estimator θ̂ of θ is said to be an unbiased estimator of
θ if and only if

E
(
θ̂
)

= θ.

If θ̂ is not unbiased, then it is called a biased estimator of θ.

An estimator of a parameter may not equal to the actual value of the pa-
rameter for every realization of the sample X1, X2, ..., Xn, but if it is unbiased
then on an average it will equal to the parameter.

Example 16.1. Let X1, X2, ..., Xn be a random sample from a normal
population with mean µ and variance σ2 > 0. Is the sample mean X an
unbiased estimator of the parameter µ ?

Answer: Since, each Xi ∼ N(µ, σ2), we have

X ∼ N

(
µ,

σ2

n

)
.

That is, the sample mean is normal with mean µ and variance σ2

n . Thus

E
(
X

)
= µ.

Therefore, the sample mean X is an unbiased estimator of µ.

Example 16.2. Let X1, X2, ..., Xn be a random sample from a normal pop-
ulation with mean µ and variance σ2 > 0. What is the maximum likelihood
estimator of σ2 ? Is this maximum likelihood estimator an unbiased estimator
of the parameter σ2 ?

Answer: In Example 15.13, we have shown that the maximum likelihood
estimator of σ2 is

σ̂2 =
1
n

n∑
i=1

(
Xi − X

)2
.
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Now, we examine the unbiasedness of this estimator

E
[
σ̂2

]
= E

[
1
n

n∑
i=1

(
Xi − X

)2

]

= E

[
n − 1

n

1
n − 1

n∑
i=1

(
Xi − X

)2

]

=
n − 1

n
E

[
1

n − 1

n∑
i=1

(
Xi − X

)2

]

=
n − 1

n
E

[
S2

]
=

σ2

n
E

[
n − 1
σ2

S2

]
(since

n − 1
σ2

S2 ∼ χ2(n − 1))

=
σ2

n
E

[
χ2(n − 1)

]
=

σ2

n
(n − 1)

=
n − 1

n
σ2


= σ2.

Therefore, the maximum likelihood estimator of σ2 is a biased estimator.

Next, in the following example, we show that the sample variance S2

given by the expression

S2 =
1

n − 1

n∑
i=1

(
Xi − X

)2

is an unbiased estimator of the population variance σ2 irrespective of the
population distribution.

Example 16.3. Let X1, X2, ..., Xn be a random sample from a population
with mean µ and variance σ2 > 0. Is the sample variance S2 an unbiased
estimator of the population variance σ2 ?

Answer: Note that the distribution of the population is not given. However,
we are given E(Xi) = µ and E[(Xi − µ)2] = σ2. In order to find E

(
S2

)
,

we need E
(
X

)
and E

(
X

2
)
. Thus we proceed to find these two expected
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values. Consider

E
(
X

)
= E

(
X1 + X2 + · · · + Xn

n

)
=

1
n

n∑
i=1

E(Xi) =
1
n

n∑
i=1

µ = µ

Similarly,

V ar
(
X

)
= V ar

(
X1 + X2 + · · · + Xn

n

)
=

1
n2

n∑
i=1

V ar(Xi) =
1
n2

n∑
i=1

σ2 =
σ2

n
.

Therefore

E
(

X
2
)

= V ar
(
X

)
+ E

(
X

)2
=

σ2

n
+ µ2.

Consider

E
(
S2

)
= E

[
1

n − 1

n∑
i=1

(
Xi − X

)2

]

=
1

n − 1
E

[
n∑

i=1

(
X2

i − 2XXi + X
2
)]

=
1

n − 1
E

[
n∑

i=1

X2
i − n X

2

]

=
1

n − 1

{
n∑

i=1

E
[
X2

i

]
− E

[
n X

2
]}

=
1

n − 1

[
n(σ2 + µ2) − n

(
µ2 +

σ2

n

)]
=

1
n − 1

[
(n − 1) σ2

]
= σ2.

Therefore, the sample variance S2 is an unbiased estimator of the population
variance σ2.

Example 16.4. Let X be a random variable with mean 2. Let θ̂1 and
θ̂2 be unbiased estimators of the second and third moments, respectively, of
X about the origin. Find an unbiased estimator of the third moment of X

about its mean in terms of θ̂1 and θ̂2 .



Probability and Mathematical Statistics 451

Answer: Since, θ̂1 and θ̂2 are the unbiased estimators of the second and
third moments of X about origin, we get

E
(
θ̂1

)
= E(X) and E

(
θ̂2

)
= E

(
X2

)
.

The unbiased estimator of the third moment of X about its mean is

E
[
(X − 2)3

]
= E

[
X3 − 6X2 + 12X − 8

]
= E

[
X3

]
− 6E

[
X2

]
+ 12E [X] − 8

= θ̂2 − 6θ̂1 + 24 − 8

= θ̂2 − 6θ̂1 + 16.

Thus, the unbiased estimator of the third moment of X about its mean is
θ̂2 − 6θ̂1 + 16.

Example 16.5. Let X1, X2, ..., X5 be a sample of size 5 from the uniform
distribution on the interval (0, θ), where θ is unknown. Let the estimator of
θ be k Xmax, where k is some constant and Xmax is the largest observation.
In order k Xmax to be an unbiased estimator, what should be the value of
the constant k ?

Answer: The probability density function of Xmax is given by

g(x) =
5!

4! 0!
[F (x)]4 f(x)

= 5
(x

θ

)4 1
θ

=
5
θ5

x4.

If k Xmax is an unbiased estimator of θ, then

θ = E (k Xmax)

= k E (Xmax)

= k

∫ θ

0

x g(x) dx

= k

∫ θ

0

5
θ5

x5 dx

=
5
6

k θ.

Hence,

k =
6
5
.
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Example 16.6. Let X1, X2, ..., Xn be a sample of size n from a distribution
with unknown mean −∞ < µ < ∞, and unknown variance σ2 > 0. Show
that the statistic X and Y = X1+2X2+···+nXn

n (n+1)
2

are both unbiased estimators

of µ. Further, show that V ar
(
X

)
< V ar(Y ).

Answer: First, we show that X is an unbiased estimator of µ

E
(
X

)
= E

(
X1 + X2 + · · · + Xn

n

)
=

1
n

n∑
i=1

E (Xi)

=
1
n

n∑
i=1

µ = µ.

Hence, the sample mean X is an unbiased estimator of the population mean
irrespective of the distribution of X. Next, we show that Y is also an unbiased
estimator of µ.

E (Y ) = E

(
X1 + 2X2 + · · · + nXn

n (n+1)
2

)

=
2

n (n + 1)

n∑
i=1

i E (Xi)

=
2

n (n + 1)

n∑
i=1

i µ

=
2

n (n + 1)
µ

n (n + 1)
2

= µ.

Hence, X and Y are both unbiased estimator of the population mean irre-
spective of the distribution of the population. The variance of X is given
by

V ar
[
X

]
= V ar

[
X1 + X2 + · · · + Xn

n

]
=

1
n2

V ar [X1 + X2 + · · · + Xn]

=
1
n2

n∑
i=1

V ar [Xi]

=
σ2

n
.
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Similarly, the variance of Y can be calculated as follows:

V ar [Y ] = V ar

[
X1 + 2X2 + · · · + nXn

n (n+1)
2

]

=
4

n2 (n + 1)2
V ar [1X1 + 2X2 + · · · + n Xn]

=
4

n2 (n + 1)2

n∑
i=1

V ar [i Xi]

=
4

n2 (n + 1)2

n∑
i=1

i2 V ar [Xi]

=
4

n2 (n + 1)2
σ2

n∑
i=1

i2

= σ2 4
n2 (n + 1)2

n (n + 1) (2n + 1)
6

=
2
3

2n + 1
(n + 1)

σ2

n

=
2
3

2n + 1
(n + 1)

V ar
[
X

]
.

Since 2
3

2n+1
(n+1) > 1 for n ≥ 2, we see that V ar

[
X

]
< V ar[Y ]. This shows

that although the estimators X and Y are both unbiased estimator of µ, yet
the variance of the sample mean X is smaller than the variance of Y .

In statistics, between two unbiased estimators one prefers the estimator
which has the minimum variance. This leads to our next topic. However,
before we move to the next topic we complete this section with some known
disadvantages with the notion of unbiasedness. The first disadvantage is that
an unbiased estimator for a parameter may not exist. The second disadvan-
tage is that the property of unbiasedness is not invariant under functional
transformation, that is, if θ̂ is an unbiased estimator of θ and g is a function,
then g(θ̂) may not be an unbiased estimator of g(θ).

16.2. The Relatively Efficient Estimator

We have seen that in Example 16.6 that the sample mean

X =
X1 + X2 + · · · + Xn

n

and the statistic
Y =

X1 + 2X2 + · · · + nXn

1 + 2 + · · · + n
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are both unbiased estimators of the population mean. However, we also seen
that

V ar
(
X

)
< V ar(Y ).

The following figure graphically illustrates the shape of the distributions of
both the unbiased estimators.

If an unbiased estimator has a smaller variance or dispersion, then it has
a greater chance of being close to true parameter θ. Therefore when two
estimators of θ are both unbiased, then one should pick the one with the
smaller variance.

Definition 16.2. Let θ̂1 and θ̂2 be two unbiased estimators of θ. The
estimator θ̂1 is said to be more efficient than θ̂2 if

V ar
(
θ̂1

)
< V ar

(
θ̂2

)
.

The ratio η given by

η
(
θ̂1, θ̂2

)
=

V ar
(
θ̂2

)
V ar

(
θ̂1

)
is called the relative efficiency of θ̂1 with respect to θ̂2.

Example 16.7. Let X1, X2, X3 be a random sample of size 3 from a pop-
ulation with mean µ and variance σ2 > 0. If the statistics X and Y given
by

Y =
X1 + 2X2 + 3X3

6

are two unbiased estimators of the population mean µ, then which one is
more efficient?
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Answer: Since E (Xi) = µ and V ar (Xi) = σ2, we get

E
(
X

)
= E

(
X1 + X2 + X3

3

)
=

1
3

(E (X1) + E (X2) + E (X3))

=
1
3

3µ

= µ

and

E (Y ) = E

(
X1 + 2X2 + 3X3

6

)
=

1
6

(E (X1) + 2E (X2) + 3E (X3))

=
1
6

6µ

= µ.

Therefore both X and Y are unbiased. Next we determine the variance of
both the estimators. The variances of these estimators are given by

V ar
(
X

)
= V ar

(
X1 + X2 + X3

3

)
=

1
9

[V ar (X1) + V ar (X2) + V ar (X3)]

=
1
9

3σ2

=
12
36

σ2

and

V ar (Y ) = V ar

(
X1 + 2X2 + 3X3

6

)
=

1
36

[V ar (X1) + 4V ar (X2) + 9V ar (X3)]

=
1
36

14σ2

=
14
36

σ2.

Therefore
12
36

σ2 = V ar
(
X

)
< V ar (Y ) =

14
36

σ2.
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Hence, X is more efficient than the estimator Y . Further, the relative effi-
ciency of X with respect to Y is given by

η
(
X, Y

)
=

14
12

=
7
6
.

Example 16.8. Let X1, X2, ..., Xn be a random sample of size n from a
population with density

f(x; θ) =


1
θ e−

x
θ if 0 ≤ x < ∞

0 otherwise,

where θ > 0 is a parameter. Are the estimators X1 and X unbiased? Given,
X1 and X, which one is more efficient estimator of θ ?

Answer: Since the population X is exponential with parameter θ, that is
X ∼ EXP (θ), the mean and variance of it are given by

E(X) = θ and V ar(X) = θ2.

Since X1, X2, ..., Xn is a random sample from X, we see that the statistic
X1 ∼ EXP (θ). Hence, the expected value of X1 is θ and thus it is an
unbiased estimator of the parameter θ. Also, the sample mean is an unbiased
estimator of θ since

E
(
X

)
=

1
n

n∑
i=1

E (Xi)

=
1
n

nθ

= θ.

Next, we compute the variances of the unbiased estimators X1 and X. It is
easy to see that

V ar (X1) = θ2

and

V ar
(
X

)
= V ar

(
X1 + X2 + · · · + Xn

n

)
=

1
n2

n∑
i=1

V ar (Xi)

=
1
n2

nθ2

=
θ2

n
.
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Hence
θ2

n
= V ar

(
X

)
< V ar (X1) = θ2.

Thus X is more efficient than X1 and the relative efficiency of X with respect
to X1 is

η(X, X1) =
θ2

θ2

n

= n.

Example 16.9. Let X1, X2, X3 be a random sample of size 3 from a popu-
lation with density

f(x;λ) =


λx e−λ

x! if x = 0, 1, 2, ...,∞

0 otherwise,

where λ is a parameter. Are the estimators given by

λ̂1 =
1
4

(X1 + 2X2 + X3) and λ̂2 =
1
9

(4X1 + 3X2 + 2X3)

unbiased? Given, λ̂1 and λ̂2, which one is more efficient estimator of λ ?
Find an unbiased estimator of λ whose variance is smaller than the variances
of λ̂1 and λ̂2.

Answer: Since each Xi ∼ POI(λ), we get

E (Xi) = λ and V ar (Xi) = λ.

It is easy to see that

E
(
λ̂1

)
=

1
4

(E (X1) + 2E (X2) + E (X3))

=
1
4

4λ

= λ,

and

E
(
λ̂2

)
=

1
9

(4E (X1) + 3E (X2) + 2E (X3))

=
1
9

9λ

= λ.
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Thus, both λ̂1 and λ̂2 are unbiased estimators of λ. Now we compute their
variances to find out which one is more efficient. It is easy to note that

V ar
(
λ̂1

)
=

1
16

(V ar (X1) + 4V ar (X2) + V ar (X3))

=
1
16

6λ

=
6
16

λ

=
486
1296

λ,

and
V ar

(
λ̂2

)
=

1
81

(16V ar (X1) + 9V ar (X2) + 4V ar (X3))

=
1
81

29λ

=
29
81

λ

=
464
1296

λ,

Since,
V ar

(
λ̂2

)
< V ar

(
λ̂1

)
,

the estimator λ̂2 is efficient than the estimator λ̂1. We have seen in section
16.1 that the sample mean is always an unbiased estimator of the population
mean irrespective of the population distribution. The variance of the sample
mean is always equals to 1

n times the population variance, where n denotes
the sample size. Hence, we get

V ar
(
X

)
=

λ

3
=

432
1296

λ.

Therefore, we get

V ar
(
X

)
< V ar

(
λ̂2

)
< V ar

(
λ̂1

)
.

Thus, the sample mean has even smaller variance than the two unbiased
estimators given in this example.

In view of this example, now we have encountered a new problem. That
is how to find an unbiased estimator which has the smallest variance among
all unbiased estimators of a given parameter. We resolve this issue in the
next section.
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16.3. The Uniform Minimum Variance Unbiased Estimator

Let X1, X2, ..., Xn be a random sample of size n from a population with
probability density function f(x; θ). Recall that an estimator θ̂ of θ is a
function of the random variables X1, X2, ..., Xn which does depend on θ.

Definition 16.3. An unbiased estimator θ̂ of θ is said to be a uniform
minimum variance unbiased estimator of θ if and only if

V ar
(
θ̂
)
≤ V ar

(
T̂

)
for any unbiased estimator T̂ of θ.

If an estimator θ̂ is unbiased then the mean of this estimator is equal to
the parameter θ, that is

E
(
θ̂
)

= θ

and the variance of θ̂ is

V ar
(
θ̂
)

= E

[(
θ̂ − E

(
θ̂
))2

]
= E

[(
θ̂ − θ

)2
]

.

This variance, if exists, is a function of the unbiased estimator θ̂ and it has a
minimum in the class of all unbiased estimators of θ. Therefore we have an
alternative definition of the uniform minimum variance unbiased estimator.

Definition 16.4. An unbiased estimator θ̂ of θ is said to be a uniform
minimum variance unbiased estimator of θ if it minimizes the variance

E

[(
θ̂ − θ

)2
]
.

Example 16.10. Let θ̂1 and θ̂2 be unbiased estimators of θ. Suppose
V ar

(
θ̂1

)
= 1, V ar

(
θ̂2

)
= 2 and Cov

(
θ̂1, θ̂2

)
= 1

2 . What are the val-

ues of c1 and c2 for which c1θ̂1 + c2θ̂2 is an unbiased estimator of θ with
minimum variance among unbiased estimators of this type?

Answer: We want c1θ̂1 +c2θ̂2 to be a minimum variance unbiased estimator
of θ. Then

E
[
c1θ̂1 + c2θ̂2

]
= θ

⇒ c1 E
[
θ̂1

]
+ c2 E

[
θ̂2

]
= θ

⇒ c1 θ + c2 θ = θ

⇒ c1 + c2 = 1

⇒ c2 = 1 − c1.
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Therefore

V ar
[
c1θ̂1 + c2θ̂2

]
= c2

1 V ar
[
θ̂1

]
+ c2

2 V ar
[
θ̂2

]
+ 2 c1 c2 Cov

(
θ̂1, θ̂1

)
= c2

1 + 2c2
2 + c1c2

= c2
1 + 2(1 − c1)2 + c1(1 − c1)

= 2(1 − c1)2 + c1

= 2 + 2c2
1 − 3c1.

Hence, the variance V ar
[
c1θ̂1 + c2θ̂2

]
is a function of c1. Let us denote this

function by φ(c1), that is

φ(c1) := V ar
[
c1θ̂1 + c2θ̂2

]
= 2 + 2c2

1 − 3c1.

Taking the derivative of φ(c1) with respect to c1, we get

d

dc1
φ(c1) = 4c1 − 3.

Setting this derivative to zero and solving for c1, we obtain

4c1 − 3 = 0 ⇒ c1 =
3
4
.

Therefore
c2 = 1 − c1 = 1 − 3

4
=

1
4
.

In Example 16.10, we saw that if θ̂1 and θ̂2 are any two unbiased esti-
mators of θ, then c θ̂1 + (1 − c) θ̂2 is also an unbiased estimator of θ for any
c ∈ IR. Hence given two estimators θ̂1 and θ̂2,

C =
{

θ̂ | θ̂ = c θ̂1 + (1 − c) θ̂2, c ∈ IR
}

forms an uncountable class of unbiased estimators of θ. When the variances
of θ̂1 and θ̂2 are known along with the their covariance, then in Example
16.10 we were able to determine the minimum variance unbiased estimator
in the class C. If the variances of the estimators θ̂1 and θ̂2 are not known,
then it is very difficult to find the minimum variance estimator even in the
class of estimators C. Notice that C is a subset of the class of all unbiased
estimators and finding a minimum variance unbiased estimator in this class
is a difficult task.
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One way to find a uniform minimum variance unbiased estimator for a
parameter is to use the Cramér-Rao lower bound or the Fisher information
inequality.

Theorem 16.1. Let X1, X2, ..., Xn be a random sample of size n from a
population X with probability density f(x; θ), where θ is a scalar parameter.
Let θ̂ be any unbiased estimator of θ. Suppose the likelihood function L(θ)
is a differentiable function of θ and satisfies

d

dθ

∫ ∞

−∞
· · ·

∫ ∞

−∞
h(x1, ..., xn) L(θ) dx1 · · · dxn

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
h(x1, ..., xn)

d

dθ
L(θ) dx1 · · · dxn

(1)

for any h(x1, ..., xn) with E(h(X1, ..., Xn)) < ∞. Then

V ar
(
θ̂
)
≥ 1

E

[(
∂ ln L(θ)

∂θ

)2
] . (CR1)

Proof: Since L(θ) is the joint probability density function of the sample
X1, X2, ..., Xn, ∫ ∞

−∞
· · ·

∫ ∞

−∞
L(θ) dx1 · · · dxn = 1. (2)

Differentiating (2) with respect to θ we have

d

dθ

∫ ∞

−∞
· · ·

∫ ∞

−∞
L(θ) dx1 · · · dxn = 0

and use of (1) with h(x1, ..., xn) = 1 yields∫ ∞

−∞
· · ·

∫ ∞

−∞

d

dθ
L(θ) dx1 · · · dxn = 0. (3)

Rewriting (3) as∫ ∞

−∞
· · ·

∫ ∞

−∞

dL(θ)
dθ

1
L(θ)

L(θ) dx1 · · · dxn = 0

we see that ∫ ∞

−∞
· · ·

∫ ∞

−∞

d lnL(θ)
dθ

L(θ) dx1 · · · dxn = 0.
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Hence ∫ ∞

−∞
· · ·

∫ ∞

−∞
θ

d lnL(θ)
dθ

L(θ) dx1 · · · dxn = 0. (4)

Since θ̂ is an unbiased estimator of θ, we see that

E
(
θ̂
)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
θ̂ L(θ) dx1 · · · dxn = θ. (5)

Differentiating (5) with respect to θ, we have

d

dθ

∫ ∞

−∞
· · ·

∫ ∞

−∞
θ̂ L(θ) dx1 · · · dxn = 1.

Again using (1) with h(X1, ..., Xn) = θ̂, we have∫ ∞

−∞
· · ·

∫ ∞

−∞
θ̂

d

dθ
L(θ) dx1 · · · dxn = 1. (6)

Rewriting (6) as∫ ∞

−∞
· · ·

∫ ∞

−∞
θ̂

dL(θ)
dθ

1
L(θ)

L(θ) dx1 · · · dxn = 1

we have ∫ ∞

−∞
· · ·

∫ ∞

−∞
θ̂

d lnL(θ)
dθ

L(θ) dx1 · · · dxn = 1. (7)

From (4) and (7), we obtain∫ ∞

−∞
· · ·

∫ ∞

−∞

(
θ̂ − θ

) d lnL(θ)
dθ

L(θ) dx1 · · · dxn = 1. (8)

By the Cauchy-Schwarz inequality,

1 =
(∫ ∞

−∞
· · ·

∫ ∞

−∞

(
θ̂ − θ

) d lnL(θ)
dθ

L(θ) dx1 · · · dxn

)2

≤
(∫ ∞

−∞
· · ·

∫ ∞

−∞

(
θ̂ − θ

)2

L(θ) dx1 · · · dxn

)
·
(∫ ∞

−∞
· · ·

∫ ∞

−∞

(
d lnL(θ)

dθ

)2

L(θ) dx1 · · · dxn

)

= V ar
(
θ̂
)

E

[(
∂ lnL(θ)

∂θ

)2
]

.
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Therefore
V ar

(
θ̂
)
≥ 1

E

[(
∂ ln L(θ)

∂θ

)2
]

and the proof of theorem is now complete.

If L(θ) is twice differentiable with respect to θ, the inequality (CR1) can
be stated equivalently as

V ar
(
θ̂
)
≥ −1

E
[

∂2 ln L(θ)
∂θ2

] . (CR2)

The inequalities (CR1) and (CR2) are known as Cramér-Rao lower bound
for the variance of θ̂ or the Fisher information inequality. The condition
(1) interchanges the order on integration and differentiation. Therefore any
distribution whose range depend on the value of the parameter is not covered
by this theorem. Hence distribution like the uniform distribution may not
be analyzed using the Cramér-Rao lower bound.

If the estimator θ̂ is minimum variance in addition to being unbiased,
then equality holds. We state this as a theorem without giving a proof.

Theorem 16.2. Let X1, X2, ..., Xn be a random sample of size n from a
population X with probability density f(x; θ), where θ is a parameter. If θ̂

is an unbiased estimator of θ and

V ar
(
θ̂
)

=
1

E

[(
∂ ln L(θ)

∂θ

)2
] ,

then θ̂ is a uniform minimum variance unbiased estimator of θ. The converse
of this is not true.

Definition 16.5. An unbiased estimator θ̂ is called an efficient estimator if
it satisfies Cramér-Rao lower bound, that is

V ar
(
θ̂
)

=
1

E

[(
∂ ln L(θ)

∂θ

)2
] .

In view of the above theorem it is easy to note that an efficient estimator
of a parameter is always a uniform minimum variance unbiased estimator of
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a parameter. However, not every uniform minimum variance unbiased esti-
mator of a parameter is efficient. In other words not every uniform minimum
variance unbiased estimators of a parameter satisfy the Cramér-Rao lower
bound

V ar
(
θ̂
)
≥ 1

E

[(
∂ ln L(θ)

∂θ

)2
] .

Example 16.11. Let X1, X2, ..., Xn be a random sample of size n from a
distribution with density function

f(x; θ) =

 3θ x2e−θx3
if 0 < x < ∞

0 otherwise.

What is the Cramér-Rao lower bound for the variance of unbiased estimator
of the parameter θ ?

Answer: Let θ̂ be an unbiased estimator of θ. Cramér-Rao lower bound for
the variance of θ̂ is given by

V ar
(
θ̂
)
≥ −1

E
[

∂2 ln L(θ)
∂θ2

] ,

where L(θ) denotes the likelihood function of the given random sample
X1, X2, ..., Xn. Since, the likelihood function of the sample is

L(θ) =
n∏

i=1

3θ x2
i e

−θx3
i

we get

lnL(θ) = n ln θ +
n∑

i=1

ln
(
3x2

i

)
− θ

n∑
i=1

x3
i .

∂ lnL(θ)
∂θ

=
n

θ
−

n∑
i=1

x3
i ,

and
∂2 lnL(θ)

∂θ2
= − n

θ2
.

Hence, using this in the Cramér-Rao inequality, we get

V ar
(
θ̂
)
≥ θ2

n
.
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Thus the Cramér-Rao lower bound for the variance of the unbiased estimator
of θ is θ2

n .

Example 16.12. Let X1, X2, ..., Xn be a random sample from a normal
population with unknown mean µ and known variance σ2 > 0. What is the
maximum likelihood estimator of µ? Is this maximum likelihood estimator
an efficient estimator of µ?

Answer: The probability density function of the population is

f(x;µ) =
1√

2π σ2
e−

1
2σ2 (x−µ)2 .

Thus
ln f(x;µ) = −1

2
ln(2πσ2) − 1

2σ2
(x − µ)2

and hence

lnL(µ) = −n

2
ln(2πσ2) − 1

2σ2

n∑
i=1

(xi − µ)2.

Taking the derivative of lnL(µ) with respect to µ, we get

d lnL(µ)
dµ

=
1
σ2

n∑
i=1

(xi − µ).

Setting this derivative to zero and solving for µ, we see that µ̂ = X.
The variance of X is given by

V ar
(
X

)
= V ar

(
X1 + X2 + · · · + Xn

n

)
=

σ2

n
.

Next we determine the Cramér-Rao lower bound for the estimator X.
We already know that

d lnL(µ)
dµ

=
1
σ2

n∑
i=1

(xi − µ)

and hence
d2 lnL(µ)

dµ2
= − n

σ2
.

Therefore

E

(
d2 lnL(µ)

dµ2

)
= − n

σ2
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and

− 1

E
(

d2 ln L(µ)
dµ2

) =
σ2

n
.

Thus
V ar

(
X

)
= − 1

E
(

d2 ln L(µ)
dµ2

)
and X is an efficient estimator of µ. Since every efficient estimator is a
uniform minimum variance unbiased estimator, therefore X is a uniform
minimum variance unbiased estimator of µ.

Example 16.13. Let X1, X2, ..., Xn be a random sample from a normal
population with known mean µ and unknown variance σ2 > 0. What is the
maximum likelihood estimator of σ2? Is this maximum likelihood estimator
a uniform minimum variance unbiased estimator of σ2?

Answer: Let us write θ = σ2. Then

f(x; θ) =
1√
2πθ

e−
1
2θ (x−µ)2

and

lnL(θ) = −n

2
ln(2π) − n

2
ln(θ) − 1

2θ

n∑
i=1

(xi − µ)2.

Differentiating lnL(θ) with respect to θ, we have

d

dθ
lnL(θ) = −n

2
1
θ

+
1

2θ2

n∑
i=1

(xi − µ)2

Setting this derivative to zero and solving for θ, we see that

θ̂ =
1
n

n∑
i=1

(Xi − µ)2.

Next we show that this estimator is unbiased. For this we consider

E
(
θ̂
)

= E

(
1
n

n∑
i=1

(Xi − µ)2
)

=
σ2

n
E

(
n∑

i=1

(
Xi − µ

σ

)2
)

=
θ

n
E(χ2(n) )

=
θ

n
n = θ.
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Hence θ̂ is an unbiased estimator of θ. The variance of θ̂ can be obtained as
follows:

V ar
(
θ̂
)

= V ar

(
1
n

n∑
i=1

(Xi − µ)2
)

=
σ4

n
V ar

(
n∑

i=1

(
Xi − µ

σ

)2
)

=
θ2

n2
V ar(χ2(n) )

=
θ2

n2
4

n

2

=
2θ2

n
=

2σ4

n
.

Finally we determine the Cramér-Rao lower bound for the variance of θ̂. The
second derivative of lnL(θ) with respect to θ is

d2 lnL(θ)
dθ2

=
n

2θ2
− 1

θ3

n∑
i=1

(xi − µ)2.

Hence

E

(
d2 lnL(θ)

dθ2

)
=

n

2θ2
− 1

θ3
E

(
n∑

i=1

(Xi − µ)2
)

=
n

2θ2
− θ

θ3
E

(
χ2(n)

)
=

n

2θ2
− n

θ2

= − n

2θ2

Thus

− 1

E
(

d2 ln L(θ)
dθ2

) =
θ2

n
=

2σ4

n
.

Therefore
V ar

(
θ̂
)

= − 1

E
(

d2 ln L(θ)
dθ2

) .

Hence θ̂ is an efficient estimator of θ. Since every efficient estimator is a
uniform minimum variance unbiased estimator, therefore 1

n

∑n
i=1(Xi − µ)2

is a uniform minimum variance unbiased estimator of σ2.

Example 16.14. Let X1, X2, ..., Xn be a random sample of size n from a
normal population known mean µ and variance σ2 > 0. Show that S2 =
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1
n−1

∑n
i=1(Xi − X)2 is an unbiased estimator of σ2. Further, show that S2

can not attain the Cramér-Rao lower bound.

Answer: From Example 16.2, we know that S2 is an unbiased estimator of
σ2. The variance of S2 can be computed as follows:

V ar
(
S2

)
= V ar

(
1

n − 1

n∑
i=1

(Xi − X)2
)

=
σ4

(n − 1)2
V ar

(
n∑

i=1

(
Xi − X

σ

)2
)

=
σ4

(n − 1)2
V ar( χ2(n − 1) )

=
σ4

(n − 1)2
2 (n − 1)

=
2σ4

n − 1
.

Next we let θ = σ2 and determine the Cramér-Rao lower bound for the
variance of S2. The second derivative of lnL(θ) with respect to θ is

d2 lnL(θ)
dθ2

=
n

2θ2
− 1

θ3

n∑
i=1

(xi − µ)2.

Hence

E

(
d2 lnL(θ)

dθ2

)
=

n

2θ2
− 1

θ3
E

(
n∑

i=1

(Xi − µ)2
)

=
n

2θ2
− θ

θ3
E

(
χ2(n)

)
=

n

2θ2
− n

θ2

= − n

2θ2

Thus

− 1

E
(

d2 ln L(θ)
dθ2

) =
θ2

n
=

2σ4

n
.

Hence
2σ4

n − 1
= V ar

(
S2

)
> − 1

E
(

d2 ln L(θ)
dθ2

) =
2σ4

n
.

This shows that S2 can not attain the Cramér-Rao lower bound.
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The disadvantages of Cramér-Rao lower bound approach are the fol-
lowings: (1) Not every density function f(x; θ) satisfies the assumptions
of Cramér-Rao theorem and (2) not every allowable estimator attains the
Cramér-Rao lower bound. Hence in any one of these situations, one does
not know whether an estimator is a uniform minimum variance unbiased
estimator or not.

16.4. Sufficient Estimator

In many situations, we can not easily find the distribution of the es-
timator θ̂ of a parameter θ even though we know the distribution of the
population. Therefore, we have no way to know whether our estimator θ̂ is
unbiased or biased. Hence, we need some other criteria to judge the quality
of an estimator. Sufficiency is one such criteria for judging the quality of an
estimator.

Recall that an estimator of a population parameter is a function of the
sample values that does not contain the parameter. An estimator summarizes
the information found in the sample about the parameter. If an estimator
summarizes just as much information about the parameter being estimated
as the sample does, then the estimator is called a sufficient estimator.

Definition 16.6. Let X ∼ f(x; θ) be a population and let X1, X2, ..., Xn

be a random sample of size n from this population X. An estimator θ̂ of
the parameter θ is said to be a sufficient estimator of θ if the conditional
distribution of the sample given the estimator θ̂ does not depend on the
parameter θ.

Example 16.15. If X1, X2, ..., Xn is a random sample from the distribution
with probability density function

f(x; θ) =

 θx (1 − θ)1−x if x = 0, 1

0 elsewhere ,

where 0 < θ < 1. Show that Y =
∑n

i=1 Xi is a sufficient statistic of θ.

Answer: First, we find the distribution of the sample. This is given by

f(x1, x2, ..., xn) =
n∏

i=1

θxi(1 − θ)1−xi = θy(1 − θ)n−y.

Since, each Xi ∼ BER(θ), we have

Y =
n∑

i=1

Xi ∼ BIN(n, θ).
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Therefore, the probability density function of Y is given by

g(y) =
(

n

y

)
θy (1 − θ)n−y.

Further, since each Xi ∼ BER(θ), the space of each Xi is given by

RXi = { 0, 1 }.

Therefore, the space of the random variable Y =
∑n

i=1 Xi is given by

RY = { 0, 1, 2, 3, 4, ..., n }.

Let A be the event (X1 = x1, X2 = x2, ..., Xn = xn) and B denotes the event
(Y = y). Then A ⊂ B and therefore A

⋂
B = A. Now, we find the condi-

tional density of the sample given the estimator Y , that is

f(x1, x2, ..., xn/Y = y) = P (X1 = x1, X2 = x2, ..., Xn = xn /Y = y)

= P (A/B)

=
P (A

⋂
B)

P (B)

=
P (A)
P (B)

=
f(x1, x2, ..., xn)

g(y)

=
θy(1 − θ)n−y(

n
y

)
θy (1 − θ)n−y

=
1(
n
y

) .

Hence, the conditional density of the sample given the statistic Y is indepen-
dent of the parameter θ. Therefore, by definition Y is a sufficient statistic.

Example 16.16. If X1, X2, ..., Xn is a random sample from the distribution
with probability density function

f(x; θ) =

 e−(x−θ) if θ < x < ∞

0 elsewhere ,

where −∞ < θ < ∞. What is the maximum likelihood estimator of θ ? Is
this maximum likelihood estimator sufficient estimator of θ ?
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Answer: We have seen in Chapter 15 that the maximum likelihood estimator
of θ is Y = X(1), that is the first order statistic of the sample. Let us find
the probability density of this statistic, which is given by

g(y) =
n!

(n − 1)!
[F (y)]0 f(y) [1 − F (y)]n−1

= n f(y) [1 − F (y)]n−1

= n e−(y−θ)
[
1 −

{
1 − e−(y−θ)

}]n−1

= n enθ e−ny.

The probability density of the random sample is

f(x1, x2, ..., xn) =
n∏

i=1

e−(xi−θ)

= enθ e−n x,

where nx =
n∑

i=1

xi. Let A be the event (X1 = x1, X2 = x2, ..., Xn = xn) and

B denotes the event (Y = y). Then A ⊂ B and therefore A
⋂

B = A. Now,
we find the conditional density of the sample given the estimator Y , that is

f(x1, x2, ..., xn/Y = y) = P (X1 = x1, X2 = x2, ..., Xn = xn /Y = y)

= P (A/B)

=
P (A

⋂
B)

P (B)

=
P (A)
P (B)

=
f(x1, x2, ..., xn)

g(y)

=
enθ e−n x

n enθ e−n y

=
e−n x

n e−n y
.

Hence, the conditional density of the sample given the statistic Y is indepen-
dent of the parameter θ. Therefore, by definition Y is a sufficient statistic.
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We have seen that to verify whether an estimator is sufficient or not one
has to examine the conditional density of the sample given the estimator. To
compute this conditional density one has to use the density of the estimator.
The density of the estimator is not always easy to find. Therefore, verifying
the sufficiency of an estimator using this definition is not always easy. The
following factorization theorem of Fisher and Neyman helps to decide when
an estimator is sufficient.

Theorem 16.3. Let X1, X2, ..., Xn denote a random sample with proba-
bility density function f(x1, x2, ..., xn; θ), which depends on the population
parameter θ. The estimator θ̂ is sufficient for θ if and only if

f(x1, x2, ..., xn; θ) = φ(θ̂, θ) h(x1, x2, ..., xn)

where φ depends on x1, x2, ..., xn only through θ̂ and h(x1, x2, ..., xn) does
not depend on θ.

Now we give two examples to illustrate the factorization theorem.

Example 16.17. Let X1, X2, ..., Xn be a random sample from a distribution
with density function

f(x;λ) =


λx e−λ

x! if x = 0, 1, 2, ...,∞

0 elsewhere,

where λ > 0 is a parameter. Find the maximum likelihood estimator of λ

and show that the maximum likelihood estimator of λ is sufficient estimator
of the parameter λ.

Answer: First, we find the density of the sample or the likelihood function
of the sample. The likelihood function of the sample is given by

L(λ) =
n∏

i=1

f(xi;λ)

=
n∏

i=1

λxi e−λ

xi!

=
λnXe−nλ

n∏
i=1

(xi!)

.
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Taking the logarithm of the likelihood function, we get

lnL(λ) = nx lnλ − nλ − ln
n∏

i=1

(xi!).

Therefore
d

dλ
lnL(λ) =

1
λ

nx − n.

Setting this derivative to zero and solving for λ, we get

λ = x.

The second derivative test assures us that the above λ is a maximum. Hence,
the maximum likelihood estimator of λ is the sample mean X. Next, we
show that X is sufficient, by using the Factorization Theorem of Fisher and
Neyman. We factor the joint density of the sample as

L(λ) =
λnxe−nλ

n∏
i=1

(xi!)

=
[
λnx e−nλ

] 1
n∏

i=1

(xi!)

= φ(X, λ) h (x1, x2, ..., xn) .

Therefore, the estimator X is a sufficient estimator of λ.

Example 16.18. Let X1, X2, ..., Xn be a random sample from a normal
distribution with density function

f(x;µ) =
1√
2π

e−
1
2 (x−µ)2 ,

where −∞ < µ < ∞ is a parameter. Find the maximum likelihood estimator
of µ and show that the maximum likelihood estimator of µ is a sufficient
estimator.

Answer: We know that the maximum likelihood estimator of µ is the sample
mean X. Next, we show that this maximum likelihood estimator X is a
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sufficient estimator of µ. The joint density of the sample is given by

f(x1, x2, ...,xn;µ)

=
n∏

i=1

f(xi;µ)

=
n∏

i=1

1√
2π

e−
1
2 (xi−µ)2

=
(

1√
2π

)n

e

− 1
2

n∑
i=1

(xi − µ)2

=
(

1√
2π

)n

e

− 1
2

n∑
i=1

[(xi − x) + (x − µ)]2

=
(

1√
2π

)n

e

− 1
2

n∑
i=1

[
(xi − x)2 + 2(xi − x)(x − µ) + (x − µ)2

]

=
(

1√
2π

)n

e

− 1
2

n∑
i=1

[
(xi − x)2 + (x − µ)2

]

=
(

1√
2π

)n

e−
n
2 (x−µ)2 e

− 1
2

n∑
i=1

(xi − x)2

Hence, by the Factorization Theorem, X is a sufficient estimator of the pop-
ulation mean.

Note that the probability density function of the Example 16.17 which
is

f(x;λ) =


λx e−λ

x! if x = 0, 1, 2, ...,∞

0 elsewhere ,
can be written as

f(x;λ) = e{x ln λ−ln x!−λ}

for x = 0, 1, 2, ... This density function is of the form

f(x;λ) = e{K(x)A(λ)+S(x)+B(λ)}.

Similarly, the probability density function of the Example 16.12, which is

f(x;µ) =
1√
2π

e−
1
2 (x−µ)2
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can also be written as

f(x;µ) = e{xµ− x2
2 −µ2

2 − 1
2 ln(2π)}.

This probability density function is of the form

f(x;µ) = e{K(x)A(µ)+S(x)+B(µ)}.

We have also seen that in both the examples, the sufficient estimators were

the sample mean X, which can be written as 1
n

n∑
i=1

Xi.

Our next theorem gives a general result in this direction. The following
theorem is known as the Pitman-Koopman theorem.

Theorem 16.4. Let X1, X2, ..., Xn be a random sample from a distribution
with probability density function of the exponential form

f(x; θ) = e{K(x)A(θ)+S(x)+B(θ)}

on a support free of θ. Then the statistic
n∑

i=1

K(Xi) is a sufficient statistic

for the parameter θ.

Proof: The joint density of the sample is

f(x1, x2, ..., xn; θ) =
n∏

i=1

f(xi; θ)

=
n∏

i=1

e{K(xi)A(θ)+S(xi)+B(θ)}

= e

{
n∑

i=1

K(xi)A(θ) +
n∑

i=1

S(xi) + n B(θ)

}

= e

{
n∑

i=1

K(xi)A(θ) + n B(θ)

}
e

[
n∑

i=1

S(xi)

]
.

Hence by the Factorization Theorem the estimator
n∑

i=1

K(Xi) is a sufficient

statistic for the parameter θ. This completes the proof.



Criteria for Evaluating the Goodness of Estimators 476

Example 16.19. Let X1, X2, ..., Xn be a random sample from a distribution
with density function

f(x; θ) =

 θ xθ−1 for 0 < x < 1

0 otherwise,

where θ > 0 is a parameter. Using the Pitman-Koopman Theorem find a
sufficient estimator of θ.

Answer: The Pitman-Koopman Theorem says that if the probability density
function can be expressed in the form of

f(x; θ) = e{K(x)A(θ)+S(x)+B(θ)}

then
∑n

i=1 K(Xi) is a sufficient statistic for θ. The given population density
can be written as

f(x; θ) = θ xθ−1

= e{ln[θ xθ−1]

= e{ln θ+(θ−1) ln x}.

Thus,
K(x) = lnx A(θ) = θ

S(x) = − lnx B(θ) = ln θ.

Hence by Pitman-Koopman Theorem,
n∑

i=1

K(Xi) =
n∑

i=1

lnXi

= ln
n∏

i=1

Xi.

Thus ln
∏n

i=1 Xi is a sufficient statistic for θ.

Remark 16.1. Notice that
n∏

i=1

Xi is also a sufficient statistic of θ, since

knowing ln

(
n∏

i=1

Xi

)
, we also know

n∏
i=1

Xi.

Example 16.20. Let X1, X2, ..., Xn be a random sample from a distribution
with density function

f(x; θ) =


1
θ e−

x
θ for 0 < x < ∞

0 otherwise,
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where 0 < θ < ∞ is a parameter. Find a sufficient estimator of θ.

Answer: First, we rewrite the population density in the exponential form.
That is

f(x; θ) =
1
θ

e−
x
θ

= e
ln

[
1
θ e

− x
θ

]
= e− ln θ− x

θ .

Hence
K(x) = x A(θ) = −1

θ

S(x) = 0 B(θ) = − ln θ.

Hence by Pitman-Koopman Theorem,

n∑
i=1

K(Xi) =
n∑

i=1

Xi = n X.

Thus, nX is a sufficient statistic for θ. Since knowing nX, we also know X,
the estimator X is also a sufficient estimator of θ.

Example 16.21. Let X1, X2, ..., Xn be a random sample from a distribution
with density function

f(x; θ) =

 e−(x−θ) for θ < x < ∞

0 otherwise,

where −∞ < θ < ∞ is a parameter. Can Pitman-Koopman Theorem be
used to find a sufficient statistic for θ?

Answer: No. We can not use Pitman-Koopman Theorem to find a sufficient
statistic for θ since the domain where the population density is nonzero is
not free of θ.

Next, we present the connection between the maximum likelihood esti-
mator and the sufficient estimator. If there is a sufficient estimator for the
parameter θ and if the maximum likelihood estimator of this θ is unique, then
the maximum likelihood estimator is a function of the sufficient estimator.
That is

θ̂ML = ψ(θ̂S),

where ψ is a real valued function, θ̂ML is the maximum likelihood estimator
of θ, and θ̂S is the sufficient estimator of θ.
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Similarly, a connection can be established between the uniform minimum
variance unbiased estimator and the sufficient estimator of a parameter θ. If
there is a sufficient estimator for the parameter θ and if the uniform minimum
variance unbiased estimator of this θ is unique, then the uniform minimum
variance unbiased estimator is a function of the sufficient estimator. That is

θ̂MVUE = η(θ̂S),

where η is a real valued function, θ̂MVUE is the uniform minimum variance
unbiased estimator of θ, and θ̂S is the sufficient estimator of θ.

Finally, we may ask “If there are sufficient estimators, why are not there
necessary estimators?” In fact, there are. Dynkin (1951) gave the following
definition.

Definition 16.7. An estimator is said to be a necessary estimator if it can
be written as a function of every sufficient estimators.

16.5. Consistent Estimator

Let X1, X2, ..., Xn be a random sample from a population X with density
f(x; θ). Let θ̂ be an estimator of θ based on the sample of size n. Obviously
the estimator depends on the sample size n. In order to reflect the depen-
dency of θ̂ on n, we denote θ̂ as θ̂n.

Definition 16.7. Let X1, X2, ..., Xn be a random sample from a population
X with density f(x; θ). A sequence of estimators {θ̂n} of θ is said to be
consistent for θ if and only if the sequence {θ̂n} converges in probability to
θ, that is, for any ε > 0

lim
n→∞

P
(∣∣∣θ̂n − θ

∣∣∣ ≥ ε
)

= 0.

Note that consistency is actually a concept relating to a sequence of
estimators {θ̂n}∞n=no

but we usually say “consistency of θ̂n” for simplicity.
Further, consistency is a large sample property of an estimator.

The following theorem states that if the mean squared error goes to zero
as n goes to infinity, then {θ̂n} converges in probability to θ.

Theorem 16.5. Let X1, X2, ..., Xn be a random sample from a population
X with density f(x; θ) and {θ̂n} be a sequence of estimators of θ based on
the sample. If the variance of θ̂n exists for each n and is finite and

lim
n→∞

E

((
θ̂n − θ

)2
)

= 0
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then, for any ε > 0,
lim

n→∞
P

(∣∣∣θ̂n − θ
∣∣∣ ≥ ε

)
= 0.

Proof: By Markov Inequality (see Theorem 13.8) we have

P

((
θ̂n − θ

)2

≥ ε2
)

≤
E

((
θ̂n − θ

)2
)

ε2

for all ε > 0. Since the events(
θ̂n − θ

)2

≥ ε2 and |θ̂n − θ| ≥ ε

are same, we see that

P

((
θ̂n − θ

)2

≥ ε2
)

= P
(
|θ̂n − θ| ≥ ε

)
≤

E

((
θ̂n − θ

)2
)

ε2

for all n ∈ IN. Hence if

lim
n→∞

E

((
θ̂n − θ

)2
)

= 0

then
lim

n→∞
P

(
|θ̂n − θ| ≥ ε

)
= 0

and the proof of the theorem is complete.

Let
B

(
θ̂, θ

)
= E

(
θ̂
)
− θ

be the biased. If an estimator is unbiased, then B
(
θ̂, θ

)
= 0. Next we show

that

E

((
θ̂ − θ

)2
)

= V ar
(
θ̂
)

+
[
B

(
θ̂, θ

)]2

. (1)

To see this consider

E

((
θ̂ − θ

)2
)

= E

((
θ̂2 − 2 θ̂ θ + θ2

)2
)

= E
(
θ̂2

)
− 2E

(
θ̂
)

θ + θ2

= E
(
θ̂2

)
− E

(
θ̂
)2

+ E
(
θ̂
)2

− 2E
(
θ̂
)

θ + θ2

= V ar
(
θ̂
)

+ E
(
θ̂
)2

− 2E
(
θ̂
)

θ + θ2

= V ar
(
θ̂
)

+
[
E

(
θ̂
)
− θ

]2

= V ar
(
θ̂
)

+
[
B

(
θ̂, θ

)]2

.
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In view of (1), we can say that if

lim
n→∞

V ar
(
θ̂n

)
= 0 (2)

and
lim

n→∞
B

(
θ̂n, θ

)
= 0 (3)

then

lim
n→∞

E

((
θ̂n − θ

)2
)

= 0.

In other words, to show a sequence of estimators is consistent we have to
verify the limits (2) and (3).

Example 16.22. Let X1, X2, ..., Xn be a random sample from a normal
population X with mean µ and variance σ2 > 0. Is the likelihood estimator

σ̂2 =
1
n

n∑
i=1

(
Xi − X

)2
.

of σ2 a consistent estimator of σ2?

Answer: Since σ̂2 depends on the sample size n, we denote σ̂2 as σ̂2
n. Hence

σ̂2
n =

1
n

n∑
i=1

(
Xi − X

)2
.

The variance of σ̂2
n is given by

V ar
(
σ̂2

n

)
= V ar

(
1
n

n∑
i=1

(
Xi − X

)2

)

=
1
n2

V ar

(
σ2 (n − 1)S2

σ2

)
=

σ4

n2
V ar

(
(n − 1)S2

σ2

)
=

σ4

n2
V ar

(
χ2(n − 1)

)
=

2(n − 1)σ4

n2

=
[

1
n
− 1

n2

]
2 σ4.
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Hence

lim
n→∞

V ar
(
θ̂n

)
= lim

n→∞

[
1
n
− 1

n2

]
2 σ4 = 0.

The biased B
(
θ̂n, θ

)
is given by

B
(
θ̂n, θ

)
= E

(
θ̂n

)
− σ2

= E

(
1
n

n∑
i=1

(
Xi − X

)2

)
− σ2

=
1
n

E

(
σ2 (n − 1)S2

σ2

)
− σ2

=
σ2

n
E

(
χ2(n − 1)

)
− σ2

=
(n − 1)σ2

n
− σ2

= −σ2

n
.

Thus

lim
n→∞

B
(
θ̂n, θ

)
= − lim

n→∞
σ2

n
= 0.

Hence 1
n

n∑
i=1

(
Xi − X

)2
is a consistent estimator of σ2.

In the last example we saw that the likelihood estimator of variance is a
consistent estimator. In general, if the density function f(x; θ) of a population
satisfies some mild conditions, then the maximum likelihood estimator of θ is
consistent. Similarly, if the density function f(x; θ) of a population satisfies
some mild conditions, then the estimator obtained by moment method is also
consistent.

Since consistency is a large sample property of an estimator, some statis-
ticians suggest that consistency should not be used alone for judging the
goodness of an estimator; rather it should be used along with other criteria.

16.6. Review Exercises

1. Let T1 and T2 be estimators of a population parameter θ based upon the
same random sample. If Ti ∼ N

(
θ, σ2

i

)
i = 1, 2 and if T = bT1 + (1 − b)T2,

then for what value of b, T is a minimum variance unbiased estimator of θ ?
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2. Let X1, X2, ..., Xn be a random sample from a distribution with density
function

f(x; θ) =
1
2θ

e−
|x|
θ −∞ < x < ∞,

where 0 < θ is a parameter. What is the expected value of the maximum
likelihood estimator of θ ? Is this estimator unbiased?

3. Let X1, X2, ..., Xn be a random sample from a distribution with density
function

f(x; θ) =
1
2θ

e−
|x|
θ −∞ < x < ∞,

where 0 < θ is a parameter. Is the maximum likelihood estimator an efficient
estimator of θ?

4. A random sample X1, X2, ..., Xn of size n is selected from a normal dis-
tribution with variance σ2. Let S2 be the unbiased estimator of σ2, and T

be the maximum likelihood estimator of σ2. If 20T − 19S2 = 0, then what is
the sample size?

5. Suppose X and Y are independent random variables each with density
function

f(x) =

{
2 x θ2 for 0 < x < 1

θ

0 otherwise.

If k (X + 2Y ) is an unbiased estimator of θ−1, then what is the value of k?

6. An object of length c is measured by two persons using the same in-
strument. The instrument error has a normal distribution with mean 0 and
variance 1. The first person measures the object 25 times, and the average
of the measurements in X̄ = 12. The second person measures the objects 36
times, and the average of the measurements is Ȳ = 12.8. To estimate c we
use the weighted average a X̄ +b Ȳ as an estimator. Determine the constants
a and b such that a X̄ + b Ȳ is the minimum variance unbiased estimator of
c and then calculate the minimum variance unbiased estimate of c.

7. Let X1, X2, ..., Xn be a random sample from a distribution with probabil-
ity density function

f(x) =

 3 θ x2 e−θ x3
for 0 < x < ∞

0 otherwise,

where θ > 0 is an unknown parameter. Find a sufficient statistics for θ.
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8. Let X1, X2, ..., Xn be a random sample from a Weibull distribution with
probability density function

f(x) =


β
θβ xβ−1 e−( x

θ )β

if x > 0

0 otherwise ,

where θ > 0 and β > 0 are parameters. Find a sufficient statistics for θ

with β known, say β = 2. If β is unknown, can you find a single sufficient
statistics for θ?

9. Let X1, X2 be a random sample of size 2 from population with probability
density

f(x; θ) =


1
θ e−

x
θ if 0 < x < ∞

0 otherwise,

where θ > 0 is an unknown parameter. If Y =
√

X1X2, then what should
be the value of the constant k such that kY is an unbiased estimator of the
parameter θ ?

10. Let X1, X2, ..., Xn be a random sample from a population with proba-
bility density function

f(x; θ) =


1
θ if 0 < x < θ

0 otherwise ,

where θ > 0 is an unknown parameter. If X denotes the sample mean, then
what should be value of the constant k such that kX is an unbiased estimator
of θ ?

11. Let X1, X2, ..., Xn be a random sample from a population with proba-
bility density function

f(x; θ) =


1
θ if 0 < x < θ

0 otherwise ,

where θ > 0 is an unknown parameter. If Xmed denotes the sample median,
then what should be value of the constant k such that kXmed is an unbiased
estimator of θ ?
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12. What do you understand by an unbiased estimator of a parameter θ?
What is the basic principle of the maximum likelihood estimation of a param-
eter θ? What is the basic principle of the Bayesian estimation of a parame-
ter θ? What is the main difference between Bayesian method and likelihood
method.

13. Let X1, X2, ..., Xn be a random sample from a population X with density
function

f(x; θ) =


θ

(1+x)θ+1 for 0 ≤ x < ∞

0 otherwise,

where θ > 0 is an unknown parameter. What is a sufficient statistic for the
parameter θ?

14. Let X1, X2, ..., Xn be a random sample from a population X with density
function

f(x; θ) =


x
θ2 e−

x2

2θ2 for 0 ≤ x < ∞

0 otherwise,

where θ is an unknown parameter. What is a sufficient statistic for the
parameter θ?

15. Let X1, X2, ..., Xn be a random sample from a distribution with density
function

f(x; θ) =

 e−(x−θ) for θ < x < ∞

0 otherwise,

where −∞ < θ < ∞ is a parameter. What is the maximum likelihood
estimator of θ? Find a sufficient statistics of the parameter θ.

16. Let X1, X2, ..., Xn be a random sample from a distribution with density
function

f(x; θ) =

 e−(x−θ) for θ < x < ∞

0 otherwise,

where −∞ < θ < ∞ is a parameter. Are the estimators X(1) and X − 1 are
unbiased estimators of θ? Which one is more efficient than the other?

17. Let X1, X2, ..., Xn be a random sample from a population X with density
function

f(x; θ) =

 θ xθ−1 for 0 ≤ x < 1

0 otherwise,
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where θ > 1 is an unknown parameter. What is a sufficient statistic for the
parameter θ?

18. Let X1, X2, ..., Xn be a random sample from a population X with density
function

f(x; θ) =

 θ α xα−1e−θxα

for 0 ≤ x < ∞

0 otherwise,

where θ > 0 and α > 0 are parameters. What is a sufficient statistic for the
parameter θ for a fixed α?

19. Let X1, X2, ..., Xn be a random sample from a population X with density
function

f(x; θ) =


θ αθ

x(θ+1) for α < x < ∞

0 otherwise,

where θ > 0 and α > 0 are parameters. What is a sufficient statistic for the
parameter θ for a fixed α?

20. Let X1, X2, ..., Xn be a random sample from a population X with density
function

f(x; θ) =


(
m
x

)
θx(1 − θ)m−x for x = 0, 1, 2, ..., m

0 otherwise,

where 0 < θ < 1 is parameter. Show that X
m is a uniform minimum variance

unbiased estimator of θ for a fixed m.

21. Let X1, X2, ..., Xn be a random sample from a population X with density
function

f(x; θ) =

 θ xθ−1 for 0 < x < 1

0 otherwise,

where θ > 1 is parameter. Show that − 1
n

∑n
i=1 ln(Xi) is a uniform minimum

variance unbiased estimator of 1
θ .

22. Let X1, X2, ..., Xn be a random sample from a uniform population X

on the interval [0, θ], where θ > 0 is a parameter. Is the likelihood estimator
θ̂ = X(n) of θ a consistent estimator of θ?

23. Let X1, X2, ..., Xn be a random sample from a population X ∼ POI(λ),
where λ > 0 is a parameter. Is the estimator X of λ a consistent estimator
of λ?
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24. Let X1, X2, ..., Xn be a random sample from a population X having the
probability density function

f(x; θ) =
{

θ xθ−1, if 0 < x < 1
0 otherwise,

where θ > 0 is a parameter. Is the estimator θ̂ = X

1−X
of θ, obtained by the

moment method, a consistent estimator of θ?

25. Let X1, X2, ..., Xn be a random sample from a population X having the
probability density function

f(x; p) =


(
n
x

)
px (1 − p)n−x, if x = 0, 1, 2, ..., n

0 otherwise,

where 0 < p < 1 is a parameter and m is a fixed positive integer. What is the
maximum likelihood estimator for p. Is this maximum likelihood estimator
for p is an efficient estimator?
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Chapter 17

SOME TECHNIQUES
FOR FINDING INTERVAL

ESTIMATORS
FOR

PARAMETERS

In point estimation we find a value for the parameter θ given a sample
data. For example, if X1, X2, ..., Xn is a random sample of size n from a
population with probability density function

f(x; θ) =


√

2
π e−

1
2 (x−θ)2 for x ≥ θ

0 otherwise,

then the likelihood function of θ is

L(θ) =
n∏

i=1

√
2
π

e−
1
2 (xi−θ)2 ,

where x1 ≥ θ, x2 ≥ θ, ..., xn ≥ θ. This likelihood function simplifies to

L(θ) =
[

2
π

]n
2

e

− 1
2

n∑
i=1

(xi − θ)2

,

where min{x1, x2, ..., xn} ≥ θ. Taking the natural logarithm of L(θ) and
maximizing, we obtain the maximum likelihood estimator of θ as the first
order statistic of the sample X1, X2, ..., Xn, that is

θ̂ = X(1),
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where X(1) = min{X1, X2, ..., Xn}. Suppose the true value of θ = 1. Using
the maximum likelihood estimator of θ, we are trying to guess this value of
θ based on a random sample. Suppose X1 = 1.5, X2 = 1.1, X3 = 1.7, X4 =
2.1, X5 = 3.1 is a set of sample data from the above population. Then based
on this random sample, we will get

θ̂ML = X(1) = min{1.5, 1.1, 1.7, 2.1, 3.1} = 1.1.

If we take another random sample, say X1 = 1.8, X2 = 2.1, X3 = 2.5, X4 =
3.1, X5 = 2.6 then the maximum likelihood estimator of this θ will be θ̂ = 1.8
based on this sample. The graph of the density function f(x; θ) for θ = 1 is
shown below.

From the graph, it is clear that a number close to 1 has higher chance of
getting randomly picked by the sampling process, then the numbers that are
substantially bigger than 1. Hence, it makes sense that θ should be estimated
by the smallest sample value. However, from this example we see that the
point estimate of θ is not equal to the true value of θ. Even if we take many
random samples, yet the estimate of θ will rarely equal the actual value of
the parameter. Hence, instead of finding a single value for θ, we should
report a range of probable values for the parameter θ with certain degree of
confidence. This brings us to the notion of confidence interval of a parameter.

17.1. Interval Estimators and Confidence Intervals for Parameters

The interval estimation problem can be stated as follow: Given a random
sample X1, X2, ..., Xn and a probability value 1 − α, find a pair of statistics
L = L(X1, X2, ..., Xn) and U = U(X1, X2, ..., Xn) with L ≤ U such that the
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probability of θ being on the random interval [L, U ] is 1 − α. That is

P (L ≤ θ ≤ U) = 1 − α.

Recall that a sample is a portion of the population usually chosen by
method of random sampling and as such it is a set of random variables
X1, X2, ..., Xn with the same probability density function f(x; θ) as the pop-
ulation. Once the sampling is done, we get

X1 = x1, X2 = x2, · · · , Xn = xn

where x1, x2, ..., xn are the sample data.

Definition 17.1. Let X1, X2, ..., Xn be a random sample of size n from
a population X with density f(x; θ), where θ is an unknown parameter.
The interval estimator of θ is a pair of statistics L = L(X1, X2, ..., Xn) and
U = U(X1, X2, ..., Xn) with L ≤ U such that if x1, x2, ..., xn is a set of sample
data, then θ belongs to the interval [L(x1, x2, ...xn), U(x1, x2, ...xn)].

The interval [l, u] will be denoted as an interval estimate of θ whereas the
random interval [L, U ] will denote the interval estimator of θ. Notice that
the interval estimator of θ is the random interval [L, U ]. Next, we define the
100(1 − α)% confidence interval for the unknown parameter θ.

Definition 17.2. Let X1, X2, ..., Xn be a random sample of size n from a
population X with density f(x; θ), where θ is an unknown parameter. The
interval estimator of θ is called a 100(1 − α)% confidence interval for θ if

P (L ≤ θ ≤ U) = 1 − α.

The random variable L is called the lower confidence limit and U is called the
upper confidence limit. The number (1−α) is called the confidence coefficient
or degree of confidence.

There are several methods for constructing confidence intervals for an
unknown parameter θ. Some well known methods are: (1) Pivotal Quantity
Method, (2) Maximum Likelihood Estimator (MLE) Method, (3) Bayesian
Method, (4) Invariant Methods, (5) Inversion of Test Statistic Method, and
(6) The Statistical or General Method.

In this chapter, we only focus on the pivotal quantity method and the
MLE method. We also briefly examine the the statistical or general method.
The pivotal quantity method is mainly due to George Bernard and David
Fraser of the University of Waterloo, and this method is perhaps one of
the most elegant methods of constructing confidence intervals for unknown
parameters.
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17.2. Pivotal Quantity Method

In this section, we explain how the notion of pivotal quantity can be
used to construct confidence interval for a unknown parameter. We will
also examine how to find pivotal quantities for parameters associated with
certain probability density functions. We begin with the formal definition of
the pivotal quantity.

Definition 17.3. Let X1, X2, ..., Xn be a random sample of size n from a
population X with probability density function f(x; θ), where θ is an un-
known parameter. A pivotal quantity Q is a function of X1, X2, ..., Xn and θ

whose probability distribution is independent of the parameter θ.

Notice that the pivotal quantity Q(X1, X2, ..., Xn, θ) will usually contain
both the parameter θ and an estimator (that is, a statistic) of θ. Now we
give an example of a pivotal quantity.

Example 17.1. Let X1, X2, ..., Xn be a random sample from a normal
population X with mean µ and a known variance σ2. Find a pivotal quantity
for the unknown parameter µ.

Answer: Since each Xi ∼ N(µ, σ2),

X ∼ N

(
µ,

σ2

n

)
.

Standardizing X, we see that

X − µ
σ√
n

∼ N(0, 1).

The statistics Q given by

Q(X1, X2, ..., Xn, µ) =
X − µ

σ√
n

is a pivotal quantity since it is a function of X1, X2, ..., Xn and µ and its
probability density function is free of the parameter µ.

There is no general rule for finding a pivotal quantity (or pivot) for
a parameter θ of an arbitrarily given density function f(x; θ). Hence to
some extents, finding pivots relies on guesswork. However, if the probability
density function f(x; θ) belongs to the location-scale family, then there is a
systematic way to find pivots.
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Definition 17.4. Let g : IR → IR be a probability density function. Then for
any µ and any σ > 0, the family of functions

F =
{

f(x;µ, σ) =
1
σ

g

(
x − µ

σ

)
| µ ∈ (−∞,∞), σ ∈ (0,∞)

}
is called the location-scale family with standard probability density f(x; θ).
The parameter µ is called the location parameter and the parameter σ is
called the scale parameter. If σ = 1, then F is called the location family. If
µ = 0, then F is called the scale family

It should be noted that each member f (x;µ, σ) of the location-scale
family is a probability density function. If we take g(x) = 1√

2π
e−

1
2 x2

, then
the normal density function

f(x;µ, σ) =
1
σ

g

(
x − µ

σ

)
=

1√
2πσ2

e−
1
2 ( x−µ

σ )2

, −∞ < x < ∞

belongs to the location-scale family. The density function

f(x; θ) =


1
θ e−

x
θ if 0 < x < ∞

0 otherwise,

belongs to the scale family. However, the density function

f(x; θ) =

 θ xθ−1 if 0 < x < 1

0 otherwise,

does not belong to the location-scale family.

It is relatively easy to find pivotal quantities for location or scale param-
eter when the density function of the population belongs to the location-scale
family F . When the density function belongs to location family, the pivot
for the location parameter µ is µ̂ − µ, where µ̂ is the maximum likelihood
estimator of µ. If σ̂ is the maximum likelihood estimator of σ, then the pivot
for the scale parameter σ is σ̂

σ when the density function belongs to the scale

family. The pivot for location parameter µ is µ̂−µ

σ̂
and the pivot for the scale

parameter σ is σ̂
σ when the density function belongs to location-scale fam-

ily. Sometime it is appropriate to make a minor modification to the pivot
obtained in this way, such as multiplying by a constant, so that the modified
pivot will have a known distribution.
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Remark 17.1. Pivotal quantity can also be constructed using a sufficient
statistic for the parameter. Suppose T = T (X1, X2, ..., Xn) is a sufficient
statistic based on a random sample X1, X2, ..., Xn from a population X with
probability density function f(x; θ). Let the probability density function of
T be g(t; θ). If g(t; θ) belongs to the location family, then an appropriate
constant multiple of T −a(θ) is a pivotal quantity for the location parameter
θ for some suitable expression a(θ). If g(t; θ) belongs to the scale family, then
an appropriate constant multiple of T

b(θ) is a pivotal quantity for the scale
parameter θ for some suitable expression b(θ). Similarly, if g(t; θ) belongs to
the location-scale family, then an appropriate constant multiple of T−a(θ)

b(θ) is
a pivotal quantity for the location parameter θ for some suitable expressions
a(θ) and b(θ).

Algebraic manipulations of pivots are key factors in finding confidence
intervals. If Q = Q(X1, X2, ..., Xn, θ) is a pivot, then a 100(1−α)% confidence
interval for θ may be constructed as follows: First, find two values a and b

such that

P (a ≤ Q ≤ b) = 1 − α,

then convert the inequality a ≤ Q ≤ b into the form L ≤ θ ≤ U .

For example, if X is normal population with unknown mean µ and known
variance σ2, then its pdf belongs to the location-scale family. A pivot for µ

is X−µ
S . However, since the variance σ2 is known, there is no need to take

S. So we consider the pivot X−µ
σ to construct the 100(1 − 2α)% confidence

interval for µ. Since our population X ∼ N(µ, σ2), the sample mean X is
also a normal with the same mean µ and the variance equals to σ√

n
. Hence

1 − 2α = P

(
−zα ≤ X − µ

σ√
n

≤ zα

)

= P

(
µ − zα

σ√
n
≤ X ≤ µ + zα

σ√
n

)
= P

(
X − zα

σ√
n
≤ µ ≤ X + zα

σ√
n

)
.

Therefore, the 100(1 − 2α)% confidence interval for µ is[
X − zα

σ√
n

, X + zα
σ√
n

]
.
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Here zα denotes the 100(1−α)-percentile (or (1−α)-quartile) of a standard
normal random variable Z, that is

P (Z ≤ zα) = 1 − α,

where α ≤ 0.5 (see figure below). Note that α = P (Z ≤ −zα) if α ≤ 0.5.

A 100(1 − α)% confidence interval for a parameter θ has the following
interpretation. If X1 = x1, X2 = x2, ..., Xn = xn is a sample of size n, then
based on this sample we construct a 100(1 − α)% confidence interval [l, u]
which is a subinterval of the real line IR. Suppose we take large number of
samples from the underlying population and construct all the corresponding
100(1 − α)% confidence intervals, then approximately 100(1 − α)% of these
intervals would include the unknown value of the parameter θ.

In the next several sections, we illustrate how pivotal quantity method
can be used to determine confidence intervals for various parameters.

17.3. Confidence Interval for Population Mean

At the outset, we use the pivotal quantity method to construct a con-
fidence interval for the mean of a normal population. Here we assume first
the population variance is known and then variance is unknown. Next, we
construct the confidence interval for the mean of a population with continu-
ous, symmetric and unimodal probability distribution by applying the central
limit theorem.

Let X1, X2, ..., Xn be a random sample from a population X ∼ N(µ, σ2),
where µ is an unknown parameter and σ2 is a known parameter. First of all,
we need a pivotal quantity Q(X1, X2, ..., Xn, µ). To construct this pivotal
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quantity, we find the likelihood estimator of the parameter µ. We know that
µ̂ = X. Since, each Xi ∼ N(µ, σ2), the distribution of the sample mean is
given by

X ∼ N

(
µ,

σ2

n

)
.

It is easy to see that the distribution of the estimator of µ is not independent
of the parameter µ. If we standardize X, then we get

X − µ
σ√
n

∼ N(0, 1).

The distribution of the standardized X is independent of the parameter µ.
This standardized X is the pivotal quantity since it is a function of the
sample X1, X2, ..., Xn and the parameter µ, and its probability distribution
is independent of the parameter µ. Using this pivotal quantity, we construct
the confidence interval as follows:

1 − α = P

(
−zα

2
≤ X − µ

σ√
n

≤ zα
2

)

= P

(
X −

(
σ√
n

)
zα

2
≤ µ ≤ X +

(
σ√
n

)
zα

2

)
Hence, the (1 − α)% confidence interval for µ when the population X is
normal with the known variance σ2 is given by[

X −
(

σ√
n

)
zα

2
, X +

(
σ√
n

)
zα

2

]
.

This says that if samples of size n are taken from a normal population with
mean µ and known variance σ2 and if the interval[

X −
(

σ√
n

)
zα

2
, X +

(
σ√
n

)
zα

2

]
is constructed for every sample, then in the long-run 100(1 − α)% of the
intervals will cover the unknown parameter µ and hence with a confidence of
(1 − α)100% we can say that µ lies on the interval[

X −
(

σ√
n

)
zα

2
, X +

(
σ√
n

)
zα

2

]
.
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The interval estimate of µ is found by taking a good (here maximum likeli-
hood) estimator X of µ and adding and subtracting zα

2
times the standard

deviation of X.

Remark 17.2. By definition a 100(1−α)% confidence interval for a param-
eter θ is an interval [L, U ] such that the probability of θ being in the interval
[L, U ] is 1 − α. That is

1 − α = P (L ≤ θ ≤ U).

One can find infinitely many pairs L, U such that

1 − α = P (L ≤ θ ≤ U).

Hence, there are infinitely many confidence intervals for a given parameter.
However, we only consider the confidence interval of shortest length. If a
confidence interval is constructed by omitting equal tail areas then we obtain
what is known as the central confidence interval. In a symmetric distribution,
it can be shown that the central confidence interval are the shortest.

Example 17.2. Let X1, X2, ..., X11 be a random sample of size 11 from
a normal distribution with unknown mean µ and variance σ2 = 9.9. If∑11

i=1 xi = 132, then what is the 95% confidence interval for µ ?

Answer: Since each Xi ∼ N(µ, 9.9), the confidence interval for µ is given
by [

X −
(

σ√
n

)
zα

2
, X +

(
σ√
n

)
zα

2

]
.

Since
∑11

i=1 xi = 132, the sample mean x = 132
11 = 12. Also, we see that√

σ2

n
=

√
9.9
11

=
√

0.9.

Further, since 1 − α = 0.95, α = 0.05. Thus

zα
2

= z0.025 = 1.96 (from normal table).

Using these information in the expression of the confidence interval for µ, we
get [

12 − 1.96
√

0.9, 12 + 1.96
√

0.9
]

that is
[10.141, 13.859].
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Example 17.3. Let X1, X2, ..., X11 be a random sample of size 11 from
a normal distribution with unknown mean µ and variance σ2 = 9.9. If∑11

i=1 xi = 132, then for what value of the constant k is[
12 − k

√
0.9, 12 + k

√
0.9

]
a 90% confidence interval for µ ?

Answer: The 90% confidence interval for µ when the variance is given is[
x −

(
σ√
n

)
zα

2
, x +

(
σ√
n

)
zα

2

]
.

Thus we need to find x,
√

σ2

n and zα
2

corresponding to 1 − α = 0.9. Hence

x =
∑11

i=1 xi

11

=
132
11

= 12.√
σ2

n
=

√
9.9
11

=
√

0.9.

z0.05 = 1.64 (from normal table).

Hence, the confidence interval for µ at 90% confidence level is[
12 − (1.64)

√
0.9, 12 + (1.64)

√
0.9

]
.

Comparing this interval with the given interval, we get

k = 1.64.

and the corresponding 90% confidence interval is [10.444, 13.556].

Remark 17.3. Notice that the length of the 90% confidence interval for µ

is 3.112. However, the length of the 95% confidence interval is 3.718. Thus
higher the confidence level bigger is the length of the confidence interval.
Hence, the confidence level is directly proportional to the length of the confi-
dence interval. In view of this fact, we see that if the confidence level is zero,
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then the length is also zero. That is when the confidence level is zero, the
confidence interval of µ degenerates into a point X.

Until now we have considered the case when the population is normal
with unknown mean µ and known variance σ2. Now we consider the case
when the population is non-normal but it probability density function is
continuous, symmetric and unimodal. If the sample size is large, then by the
central limit theorem

X − µ
σ√
n

∼ N(0, 1) as n → ∞.

Thus, in this case we can take the pivotal quantity to be

Q(X1, X2, ..., Xn, µ) =
X − µ

σ√
n

,

if the sample size is large (generally n ≥ 32). Since the pivotal quantity is
same as before, we get the sample expression for the (1−α)100% confidence
interval, that is [

X −
(

σ√
n

)
zα

2
, X +

(
σ√
n

)
zα

2

]
.

Example 17.4. Let X1, X2, ..., X40 be a random sample of size 40 from
a distribution with known variance and unknown mean µ. If

∑40
i=1 xi =

286.56 and σ2 = 10, then what is the 90 percent confidence interval for the
population mean µ ?

Answer: Since 1 − α = 0.90, we get α
2 = 0.05. Hence, z0.05 = 1.64 (from

the standard normal table). Next, we find the sample mean

x =
286.56

40
= 7.164.

Hence, the confidence interval for µ is given by[
7.164 − (1.64)

(√
10
40

)
, 7.164 + (1.64)

(√
10
40

)]

that is
[6.344, 7.984].
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Example 17.5. In sampling from a nonnormal distribution with a variance
of 25, how large must the sample size be so that the length of a 95% confidence
interval for the mean is 1.96 ?

Answer: The confidence interval when the sample is taken from a normal
population with a variance of 25 is[

x −
(

σ√
n

)
zα

2
, x +

(
σ√
n

)
zα

2

]
.

Thus the length of the confidence interval is

� = 2 zα
2

√
σ2

n

= 2 z0.025

√
25
n

= 2 (1.96)

√
25
n

.

But we are given that the length of the confidence interval is � = 1.96. Thus

1.96 = 2 (1.96)

√
25
n√

n = 10

n = 100.

Hence, the sample size must be 100 so that the length of the 95% confidence
interval will be 1.96.

So far, we have discussed the method of construction of confidence in-
terval for the parameter population mean when the variance is known. It is
very unlikely that one will know the variance without knowing the population
mean, and thus topic of the previous section is not very realistic. Now we
treat case of constructing the confidence interval for population mean when
the population variance is also unknown. First of all, we begin with the
construction of confidence interval assuming the population X is normal.

Suppose X1, X2, ..., Xn is random sample from a normal population X

with mean µ and variance σ2 > 0. Let the sample mean and sample variances
be X and S2 respectively. Then

(n − 1)S2

σ2
∼ χ2(n − 1)
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and
X − µ√

σ2

n

∼ N(0, 1).

Therefore, the random variable defined by the ratio of (n−1)S2

σ2 to X−µ√
σ2
n

has

a t-distribution with (n − 1) degrees of freedom, that is

Q(X1, X2, ..., Xn, µ) =

X−µ√
σ2
n√

(n−1)S2

(n−1)σ2

=
X − µ√

S2

n

∼ t(n − 1),

where Q is the pivotal quantity to be used for the construction of the confi-
dence interval for µ. Using this pivotal quantity, we construct the confidence
interval as follows:

1 − α = P

(
−tα

2
(n − 1) ≤ X − µ

S√
n

≤ tα
2
(n − 1)

)

= P

(
X −

(
S√
n

)
tα

2
(n − 1) ≤ µ ≤ X +

(
S√
n

)
tα

2
(n − 1)

)
Hence, the 100(1 − α)% confidence interval for µ when the population X is
normal with the unknown variance σ2 is given by[

X −
(

S√
n

)
tα

2
(n − 1) , X +

(
S√
n

)
tα

2
(n − 1)

]
.

Example 17.6. A random sample of 9 observations from a normal popula-
tion yields the observed statistics x = 5 and 1

8

∑9
i=1(xi − x)2 = 36. What is

the 95% confidence interval for µ ?

Answer: Since
n = 9 x = 5

s2 = 36 and 1 − α = 0.95,

the 95% confidence interval for µ is given by[
x −

(
s√
n

)
tα

2
(n − 1) , x +

(
s√
n

)
tα

2
(n − 1)

]
,

that is [
5 −

(
6√
9

)
t0.025(8) , 5 +

(
6√
9

)
t0.025(8)

]
,
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which is [
5 −

(
6√
9

)
(2.306) , 5 +

(
6√
9

)
(2.306)

]
.

Hence, the 95% confidence interval for µ is given by [0.388, 9.612].

Example 17.7. Which of the following is true of a 95% confidence interval
for the mean of a population?

(a) The interval includes 95% of the population values on the average.
(b) The interval includes 95% of the sample values on the average.
(c) The interval has 95% chance of including the sample mean.

Answer: None of the statements is correct since the 95% confidence inter-
val for the population mean µ means that the interval has 95% chance of
including the population mean µ.

Finally, we consider the case when the population is non-normal but
it probability density function is continuous, symmetric and unimodal. If
some weak conditions are satisfied, then the sample variance S2 of a random
sample of size n ≥ 2, converges stochastically to σ2. Therefore, in

X−µ√
σ2
n√

(n−1)S2

(n−1)σ2

=
X − µ√

S2

n

the numerator of the left-hand member converges to N(0, 1) and the denom-
inator of that member converges to 1. Hence

X − µ√
S2

n

∼ N(0, 1) as n → ∞.

This fact can be used for the construction of a confidence interval for pop-
ulation mean when variance is unknown and the population distribution is
nonnormal. We let the pivotal quantity to be

Q(X1, X2, ..., Xn, µ) =
X − µ√

S2

n

and obtain the following confidence interval[
X −

(
S√
n

)
zα

2
, X +

(
S√
n

)
zα

2

]
.



Probability and Mathematical Statistics 501

We summarize the results of this section by the following table.

Population Variance σ2 Sample Size n Confidence Limits
normal known n ≥ 2 x ∓ zα

2

σ√
n

normal not known n ≥ 2 x ∓ tα
2
(n − 1) s√

n

not normal known n ≥ 32 x ∓ zα
2

σ√
n

not normal known n < 32 no formula exists
not normal not known n ≥ 32 x ∓ tα

2
(n − 1) s√

n

not normal not known n < 32 no formula exists

17.4. Confidence Interval for Population Variance

In this section, we will first describe the method for constructing the
confidence interval for variance when the population is normal with a known
population mean µ. Then we treat the case when the population mean is
also unknown.

Let X1, X2, ..., Xn be a random sample from a normal population X

with known mean µ and unknown variance σ2. We would like to construct
a 100(1 − α)% confidence interval for the variance σ2, that is, we would like
to find the estimate of L and U such that

P
(
L ≤ σ2 ≤ U

)
= 1 − α.

To find these estimate of L and U , we first construct a pivotal quantity. Thus

Xi ∼ N
(
µ, σ2

)
,(

Xi − µ

σ

)
∼ N(0, 1),(

Xi − µ

σ

)2

∼ χ2(1).

n∑
i=1

(
Xi − µ

σ

)2

∼ χ2(n).

We define the pivotal quantity Q(X1, X2, ..., Xn, σ2) as

Q(X1, X2, ..., Xn, σ2) =
n∑

i=1

(
Xi − µ

σ

)2
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which has a chi-square distribution with n degrees of freedom. Hence

1 − α = P (a ≤ Q ≤ b)

= P

(
a ≤

n∑
i=1

(
Xi − µ

σ

)2

≤ b

)

= P

(
1
a
≥

n∑
i=1

σ2

(Xi − µ)2
≥ 1

b

)

= P

(∑n
i=1(Xi − µ)2

a
≥ σ2 ≥

∑n
i=1(Xi − µ)2

b

)
= P

(∑n
i=1(Xi − µ)2

b
≤ σ2 ≤

∑n
i=1(Xi − µ)2

a

)
= P

(∑n
i=1(Xi − µ)2

χ2
1−α

2
(n)

≤ σ2 ≤
∑n

i=1(Xi − µ)2

χ2
α
2
(n)

)
Therefore, the (1 − α)% confidence interval for σ2 when mean is known is
given by [∑n

i=1(Xi − µ)2

χ2
1−α

2
(n)

,

∑n
i=1(Xi − µ)2

χ2
α
2
(n)

]
.

Example 17.8. A random sample of 9 observations from a normal pop-
ulation with µ = 5 yields the observed statistics 1

8

∑9
i=1 x2

i = 39.125 and∑9
i=1 xi = 45. What is the 95% confidence interval for σ2 ?

Answer: We have been given that

n = 9 and µ = 5.

Further we know that
9∑

i=1

xi = 45 and
1
8

9∑
i=1

x2
i = 39.125.

Hence
9∑

i=1

x2
i = 313,

and
9∑

i=1

(xi − µ)2 =
9∑

i=1

x2
i − 2µ

9∑
i=1

xi + 9µ2

= 313 − 450 + 225

= 88.
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Since 1 − α = 0.95, we get α
2 = 0.025 and 1 − α

2 = 0.975. Using chi-square
table we have

χ2
0.025(9) = 2.700 and χ2

0.975(9) = 19.02.

Hence, the 95% confidence interval for σ2 is given by[∑n
i=1(Xi − µ)2

χ2
1−α

2
(n)

,

∑n
i=1(Xi − µ)2

χ2
α
2
(n)

]
,

that is [
88

19.02
,

88
2.7

]
which is

[4.583, 32.59].

Remark 17.4. Since the χ2 distribution is not symmetric, the above confi-
dence interval is not necessarily the shortest. Later, in the next section, we
describe how one construct a confidence interval of shortest length.

Consider a random sample X1, X2, ..., Xn from a normal population
X ∼ N(µ, σ2), where the population mean µ and population variance σ2

are unknown. We want to construct a 100(1 − α)% confidence interval for
the population variance. We know that

(n − 1)S2

σ2
∼ χ2(n − 1)

⇒
∑n

i=1

(
Xi − X

)2

σ2
∼ χ2(n − 1).

We take
∑n

i=1(Xi−X)2

σ2 as the pivotal quantity Q to construct the confidence
interval for σ2. Hence, we have

1 − α = P

(
1

χ2
α
2
(n − 1)

≤ Q ≤ 1
χ2

1−α
2
(n − 1)

)

= P

(
1

χ2
α
2
(n − 1)

≤
∑n

i=1

(
Xi − X

)2

σ2
≤ 1

χ2
1−α

2
(n − 1)

)

= P

(∑n
i=1

(
Xi − X

)2

χ2
1−α

2
(n − 1)

≤ σ2 ≤
∑n

i=1

(
Xi − X

)2

χ2
α
2
(n − 1)

)
.
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Hence, the 100(1 − α)% confidence interval for variance σ2 when the popu-
lation mean is unknown is given by[∑n

i=1

(
Xi − X

)2

χ2
1−α

2
(n − 1)

,

∑n
i=1

(
Xi − X

)2

χ2
α
2
(n − 1)

]

Example 17.9. Let X1, X2, ..., Xn be a random sample of size 13 from a
normal distribution N(µ, σ2). If

∑13
i=1 xi = 246.61 and

∑13
i=1 4806.61. Find

the 90% confidence interval for σ2 ?

Answer:
x = 18.97

s2 =
1

n − 1

13∑
i=1

(xi − x)2

=
1

n − 1

13∑
i=1

[
x2

i − nx2
]2

=
1
12

[4806.61 − 4678.2]

=
1
12

128.41.

Hence, 12s2 = 128.41. Further, since 1 − α = 0.90, we get α
2 = 0.05 and

1 − α
2 = 0.95. Therefore, from chi-square table, we get

χ2
0.95(12) = 21.03, χ2

0.05(12) = 5.23.

Hence, the 95% confidence interval for σ2 is[
128.41
5.23

,
128.41
21.03

]
,

that is
[6.11, 24.57].

Example 17.10. Let X1, X2, ..., Xn be a random sample of size n from a
distribution N

(
µ, σ2

)
, where µ and σ2 are unknown parameters. What is

the shortest 90% confidence interval for the standard deviation σ ?

Answer: Let S2 be the sample variance. Then

(n − 1)S2

σ2
∼ χ2(n − 1).
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Using this random variable as a pivot, we can construct a 100(1 − α)% con-
fidence interval for σ from

1 − α = P

(
a ≤ (n − 1)S2

σ2
≤ b

)
by suitably choosing the constants a and b. Hence, the confidence interval
for σ is given by [√

(n − 1)S2

b
,

√
(n − 1)S2

a

]
.

The length of this confidence interval is given by

L(a, b) =
(√

n − 1
)

S

[
1√
a
− 1√

b

]
.

In order to find the shortest confidence interval, we should find a pair of
constants a and b such that L(a, b) is minimum. Thus, we have a constraint
minimization problem. That is

Minimize L(a, b)

Subject to the condition∫ b

a

f(u)du = 1 − α,

 (MP)

where
f(x) =

1

Γ
(

n−1
2

)
2

n−1
2

x
n−1

2 −1e−
x
2 .

Differentiating L with respect to a, we get

dL

da
= S

√
n − 1

(
−1

2
a− 3

2 +
1
2
b−

3
2

db

da

)
.

From ∫ b

a

f(u) du = 1 − α,

we find the derivative of b with respect to a as follows:

d

da

∫ b

a

f(u) du =
d

da
(1 − α)

that is
f(b)

db

da
− f(a) = 0.
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Thus, we have
db

da
=

f(a)
f(b)

.

Letting this into the expression for the derivative of L, we get

dL

da
= S

√
n − 1

(
−1

2
a− 3

2 +
1
2
b−

3
2

f(a)
f(b)

)
.

Setting this derivative to zero, we get

S
√

n − 1
(
−1

2
a− 3

2 +
1
2
b−

3
2

f(a)
f(b)

)
= 0

which yields
a

3
2 f(a) = b

3
2 f(b).

Using the form of f , we get from the above expression

a
3
2 a

n−3
2 e−

a
2 = b

3
2 b

n−3
2 e−

b
2

that is
a

n
2 e−

a
2 = b

n
2 e−

b
2 .

From this we get

ln
(a

b

)
=

(
a − b

n

)
.

Hence to obtain the pair of constants a and b that will produce the shortest
confidence interval for σ, we have to solve the following system of nonlinear
equations ∫ b

a

f(u) du = 1 − α

ln
(a

b

)
=

a − b

n
.

 (�)

If ao and bo are solutions of (�), then the shortest confidence interval for σ

is given by √
(n − 1)S2

bo
,

√
(n − 1)S2

ao

 .

Since this system of nonlinear equations is hard to solve analytically, nu-
merical solutions are given in statistical literature in the form of a table for
finding the shortest interval for the variance.
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17.5. Confidence Interval for Parameter of some Distributions
not belonging to the Location-Scale Family

In this section, we illustrate the pivotal quantity method for finding
confidence intervals for a parameter θ when the density function does not
belong to the location-scale family. The following density functions does not
belong to the location-scale family:

f(x; θ) =

 θxθ−1 if 0 < x < 1

0 otherwise,

or

f(x; θ) =

{ 1
θ if 0 < x < θ

0 otherwise.
We will construct interval estimators for the parameters in these density

functions. The same idea for finding the interval estimators can be used to
find interval estimators for parameters of density functions that belong to
the location-scale family such as

f(x; θ) =

{ 1
θ e−

x
θ if 0 < x < ∞

0 otherwise.

To find the pivotal quantities for the above mentioned distributions and
others we need the following three results. The first result is Theorem 6.2
while the proof of the second result is easy and we leave it to the reader.

Theorem 17.1. Let F (x; θ) be the cumulative distribution function of a
continuous random variable X. Then

F (X; θ) ∼ UNIF (0, 1).

Theorem 17.2. If X ∼ UNIF (0, 1), then

− lnX ∼ EXP (1).

Theorem 17.3. Let X1, X2, ..., Xn be a random sample from a distribution
with density function

f(x; θ) =


1
θ e−

x
θ if 0 < x < ∞

0 otherwise,



Techniques for finding Interval Estimators of Parameters 508

where θ > 0 is a parameter. Then the random variable

2
θ

n∑
i=1

Xi ∼ χ2(2n)

Proof: Let Y = 2
θ

∑n
i=1 Xi. Now we show that the sampling distribution of

Y is chi-square with 2n degrees of freedom. We use the moment generating
method to show this. The moment generating function of Y is given by

MY (t) = M
2
θ

n∑
i=1

Xi

(t)

=
n∏

i=1

MXi

(
2
θ
t

)

=
n∏

i=1

(
1 − θ

2
θ
t

)−1

= (1 − 2t)−n

= (1 − 2t)−
2n
2 .

Since (1 − 2t)−
2n
2 corresponds to the moment generating function of a chi-

square random variable with 2n degrees of freedom, we conclude that

2
θ

n∑
i=1

Xi ∼ χ2(2n).

Theorem 17.4. Let X1, X2, ..., Xn be a random sample from a distribution
with density function

f(x; θ) =

 θxθ−1 if 0 ≤ x ≤ 1

0 otherwise,

where θ > 0 is a parameter. Then the random variable −2θ
∑n

i=1 lnXi has
a chi-square distribution with 2n degree of freedoms.

Proof: We are given that

Xi ∼ θ xθ−1, 0 < x < 1.
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Hence, the cdf of f is

F (x; θ) =
∫ x

0

θ xθ−1dx = xθ.

Thus by Theorem 17.1, each

F (Xi; θ) ∼ UNIF (0, 1),

that is
Xθ

i ∼ UNIF (0, 1).

By Theorem 17.2, each
− lnXθ

i ∼ EXP (1),

that is
−θ lnXi ∼ EXP (1).

By Theorem 17.3 (with θ = 1), we obtain

−2 θ

n∑
i=1

lnXi ∼ χ2(2n).

Hence, the sampling distribution of −2 θ
∑n

i=1 lnXi is chi-square with 2n

degree of freedoms.

The following theorem whose proof follows from Theorems 17.1, 17.2 and
17.3 is the key to finding pivotal quantity of many distributions that do not
belong to the location-scale family. Further, this theorem can also be used
for finding the pivotal quantities for parameters of some distributions that
belong the location-scale family.

Theorem 17.5. Let X1, X2, ..., Xn be a random sample from a continuous
population X with a distribution function F (x; θ). If F (x; θ) is monotone in
θ, then the statistics Q = −2

∑n
i=1 lnF (Xi; θ) is a pivotal quantity and has

a chi-square distribution with 2n degrees of freedom (that is, Q ∼ χ2(2n)).

It should be noted that the condition F (x; θ) is monotone in θ is needed
to ensure an interval. Otherwise we may get a confidence region instead of a
confidence interval. Also note that if −2

∑n
i=1 lnF (Xi; θ) ∼ χ2(2n), then

−2
n∑

i=1

ln (1 − F (Xi; θ)) ∼ χ2(2n).
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Example 17.11. If X1, X2, ..., Xn is a random sample from a population
with density

f(x; θ) =

 θxθ−1 if 0 < x < 1

0 otherwise,

where θ > 0 is an unknown parameter, what is a 100(1 − α)% confidence
interval for θ?

Answer: To construct a confidence interval for θ, we need a pivotal quantity.
That is, we need a random variable which is a function of the sample and the
parameter, and whose probability distribution is known but does not involve
θ. We use the random variable

Q = −2 θ
n∑

i=1

lnXi ∼ χ2(2n)

as the pivotal quantity. The 100(1 − α)% confidence interval for θ can be
constructed from

1 − α = P
(
χ2

α
2
(2n) ≤ Q ≤ χ2

1−α
2
(2n)

)
= P

(
χ2

α
2
(2n) ≤ −2 θ

n∑
i=1

lnXi ≤ χ2
1−α

2
(2n)

)

= P


χ2

α
2
(2n)

−2
n∑

i=1

lnXi

≤ θ ≤
χ2

1−α
2
(2n)

−2
n∑

i=1

lnXi

 .

Hence, 100(1 − α)% confidence interval for θ is given by
χ2

α
2
(2n)

−2
n∑

i=1

lnXi

,
χ2

1−α
2
(2n)

−2
n∑

i=1

lnXi

 .

Here χ2
1−α

2
(2n) denotes the

(
1 − α

2

)
-quantile of a chi-square random variable

Y , that is
P (Y ≤ χ2

1−α
2
(2n)) = 1 − α

2
and χ2

α
2
(2n) similarly denotes α

2 -quantile of Y , that is

P
(
Y ≤ χ2

α
2
(2n)

)
=

α

2



α/2α/2

1−α

αααα////2222
χ2 χ2

1111−−−−αααα////2222
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for α ≤ 0.5 (see figure below).

Example 17.12. If X1, X2, ..., Xn is a random sample from a distribution
with density function

f(x; θ) =


1
θ if 0 < x < θ

0 otherwise,

where θ > 0 is a parameter, then what is the 100(1−α)% confidence interval
for θ?

Answer: The cumulation density function of f(x; θ) is

F (x; θ) =

{ x
θ if 0 < x < θ

0 otherwise.

Since

−2
n∑

i=1

lnF (Xi; θ) = −2
n∑

i=1

ln
(

Xi

θ

)

= 2n ln θ − 2
n∑

i=1

lnXi

by Theorem 17.5, the quantity 2n ln θ − 2
∑n

i=1 lnXi ∼ χ2(2n). Since
2n ln θ − 2

∑n
i=1 lnXi is a function of the sample and the parameter and

its distribution is independent of θ, it is a pivot for θ. Hence, we take

Q(X1, X2, ..., Xn, θ) = 2n ln θ − 2
n∑

i=1

lnXi.
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The 100(1 − α)% confidence interval for θ can be constructed from

1 − α = P
(
χ2

α
2
(2n) ≤ Q ≤ χ2

1−α
2
(2n)

)
= P

(
χ2

α
2
(2n) ≤ 2n ln θ − 2

n∑
i=1

lnXi ≤ χ2
1−α

2
(2n)

)

= P

(
χ2

α
2
(2n) + 2

n∑
i=1

lnXi ≤ 2n ln θ ≤ χ2
1−α

2
(2n) + 2

n∑
i=1

lnXi

)

= P

(
e

1
2n

{
χ2

α
2

(2n)+2
∑n

i=1
ln Xi

}
≤ θ ≤ e

1
2n

{
χ2

1− α
2

(2n)+2
∑n

i=1
ln Xi

})
.

Hence, 100(1 − α)% confidence interval for θ is given by e

1
2n

{
χ2

α
2

(2n)+2

n∑
i=1

lnXi

}
, e

1
2n

{
χ2

1− α
2

(2n)+2

n∑
i=1

lnXi

}  .

The density function of the following example belongs to the scale family.
However, one can use Theorem 17.5 to find a pivot for the parameter and
determine the interval estimators for the parameter.

Example 17.13. If X1, X2, ..., Xn is a random sample from a distribution
with density function

f(x; θ) =


1
θ e−

x
θ if 0 < x < ∞

0 otherwise,

where θ > 0 is a parameter, then what is the 100(1−α)% confidence interval
for θ?

Answer: The cumulative density function F (x; θ) of the density function

f(x; θ) =

{ 1
θ e−

x
θ if 0 < x < ∞

0 otherwise

is given by
F (x; θ) = 1 − e−

x
θ .

Hence

−2
n∑

i=1

ln (1 − F (Xi; θ)) =
2
θ

n∑
i=1

Xi.
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Thus
2
θ

n∑
i=1

Xi ∼ χ2(2n).

We take Q = 2
θ

n∑
i=1

Xi as the pivotal quantity. The 100(1 − α)% confidence

interval for θ can be constructed using

1 − α = P
(
χ2

α
2
(2n) ≤ Q ≤ χ2

1−α
2
(2n)

)
= P

(
χ2

α
2
(2n) ≤ 2

θ

n∑
i=1

Xi ≤ χ2
1−α

2
(2n)

)

= P


2

n∑
i=1

Xi

χ2
1−α

2
(2n)

≤ θ ≤
2

n∑
i=1

Xi

χ2
α
2
(2n)

 .

Hence, 100(1 − α)% confidence interval for θ is given by
2

n∑
i=1

Xi

χ2
1−α

2
(2n)

,

2
n∑

i=1

Xi

χ2
α
2
(2n)

 .

In this section, we have seen that 100(1−α)% confidence interval for the
parameter θ can be constructed by taking the pivotal quantity Q to be either

Q = −2
n∑

i=1

lnF (Xi; θ)

or

Q = −2
n∑

i=1

ln (1 − F (Xi; θ)) .

In either case, the distribution of Q is chi-squared with 2n degrees of freedom,
that is Q ∼ χ2(2n). Since chi-squared distribution is not symmetric about
the y-axis, the confidence intervals constructed in this section do not have
the shortest length. In order to have a shortest confidence interval one has
to solve the following minimization problem:

Minimize L(a, b)

Subject to the condition
∫ b

a

f(u)du = 1 − α,

 (MP)
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where
f(x) =

1

Γ
(

n−1
2

)
2

n−1
2

x
n−1

2 −1e−
x
2 .

In the case of Example 17.13, the minimization process leads to the following
system of nonlinear equations∫ b

a

f(u) du = 1 − α

ln
(a

b

)
=

a − b

2(n + 1)
.

 (NE)

If ao and bo are solutions of (NE), then the shortest confidence interval for θ

is given by [
2
∑n

i=1Xi

bo
,

2
∑n

i=1Xi

ao

]
.

17.6. Approximate Confidence Interval for Parameter with MLE

In this section, we discuss how to construct an approximate (1−α)100%
confidence interval for a population parameter θ using its maximum likelihood
estimator θ̂. Let X1, X2, ..., Xn be a random sample from a population X

with density f(x; θ). Let θ̂ be the maximum likelihood estimator of θ. If
the sample size n is large, then using asymptotic property of the maximum
likelihood estimator, we have

θ̂ − E
(
θ̂
)

√
V

(
θ̂
) ∼ N(0, 1) as n → ∞,

where V
(
θ̂
)

denotes the variance of the estimator θ̂. Since, for large n, the
maximum likelihood estimator of θ is unbiased, we get

θ̂ − θ√
V

(
θ̂
) ∼ N(0, 1) as n → ∞.

The variance V
(
θ̂
)

can be computed directly whenever possible or using the
Cramér-Rao lower bound

V
(
θ̂
)
≥ −1

E
[

d2 ln L(θ)
dθ2

] .
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Now using Q = θ̂−θ√
V
(
θ̂
) as the pivotal quantity, we construct an approximate

(1 − α)100% confidence interval for θ as

1 − α = P
(
−zα

2
≤ Q ≤ zα

2

)
= P

−zα
2
≤ θ̂ − θ√

V
(
θ̂
) ≤ zα

2

 .

If V
(
θ̂
)

is free of θ, then have

1 − α = P

(
θ̂ − zα

2

√
V

(
θ̂
)
≤ θ ≤ θ̂ + zα

2

√
V

(
θ̂
))

.

Thus 100(1 − α)% approximate confidence interval for θ is[
θ̂ − zα

2

√
V

(
θ̂
)
, θ̂ + zα

2

√
V

(
θ̂
)]

provided V
(
θ̂
)

is free of θ.

Remark 17.5. In many situations V
(
θ̂
)

is not free of the parameter θ.
In those situations we still use the above form of the confidence interval by
replacing the parameter θ by θ̂ in the expression of V

(
θ̂
)
.

Next, we give some examples to illustrate this method.

Example 17.14. Let X1, X2, ..., Xn be a random sample from a population
X with probability density function

f(x; p) =

{
px (1 − p)(1−x) if x = 0, 1

0 otherwise.

What is a 100(1−α)% approximate confidence interval for the parameter p?

Answer: The likelihood function of the sample is given by

L(p) =
n∏

i=1

pxi (1 − p)(1−xi).
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Taking the logarithm of the likelihood function, we get

lnL(p) =
n∑

i=1

[xi ln p + (1 − xi) ln(1 − p)] .

Differentiating, the above expression, we get

d lnL(p)
dp

=
1
p

n∑
i=1

xi −
1

1 − p

n∑
i=1

(1 − xi).

Setting this equals to zero and solving for p, we get

nx

p
− n − nx

1 − p
= 0,

that is
(1 − p) n x = p (n − n x),

which is
n x − p n x = p n − p n x.

Hence
p = x.

Therefore, the maximum likelihood estimator of p is given by

p̂ = X.

The variance of X is

V
(
X

)
=

σ2

n
.

Since X ∼ Ber(p), the variance σ2 = p(1 − p), and

V (p̂) = V
(
X

)
=

p(1 − p)
n

.

Since V (p̂) is not free of the parameter p, we replave p by p̂ in the expression
of V (p̂) to get

V (p̂) � p̂ (1 − p̂)
n

.

The 100(1−α)% approximate confidence interval for the parameter p is given
by [

p̂ − zα
2

√
p̂ (1 − p̂)

n
, p̂ + zα

2

√
p̂ (1 − p̂)

n

]
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which is X − zα
2

√
X (1 − X)

n
, X + zα

2

√
X (1 − X)

n

 .

The above confidence interval is a 100(1 − α)% approximate confidence
interval for proportion.

Example 17.15. A poll was taken of university students before a student
election. Of 78 students contacted, 33 said they would vote for Mr. Smith.
The population may be taken as 2200. Obtain 95% confidence limits for the
proportion of voters in the population in favor of Mr. Smith.

Answer: The sample proportion p̂ is given by

p̂ =
33
78

= 0.4231.

Hence √
p̂ (1 − p̂)

n
=

√
(0.4231) (0.5769)

78
= 0.0559.

The 2.5th percentile of normal distribution is given by

z0.025 = 1.96 (From table).

Hence, the lower confidence limit of 95% confidence interval is

p̂ − zα
2

√
p̂ (1 − p̂)

n

= 0.4231 − (1.96) (0.0559)

= 0.4231 − 0.1096

= 0.3135.

Similarly, the upper confidence limit of 95% confidence interval is

p̂ + zα
2

√
p̂ (1 − p̂)

n

= 0.4231 + (1.96) (0.0559)

= 0.4231 + 0.1096

= 0.5327.

Hence, the 95% confidence limits for the proportion of voters in the popula-
tion in favor of Smith are 0.3135 and 0.5327.
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Remark 17.6. In Example 17.15, the 95% percent approximate confidence
interval for the parameter p was [0.3135, 0.5327]. This confidence interval can
be improved to a shorter interval by means of a quadratic inequality. Now
we explain how the interval can be improved. First note that in Example
17.14, which we are using for Example 17.15, the approximate value of the

variance of the ML estimator p̂ was obtained to be
√

p(1−p)
n . However, this

is the exact variance of p̂. Now the pivotal quantity Q = p̂−p√
V ar(p̂)

becomes

Q =
p̂ − p√
p(1−p)

n

.

Using this pivotal quantity, we can construct a 95% confidence interval as

0.05 = P

− z0.025 ≤ p̂ − p√
p(1−p)

n

≤ z0.025



= P

 ∣∣∣∣∣∣ p̂ − p√
p(1−p)

n

∣∣∣∣∣∣ ≤ 1.96

 .

Using p̂ = 0.4231 and n = 78, we solve the inequality∣∣∣∣∣∣ p̂ − p√
p(1−p)

n

∣∣∣∣∣∣ ≤ 1.96

which is ∣∣∣∣∣∣0.4231 − p√
p(1−p)

78

∣∣∣∣∣∣ ≤ 1.96.

Squaring both sides of the above inequality and simplifying, we get

78 (0.4231 − p)2 ≤ (1.96)2 (p − p2).

The last inequality is equivalent to

13.96306158 − 69.84520000 p + 81.84160000 p2 ≤ 0.

Solving this quadratic inequality, we obtain [0.3196, 0.5338] as a 95% confi-
dence interval for p. This interval is an improvement since its length is 0.2142
where as the length of the interval [0.3135, 0.5327] is 0.2192.
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Example 17.16. If X1, X2, ..., Xn is a random sample from a population
with density

f(x; θ) =

 θ xθ−1 if 0 < x < 1

0 otherwise,

where θ > 0 is an unknown parameter, what is a 100(1 − α)% approximate
confidence interval for θ if the sample size is large?

Answer: The likelihood function L(θ) of the sample is

L(θ) =
n∏

i=1

θ xθ−1
i .

Hence

lnL(θ) = n ln θ + (θ − 1)
n∑

i=1

lnxi.

The first derivative of the logarithm of the likelihood function is

d

dθ
lnL(θ) =

n

θ
+

n∑
i=1

lnxi.

Setting this derivative to zero and solving for θ, we obtain

θ = − n∑n
i=1 lnxi

.

Hence, the maximum likelihood estimator of θ is given by

θ̂ = − n∑n
i=1 lnXi

.

Finding the variance of this estimator is difficult. We compute its variance by
computing the Cramér-Rao bound for this estimator. The second derivative
of the logarithm of the likelihood function is given by

d2

dθ2
lnL(θ) =

d

dθ

(
n

θ
+

n∑
i=1

lnxi

)
= − n

θ2
.

Hence

E

(
d2

dθ2
lnL(θ)

)
= − n

θ2
.
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Therefore
V

(
θ̂
)
≥ θ

n
.

Thus we take
V

(
θ̂
)
� θ

n
.

Since V
(
θ̂
)

has θ in its expression, we replace the unknown θ by its estimate

θ̂ so that

V
(
θ̂
)
� θ̂2

n
.

The 100(1 − α)% approximate confidence interval for θ is given by[
θ̂ − zα

2

θ̂√
n

, θ̂ + zα
2

θ̂√
n

]
,

which is[
− n∑n

i=1 lnXi
+ zα

2

( √
n∑n

i=1 lnXi

)
, − n∑n

i=1 lnXi
− zα

2

( √
n∑n

i=1 lnXi

)]
.

Remark 17.7. In the next section 17.2, we derived the exact confidence
interval for θ when the population distribution in exponential. The exact
100(1 − α)% confidence interval for θ was given by[

−
χ2

α
2
(2n)

2
∑n

i=1 lnXi
, −

χ2
1−α

2
(2n)

2
∑n

i=1 lnXi

]
.

Note that this exact confidence interval is not the shortest confidence interval
for the parameter θ.

Example 17.17. If X1, X2, ..., X49 is a random sample from a population
with density

f(x; θ) =

 θ xθ−1 if 0 < x < 1

0 otherwise,

where θ > 0 is an unknown parameter, what are 90% approximate and exact
confidence intervals for θ if

∑49
i=1 lnXi = −0.7567?

Answer: We are given the followings:

n = 49
49∑

i=1

lnXi = −0.7576

1 − α = 0.90.



Probability and Mathematical Statistics 521

Hence, we get
z0.05 = 1.64,

n∑n
i=1 lnXi

=
49

−0.7567
= −64.75

and √
n∑n

i=1 lnXi
=

7
−0.7567

= −9.25.

Hence, the approximate confidence interval is given by

[64.75 − (1.64)(9.25), 64.75 + (1.64)(9.25)]

that is [49.58, 79.92].
Next, we compute the exact 90% confidence interval for θ using the

formula [
−

χ2
α
2
(2n)

2
∑n

i=1 lnXi
, −

χ2
1−α

2
(2n)

2
∑n

i=1 lnXi

]
.

From chi-square table, we get

χ2
0.05(98) = 77.93 and χ2

0.95(98) = 124.34.

Hence, the exact 90% confidence interval is[
77.93

(2)(0.7567)
,

124.34
(2)(0.7567)

]
that is [51.49, 82.16].

Example 17.18. If X1, X2, ..., Xn is a random sample from a population
with density

f(x; θ) =

 (1 − θ) θx if x = 0, 1, 2, ...,∞

0 otherwise,

where 0 < θ < 1 is an unknown parameter, what is a 100(1−α)% approximate
confidence interval for θ if the sample size is large?

Answer: The logarithm of the likelihood function of the sample is

lnL(θ) = ln θ
n∑

i=1

xi + n ln(1 − θ).
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Differentiating we see obtain

d

dθ
lnL(θ) =

∑n
i=1 xi

θ
− n

1 − θ
.

Equating this derivative to zero and solving for θ, we get θ = x
1+x . Thus, the

maximum likelihood estimator of θ is given by

θ̂ =
X

1 + X
.

Next, we find the variance of this estimator using the Cramér-Rao lower
bound. For this, we need the second derivative of lnL(θ). Hence

d2

dθ2
lnL(θ) = −nx

θ2
− n

(1 − θ)2
.

Therefore

E

(
d2

dθ2
lnL(θ)

)
= E

(
−nX

θ2
− n

(1 − θ)2

)
=

n

θ2
E

(
X

)
− n

(1 − θ)2

=
n

θ2

1
(1 − θ)

− n

(1 − θ)2
(since each Xi ∼ GEO(1 − θ))

= − n

θ(1 − θ)

[
1
θ

+
θ

1 − θ

]
= −n (1 − θ + θ2)

θ2 (1 − θ)2
.

Therefore

V
(
θ̂
)
�

θ̂2
(
1 − θ̂

)2

n
(
1 − θ̂ + θ̂2

) .

The 100(1 − α)% approximate confidence interval for θ is given byθ̂ − zα
2

θ̂
(
1 − θ̂

)
√

n
(
1 − θ̂ + θ̂2

) , θ̂ + zα
2

θ̂
(
1 − θ̂

)
√

n
(
1 − θ̂ + θ̂2

)
 ,
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where

θ̂ =
X

1 + X
.

17.7. The Statistical or General Method

Now we briefly describe the statistical or general method for constructing
a confidence interval. Let X1, X2, ..., Xn be a random sample from a pop-
ulation with density f(x; θ), where θ is a unknown parameter. We want to
determine an interval estimator for θ. Let T (X1, X2, ..., Xn) be some statis-
tics having the density function g(t; θ). Let p1 and p2 be two fixed positive
number in the open interval (0, 1) with p1 + p2 < 1. Now we define two
functions h1(θ) and h2(θ) as follows:

p1 =
∫ h1(θ)

−∞
g(t; θ) dt and p2 =

∫ h2(θ)

−∞
g(t; θ) dt

such that

P (h1(θ) < T (X1, X2, ..., Xn) < h2(θ)) = 1 − p1 − p2.

If h1(θ) and h2(θ) are monotone functions in θ, then we can find a confidence
interval

P (u1 < θ < u2) = 1 − p1 − p2

where u1 = u1(t) and u2 = u2(t). The statistics T (X1, X2, ..., Xn) may be a
sufficient statistics, or a maximum likelihood estimator. If we minimize the
length u2−u1 of the confidence interval, subject to the condition 1−p1−p2 =
1 − α for 0 < α < 1, we obtain the shortest confidence interval based on the
statistics T .

17.8. Criteria for Evaluating Confidence Intervals

In many situations, one can have more than one confidence intervals for
the same parameter θ. Thus it necessary to have a set of criteria to decide
whether a particular interval is better than the other intervals. Some well
known criteria are: (1) Shortest Length and (2) Unbiasedness. Now we only
briefly describe these criteria.

The criterion of shortest length demands that a good 100(1 − α)% con-
fidence interval [L, U ] of a parameter θ should have the shortest length
� = U−L. In the pivotal quantity method one finds a pivot Q for a parameter
θ and then converting the probability statement

P (a < Q < b) = 1 − α
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to

P (L < θ < U) = 1 − α

obtains a 100(1−α)% confidence interval for θ. If the constants a and b can be
found such that the difference U −L depending on the sample X1, X2, ..., Xn

is minimum for every realization of the sample, then the random interval
[L, U ] is said to be the shortest confidence interval based on Q.

If the pivotal quantity Q has certain type of density functions, then one
can easily construct confidence interval of shortest length. The following
result is important in this regard.

Theorem 17.6. Let the density function of the pivot Q ∼ h(q; θ) be continu-
ous and unimodal. If in some interval [a, b] the density function h has a mode,
and satisfies conditions (i)

∫ b

a
h(q; θ)dq = 1−α and (ii) h(a) = h(b) > 0, then

the interval [a, b] is of the shortest length among all intervals that satisfy
condition (i).

If the density function is not unimodal, then minimization of � is neces-
sary to construct a shortest confidence interval. One of the weakness of this
shortest length criterion is that in some cases, � could be a random variable.
Often, the expected length of the interval E(�) = E(U − L) is also used
as a criterion for evaluating the goodness of an interval. However, this too
has weaknesses. A weakness of this criterion is that minimization of E(�)
depends on the unknown true value of the parameter θ. If the sample size
is very large, then every approximate confidence interval constructed using
MLE method has minimum expected length.

A confidence interval is only shortest based on a particular pivot Q. It is
possible to find another pivot Q� which may yield even a shorter interval than
the shortest interval found based on Q. The question naturally arises is how
to find the pivot that gives the shortest confidence interval among all other
pivots. It has been pointed out that a pivotal quantity Q which is a some
function of the complete and sufficient statistics gives shortest confidence
interval.

Unbiasedness, is yet another criterion for judging the goodness of an
interval estimator. The unbiasedness is defined as follow. A 100(1 − α)%
confidence interval [L, U ] of the parameter θ is said to be unbiased if

P (L ≤ θ� ≤ U)

{≥ 1 − α if θ� = θ

≤ 1 − α if θ� 
= θ.
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17.9. Review Exercises

1. Let X1, X2, ..., Xn be a random sample from a population with gamma
density function

f(x; θ, β) =


1

Γ(β) θβ xβ−1 e−
x
θ for 0 < x < ∞

0 otherwise,

where θ is an unknown parameter and β > 0 is a known parameter. Show
that [

2
∑n

i=1Xi

χ2
1−α

2
(2nβ)

,
2
∑n

i=1Xi

χ2
α
2
(2nβ)

]
is a 100(1 − α)% confidence interval for the parameter θ.

2. Let X1, X2, ..., Xn be a random sample from a population with Weibull
density function

f(x; θ, β) =


β
θ xβ−1e−xβ

for 0 < x < ∞

0 otherwise,

where θ is an unknown parameter and β > 0 is a known parameter. Show
that [

2
∑n

i=1X
β
i

χ2
1−α

2
(2n)

,
2
∑n

i=1X
β
i

χ2
α
2
(2n)

]
is a 100(1 − α)% confidence interval for the parameter θ.

3. Let X1, X2, ..., Xn be a random sample from a population with Pareto
density function

f(x; θ, β) =

 θ βθ x−(θ+1) for β ≤ x < ∞

0 otherwise,

where θ is an unknown parameter and β > 0 is a known parameter. Show
that 2

∑n
i=1 ln

(
Xi

β

)
χ2

1−α
2
(2n)

,
2
∑n

i=1 ln
(

Xi

β

)
χ2

α
2
(2n)


is a 100(1 − α)% confidence interval for 1

θ .
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4. Let X1, X2, ..., Xn be a random sample from a population with Laplace
density function

f(x; θ) =
1
2θ

e−
|x|
θ , −∞ < x < ∞

where θ is an unknown parameter. Show that[
2
∑n

i=1|Xi|
χ2

1−α
2
(2n)

,
2
∑n

i=1|Xi|
χ2

α
2
(2n)

]

is a 100(1 − α)% confidence interval for θ.

5. Let X1, X2, ..., Xn be a random sample from a population with density
function

f(x; θ) =


1

2θ2 x3 e−
x2
2θ for 0 < x < ∞

0 otherwise,

where θ is an unknown parameter. Show that[ ∑n
i=1X

2
i

χ2
1−α

2
(4n)

,

∑n
i=1X

2
i

χ2
α
2
(4n)

]

is a 100(1 − α)% confidence interval for θ.

6. Let X1, X2, ..., Xn be a random sample from a population with density
function

f(x; θ, β) =

β θ xβ−1

(1+xβ)θ+1 for 0 < x < ∞

0 otherwise,

where θ is an unknown parameter and β > 0 is a known parameter. Show
that  χ2

α
2
(2n)

2
∑n

i=1 ln
(
1 + Xβ

i

) ,
χ2

1−α
2
(2n)

2
∑n

i=1 ln
(
1 + Xβ

i

)


is a 100(1 − α)% confidence interval for θ.

7. Let X1, X2, ..., Xn be a random sample from a population with density
function

f(x; θ) =

 e−(x−θ) if θ < x < ∞

0 otherwise,
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where θ ∈ IR is an unknown parameter. Then show that Q = X(1) − θ is a
pivotal quantity. Using this pivotal quantity find a a 100(1−α)% confidence
interval for θ.

8. Let X1, X2, ..., Xn be a random sample from a population with density
function

f(x; θ) =

 e−(x−θ) if θ < x < ∞

0 otherwise,

where θ ∈ IR is an unknown parameter. Then show that Q = 2n
(
X(1) − θ

)
is

a pivotal quantity. Using this pivotal quantity find a a 100(1−α)% confidence
interval for θ.

9. Let X1, X2, ..., Xn be a random sample from a population with density
function

f(x; θ) =

 e−(x−θ) if θ < x < ∞

0 otherwise,

where θ ∈ IR is an unknown parameter. Then show that Q = e−(X(1)−θ) is a
pivotal quantity. Using this pivotal quantity find a 100(1 − α)% confidence
interval for θ.

10. Let X1, X2, ..., Xn be a random sample from a population with uniform
density function

f(x; θ) =


1
θ if 0 ≤ x ≤ θ

0 otherwise,

where 0 < θ is an unknown parameter. Then show that Q = X(n)

θ is a pivotal
quantity. Using this pivotal quantity find a 100(1 − α)% confidence interval
for θ.

11. Let X1, X2, ..., Xn be a random sample from a population with uniform
density function

f(x; θ) =


1
θ if 0 ≤ x ≤ θ

0 otherwise,

where 0 < θ is an unknown parameter. Then show that Q = X(n)−X(1)

θ is a
pivotal quantity. Using this pivotal quantity find a 100(1 − α)% confidence
interval for θ.
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12. If X1, X2, ..., Xn is a random sample from a population with density

f(x; θ) =


√

2
π e−

1
2 (x−θ)2 if θ ≤ x < ∞

0 otherwise,

where θ is an unknown parameter, what is a 100(1 − α)% approximate con-
fidence interval for θ if the sample size is large?

13. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
a probability density function

f(x; θ) =

 (θ + 1)x−θ−2 if 1 < x < ∞

0 otherwise,

where 0 < θ is a parameter. What is a 100(1 − α)% approximate confidence
interval for θ if the sample size is large?

14. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
a probability density function

f(x; θ) =

 θ2 x e−θ x if 0 < x < ∞

0 otherwise,

where 0 < θ is a parameter. What is a 100(1 − α)% approximate confidence
interval for θ if the sample size is large?

15. Let X1, X2, ..., Xn be a random sample from a distribution with density
function

f(x) =


1
β e

−(x−4)
β for x > 4

0 otherwise,

where β > 0. What is a 100(1 − α)% approximate confidence interval for θ

if the sample size is large?

16. Let X1, X2, ..., Xn be a random sample from a distribution with density
function

f(x; θ) =

 (θ − 1)θx for x = 0, 1, ...,∞

0 otherwise,

where 0 < θ < 1. What is a 100(1−α)% approximate confidence interval for
θ if the sample size is large?
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17. A sample X1, X2, ..., Xn of size n is drawn from a gamma distribution

f(x;β) =

 x3 e
− x

β

6β4 if 0 < x < ∞

0 otherwise.

What is a 100(1 − α)% approximate confidence interval for θ if the sample
size is large?
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Chapter 18

TEST OF STATISTICAL
HYPOTHESES

FOR
PARAMETERS

18.1. Introduction

Inferential statistics consists of estimation and hypothesis testing. We
have already discussed various methods of finding point and interval estima-
tors of parameters. We have also examined the goodness of an estimator.

Suppose X1, X2, ..., Xn is a random sample from a population with prob-
ability density function given by

f(x; θ) =

 (1 + θ)xθ for 0 < x < ∞

0 otherwise,

where θ > 0 is an unknown parameter. Further, let n = 4 and suppose
x1 = 0.92, x2 = 0.75, x3 = 0.85, x4 = 0.8 is a set of random sample data
from the above distribution. If we apply the maximum likelihood method,
then we will find that the estimator θ̂ of θ is

θ̂ = −1 − 4
ln(X1) + ln(X2) + ln(X3) + ln(X2)

.

Hence, the maximum likelihood estimate of θ is

θ̂ = −1 − 4
ln(0.92) + ln(0.75) + ln(0.85) + ln(0.80)

= −1 +
4

0.7567
= 4.2861
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Therefore, the corresponding probability density function of the population
is given by

f(x) =

{
5.2861 x4.2861 for 0 < x < ∞

0 otherwise.
Since, the point estimate will rarely equal to the true value of θ, we would
like to report a range of values with some degree of confidence. If we want
to report an interval of values for θ with a confidence level of 90%, then we
need a 90% confidence interval for θ. If we use the pivotal quantity method,
then we will find that the confidence interval for θ is[

−1 −
χ2

α
2
(8)

2
∑4

i=1 lnXi

, −1 −
χ2

1−α
2
(8)

2
∑4

i=1 lnXi

]
.

Since χ2
0.05(8) = 2.73, χ2

0.95(8) = 15.51, and
∑4

i=1 ln(xi) = −0.7567, we
obtain [

−1 +
2.73

2(0.7567)
, −1 +

15.51
2(0.7567)

]
which is

[ 0.803, 9.249 ] .

Thus we may draw inference, at a 90% confidence level, that the population
X has the distribution

f(x; θ) =

 (1 + θ)xθ for 0 < x < ∞

0 otherwise,
(�)

where θ ∈ [0.803, 9.249]. If we think carefully, we will notice that we have
made one assumption. The assumption is that the observable quantity X can
be modeled by a density function as shown in (�). Since, we are concerned
with the parametric statistics, our assumption is in fact about θ.

Based on the sample data, we found that an interval estimate of θ at a
90% confidence level is [0.803, 9.249]. But, we assumed that θ ∈ [0.803, 9.249].
However, we can not be sure that our assumption regarding the parameter is
real and is not due to the chance in the random sampling process. The vali-
dation of this assumption can be done by the hypothesis test. In this chapter,
we discuss testing of statistical hypotheses. Most of the ideas regarding the
hypothesis test came from Jerry Neyman and Karl Pearson during 1928-1938.

Definition 18.1. A statistical hypothesis H is a conjecture about the dis-
tribution f(x; θ) of a population X. This conjecture is usually about the
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parameter θ if one is dealing with a parametric statistics; otherwise it is
about the form of the distribution of X.

Definition 18.2. A hypothesis H is said to be a simple hypothesis if H

completely specifies the density f(x; θ) of the population; otherwise it is
called a composite hypothesis.

Definition 18.3. The hypothesis to be tested is called the null hypothesis.
The negation of the null hypothesis is called the alternative hypothesis. The
null and alternative hypotheses are denoted by Ho and Ha, respectively.

If θ denotes a population parameter, then the general format of the null
hypothesis and alternative hypothesis is

Ho : θ ∈ Ωo and Ha : θ ∈ Ωa (�)

where Ωo and Ωa are subsets of the parameter space Ω with

Ωo ∩ Ωa = ∅ and Ωo ∪ Ωa ⊆ Ω.

Remark 18.1. If Ωo ∪ Ωa = Ω, then (�) becomes

Ho : θ ∈ Ωo and Ha : θ 
∈ Ωo.

If Ωo is a singleton set, then Ho reduces to a simple hypothesis. For
example, Ωo = {4.2861}, the null hypothesis becomes Ho : θ = 4.2861 and the
alternative hypothesis becomes Ha : θ 
= 4.2861. Hence, the null hypothesis
Ho : θ = 4.2861 is a simple hypothesis and the alternative Ha : θ 
= 4.2861 is
a composite hypothesis.

Definition 18.4. A hypothesis test is an ordered sequence

(X1, X2, ..., Xn;Ho, Ha;C)

where X1, X2, ..., Xn is a random sample from a population X with the prob-
ability density function f(x; θ), Ho and Ha are hypotheses concerning the
parameter θ in f(x; θ), and C is a Borel set in IRn.

Remark 18.2. Borel sets are defined using the notion of σ-algebra. A
collection of subsets A of a set S is called a σ-algebra if (i) S ∈ A, (ii) Ac ∈ A,
whenever A ∈ A, and (iii)

⋃∞
k=1Ak ∈ A, whenever A1, A2, ..., An, ... ∈ A. The

Borel sets are the member of the smallest σ-algebra containing all open sets
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of IRn. Two examples of Borel sets in IRn are the sets that arise by countable
union of closed intervals in IRn, and countable intersection of open sets in IRn.

The set C is called the critical region in the hypothesis test. The critical
region is obtained using a test statistics W (X1, X2, ..., Xn). If the outcome
of (X1, X2, ..., Xn) turns out to be an element of C, then we decide to accept
Ha; otherwise we accept Ho.

Broadly speaking, a hypothesis test is a rule that tells us for which sample
values we should decide to accept Ho as true and for which sample values we
should decide to reject Ho and accept Ha as true. Typically, a hypothesis test
is specified in terms of a test statistics W . For example, a test might specify
that Ho is to be rejected if the sample total

∑n
k=1 Xk is less than 8. In this

case the critical region C is the set {(x1, x2, ..., xn) |x1 + x2 + · · ·+ xn < 8}.

18.2. A Method of Finding Tests

There are several methods to find test procedures and they are: (1) Like-
lihood Ratio Tests, (2) Invariant Tests, (3) Bayesian Tests, and (4) Union-
Intersection and Intersection-Union Tests. In this section, we only examine
likelihood ratio tests.

Definition 18.5. The likelihood ratio test statistic for testing the simple
null hypothesis Ho : θ ∈ Ωo against the composite alternative hypothesis
Ha : θ 
∈ Ωo based on a set of random sample data x1, x2, ..., xn is defined as

W (x1, x2, ..., xn) =
max
θ∈Ωo

L(θ, x1, x2, ..., xn)

max
θ∈Ω

L(θ, x1, x2, ..., xn)
,

where Ω denotes the parameter space, and L(θ, x1, x2, ..., xn) denotes the
likelihood function of the random sample, that is

L(θ, x1, x2, ..., xn) =
n∏

i=1

f(xi; θ).

A likelihood ratio test (LRT) is any test that has a critical region C (that is,
rejection region) of the form

C = {(x1, x2, ..., xn) | W (x1, x2, ..., xn) ≤ k} ,

where k is a number in the unit interval [0, 1].



Probability and Mathematical Statistics 535

If Ho : θ = θ0 and Ha : θ = θa are both simple hypotheses, then the
likelihood ratio test statistic is defined as

W (x1, x2, ..., xn) =
L(θo, x1, x2, ..., xn)
L(θa, x1, x2, ..., xn)

.

Now we give some examples to illustrate this definition.

Example 18.1. Let X1, X2, X3 denote three independent observations from
a distribution with density

f(x; θ) =

{
(1 + θ)xθ if 0 ≤ x ≤ 1

0 otherwise.

What is the form of the LRT critical region for testing Ho : θ = 1 versus
Ha : θ = 2?

Answer: In this example, θo = 1 and θa = 2. By the above definition, the
form of the critical region is given by

C =
{

(x1, x2, x3) ∈ IR3

∣∣∣∣ L (θo, x1, x2, x3)
L (θa, x1, x2, x3)

≤ k

}
=

{
(x1, x2, x3) ∈ IR3

∣∣∣∣∣ (1 + θo)3
∏3

i=1 xθo
i

(1 + θa)3
∏3

i=1 xθa
i

≤ k

}

=
{

(x1, x2, x3) ∈ IR3

∣∣∣∣ 8x1x2x3

27x2
1x

2
2x

2
3

≤ k

}
=

{
(x1, x2, x3) ∈ IR3

∣∣∣∣ 1
x1x2x3

≤ 27
8

k

}
=

{
(x1, x2, x3) ∈ IR3 | x1x2x3 ≥ a,

}
where a is some constant. Hence the likelihood ratio test is of the form:

“Reject Ho if
3∏

i=1

Xi ≥ a.”

Example 18.2. Let X1, X2, ..., X12 be a random sample from a normal
population with mean zero and variance σ2. What is the form of the LRT
critical region for testing the null hypothesis Ho : σ2 = 10 versus Ha : σ2 = 5?

Answer: Here σ2
o = 10 and σ2

a = 5. By the above definition, the form of the
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critical region is given by (with σo
2 = 10 and σa

2 = 5)

C =

{
(x1, x2, ..., x12) ∈ IR12

∣∣∣∣∣ L
(
σo

2, x1, x2, ..., x12

)
L (σa

2, x1, x2, ..., x12)
≤ k

}

=

(x1, x2, ..., x12) ∈ IR12

∣∣∣∣∣∣∣
12∏

i=1

1√
2πσ2

o

e−
1
2 (

xi
σo

)2

1√
2πσ2

a

e−
1
2 (

xi
σa

)2 ≤ k


=

{
(x1, x2, ..., x12) ∈ IR12

∣∣∣∣∣
(

1
2

)6

e
1
20

∑12

i=1
x2

i ≤ k

}

=

{
(x1, x2, ..., x12) ∈ IR12

∣∣∣∣∣
12∑

i=1

x2
i ≤ a

}
,

where a is some constant. Hence the likelihood ratio test is of the form:

“Reject Ho if
12∑

i=1

X2
i ≤ a.”

Example 18.3. Suppose that X is a random variable about which the
hypothesis Ho : X ∼ UNIF (0, 1) against Ha : X ∼ N(0, 1) is to be tested.
What is the form of the LRT critical region based on one observation of X?

Answer: In this example, Lo(x) = 1 and La(x) = 1√
2π

e−
1
2 x2

. By the above
definition, the form of the critical region is given by

C =
{

x ∈ IR
∣∣∣∣ Lo (x)

La (x)
≤ k

}
, where k ∈ [0,∞)

=
{

x ∈ IR
∣∣∣ √2π e

1
2 x2 ≤ k

}
=

{
x ∈ IR

∣∣∣∣ x2 ≤ 2 ln
(

k√
2π

)}
= {x ∈ IR | x ≤ a, }

where a is some constant. Hence the likelihood ratio test is of the form:
“Reject Ho if X ≤ a.”

In the above three examples, we have dealt with the case when null as
well as alternative were simple. If the null hypothesis is simple (for example,
Ho : θ = θo) and the alternative is a composite hypothesis (for example,
Ha : θ 
= θo), then the following algorithm can be used to construct the
likelihood ratio critical region:

(1) Find the likelihood function L(θ, x1, x2, ..., xn) for the given sample.



Probability and Mathematical Statistics 537

(2) Find L(θo, x1, x2, ..., xn).
(3) Find max

θ∈Ω
L(θ, x1, x2, ..., xn).

(4) Rewrite L(θo,x1,x2,...,xn)

max
θ∈Ω

L(θ, x1, x2, ..., xn) in a “suitable form”.

(5) Use step (4) to construct the critical region.

Now we give an example to illustrate these steps.

Example 18.4. Let X be a single observation from a population with
probability density

f(x; θ) =


θx e−θ

x! for x = 0, 1, 2, ...,∞

0 otherwise,

where θ ≥ 0. Find the likelihood ratio critical region for testing the null
hypothesis Ho : θ = 2 against the composite alternative Ha : θ 
= 2.

Answer: The likelihood function based on one observation x is

L(θ, x) =
θx e−θ

x!
.

Next, we find L(θo, x) which is given by

L(2, x) =
2x e−2

x!
.

Our next step is to evaluate max
θ≥0

L(θ, x). For this we differentiate L(θ, x)

with respect to θ, and then set the derivative to 0 and solve for θ. Hence

dL(θ, x)
dθ

=
1
x!

[
e−θ x θx−1 − θx e−θ

]
and dL(θ,x)

dθ = 0 gives θ = x. Hence

max
θ≥0

L(θ, x) =
xx e−x

x!
.

To do the step (4), we consider

L(2, x)
max
θ∈Ω

L(θ, x)
=

2x e−2

x!
xx e−x

x!
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which simplifies to
L(2, x)

max
θ∈Ω

L(θ, x)
=

(
2e

x

)x

e−2.

Thus, the likelihood ratio critical region is given by

C =
{

x ∈ IR
∣∣∣∣ (

2e

x

)x

e−2 ≤ k

}
=

{
x ∈ IR

∣∣∣∣ (
2e

x

)x

≤ a

}
where a is some constant. The likelihood ratio test is of the form: “Reject
Ho if

(
2e
X

)X ≤ a.”

So far, we have learned how to find tests for testing the null hypothesis
against the alternative hypothesis. However, we have not considered the
goodness of these tests. In the next section, we consider various criteria for
evaluating the goodness of an hypothesis test.

18.3. Methods of Evaluating Tests

There are several criteria to evaluate the goodness of a test procedure.
Some well known criteria are: (1) Powerfulness, (2) Unbiasedness and Invari-
ancy, and (3) Local Powerfulness. In order to examine some of these criteria,
we need some terminologies such as error probabilities, power functions, type
I error, and type II error. First, we develop these terminologies.

A statistical hypothesis is a conjecture about the distribution f(x; θ) of
the population X. This conjecture is usually about the parameter θ if one
is dealing with a parametric statistics; otherwise it is about the form of the
distribution of X. If the hypothesis completely specifies the density f(x; θ)
of the population, then it is said to be a simple hypothesis; otherwise it is
called a composite hypothesis. The hypothesis to be tested is called the null
hypothesis. We often hope to reject the null hypothesis based on the sample
information. The negation of the null hypothesis is called the alternative
hypothesis. The null and alternative hypotheses are denoted by Ho and Ha,
respectively.

In hypothesis test, the basic problem is to decide, based on the sample
information, whether the null hypothesis is true. There are four possible
situations that determines our decision is correct or in error. These four
situations are summarized below:
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Ho is true Ho is false
Accept Ho Correct Decision Type II Error
Reject Ho Type I Error Correct Decision

Definition 18.6. Let Ho : θ ∈ Ωo and Ha : θ 
∈ Ωo be the null and
alternative hypothesis to be tested based on a random sample X1, X2, ..., Xn

from a population X with density f(x; θ), where θ is a parameter. The
significance level of the hypothesis test

Ho : θ ∈ Ωo and Ha : θ 
∈ Ωo,

denoted by α, is defined as

α = P (Type I Error) .

Thus, the significance level of a hypothesis test we mean the probability of
rejecting a true null hypothesis, that is

α = P (Reject Ho / Ho is true) .

This is also equivalent to

α = P (Accept Ha / Ho is true) .

Definition 18.7. Let Ho : θ ∈ Ωo and Ha : θ 
∈ Ωo be the null and
alternative hypothesis to be tested based on a random sample X1, X2, ..., Xn

from a population X with density f(x; θ), where θ is a parameter. The
probability of type II error of the hypothesis test

Ho : θ ∈ Ωo and Ha : θ 
∈ Ωo,

denoted by β, is defined as

β = P (Accept Ho / Ho is false) .

Similarly, this is also equivalent to

β = P (Accept Ho / Ha is true) .

Remark 18.3. Note that α can be numerically evaluated if the null hypoth-
esis is a simple hypothesis and rejection rule is given. Similarly, β can be
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evaluated if the alternative hypothesis is simple and rejection rule is known.
If null and the alternatives are composite hypotheses, then α and β become
functions of θ.

Example 18.5. Let X1, X2, ..., X20 be a random sample from a distribution
with probability density function

f(x; p) =

 px(1 − p)1−x if x = 0, 1

0 otherwise,

where 0 < p ≤ 1
2 is a parameter. The hypothesis Ho : p = 1

2 to be tested
against Ha : p < 1

2 . If Ho is rejected when
∑20

i=1 Xi ≤ 6, then what is the
probability of type I error?

Answer: Since each observation Xi ∼ BER(p), the sum the observations
20∑

i=1

Xi ∼ BIN(20, p). The probability of type I error is given by

α = P (Type I Error)

= P (Reject Ho / Ho is true)

= P

(
20∑

i=1

Xi ≤ 6

/
Ho is true

)

= P

(
20∑

i=1

Xi ≤ 6

/
Ho : p =

1
2

)

=
6∑

k=0

(
20
k

) (
1
2

)k (
1 − 1

2

)20−k

= 0.0577 (from binomial table).

Hence the probability of type I error is 0.0577.

Example 18.6. Let p represent the proportion of defectives in a manufac-
turing process. To test Ho : p ≤ 1

4 versus Ha : p > 1
4 , a random sample of

size 5 is taken from the process. If the number of defectives is 4 or more, the
null hypothesis is rejected. What is the probability of rejecting Ho if p = 1

5?

Answer: Let X denote the number of defectives out of a random sample of
size 5. Then X is a binomial random variable with n = 5 and p = 1

5 . Hence,
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the probability of rejecting Ho is given by

α = P (Reject Ho / Ho is true)

= P (X ≥ 4 / Ho is true)

= P

(
X ≥ 4

/
p =

1
5

)
= P

(
X = 4

/
p =

1
5

)
+ P

(
X = 5

/
p =

1
5

)
=

(
5
4

)
p4(1 − p)1 +

(
5
5

)
p5(1 − p)0

= 5
(

1
5

)4 (
4
5

)
+

(
1
5

)5

=
(

1
5

)5

[20 + 1]

=
21

3125
.

Hence the probability of rejecting the null hypothesis Ho is 21
3125 .

Example 18.7. A random sample of size 4 is taken from a normal distri-
bution with unknown mean µ and variance σ2 > 0. To test Ho : µ = 0
against Ha : µ < 0 the following test is used: “Reject Ho if and only if
X1 +X2 +X3 +X4 < −20.” Find the value of σ so that the significance level
of this test will be closed to 0.14.

Answer: Since

0.14 = α (significance level)

= P (Type I Error)

= P (Reject Ho / Ho is true)

= P (X1 + X2 + X3 + X4 < −20 /Ho : µ = 0)

= P
(
X < −5 /Ho : µ = 0

)
= P

(
X − 0

σ
2

<
−5 − 0

σ
2

)
= P

(
Z < −10

σ

)
,

we get from the standard normal table

1.08 =
10
σ

.
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Therefore

σ =
10

1.08
= 9.26.

Hence, the standard deviation has to be 9.26 so that the significance level
will be closed to 0.14.

Example 18.8. A normal population has a standard deviation of 16. The
critical region for testing Ho : µ = 5 versus the alternative Ha : µ = k is
X̄ > k − 2. What would be the value of the constant k and the sample size
n which would allow the probability of Type I error to be 0.0228 and the
probability of Type II error to be 0.1587.

Answer: It is given that the population X ∼ N
(
µ, 162

)
. Since

0.0228 = α

= P (Type I Error)

= P (Reject Ho / Ho is true)

= P
(
X > k − 2 /Ho : µ = 5

)
= P

X − 5√
256
n

>
k − 7√

256
n


= P

Z >
k − 7√

256
n


= 1 − P

Z ≤ k − 7√
256
n



Hence, from standard normal table, we have

(k − 7)
√

n

16
= 2

which gives

(k − 7)
√

n = 32.
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Similarly

0.1587 = P (Type II Error)

= P (Accept Ho / Ha is true)

= P
(
X ≤ k − 2 /Ha : µ = k

)
= P

 X − µ√
256
n

≤ k − 2 − µ√
256
n

/
Ha : µ = k


= P

X − k√
256
n

≤ k − 2 − k√
256
n


= P

Z ≤ − 2√
256
n


= 1 − P

(
Z ≤ 2

√
n

16

)
.

Hence 0.1587 = 1 − P
(
Z ≤ 2

√
n

16

)
or P

(
Z ≤ 2

√
n

16

)
= 0.8413. Thus, from

the standard normal table, we have

2
√

n

16
= 1

which yields
n = 64.

Letting this value of n in
(k − 7)

√
n = 32,

we see that k = 11.

While deciding to accept Ho or Ha, we may make a wrong decision. The
probability γ of a wrong decision can be computed as follows:

γ = P (Ha accepted and Ho is true) + P (Ho accepted and Ha is true)

= P (Ha accepted / Ho is true)P (Ho is true)

+ P (Ho accepted / Ha is true)P (Ha is true)

= α P (Ho is true) + β P (Ha is true) .

In most cases, the probabilities P (Ho is true) and P (Ha is true) are not
known. Therefore, it is, in general, not possible to determine the exact
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numerical value of the probability γ of making a wrong decision. However,
since γ is a weighted sum of α and β, and P (Ho is true)+P (Ha is true) = 1,
we have

γ ≤ max{α, β}.

A good decision rule (or a good test) is the one which yields the smallest γ.
In view of the above inequality, one will have a small γ if the probability of
type I error as well as probability of type II error are small.

The alternative hypothesis is mostly a composite hypothesis. Thus, it
is not possible to find a value for the probability of type II error, β. For
composite alternative, β is a function of θ. That is, β : Ωc

o :→ [0, 1]. Here Ωc
o

denotes the complement of the set Ωo in the parameter space Ω. In hypothesis
test, instead of β, one usually considers the power of the test 1 − β(θ), and
a small probability of type II error is equivalent to large power of the test.

Definition 18.8. Let Ho : θ ∈ Ωo and Ha : θ 
∈ Ωo be the null and
alternative hypothesis to be tested based on a random sample X1, X2, ..., Xn

from a population X with density f(x; θ), where θ is a parameter. The power
function of a hypothesis test

Ho : θ ∈ Ωo versus Ha : θ 
∈ Ωo

is a function π : Ω → [0, 1] defined by

π(θ) =

 P (Type I Error) if Ho is true

1 − P (Type II Error) if Ha is true.

Example 18.9. A manufacturing firm needs to test the null hypothesis Ho

that the probability p of a defective item is 0.1 or less, against the alternative
hypothesis Ha : p > 0.1. The procedure is to select two items at random. If
both are defective, Ho is rejected; otherwise, a third is selected. If the third
item is defective Ho is rejected. If all other cases, Ho is accepted, what is the
power of the test in terms of p (if Ho is true)?

Answer: Let p be the probability of a defective item. We want to calculate
the power of the test at the null hypothesis. The power function of the test
is given by

π(p) =

 P (Type I Error) if p ≤ 0.1

1 − P (Type II Error) if p > 0.1.
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Hence, we have

π(p)

= P (Reject Ho / Ho is true)

= P (Reject Ho / Ho : p = p)

= P (first two items are both defective /p) +

+ P (at least one of the first two items is not defective and third is/p)

= p2 + (1 − p)2 p +
(

2
1

)
p(1 − p)p

= p + p2 − p3.

The graph of this power function is shown below.

Remark 18.4. If X denotes the number of independent trials needed to
obtain the first success, then X ∼ GEO(p), and

P (X = k) = (1 − p)k−1 p,

where k = 1, 2, 3, ...,∞. Further

P (X ≤ n) = 1 − (1 − p)n

since
n∑

k=1

(1 − p)k−1 p = p

n∑
k=1

(1 − p)k−1

= p
1 − (1 − p)n

1 − (1 − p)
= 1 − (1 − p)n.
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Example 18.10. Let X be the number of independent trails required to
obtain a success where p is the probability of success on each trial. The
hypothesis Ho : p = 0.1 is to be tested against the alternative Ha : p = 0.3.
The hypothesis is rejected if X ≤ 4. What is the power of the test if Ha is
true?

Answer: The power function is given by

π(p) =

 P (Type I Error) if p = 0.1

1 − P (Type II Error) if p = 0.3.

Hence, we have

α = 1 − P (Accept Ho / Ho is false)

= P (Reject Ho / Ha is true)

= P (X ≤ 4 / Ha is true)

= P (X ≤ 4 / p = 0.3)

=
4∑

k=1

P (X = k /p = 0.3)

=
4∑

k=1

(1 − p)k−1 p (where p = 0.3)

=
4∑

k=1

(0.7)k−1 (0.3)

= 0.3
4∑

k=1

(0.7)k−1

= 1 − (0.7)4

= 0.7599.

Hence, the power of the test at the alternative is 0.7599.

Example 18.11. Let X1, X2, ..., X25 be a random sample of size 25 drawn
from a normal distribution with unknown mean µ and variance σ2 = 100.
It is desired to test the null hypothesis µ = 4 against the alternative µ = 6.
What is the power at µ = 6 of the test with rejection rule: reject µ = 4 if∑25

i=1 Xi ≥ 125?
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Answer: The power of the test at the alternative is

π(6) = 1 − P (Type II Error)

= 1 − P (Accept Ho / Ho is false)

= P (Reject Ho / Ha is true)

= P

(
25∑

i=1

Xi ≥ 125 / Ha : µ = 6

)
= P

(
X ≥ 5 / Haµ = 6

)
= P

(
X − 6

10√
25

≥ 5 − 6
10√
25

)

= P

(
Z ≥ −1

2

)
= 0.6915.

Example 18.12. A urn contains 7 balls, θ of which are red. A sample of
size 2 is drawn without replacement to test Ho : θ ≤ 1 against Ha : θ > 1.
If the null hypothesis is rejected if one or more red balls are drawn, find the
power of the test when θ = 2.

Answer: The power of the test at θ = 2 is given by

π(2) = 1 − P (Type II Error)

= 1 − P (Accept Ho / Ho is false)

= 1 − P (zero red balls are drawn /2 balls were red)

= 1 −
(
5
2

)(
7
2

)
= 1 − 10

21

=
11
21

= 0.524.

In all of these examples, we have seen that if the rule for rejection of the
null hypothesis Ho is given, then one can compute the significance level or
power function of the hypothesis test. The rejection rule is given in terms
of a statistic W (X1, X2, ..., Xn) of the sample X1, X2, ..., Xn. For instance,
in Example 18.5, the rejection rule was: “Reject the null hypothesis Ho if∑20

i=1 Xi ≤ 6.” Similarly, in Example 18.7, the rejection rule was: “Reject Ho
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if and only if X1 +X2 +X3 +X4 < −20”, and so on. The statistic W , used in
the statement of the rejection rule, partitioned the set Sn into two subsets,
where S denotes the support of the density function of the population X.
One subset is called the rejection or critical region and other subset is called
the acceptance region. The rejection rule is obtained in such a way that the
probability of the type I error is as small as possible and the power of the
test at the alternative is as large as possible.

Next, we give two definitions that will lead us to the definition of uni-
formly most powerful test.

Definition 18.9. Given 0 ≤ δ ≤ 1, a test (or test procedure) T for testing
the null hypothesis Ho : θ ∈ Ωo against the alternative Ha : θ ∈ Ωa is said to
be a test of level δ if

max
θ∈Ωo

π(θ) ≤ δ,

where π(θ) denotes the power function of the test T .

Definition 18.10. Given 0 ≤ δ ≤ 1, a test (or test procedure) for testing
the null hypothesis Ho : θ ∈ Ωo against the alternative Ha : θ ∈ Ωa is said to
be a test of size δ if

max
θ∈Ωo

π(θ) = δ.

Definition 18.11. Let T be a test procedure for testing the null hypothesis
Ho : θ ∈ Ωo against the alternative Ha : θ ∈ Ωa. The test (or test procedure)
T is said to be the uniformly most powerful (UMP) test of level δ if T is of
level δ and for any other test W of level δ,

πT (θ) ≥ πW (θ)

for all θ ∈ Ωa. Here πT (θ) and πW (θ) denote the power functions of tests T

and W , respectively.

Remark 18.5. If T is a test procedure for testing Ho : θ = θo against
Ha : θ = θa based on a sample data x1, ..., xn from a population X with a
continuous probability density function f(x; θ), then there is a critical region
C associated with the the test procedure T , and power function of T can be
computed as

πT =
∫

C

L(θa, x1, ..., xn) dx1 · · · dxn.
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Similarly, the size of a critical region C, say α, can be given by

α =
∫

C

L(θo, x1, ..., xn) dx1 · · · dxn.

The following famous result tells us which tests are uniformly most pow-
erful if the null hypothesis and the alternative hypothesis are both simple.

Theorem 18.1 (Neyman-Pearson). Let X1, X2, ..., Xn be a random sam-
ple from a population with probability density function f(x; θ). Let

L(θ, x1, ..., xn) =
n∏

i=1

f(xi; θ)

be the likelihood function of the sample. Then any critical region C of the
form

C =
{

(x1, x2, ..., xn)
∣∣∣∣ L (θo, x1, ..., xn)

L (θa, x1, ..., xn)
≤ k

}
for some constant 0 ≤ k < ∞ is best (or uniformly most powerful) of its size
for testing Ho : θ = θo against Ha : θ = θa.

Proof: We assume that the population has a continuous probability density
function. If the population has a discrete distribution, the proof can be
appropriately modified by replacing integration by summation.

Let C be the critical region of size α as described in the statement of the
theorem. Let B be any other critical region of size α. We want to show that
the power of C is greater than or equal to that of B. In view of Remark 18.5,
we would like to show that∫

C

L(θa, x1, ..., xn) dx1 · · · dxn ≥
∫

B

L(θa, x1, ..., xn) dx1 · · · dxn. (1)

Since C and B are both critical regions of size α, we have∫
C

L(θo, x1, ..., xn) dx1 · · · dxn =
∫

B

L(θo, x1, ..., xn) dx1 · · · dxn. (2)

The last equality (2) can be written as∫
C∩B

L(θo, x1, ..., xn) dx1 · · · dxn +
∫

C∩Bc

L(θo, x1, ..., xn) dx1 · · · dxn

=
∫

C∩B

L(θo, x1, ..., xn) dx1 · · · dxn +
∫

Cc∩B

L(θo, x1, ..., xn) dx1 · · · dxn
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since
C = (C ∩ B) ∪ (C ∩ Bc) and B = (C ∩ B) ∪ (Cc ∩ B). (3)

Therefore from the last equality, we have∫
C∩Bc

L(θo, x1, ..., xn) dx1 · · · dxn =
∫

Cc∩B

L(θo, x1, ..., xn) dx1 · · · dxn. (4)

Since

C =
{

(x1, x2, ..., xn)
∣∣∣∣ L (θo, x1, ..., xn)

L (θa, x1, ..., xn)
≤ k

}
(5)

we have

L(θa, x1, ..., xn) ≥ L(θo, x1, ..., xn)
k

(6)

on C, and

L(θa, x1, ..., xn) <
L(θo, x1, ..., xn)

k
(7)

on Cc. Therefore from (4), (6) and (7), we have∫
C∩Bc

L(θa, x1,..., xn) dx1 · · · dxn

≥
∫

C∩Bc

L(θo, x1, ..., xn)
k

dx1 · · · dxn

=
∫

Cc∩B

L(θo, x1, ..., xn)
k

dx1 · · · dxn

≥
∫

Cc∩B

L(θa, x1, ..., xn) dx1 · · · dxn.

Thus, we obtain∫
C∩Bc

L(θa, x1, ..., xn) dx1 · · · dxn ≥
∫

Cc∩B

L(θa, x1, ..., xn) dx1 · · · dxn.

From (3) and the last inequality, we see that∫
C

L(θa, x1, ..., xn) dx1 · · · dxn

=
∫

C∩B

L(θa, x1, ..., xn) dx1 · · · dxn +
∫

C∩Bc

L(θa, x1, ..., xn) dx1 · · · dxn

≥
∫

C∩B

L(θa, x1, ..., xn) dx1 · · · dxn +
∫

Cc∩B

L(θa, x1, ..., xn) dx1 · · · dxn

≥
∫

B

L(θa, x1, ..., xn) dx1 · · · dxn

and hence the theorem is proved.
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Now we give several examples to illustrate the use of this theorem.

Example 18.13. Let X be a random variable with a density function f(x).
What is the critical region for the best test of

Ho : f(x) =


1
2 if −1 < x < 1

0 elsewhere,

against

Ha : f(x) =

 1 − |x| if −1 < x < 1

0 elsewhere,

at the significance size α = 0.10?

Answer: We assume that the test is performed with a sample of size 1.
Using Neyman-Pearson Theorem, the best critical region for the best test at
the significance size α is given by

C =
{

x ∈ IR | Lo (x)
La (x)

≤ k

}
=

{
x ∈ IR |

1
2

1 − |x| ≤ k

}
=

{
x ∈ IR | |x| ≤ 1 − 1

2k

}
=

{
x ∈ IR | 1

2k
− 1 ≤ x ≤ 1 − 1

2k

}
.

Since
0.1 = P ( C )

= P

(
Lo (x)
La (x)

≤ k / Ho is true
)

= P

( 1
2

1 − |x| ≤ k / Ho is true
)

= P

(
1
2k

− 1 ≤ x ≤ 1 − 1
2k

/ Ho is true
)

=
∫ 1− 1

2k

1
2k−1

1
2

dx

= 1 − 1
2k

,

,

we get the critical region C to be

C = {x ∈ IR | − 0.1 ≤ x ≤ 0.1}.
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Thus the best critical region is C = [−0.1, 0.1] and the best test is: “Reject
Ho if −0.1 ≤ X ≤ 0.1”.

Example 18.14. Suppose X has the density function

f(x; θ) =

{
(1 + θ)xθ if 0 ≤ x ≤ 1

0 otherwise.

Based on a single observed value of X, find the most powerful critical region
of size α = 0.1 for testing Ho : θ = 1 against Ha : θ = 2.

Answer: By Neyman-Pearson Theorem, the form of the critical region is
given by

C =
{

x ∈ IR | L (θo, x)
L (θa, x)

≤ k

}
=

{
x ∈ IR | (1 + θo) xθo

(1 + θa) xθa
≤ k

}
=

{
x ∈ IR | 2x

3x2
≤ k

}
=

{
x ∈ IR | 1

x
≤ 3

2
k

}
= {x ∈ IR | x ≥ a, }

where a is some constant. Hence the most powerful or best test is of the
form: “Reject Ho if X ≥ a.”

Since, the significance level of the test is given to be α = 0.1, the constant
a can be determined. Now we proceed to find a. Since

0.1 = α

= P (Reject Ho / Ho is true}
= P (X ≥ a / θ = 1)

=
∫ 1

a

2x dx

= 1 − a2,

hence
a2 = 1 − 0.1 = 0.9.

Therefore
a =

√
0.9,
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since k in Neyman-Pearson Theorem is positive. Hence, the most powerful
test is given by “Reject Ho if X ≥

√
0.9”.

Example 18.15. Suppose that X is a random variable about which the
hypothesis Ho : X ∼ UNIF (0, 1) against Ha : X ∼ N(0, 1) is to be tested.
What is the most powerful test with a significance level α = 0.05 based on
one observation of X?

Answer: By Neyman-Pearson Theorem, the form of the critical region is
given by

C =
{

x ∈ IR | Lo (x)
La (x)

≤ k

}
=

{
x ∈ IR |

√
2π e

1
2 x2 ≤ k

}
=

{
x ∈ IR | x2 ≤ 2 ln

(
k√
2π

)}
= {x ∈ IR | x ≤ a, }

where a is some constant. Hence the most powerful or best test is of the
form: “Reject Ho if X ≤ a.”

Since, the significance level of the test is given to be α = 0.05, the
constant a can be determined. Now we proceed to find a. Since

0.05 = α

= P (Reject Ho / Ho is true}
= P (X ≤ a / X ∼ UNIF (0, 1))

=
∫ a

0

dx

= a,

hence a = 0.05. Thus, the most powerful critical region is given by

C = {x ∈ IR | 0 < x ≤ 0.05}

based on the support of the uniform distribution on the open interval (0, 1).
Since the support of this uniform distribution is the interval (0, 1), the ac-
ceptance region (or the complement of C in (0, 1)) is

Cc = {x ∈ IR | 0.05 < x < 1}.
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However, since the support of the standard normal distribution is IR, the
actual critical region should be the complement of Cc in IR. Therefore, the
critical region of this hypothesis test is the set

{x ∈ IR |x ≤ 0.05 or x ≥ 1}.

The most powerful test for α = 0.05 is: “Reject Ho if X ≤ 0.05 or X ≥ 1.”

Example 18.16. Let X1, X2, X3 denote three independent observations
from a distribution with density

f(x; θ) =

{
(1 + θ)xθ if 0 ≤ x ≤ 1

0 otherwise.

What is the form of the best critical region of size 0.034 for testing Ho : θ = 1
versus Ha : θ = 2?

Answer: By Neyman-Pearson Theorem, the form of the critical region is
given by (with θo = 1 and θa = 2)

C =
{

(x1, x2, x3) ∈ IR3 | L (θo, x1, x2, x3)
L (θa, x1, x2, x3)

≤ k

}
=

{
(x1, x2, x3) ∈ IR3 | (1 + θo)3

∏3
i=1 xθo

i

(1 + θa)3
∏3

i=1 xθa
i

≤ k

}

=
{

(x1, x2, x3) ∈ IR3 | 8x1x2x3

27x2
1x

2
2x

2
3

≤ k

}
=

{
(x1, x2, x3) ∈ IR3 | 1

x1x2x3
≤ 27

8
k

}
=

{
(x1, x2, x3) ∈ IR3 | x1x2x3 ≥ a,

}
where a is some constant. Hence the most powerful or best test is of the

form: “Reject Ho if
3∏

i=1

Xi ≥ a.”

Since, the significance level of the test is given to be α = 0.034, the
constant a can be determined. To evaluate the constant a, we need the
probability distribution of X1X2X3. The distribution of X1X2X3 is not
easy to get. Hence, we will use Theorem 17.5. There, we have shown that
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−2(1 + θ)
∑3

i=1 lnXi ∼ χ2(6). Now we proceed to find a. Since

0.034 = α

= P (Reject Ho / Ho is true}
= P (X1X2X3 ≥ a / θ = 1)

= P (ln(X1X2X3) ≥ ln a / θ = 1)

= P (−2(1 + θ) ln(X1X2X3) ≤ −2(1 + θ) ln a / θ = 1)

= P (−4 ln(X1X2X3) ≤ −4 ln a)

= P
(
χ2(6) ≤ −4 ln a

)
hence from chi-square table, we get

−4 ln a = 1.4.

Therefore
a = e−0.35 = 0.7047.

Hence, the most powerful test is given by “Reject Ho if X1X2X3 ≥ 0.7047”.

The critical region C is the region above the surface x1x2x3 = 0.7047 of
the unit cube [0, 1]3. The following figure illustrates this region.

Example 18.17. Let X1, X2, ..., X12 be a random sample from a normal
population with mean zero and variance σ2. What is the most powerful test
of size 0.025 for testing the null hypothesis Ho : σ2 = 10 versus Ha : σ2 = 5?
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Answer: By Neyman-Pearson Theorem, the form of the critical region is
given by (with σo

2 = 10 and σa
2 = 5)

C =

{
(x1, x2, ..., x12) ∈ IR12

∣∣∣∣∣ L
(
σo

2, x1, x2, ..., x12

)
L (σa

2, x1, x2, ..., x12)
≤ k

}

=

(x1, x2, ..., x12) ∈ IR12

∣∣∣∣∣∣∣
12∏

i=1

1√
2πσ2

o

e−
1
2 (

xi
σo

)2

1√
2πσ2

a

e−
1
2 (

xi
σa

)2 ≤ k


=

{
(x1, x2, ..., x12) ∈ IR12

∣∣∣∣∣
(

1
2

)6

e
1
20

∑12

i=1
x2

i ≤ k

}

=

{
(x1, x2, ..., x12) ∈ IR12

∣∣∣∣∣
12∑

i=1

x2
i ≤ a

}
,

where a is some constant. Hence the most powerful or best test is of the

form: “Reject Ho if
12∑

i=1

X2
i ≤ a.”

Since, the significance level of the test is given to be α = 0.025, the
constant a can be determined. To evaluate the constant a, we need the
probability distribution of X2

1 + X2
2 + · · · + X2

12. It can be shown that the
distribution of

∑12
i=1

(
Xi

σ

)2 ∼ χ2(12). Now we proceed to find a. Since

0.034 = α

= P (Reject Ho / Ho is true}

= P

(
12∑

i=1

(
Xi

σ

)2

≤ a / σ2 = 10

)

= P

(
12∑

i=1

(
Xi√
10

)2

≤ a / σ2 = 10

)
= P

(
χ2(12) ≤ a

10

)
,

hence from chi-square table, we get

a

10
= 4.4.

Therefore
a = 44.
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Hence, the most powerful test is given by “Reject Ho if
∑12

i=1 X2
i ≤ 44.” The

best critical region of size 0.025 is given by

C =

{
(x1, x2, ..., x12) ∈ IR12 |

12∑
i=1

x2
i ≤ 44

}
.

In last five examples, we have found the most powerful tests and corre-
sponding critical regions when the both Ho and Ha are simple hypotheses. If
either Ho or Ha is not simple, then it is not always possible to find the most
powerful test and corresponding critical region. In this situation, hypothesis
test is found by using the likelihood ratio. A test obtained by using likelihood
ratio is called the likelihood ratio test and the corresponding critical region is
called the likelihood ratio critical region.

18.4. Some Examples of Likelihood Ratio Tests

In this section, we illustrate, using likelihood ratio, how one can construct
hypothesis test when one of the hypotheses is not simple. As pointed out
earlier, the test we will construct using the likelihood ratio is not the most
powerful test. However, such a test has all the desirable properties of a
hypothesis test. To construct the test one has to follow a sequence of steps.
These steps are outlined below:

(1) Find the likelihood function L(θ, x1, x2, ..., xn) for the given sample.

(2) Evaluate max
θ∈Ωo

L(θ, x1, x2, ..., xn).

(3) Find the maximum likelihood estimator θ̂ of θ.

(4) Compute max
θ∈Ω

L(θ, x1, x2, ..., xn) using L
(
θ̂, x1, x2, ..., xn

)
.

(5) Using steps (2) and (4), find W (x1, ..., xn) =
max
θ∈Ωo

L(θ, x1, x2, ..., xn)

max
θ∈Ω

L(θ, x1, x2, ..., xn) .

(6) Using step (5) determine C = {(x1, x2, ..., xn) |W (x1, ..., xn) ≤ k},
where k ∈ [0, 1].

(7) Reduce W (x1, ..., xn) ≤ k to an equivalent inequality Ŵ (x1, ..., xn) ≤ A.

(8) Determine the distribution of Ŵ (x1, ..., xn).

(9) Find A such that given α equals P
(
Ŵ (x1, ..., xn) ≤ A |Ho is true

)
.
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In the remaining examples, for notational simplicity, we will denote the
likelihood function L(θ, x1, x2, ..., xn) simply as L(θ).

Example 18.19. Let X1, X2, ..., Xn be a random sample from a normal
population with mean µ and known variance σ2. What is the likelihood
ratio test of size α for testing the null hypothesis Ho : µ = µo versus the
alternative hypothesis Ha : µ 
= µo?

Answer: The likelihood function of the sample is given by

L(µ) =
n∏

i=1

(
1

σ
√

2π

)
e−

1
2σ2 (xi−µ)2

=
(

1
σ
√

2π

)n

e

− 1
2σ2

n∑
i=1

(xi − µ)2

.

Since Ωo = {µo}, we obtain

max
µ∈Ωo

L(µ) = L(µo)

=
(

1
σ
√

2π

)n

e

− 1
2σ2

n∑
i=1

(xi − µo)2

.

We have seen in Example 15.13 that if X ∼ N(µ, σ2), then the maximum
likelihood estimator of µ is X, that is

µ̂ = X.

Hence

max
µ∈Ω

L(µ) = L(µ̂) =
(

1
σ
√

2π

)n

e

− 1
2σ2

n∑
i=1

(xi − x)2

.

Now the likelihood ratio statistics W (x1, x2, ..., xn) is given by

W (x1, x2, ..., xn) =

(
1

σ
√

2π

)n

e

− 1
2σ2

n∑
i=1

(xi − µo)2

(
1

σ
√

2π

)n

e

− 1
2σ2

n∑
i=1

(xi − x)2
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which simplifies to

W (x1, x2, ..., xn) = e−
n

2σ2 (x−µo)2 .

Now the inequality W (x1, x2, ..., xn) ≤ k becomes

e−
n

2σ2 (x−µo)2 ≤ k

and which can be rewritten as

(x − µo)2 ≥ −2σ2

n
ln(k)

or
|x − µo| ≥ K

where K =
√
− 2σ2

n ln(k). In view of the above inequality, the critical region
can be described as

C = {(x1, x2, ..., xn) | |x − µo| ≥ K }.

Since we are given the size of the critical region to be α, we can determine
the constant K. Since the size of the critical region is α, we have

α = P
(∣∣X − µo

∣∣ ≥ K
)
.

For finding K, we need the probability density function of the statistic X−µo

when the population X is N(µ, σ2) and the null hypothesis Ho : µ = µo is
true. Since σ2 is known and Xi ∼ N(µ, σ2),

X − µo
σ√
n

∼ N(0, 1)

and
α = P

( ∣∣X − µo

∣∣ ≥ K
)

= P

(∣∣∣∣∣X − µo
σ√
n

∣∣∣∣∣ ≥ K

√
n

σ

)

= P

(
|Z| ≥ K

√
n

σ

)
where Z =

X − µo
σ√
n

= 1 − P

(
−K

√
n

σ
≤ Z ≤ K

√
n

σ

)
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we get

zα
2

= K

√
n

σ

which is
K = zα

2

σ√
n

,

where zα
2

is a real number such that the integral of the standard normal
density from zα

2
to ∞ equals α

2 .

Hence, the likelihood ratio test is given by “Reject Ho if∣∣X − µo

∣∣ ≥ zα
2

σ√
n

.”

If we denote
z =

x − µo
σ√
n

then the above inequality becomes

|Z| ≥ zα
2
.

Thus critical region is given by

C =
{
(x1, x2, ..., xn) | |z| ≥ zα

2
}.

This tells us that the null hypothesis must be rejected when the absolute
value of z takes on a value greater than or equal to zα

2
.

Remark 18.6. The hypothesis Ha : µ 
= µo is called a two-sided alternative
hypothesis. An alternative hypothesis of the form Ha : µ > µo is called
a right-sided alternative. Similarly, Ha : µ < µo is called the a left-sided
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alternative. In the above example, if we had a right-sided alternative, that
is Ha : µ > µo, then the critical region would have been

C = {(x1, x2, ..., xn) | z ≥ zα }.

Similarly, if the alternative would have been left-sided, that is Ha : µ < µo,
then the critical region would have been

C = {(x1, x2, ..., xn) | z ≤ −zα }.

We summarize the three cases of hypotheses test of the mean (of the normal
population with variance) in the following table.

Ho Ha Critical Region (or Test)

µ = µo µ > µo z = x−µo
σ√
n

≥ zα

µ = µo µ < µo z = x−µo
σ√
n

≤ −zα

µ = µo µ 
= µo |z| =
∣∣∣∣x−µo

σ√
n

∣∣∣∣ ≥ zα
2

Example 18.20. Let X1, X2, ..., Xn be a random sample from a normal
population with mean µ and unknown variance σ2. What is the likelihood
ratio test of size α for testing the null hypothesis Ho : µ = µo versus the
alternative hypothesis Ha : µ 
= µo?

Answer: In this example,

Ω =
{(

µ, σ2
)
∈ IR2 | −∞ < µ < ∞, σ2 > 0

}
,

Ωo =
{(

µo, σ
2
)
∈ IR2 | σ2 > 0

}
,

Ωa =
{(

µ, σ2
)
∈ IR2 | µ 
= µo, σ2 > 0

}
.

These sets are illustrated below.
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The likelihood function is given by

L
(
µ, σ2

)
=

n∏
i=1

(
1√

2πσ2

)
e−

1
2 (

xi−µ

σ )2

=
(

1√
2πσ2

)n

e−
1

2σ2

∑n

i=1
(xi−µ)2 .

Next, we find the maximum of L
(
µ, σ2

)
on the set Ωo. Since the set Ωo is

equal to
{(

µo, σ
2
)
∈ IR2 | 0 < σ < ∞

}
, we have

max
(µ,σ2)∈Ωo

L
(
µ, σ2

)
= max

σ2>0
L

(
µo, σ

2
)
.

Since L
(
µo, σ

2
)

and lnL
(
µo, σ

2
)

achieve the maximum at the same σ value,
we determine the value of σ where lnL

(
µo, σ

2
)

achieves the maximum. Tak-
ing the natural logarithm of the likelihood function, we get

ln
(
L

(
µ, σ2

))
= −n

2
ln(σ2) − n

2
ln(2π) − 1

2σ2

n∑
i=1

(xi − µo)2.

Differentiating lnL
(
µo, σ

2
)

with respect to σ2, we get from the last equality

d

dσ2
ln

(
L

(
µ, σ2

))
= − n

2σ2
+

1
2σ4

n∑
i=1

(xi − µo)2.

Setting this derivative to zero and solving for σ, we obtain

σ =

√√√√ 1
n

n∑
i=1

(xi − µo)2.
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Thus ln
(
L

(
µ, σ2

))
attain maximum at σ =

√√√√ 1
n

n∑
i=1

(xi − µo)2. Since this

value of σ is also yield maximum value of L
(
µ, σ2

)
, we have

max
σ2>0

L
(
µo, σ

2
)

=

(
2π

1
n

n∑
i=1

(xi − µo)2
)−n

2

e−
n
2 .

Next, we determine the maximum of L
(
µ, σ2

)
on the set Ω. As before,

we consider ln L
(
µ, σ2

)
to determine where L

(
µ, σ2

)
achieves maximum.

Taking the natural logarithm of L
(
µ, σ2

)
, we obtain

ln
(
L

(
µ, σ2

))
= −n

2
ln(σ2) − n

2
ln(2π) − 1

2σ2

n∑
i=1

(xi − µ)2.

Taking the partial derivatives of lnL
(
µ, σ2

)
first with respect to µ and then

with respect to σ2, we get

∂

∂µ
lnL

(
µ, σ2

)
=

1
σ2

n∑
i=1

(xi − µ),

and
∂

∂σ2
lnL

(
µ, σ2

)
= − n

2σ2
+

1
2σ4

n∑
i=1

(xi − µ)2,

respectively. Setting these partial derivatives to zero and solving for µ and
σ, we obtain

µ = x and σ2 =
n − 1

n
s2,

where s2 = 1
n−1

n∑
i=1

(xi − x)2 is the sample variance.

Letting these optimal values of µ and σ into L
(
µ, σ2

)
, we obtain

max
(µ,σ2)∈Ω

L
(
µ, σ2

)
=

(
2π

1
n

n∑
i=1

(xi − x)2
)−n

2

e−
n
2 .

Hence

max
(µ,σ2)∈Ωo

L
(
µ, σ2

)
max

(µ,σ2)∈Ω
L

(
µ, σ2

) =

(
2π 1

n

n∑
i=1

(xi − µo)2
)−n

2

e−
n
2

(
2π 1

n

n∑
i=1

(xi − x)2
)−n

2

e−
n
2

=


n∑

i=1

(xi − µo)2

n∑
i=1

(xi − x)2


−n

2

.
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Since
n∑

i=1

(xi − x)2 = (n − 1) s2

and
n∑

i=1

(xi − µ)2 =
n∑

i=1

(xi − x)2 + n (x − µo)
2
,

we get

W (x1, x2, ..., xn) =
max

(µ,σ2)∈Ωo

L
(
µ, σ2

)
max

(µ,σ2)∈Ω
L

(
µ, σ2

) =

(
1 +

n

n − 1
(x − µo)

2

s2

)−n
2

.

Now the inequality W (x1, x2, ..., xn) ≤ k becomes(
1 +

n

n − 1
(x − µo)

2

s2

)−n
2

≤ k

and which can be rewritten as(
x − µo

s

)2

≥ n − 1
n

(
k− 2

n − 1
)

or ∣∣∣∣∣x − µo
s√
n

∣∣∣∣∣ ≥ K

where K =
√

(n − 1)
[
k− 2

n − 1
]
. In view of the above inequality, the critical

region can be described as

C =

{
(x1, x2, ..., xn) |

∣∣∣∣∣x − µo
s√
n

∣∣∣∣∣ ≥ K

}

and the best likelihood ratio test is: “Reject Ho if
∣∣∣∣x−µo

s√
n

∣∣∣∣ ≥ K”. Since we

are given the size of the critical region to be α, we can find the constant K.
For finding K, we need the probability density function of the statistic x−µo

s√
n

when the population X is N(µ, σ2) and the null hypothesis Ho : µ = µo is
true.

Since the population is normal with mean µ and variance σ2,

X − µo

S√
n

∼ t(n − 1),
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where S2 is the sample variance and equals to 1
n−1

n∑
i=1

(
Xi − X

)2
. Hence

K = tα
2
(n − 1)

s√
n

,

where tα
2
(n − 1) is a real number such that the integral of the t-distribution

with n − 1 degrees of freedom from tα
2
(n − 1) to ∞ equals α

2 .

Therefore, the likelihood ratio test is given by “Reject Ho : µ = µo if∣∣X − µo

∣∣ ≥ tα
2
(n − 1)

S√
n

.”

If we denote
t =

x − µo
s√
n

then the above inequality becomes

|T | ≥ tα
2
(n − 1).

Thus critical region is given by

C =
{
(x1, x2, ..., xn) | |t| ≥ tα

2
(n − 1)}.

This tells us that the null hypothesis must be rejected when the absolute
value of t takes on a value greater than or equal to tα

2
(n − 1).

Remark 18.7. In the above example, if we had a right-sided alternative,
that is Ha : µ > µo, then the critical region would have been

C = {(x1, x2, ..., xn) | t ≥ tα(n − 1)}.
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Similarly, if the alternative would have been left-sided, that is Ha : µ < µo,
then the critical region would have been

C = {(x1, x2, ..., xn) | t ≤ −tα(n − 1)}.
We summarize the three cases of hypotheses test of the mean (of the normal
population with variance) in the following table.

Ho Ha Critical Region (or Test)

µ = µo µ > µo t = x−µo
s√
n

≥ tα(n − 1)

µ = µo µ < µo t = x−µo
s√
n

≤ −tα(n − 1)

µ = µo µ 
= µo |t| =
∣∣∣∣x−µo

s√
n

∣∣∣∣ ≥ tα
2
(n − 1)

Example 18.21. Let X1, X2, ..., Xn be a random sample from a normal
population with mean µ and variance σ2. What is the likelihood ratio test
of significance of size α for testing the null hypothesis Ho : σ2 = σ2

o versus
Ha : σ2 
= σ2

o?

Answer: In this example,
Ω =

{(
µ, σ2

)
∈ IR2 | −∞ < µ < ∞, σ2 > 0

}
,

Ωo =
{(

µ, σ2
o

)
∈ IR2 | −∞ < µ < ∞

}
,

Ωa =
{(

µ, σ2
)
∈ IR2 | −∞ < µ < ∞, σ 
= σo

}
.

These sets are illustrated below.
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The likelihood function is given by

L
(
µ, σ2

)
=

n∏
i=1

(
1√

2πσ2

)
e−

1
2 (

xi−µ

σ )2

=
(

1√
2πσ2

)n

e−
1

2σ2

∑n

i=1
(xi−µ)2 .

Next, we find the maximum of L
(
µ, σ2

)
on the set Ωo. Since the set Ωo is

equal to
{(

µ, σ2
o

)
∈ IR2 | −∞ < µ < ∞

}
, we have

max
(µ,σ2)∈Ωo

L
(
µ, σ2

)
= max

−∞<µ<∞
L

(
µ, σ2

o

)
.

Since L
(
µ, σ2

o

)
and lnL

(
µ, σ2

o

)
achieve the maximum at the same µ value, we

determine the value of µ where lnL
(
µ, σ2

o

)
achieves the maximum. Taking

the natural logarithm of the likelihood function, we get

ln
(
L

(
µ, σ2

o

))
= −n

2
ln(σ2

o) − n

2
ln(2π) − 1

2σ2
o

n∑
i=1

(xi − µ)2.

Differentiating lnL
(
µ, σ2

o

)
with respect to µ, we get from the last equality

d

dµ
ln

(
L

(
µ, σ2

))
=

1
σ2

o

n∑
i=1

(xi − µ).

Setting this derivative to zero and solving for µ, we obtain

µ = x.

Hence, we obtain

max
−∞<µ<∞

L
(
µ, σ2

)
=

(
1

2πσ2
o

)n
2

e
− 1

2σ2
o

∑n

i=1
(xi−x)2

Next, we determine the maximum of L
(
µ, σ2

)
on the set Ω. As before,

we consider ln L
(
µ, σ2

)
to determine where L

(
µ, σ2

)
achieves maximum.

Taking the natural logarithm of L
(
µ, σ2

)
, we obtain

ln
(
L

(
µ, σ2

))
= −n ln(σ) − n

2
ln(2π) − 1

2σ2

n∑
i=1

(xi − µ)2.



Test of Statistical Hypotheses for Parameters 568

Taking the partial derivatives of lnL
(
µ, σ2

)
first with respect to µ and then

with respect to σ2, we get

∂

∂µ
lnL

(
µ, σ2

)
=

1
σ2

n∑
i=1

(xi − µ),

and
∂

∂σ2
lnL

(
µ, σ2

)
= − n

2σ2
+

1
2σ4

n∑
i=1

(xi − µ)2,

respectively. Setting these partial derivatives to zero and solving for µ and
σ, we obtain

µ = x and σ2 =
n − 1

n
s2,

where s2 = 1
n−1

n∑
i=1

(xi − x)2 is the sample variance.

Letting these optimal values of µ and σ into L
(
µ, σ2

)
, we obtain

max
(µ,σ2)∈Ω

L
(
µ, σ2

)
=

(
n

2π(n − 1)s2

)n
2

e

− n
2(n−1)s2

n∑
i=1

(xi − x)2

.

Therefore

W (x1, x2, ..., xn) =
max

(µ,σ2)∈Ωo

L
(
µ, σ2

)
max

(µ,σ2)∈Ω
L

(
µ, σ2

)
=

(
1

2πσ2
o

)n
2

e
− 1

2σ2
o

∑n

i=1
(xi−x)2

(
n

2π(n−1)s2

)n
2

e
− n

2(n−1)s2

∑n

i=1
(xi−x)2

= n−n
2 e

n
2

(
(n − 1)s2

σ2
o

)n
2

e
− (n−1)s2

2σ2
o .

Now the inequality W (x1, x2, ..., xn) ≤ k becomes

n−n
2 e

n
2

(
(n − 1)s2

σ2
o

)n
2

e
− (n−1)s2

2σ2
o ≤ k

which is equivalent to(
(n − 1)s2

σ2
o

)n

e
− (n−1)s2

σ2
o ≤

(
k

(n

e

)n
2
)2

:= Ko,
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where Ko is a constant. Let H be a function defined by

H(w) = wn e−w.

Using this, we see that the above inequality becomes

H

(
(n − 1)s2

σ2
o

)
≤ Ko.

The figure below illustrates this inequality.

From this it follows that

(n − 1)s2

σ2
o

≤ K1 or
(n − 1)s2

σ2
o

≥ K2.

In view of these inequalities, the critical region can be described as

C =
{

(x1, x2, ..., xn)
∣∣∣∣ (n − 1)s2

σ2
o

≤ K1 or
(n − 1)s2

σ2
o

≥ K2

}
,

and the best likelihood ratio test is: “Reject Ho if

(n − 1)S2

σ2
o

≤ K1 or
(n − 1)S2

σ2
o

≥ K2.”

Since we are given the size of the critical region to be α, we can determine the
constants K1 and K2. As the sample X1, X2, ..., Xn is taken from a normal
distribution with mean µ and variance σ2, we get

(n − 1)S2

σ2
o

∼ χ2(n − 1)
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when the null hypothesis Ho : σ2 = σ2
o is true.

Therefore, the likelihood ratio critical region C becomes{
(x1, x2, ..., xn)

∣∣∣∣ (n − 1)s2

σ2
o

≤ χ2
α
2
(n − 1) or

(n − 1)s2

σ2
o

≥ χ2
1−α

2
(n − 1)

}
and the likelihood ratio test is: “Reject Ho : σ2 = σ2

o if

(n − 1)S2

σ2
o

≤ χ2
α
2
(n − 1) or

(n − 1)S2

σ2
o

≥ χ2
1−α

2
(n − 1)”

where χ2
α
2
(n − 1) is a real number such that the integral of the chi-square

density function with (n − 1) degrees of freedom from 0 to χ2
α
2
(n − 1) is α

2 .
Further, χ2

1−α
2
(n − 1) denotes the real number such that the integral of the

chi-square density function with (n−1) degrees of freedom from χ2
1−α

2
(n−1)

to ∞ is α
2 .

Remark 18.8. We summarize the three cases of hypotheses test of the
variance (of the normal population with unknown mean) in the following
table.

Ho Ha Critical Region (or Test)

σ2 = σ2
o σ2 > σ2

o χ2 = (n−1)s2

σ2
o

≥ χ2
1−α(n − 1)

σ2 = σ2
o σ2 < σ2

o χ2 = (n−1)s2

σ2
o

≤ χ2
α(n − 1)

σ2 = σ2
o σ2 
= σ2

o χ2 = (n−1)s2

σ2
o

≥ χ2
1−α/2(n − 1)

or
χ2 = (n−1)s2

σ2
o

≤ χ2
α/2(n − 1)

18.5. Review Exercises

1. Five trials X1, X2, ..., X5 of a Bernoulli experiment were conducted to test
Ho : p = 1

2 against Ha : p = 3
4 . The null hypothesis Ho will be rejected if∑5

i=1 Xi = 5. Find the probability of Type I and Type II errors.

2. A manufacturer of car batteries claims that the life of his batteries is
normally distributed with a standard deviation equal to 0.9 year. If a random
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sample of 10 of these batteries has a standard deviation of 1.2 years, do you
think that σ > 0.9 year? Use a 0.05 level of significance.

3. Let X1, X2, ..., X8 be a random sample of size 8 from a Poisson distribution
with parameter λ. Reject the null hypothesis Ho : λ = 0.5 if the observed
sum

∑8
i=1 xi ≥ 8. First, compute the significance level α of the test. Second,

find the power function β(λ) of the test as a sum of Poisson probabilities
when Ha is true.

4. Suppose X has the density function

f(x) =

{ 1
θ for 0 < x < θ

0 otherwise.

If one observation of X is taken, what are the probabilities of Type I and
Type II errors in testing the null hypothesis Ho : θ = 1 against the alternative
hypothesis Ha : θ = 2, if Ho is rejected for X > 0.92.

5. Let X have the density function

f(x) =

{
(θ + 1)xθ for 0 < x < 1 where θ > 0

0 otherwise.

The hypothesis Ho : θ = 1 is to be rejected in favor of H1 : θ = 2 if X > 0.90.
What is the probability of Type I error?

6. Let X1, X2, ..., X6 be a random sample from a distribution with density
function

f(x) =

{
θ xθ−1 for 0 < x < 1 where θ > 0

0 otherwise.
The null hypothesis Ho : θ = 1 is to be rejected in favor of the alternative
Ha : θ > 1 if and only if at least 5 of the sample observations are larger than
0.7. What is the significance level of the test?

7. A researcher wants to test Ho : θ = 0 versus Ha : θ = 1, where θ is a
parameter of a population of interest. The statistic W , based on a random
sample of the population, is used to test the hypothesis. Suppose that under
Ho, W has a normal distribution with mean 0 and variance 1, and under Ha,
W has a normal distribution with mean 4 and variance 1. If Ho is rejected
when W > 1.50, then what are the probabilities of a Type I or Type II error
respectively?
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8. Let X1 and X2 be a random sample of size 2 from a normal distribution
N(µ, 1). Find the likelihood ratio critical region of size 0.005 for testing the
null hypothesis Ho : µ = 0 against the composite alternative Ha : µ 
= 0?

9. Let X1, X2, ..., X10 be a random sample from a Poisson distribution with
mean θ. What is the most powerful (or best) critical region of size 0.08 for
testing the null hypothesis H0 : θ = 0.1 against Ha : θ = 0.5?

10. Let X be a random sample of size 1 from a distribution with probability
density function

f(x, θ) =

{
(1 − θ

2 ) + θ x if 0 ≤ x ≤ 1

0 otherwise.

For a significance level α = 0.1, what is the best (or uniformly most powerful)
critical region for testing the null hypothesis Ho : θ = −1 against Ha : θ = 1?

11. Let X1, X2 be a random sample of size 2 from a distribution with prob-
ability density function

f(x, θ) =


θx e−θ

x! if x = 0, 1, 2, 3, ....

0 otherwise,

where θ ≥ 0. For a significance level α = 0.053, what is the best critical
region for testing the null hypothesis Ho : θ = 1 against Ha : θ = 2? Sketch
the graph of the best critical region.

12. Let X1, X2, ..., X8 be a random sample of size 8 from a distribution with
probability density function

f(x, θ) =


θx e−θ

x! if x = 0, 1, 2, 3, ....

0 otherwise,

where θ ≥ 0. What is the likelihood ratio critical region for testing the null
hypothesis Ho : θ = 1 against Ha : θ 
= 1? If α = 0.1 can you determine the
best likelihood ratio critical region?

13. Let X1, X2, ..., Xn be a random sample of size n from a distribution with
probability density function

f(x, θ) =


x6 e

x
β

Γ(7)β7 , if x > 0

0 otherwise,
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where θ ≥ 0. What is the likelihood ratio critical region for testing the null
hypothesis Ho : β = 5 against Ha : β 
= 5? What is the most powerful test ?

14. Let X1, X2, ..., X5 denote a random sample of size 5 from a population
X with probability density function

f(x; θ) =

 (1 − θ)x−1 θ if x = 1, 2, 3, ...,∞

0 otherwise,

where 0 < θ < 1 is a parameter. What is the likelihood ratio critical region
of size 0.05 for testing Ho : θ = 0.5 versus Ha : θ 
= 0.5?

15. Let X1, X2, X3 denote a random sample of size 3 from a population X

with probability density function

f(x;µ) =
1√
2π

e−
(x−µ)2

2 −∞ < x < ∞,

where −∞ < µ < ∞ is a parameter. What is the likelihood ratio critical
region of size 0.05 for testing Ho : µ = 3 versus Ha : µ 
= 3?

16. Let X1, X2, X3 denote a random sample of size 3 from a population X

with probability density function

f(x; θ) =


1
θ e−

x
θ if 0 < x < ∞

0 otherwise,

where 0 < θ < ∞ is a parameter. What is the likelihood ratio critical region
for testing Ho : θ = 3 versus Ha : θ 
= 3?

17. Let X1, X2, X3 denote a random sample of size 3 from a population X

with probability density function

f(x; θ) =


e−θ θx

x! if x = 0, 1, 2, 3, ...,∞

0 otherwise,

where 0 < θ < ∞ is a parameter. What is the likelihood ratio critical region
for testing Ho : θ = 0.1 versus Ha : θ 
= 0.1?

18. A box contains 4 marbles, θ of which are white and the rest are black.
A sample of size 2 is drawn to test Ho : θ = 2 versus Ha : θ 
= 2. If the null



Test of Statistical Hypotheses for Parameters 574

hypothesis is rejected if both marbles are the same color, find the significance
level of the test.

19. Let X1, X2, X3 denote a random sample of size 3 from a population X

with probability density function

f(x; θ) =


1
θ for 0 ≤ x ≤ θ

0 otherwise,

where 0 < θ < ∞ is a parameter. What is the likelihood ratio critical region
of size 117

125 for testing Ho : θ = 5 versus Ha : θ 
= 5?

20. Let X1, X2 and X3 denote three independent observations from a dis-
tribution with density

f(x;β) =


1
β e−

x
β for 0 < x < ∞

0 otherwise,

where 0 < β < ∞ is a parameter. What is the best (or uniformly most
powerful critical region for testing Ho : β = 5 versus Ha : β = 10?
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Chapter 19

SIMPLE LINEAR
REGRESSION

AND
CORRELATION ANALYSIS

Let X and Y be two random variables with joint probability density
function f(x, y). Then the conditional density of Y given that X = x is

f(y/x) =
f(x, y)
g(x)

where
g(x) =

∫ ∞

−∞
f(x, y) dy

is the marginal density of X. The conditional mean of Y

E (Y |X = x) =
∫ ∞

−∞
yf(y/x) dy

is called the regression equation of Y on X.

Example 19.1. Let X and Y be two random variables with the joint prob-
ability density function

f(x, y) =

{
xe−x(1+y) if x > 0, y > 0

0 otherwise.

Find the regression equation of Y on X and then sketch the regression curve.
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Answer: The marginal density of X is given by

g(x) =
∫ ∞

−∞
xe−x(1+y) dy

=
∫ ∞

−∞
xe−x e−xy dy

= xe−x

∫ ∞

−∞
e−xy dy

= xe−x

[
− 1

x
e−xy

]∞

0

= e−x.

The conditional density of Y given X = x is

f(y/x) =
f(x, y)
g(x)

=
xe−x(1+y)

e−x
= xe−xy, y > 0.

The conditional mean of Y given X = x is given by

E(Y/x) =
∫ ∞

−∞
yf(y/x) dy =

∫ ∞

−∞
y x e−xy dy =

1
x

.

Thus the regression equation of Y on X is

E(Y/x) =
1
x

, x > 0.

The graph of this equation of Y on X is shown below.
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From this example it is clear that the conditional mean E(Y/x) is a
function of x. If this function is of the form α + βx, then the correspond-
ing regression equation is called a linear regression equation; otherwise it is
called a nonlinear regression equation. The term linear regression refers to
a specification that is linear in the parameters. Thus E(Y/x) = α + βx2 is
also a linear regression equation. The regression equation E(Y/x) = αxβ is
an example of a nonlinear regression equation.

The main purpose of regression analysis is to predict Yi from the knowl-
edge of xi using the relationship like

E(Yi/xi) = α + βxi.

The Yi is called the response or dependent variable where as xi is called the
predictor or independent variable. The term regression has an interesting his-
tory, dating back to Francis Galton (1822-1911). Galton studied the heights
of fathers and sons, in which he observed a regression (a “turning back”)
from the heights of sons to the heights of their fathers. That is tall fathers
tend to have tall sons and short fathers tend to have short sons. However,
he also found that very tall fathers tend to have shorter sons and very short
fathers tend to have taller sons. Galton called this phenomenon regression
towards the mean.

In regression analysis, that is when investigating the relationship be-
tween a predictor and response variable, there are two steps to the analysis.
The first step is totally data oriented. This step is always performed. The
second step is the statistical one, in which we draw conclusions about the
(population) regression equation E(Yi/xi). Normally the regression equa-
tion contains several parameters. There are two well known methods for
finding the estimates of the parameters of the regression equation. These
two methods are: (1) The least square method and (2) the normal regression
method.

19.1. The Least Squares Method

Let {(xi, yi) | i = 1, 2, ..., n} be a set of data. Assume that

E(Yi/xi) = α + βxi, (1)

that is
yi = α + βxi, i = 1, 2, ..., n.
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Then the sum of the squares of the error is given by

E(α, β) =
n∑

i=1

(yi − α − βxi)
2
. (2)

The least squares estimates of α and β are defined to be those values which
minimize E(α, β). That is,(

α̂, β̂
)

= arg min
(α,β)

E(α, β).

This least squares method is due to Adrien M. Legendre (1752-1833). Note
that the least squares method also works even if the regression equation is
nonlinear (that is, not of the form (1)).

Next, we give several examples to illustrate the method of least squares.

Example 19.2. Given the five pairs of points (x, y) shown in table below

x 4 0 −2 3 1
y 5 0 0 6 3

what is the line of the form y = x + b best fits the data by method of least
squares?

Answer: Suppose the best fit line is y = x + b. Then for each xi, xi + b is
the estimated value of yi. The difference between yi and the estimated value
of yi is the error or the residual corresponding to the ith measurement. That
is, the error corresponding to the ith measurement is given by

εi = yi − xi − b.

Hence the sum of the squares of the errors is

E(b) =
5∑

i=1

ε2i

=
5∑

i=1

(yi − xi − b)2 .

Differentiating E(b) with respect to b, we get

d

db
E(b) = 2

5∑
i=1

(yi − xi − b) (−1).
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Setting d
dbE(b) equal to 0, we get

5∑
i=1

(yi − xi − b) = 0

which is

5b =
5∑

i=1

yi −
5∑

i=1

xi.

Using the data, we see that
5b = 14 − 6

which yields b = 8
5 . Hence the best fitted line is

y = x +
8
5
.

Example 19.3. Suppose the line y = bx + 1 is fit by the method of least
squares to the 3 data points

x 1 2 4
y 2 2 0

What is the value of the constant b?

Answer: The error corresponding to the ith measurement is given by

εi = yi − bxi − 1.

Hence the sum of the squares of the errors is

E(b) =
3∑

i=1

ε2i

=
3∑

i=1

(yi − bxi − 1)2 .

Differentiating E(b) with respect to b, we get

d

db
E(b) = 2

3∑
i=1

(yi − bxi − 1) (−xi).
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Setting d
dbE(b) equal to 0, we get

3∑
i=1

(yi − bxi − 1) xi = 0

which in turn yields

b =

n∑
i=1

xiyi −
n∑

i=1

xi

n∑
i=1

x2
i

Using the given data we see that

b =
6 − 7
21

= − 1
21

,

and the best fitted line is
y = − 1

21
x + 1.

Example 19.4. Observations y1, y2, ..., yn are assumed to come from a model
with

E(Yi/xi) = θ + 2 lnxi

where θ is an unknown parameter and x1, x2, ..., xn are given constants. What
is the least square estimate of the parameter θ?

Answer: The sum of the squares of errors is

E(θ) =
n∑

i=1

ε2i =
n∑

i=1

(yi − θ − 2 lnxi)
2
.

Differentiating E(θ) with respect to θ, we get

d

dθ
E(θ) = 2

n∑
i=1

(yi − θ − 2 lnxi) (−1).

Setting d
dθE(θ) equal to 0, we get

n∑
i=1

(yi − θ − 2 lnxi) = 0

which is

θ =
1
n

(
n∑

i=1

yi − 2
n∑

i=1

lnxi

)
.
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Hence the least squares estimate of θ is θ̂ = y − 2
n

n∑
i=1

lnxi.

Example 19.5. Given the three pairs of points (x, y) shown below:

x 4 1 2
y 2 1 0

What is the curve of the form y = xβ best fits the data by method of least
squares?

Answer: The sum of the squares of the errors is given by

E(β) =
n∑

i=1

ε2i

=
n∑

i=1

(
yi − xβ

i

)2

.

Differentiating E(β) with respect to β, we get

d

dβ
E(β) = 2

n∑
i=1

(
yi − xβ

i

)
(−xβ

i lnxi)

Setting this derivative d
dβE(β) to 0, we get

n∑
i=1

yix
β
i lnxi =

n∑
i=1

xβ
i xβ

i lnxi.

Using the given data we obtain

2 4β ln 4 = 42β ln 4 + 22β ln 2

which simplifies to
4 = 2 4β + 1

or
4β =

3
2
.

Taking the natural logarithm of both sides of the above expression, we get

β =
ln 3 − ln 2

ln 4
= 0.2925
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Thus the least squares best fit model is y = x0.2925.

Example 19.6. Observations y1, y2, ..., yn are assumed to come from a model
with E(Yi/xi) = α + βxi, where α and β are unknown parameters, and
x1, x2, ..., xn are given constants. What are the least squares estimate of the
parameters α and β?

Answer: The sum of the squares of the errors is given by

E(α, β) =
n∑

i=1

ε2i

=
n∑

i=1

(yi −−α − βxi)
2
.

Differentiating E(α, β) with respect to α and β respectively, we get

∂

∂α
E(α, β) = 2

n∑
i=1

(yi − α − βxi) (−1)

and
∂

∂β
E(α, β) = 2

n∑
i=1

(yi − α − βxi) (−xi).

Setting these partial derivatives ∂
∂αE(α, β) and ∂

∂βE(α, β) to 0, we get

n∑
i=1

(yi − α − βxi) = 0 (3)

and
n∑

i=1

(yi − α − βxi)xi = 0. (4)

From (3), we obtain
n∑

i=1

yi = nα + β

n∑
i=1

xi

which is
y = α + β x. (5)

Similarly, from (4), we have

n∑
i=1

xiyi = α

n∑
i=1

xi + β

n∑
i=1

x2
i
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which can be rewritten as follows

n∑
i=1

(xi − x)(yi − y) + nx y = n α x + β

n∑
i=1

(xi − x)(xi − x) + nβ x2 (6)

Defining

Sxy :=
n∑

i=1

(xi − x)(yi − y)

we see that (6) reduces to

Sxy + nx y = α n x + β
[
Sxx + nx2

]
(7)

Substituting (5) into (7), we have

Sxy + nx y = [y − β x]n x + β
[
Sxx + nx2

]
.

Simplifying the last equation, we get

Sxy = β Sxx

which is
β =

Sxy

Sxx
. (8)

In view of (8) and (5), we get

α = y − Sxy

Sxx
x. (9)

Thus the least squares estimates of α and β are

α̂ = y − Sxy

Sxx
x and β̂ =

Sxy

Sxx
,

respectively.

We need some notations. The random variable Y given X = x will be
denoted by Yx. Note that this is the variable appears in the model E(Y/x) =
α+βx. When one chooses in succession values x1, x2, ..., xn for x, a sequence
Yx1 , Yx2 , ..., Yxn of random variable is obtained. For the sake of convenience,
we denote the random variables Yx1 , Yx2 , ..., Yxn

simply as Y1, Y2, ..., Yn. To
do some statistical analysis, we make following three assumptions:

(1) E(Yx) = α + βx so that µi = E(Yi) = α + βxi;
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(2) Y1, Y2, ..., Yn are independent;

(3) Each of the random variables Y1, Y2, ..., Yn has the same variance σ2.

Theorem 19.1. Under the above three assumptions, the least squares esti-
mators α̂ and β̂ of a linear model E(Y/x) = α + βx are unbiased.

Proof: From the previous example, we know that the least squares estima-
tors of α and β are

α̂ = Y − SxY

Sxx
X and β̂ =

SxY

Sxx
,

where

SxY :=
n∑

i=1

(xi − x)(Yi − Y ).

First, we show β̂ is unbiased. Consider

E
(
β̂
)

= E

(
SxY

Sxx

)
=

1
Sxx

E (SxY )

=
1

Sxx
E

(
n∑

i=1

(xi − x)(Yi − Y )

)

=
1

Sxx

n∑
i=1

(xi − x) E
(
Yi − Y

)
=

1
Sxx

n∑
i=1

(xi − x) E (Yi) −
1

Sxx

n∑
i=1

(xi − x) E
(
Y

)
=

1
Sxx

n∑
i=1

(xi − x) E (Yi) −
1

Sxx
E

(
Y

) n∑
i=1

(xi − x)

=
1

Sxx

n∑
i=1

(xi − x) E (Yi) =
1

Sxx

n∑
i=1

(xi − x) (α + βxi)

= α
1

Sxx

n∑
i=1

(xi − x) + β
1

Sxx

n∑
i=1

(xi − x) xi

= β
1

Sxx

n∑
i=1

(xi − x) xi

= β
1

Sxx

n∑
i=1

(xi − x) xi − β
1

Sxx

n∑
i=1

(xi − x) x

= β
1

Sxx

n∑
i=1

(xi − x) (xi − x)

= β
1

Sxx
Sxx = β.
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Thus the estimator β̂ is unbiased estimator of the parameter β.

Next, we show that α̂ is also an unbiased estimator of α. Consider

E (α̂) = E

(
Y − SxY

Sxx
x

)
= E

(
Y

)
− x E

(
SxY

Sxx

)
= E

(
Y

)
− x E

(
β̂
)

= E
(
Y

)
− x β

=
1
n

(
n∑

i=1

E (Yi)

)
− x β

=
1
n

(
n∑

i=1

E (α + βxi)

)
− x β

=
1
n

(
nα + β

n∑
i=1

xi

)
− x β

= α + β x − x β = α

This proves that α̂ is an unbiased estimator of α and the proof of the theorem
is now complete.

19.2. The Normal Regression Analysis

In a regression analysis, we assume that the xi’s are constants while yi’s
are values of the random variables Yi’s. A regression analysis is called a
normal regression analysis if the conditional density of Yi given Xi = xi is of
the form

f(yi/xi) =
1√

2πσ2
e
− 1

2

(
yi−α−βxi

σ

)2

,

where σ2 denotes the variance, and α and β are the regression coefficients.
That is Y |xi

∼ N(α + βx, σ2). If there is no danger of confusion, then we
will write Yi for Y |xi

. The following figure shows the regression model of Y

populations with equal variances, and with means falling on the straight line
µy = α + β x.

Normal regression analysis concerns with the estimation of σ, α, and
β. We use maximum likelihood method to estimate these parameters. The
maximum likelihood function of the sample is given by

L(σ, α, β) =
n∏

i=1

f(yi/xi)
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and

lnL(σ, α, β) =
n∑

i=1

ln f(yi/xi)

= −n lnσ − n

2
ln(2π) − 1

2σ2

n∑
i=1

(yi − α − β xi)
2
.

Taking the partial derivatives of lnL(σ, α, β) with respect to α, β and σ

respectively, we get

∂

∂α
lnL(σ, α, β) =

1
σ2

n∑
i=1

(yi − α − β xi)

∂

∂β
lnL(σ, α, β) =

1
σ2

n∑
i=1

(yi − α − β xi)xi

∂

∂σ
lnL(σ, α, β) = −n

σ
+

1
σ3

n∑
i=1

(yi − α − β xi)
2
.

Equating each of these partial derivatives to zero and solving the system of
three equations, we obtain the maximum likelihood estimator of β, α, σ as

β̂ =
SxY

Sxx
, α̂ = Y − SxY

Sxx
x, and σ̂ =

√
1
n

[
SY Y − SxY

Sxx
SxY

]
,
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where

SxY =
n∑

i=1

(xi − x)
(
Yi − Y

)
.

Theorem 19.2. In the normal regression analysis, the likelihood estimators
β̂ and α̂ are unbiased estimators of β and α, respectively.

Proof: Recall that

β̂ =
SxY

Sxx

=
1

Sxx

n∑
i=1

(xi − x)
(
Yi − Y

)
=

n∑
i=1

(
xi − x

Sxx

)
Yi,

where Sxx =
∑n

i=1 (xi − x)2. Thus β̂ is a linear combination of Yi’s. Since
Yi ∼ N

(
α + βxi, σ

2
)
, we see that β̂ is also a normal random variable.

First we show β̂ is an unbiased estimator of β. Since

E
(
β̂
)

= E

(
n∑

i=1

(
xi − x

Sxx

)
Yi

)

=
n∑

i=1

(
xi − x

Sxx

)
E (Yi)

=
n∑

i=1

(
xi − x

Sxx

)
(α + βxi) = β,

the maximum likelihood estimator of β is unbiased.

Next, we show that α̂ is also an unbiased estimator of α. Consider

E (α̂) = E

(
Y − SxY

Sxx
x

)
= E

(
Y

)
− x E

(
SxY

Sxx

)
= E

(
Y

)
− x E

(
β̂
)

= E
(
Y

)
− x β

=
1
n

(
n∑

i=1

E (Yi)

)
− x β

=
1
n

(
n∑

i=1

E (α + βxi)

)
− x β

=
1
n

(
nα + β

n∑
i=1

xi

)
− x β

= α + β x − x β = α.
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This proves that α̂ is an unbiased estimator of α and the proof of the theorem
is now complete.

Theorem 19.3. In normal regression analysis, the distributions of the esti-
mators β̂ and α̂ are given by

β̂ ∼ N

(
β,

σ2

Sxx

)
and α̂ ∼ N

(
α,

σ2

n
+

x2σ2

Sxx

)
where

Sxx =
n∑

i=1

(xi − x)2 .

Proof: Since
β̂ =

SxY

Sxx

=
1

Sxx

n∑
i=1

(xi − x)
(
Yi − Y

)
=

n∑
i=1

(
xi − x

Sxx

)
Yi,

the β̂ is a linear combination of Yi’s. As Yi ∼ N
(
α + βxi, σ

2
)
, we see that

β̂ is also a normal random variable. By Theorem 19.2, β̂ is an unbiased
estimator of β.

The variance of β̂ is given by

V ar
(
β̂
)

=
n∑

i=1

(
xi − x

Sxx

)2

V ar (Yi/xi)

=
n∑

i=1

(
xi − x

Sxx

)2

σ2

=
1

S2
xx

n∑
i=1

(xi − x)2 σ2

=
σ2

Sxx
.

Hence β̂ is a normal random variable with mean (or expected value) β and
variance σ2

Sxx
. That is β̂ ∼ N

(
β, σ2

Sxx

)
.

Now determine the distribution of α̂. Since each Yi ∼ N(α + βxi, σ2),
the distribution of Y is given by

Y ∼ N

(
α + βx,

σ2

n

)
.
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Since

β̂ ∼ N

(
β,

σ2

Sxx

)
the distribution of x β̂ is given by

x β̂ ∼ N

(
x β, x2 σ2

Sxx

)
.

Since α̂ = Y − x β̂ and Y and x β̂ being two normal random variables, α̂ is
also a normal random variable with mean equal to α + β x − β x = α and
variance variance equal to σ2

n + x2 σ2

Sxx
. That is

α̂ ∼ N

(
α,

σ2

n
+

x2σ2

Sxx

)
and the proof of the theorem is now complete.

In the next theorem, we give an unbiased estimator of the variance σ2.
For this we need the distribution of the statistic U given by

U =
n σ̂2

σ2
.

It can be shown (we will omit the proof, for a proof see Graybill (1961)) that
the distribution of the statistic

U =
n σ̂2

σ2
∼ χ2(n − 2).

Theorem 19.4. An unbiased estimator S2 of σ2 is given by

S2 =
n σ̂2

n − 2
,

where σ̂ =
√

1
n

[
SY Y − SxY

Sxx
SxY

]
.

Proof: Since

E(S2) = E

(
n σ̂2

n − 2

)
=

σ2

n − 2
E

(
n σ̂2

σ2

)
=

σ2

n − 2
E(χ2(n − 2))

=
σ2

n − 2
(n − 2) = σ2.
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The proof of the theorem is now complete.
Note that the estimator S2 can be written as S2 = SSE

n−2 , where

SSE = SY Y = β̂ SxY =
2∑

i=1

[yi − α̂ − β̂ xi]

the estimator S2 is unbiased estimator of σ2. The proof of the theorem is
now complete.

In the next theorem we give the distribution of two statistics that can
be used for testing hypothesis and constructing confidence interval for the
regression parameters α and β.

Theorem 19.5. The statistics

Qβ =
β̂ − β

σ̂

√
(n − 2)Sxx

n

and

Qα =
α̂ − α

σ̂

√
(n − 2) Sxx

n (x)2 + Sxx

have both a t-distribution with n − 2 degrees of freedom.

Proof: From Theorem 19.3, we know that

β̂ ∼ N

(
β,

σ2

Sxx

)
.

Hence by standardizing, we get

Z =
β̂ − β√

σ2

Sxx

∼ N(0, 1).

Further, we know that the likelihood estimator of σ is

σ̂ =

√
1
n

[
SY Y − SxY

Sxx
SxY

]

and the distribution of the statistic U = n σ̂2

σ2 is chi-square with n−2 degrees
of freedom.
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Since Z = β̂−β√
σ2

Sxx

∼ N(0, 1) and U = n σ̂2

σ2 ∼ χ2(n−2), by Theorem 14.6,

the statistic Z√
U

n−2

∼ t(n − 2). Hence

Qβ =
β̂ − β

σ̂

√
(n − 2)Sxx

n
=

β̂ − β√
n σ̂2

(n−2) Sxx

=

β̂−β√
σ2

Sxx√
n σ̂2

(n−2) σ2

∼ t(n − 2).

Similarly, it can be shown that

Qα =
α̂ − α

σ̂

√
(n − 2) Sxx

n (x)2 + Sxx

∼ t(n − 2).

This completes the proof of the theorem.

In the normal regression model, if β = 0, then E(Yx) = α. This implies
that E(Yx) does not depend on x. Therefore if β 
= 0, then E(Yx) is de-
pendent on x. Thus the null hypothesis Ho : β = 0 should be tested against
Ha : β 
= 0. To devise a test we need the distribution of β̂. Theorem 19.3 says
that β̂ is normally distributed with mean β and variance σ2

Sxx . Therefore, we
have

Z =
β̂ − β√

σ2

Sxx

∼ N(0, 1).

In practice the variance V ar(Yi/xi) which is σ2 is usually unknown. Hence
the above statistic Z is not very useful. However, using the statistic Qβ ,
we can devise a hypothesis test to test the hypothesis Ho : β = βo against
Ha : β 
= βo at a significance level α. For this one has to evaluate the quantity

|t| =

∣∣∣∣∣∣ β̂ − β√
n σ̂2

(n−2) Sxx

∣∣∣∣∣∣
=

∣∣∣∣∣ β̂ − β

σ̂

√
(n − 2) Sxx

n

∣∣∣∣∣
and compare it to quantile tα/2(n − 2). The hypothesis test, at significance
level α, is then “Reject Ho : β = βo if |t| > tα/2(n − 2)”.

The statistic

Qβ =
β̂ − β

σ̂

√
(n − 2)Sxx

n
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is a pivotal quantity for the parameter β since the distribution of this quantity
Qβ is a t-distribution with n− 2 degrees of freedom. Thus it can be used for
the construction of a (1− γ)100% confidence interval for the parameter β as
follows:

1 − γ

= P

(
−t γ

2
(n − 2) ≤ β̂ − β

σ̂

√
(n − 2)Sxx

n
≤ t γ

2
(n − 2)

)

= P

(
β̂ − t γ

2
(n − 2)σ̂

√
n

(n − 2)Sxx
≤ β ≤ β̂ + t γ

2
(n − 2)σ̂

√
n

(n − 2)Sxx

)
.

Hence, the (1 − γ)% confidence interval for β is given by[
β̂ − t γ

2
(n − 2) σ̂

√
n

(n − 2) Sxx
, β̂ + t γ

2
(n − 2) σ̂

√
n

(n − 2)Sxx

]
.

In a similar manner one can devise hypothesis test for α and construct
confidence interval for α using the statistic Qα. We leave these to the reader.

Now we give two examples to illustrate how to find the normal regression
line and related things.

Example 19.7. Let the following data on the number of hours, x which
ten persons studied for a French test and their scores, y on the test is shown
below:

x 4 9 10 14 4 7 12 22 1 17
y 31 58 65 73 37 44 60 91 21 84

Find the normal regression line that approximates the regression of test scores
on the number of hours studied. Further test the hypothesis Ho : β = 3 versus
Ha : β 
= 3 at the significance level 0.02.

Answer: From the above data, we have

10∑
i=1

xi = 100,

10∑
i=1

x2
i = 1376

10∑
i=1

yi = 564,

10∑
i=1

y2
i =

10∑
i=1

xiyi = 6945
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Sxx = 376, Sxy = 1305, Syy = 4752.4.

Hence
β̂ =

sxy

sxx
= 3.471 and α̂ = y − β̂ x = 21.690.

Thus the normal regression line is

y = 21.690 + 3.471x.

This regression line is shown below.

Now we test the hypothesis Ho : β = 3 against Ha : β 
= 3 at 0.02 level
of significance. From the data, the maximum likelihood estimate of σ is

σ̂ =

√
1
n

[
Syy − Sxy

Sxx
Sxy

]

=

√
1
n

[
Syy − β̂ Sxy

]

=

√
1
10

[4752.4 − (3.471)(1305)]

= 4.720
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and

|t| =

∣∣∣∣∣3.471 − 3
4.720

√
(8) (376)

10

∣∣∣∣∣ = 1.73.

Hence
1.73 = |t| < t0.01(8) = 2.896.

Thus we do not reject the null hypothesis that Ho : β = 3 at the significance
level 0.02.

This means that we can not conclude that on the average an extra hour
of study will increase the score by more than 3 points.

Example 19.8. The frequency of chirping of a cricket is thought to be
related to temperature. This suggests the possibility that temperature can
be estimated from the chirp frequency. Let the following data on the number
chirps per second, x by the striped ground cricket and the temperature, y in
Fahrenheit is shown below:

x 20 16 20 18 17 16 15 17 15 16
y 89 72 93 84 81 75 70 82 69 83

Find the normal regression line that approximates the regression of tempera-
ture on the number chirps per second by the striped ground cricket. Further
test the hypothesis Ho : β = 4 versus Ha : β 
= 4 at the significance level 0.1.

Answer: From the above data, we have

10∑
i=1

xi = 170,

10∑
i=1

x2
i = 2920

10∑
i=1

yi = 789,

10∑
i=1

y2
i = 64270

10∑
i=1

xiyi = 13688

Sxx = 376, Sxy = 1305, Syy = 4752.4.

Hence
β̂ =

sxy

sxx
= 4.067 and α̂ = y − β̂ x = 9.761.

Thus the normal regression line is

y = 9.761 + 4.067x.
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This regression line is shown below.

Now we test the hypothesis Ho : β = 4 against Ha : β 
= 4 at 0.1 level of
significance. From the data, the maximum likelihood estimate of σ is

σ̂ =

√
1
n

[
Syy − Sxy

Sxx
Sxy

]

=

√
1
n

[
Syy − β̂ Sxy

]

=

√
1
10

[589 − (4.067)(122)]

= 3.047

and

|t| =

∣∣∣∣∣4.067 − 4
3.047

√
(8) (30)

10

∣∣∣∣∣ = 0.528.

Hence
0.528 = |t| < t0.05(8) = 1.860.
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Thus we do not reject the null hypothesis that Ho : β = 4 at a significance
level 0.1.

Let µx = α + β x and write Ŷx = α̂ + β̂ x for an arbitrary but fixed x.
Then Ŷx is an estimator of µx. The following theorem gives various properties
of this estimator.

Theorem 19.6. Let x be an arbitrary but fixed real number. Then
(i) Ŷx is a linear estimator of Y1, Y2, ..., Yn,
(ii) Ŷx is an unbiased estimator of µx, and

(iii) V ar
(
Ŷx

)
=

{
1
n + (x−x)2

Sxx

}
σ2.

Proof: First we show that Ŷx is a linear estimator of Y1, Y2, ..., Yn. Since

Ŷx = α̂ + β̂ x

= Y − β̂x + β̂ x

= Y + β̂ (x − x)

= Y +
n∑

k=1

(xk − x) (x − x)
Sxx

Yk

=
n∑

k=1

Yk

n
+

n∑
k=1

(xk − x) (x − x)
Sxx

Yk

=
n∑

k=1

(
1
n

+
(xk − x) (x − x)

Sxx

)
Yk

Ŷx is a linear estimator of Y1, Y2, ..., Yn.

Next, we show that Ŷx is an unbiased estimator of µx. Since

E
(
Ŷx

)
= E

(
α̂ + β̂ x

)
= E (α̂) + E

(
β̂ x

)
= α + β x

= µx

Ŷx is an unbiased estimator of µx.

Finally, we calculate the variance of Ŷx using Theorem 19.3. The variance
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of Ŷx is given by

V ar
(
Ŷx

)
= V ar

(
α̂ + β̂ x

)
= V ar (α̂) + V ar

(
β̂ x

)
+ 2Cov

(
α̂, β̂ x

)
=

(
1
n

+
x2

Sxx

)
+ x2 σ2

Sxx
+ 2x Cov

(
α̂, β̂

)
=

(
1
n

+
x2

Sxx

)
− 2 x

x σ2

Sxx

=
(

1
n

+
(x − x)2

Sxx

)
σ2.

In this computation we have used the fact that

Cov
(
α̂, β̂

)
= −x σ2

Sxx

whose proof is left to the reader as an exercise. The proof of the theorem is
now complete.

By Theorem 19.3, we see that

β̂ ∼ N

(
β,

σ2

Sxx

)
and α̂ ∼ N

(
α,

σ2

n
+

x2σ2

Sxx

)
.

Since Ŷx = α̂+ β̂ x, the random variable Ŷx is also a normal random variable
with mean µx and variance

V ar
(
Ŷx

)
=

(
1
n

+
(x − x)2

Sxx

)
σ2.

Hence standardizing Ŷx, we have

Ŷx − µx√
V ar

(
Ŷx

) ∼ N(0, 1).

If σ2 is known, then one can take the statistic Q = Ŷx−µx√
V ar

(
Ŷx

) as a pivotal

quantity to construct a confidence interval for µx. The (1−γ)100% confidence
interval for µx when σ2 is known is given by[

Ŷx − z γ
2

√
V ar(Ŷx), Ŷx + z γ

2

√
V ar(Ŷx)

]
.
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Example 19.9. Let the following data on the number chirps per second, x

by the striped ground cricket and the temperature, y in Fahrenheit is shown
below:

x 20 16 20 18 17 16 15 17 15 16
y 89 72 93 84 81 75 70 82 69 83

What is the 95% confidence interval for β? What is the 95% confidence
interval for µx when x = 14 and σ = 3.047?

Answer: From Example 19.8, we have

n = 10, β̂ = 4.067, σ̂ = 3.047 and Sxx = 376.

The (1 − γ)% confidence interval for β is given by[
β̂ − t γ

2
(n − 2) σ̂

√
n

(n − 2) Sxx
, β̂ + t γ

2
(n − 2) σ̂

√
n

(n − 2)Sxx

]
.

Therefore the 90% confidence interval for β is[
4.067 − t0.025(8) (3.047)

√
10

(8) (376)
, 4.067 + t0.025(8) (3.047)

√
10

(8) (376)

]
which is

[ 4.067 − t0.025(8) (0.1755) , 4.067 + t0.025(8) (0.1755)] .

Since from the t-table, we have t0.025(8) = 2.306, the 90% confidence interval
for β becomes

[ 4.067 − (2.306) (0.1755) , 4.067 + (2.306) (0.1755)]

which is [3.6623, 4.4717].
If variance σ2 is not known, then we can use the fact that the statistic

U = n σ̂2

σ2 is chi-squares with n − 2 degrees of freedom to obtain a pivotal
quantity for µx. This can be done as follows:

Q =
Ŷx − µx

σ̂

√
(n − 2) Sxx

Sxx + n (x − x)2

=

Ŷx−µx√(
1
n +

(x−x)2
Sxx

)
σ2√

n σ̂2

(n−2) σ2

∼ t(n − 2).
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Using this pivotal quantity one can construct a (1 − γ)100% confidence in-
terval for mean µ as[

Ŷx − t γ
2
(n − 2)

√
Sxx + n(x − x)2

(n − 2) Sxx
, Ŷx + t γ

2
(n − 2)

√
Sxx + n(x − x)2

(n − 2) Sxx

]
.

Next we determine the 90% confidence interval for µx when x = 14 and
σ = 3.047. The (1 − γ)100% confidence interval for µx when σ2 is known is
given by [

Ŷx − z γ
2

√
V ar(Ŷx), Ŷx + z γ

2

√
V ar(Ŷx)

]
.

From the data, we have

Ŷx = α̂ + β̂ x = 9.761 + (4.067) (14) = 66.699

and

V ar
(
Ŷx

)
=

(
1
10

+
(14 − 17)2

376

)
σ2 = (0.124) (3.047)2 = 1.1512.

The 90% confidence interval for µx is given by[
66.699 − z0.025

√
1.1512, 66.699 + z0.025

√
1.1512

]
and since z0.025 = 1.96 (from the normal table), we have

[66.699 − (1.96) (1.073), 66.699 + (1.96) (1.073)]

which is [64.596, 68.802].

We now consider the predictions made by the normal regression equation
Ŷx = α̂ + β̂x. The quantity Ŷx gives an estimate of µx = α + βx. Each
time we compute a regression line from a random sample we are observing
one possible linear equation in a population consisting all possible linear
equations. Further, the actual value of Yx that will be observed for given
value of x is normal with mean α + βx and variance σ2. So the actual
observed value will be different from µx. Thus, the predicted value for Ŷx

will be in error from two different sources, namely (1) α̂ and β̂ are randomly
distributed about α and β, and (2) Yx is randomly distributed about µx.
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Let yx denote the actual value of Yx that will be observed for the value
x and consider the random variable

D = Yx − α̂ − β̂ x.

Since D is a linear combination of normal random variables, D is also a
normal random variable.

The mean of D is given by

E(D) = E(Yx) − E(α̂) − x E(β̂)

= α + β x − α − x β

= 0.

The variance of D is given by

V ar(D) = V ar(Yx − α̂ − β̂ x)

= V ar(Yx) + V ar(α̂) + x2 V ar(β̂) + 2x Cov(α̂, β̂)

= σ2 +
σ2

n
+

x2 σ2

Sxx
+ x2 σ2

Sxx
− 2 x

x

Sxx

= σ2 +
σ2

n
+

(x − x)2 σ2

Sxx

=
(n + 1)Sxx + n

n Sxx
σ2.

Therefore

D ∼ N

(
0,

(n + 1)Sxx + n

n Sxx
σ2

)
.

We standardize D to get

Z =
D − 0√

(n+1) Sxx+n
n Sxx

σ2
∼ N(0, 1).

Since in practice the variance of Yx which is σ2 is unknown, we can not use
Z to construct a confidence interval for a predicted value yx.

We know that U = n σ̂2

σ2 ∼ χ2(n − 2). By Theorem 14.6, the statistic
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Z√
U

n−2

∼ t(n − 2). Hence

Q =
yx − α̂ − β̂ x

σ̂

√
(n − 2)Sxx

(n + 1)Sxx + n

=

yx−α̂−β̂ x√
(n+1) Sxx+n

n Sxx
σ2√

n σ̂2

(n−2) σ2

=

D−0√
V ar(D)√

n σ̂2

(n−2) σ2

=
Z√

U
n−2

∼ t(n − 2).

The statistic Q is a pivotal quantity for the predicted value yx and one can
use it to construct a (1−γ)100% confidence interval for yx. The (1−γ)100%
confidence interval, [a, b], for yx is given by

1 − γ = P
(
−t γ

2
(n − 2) ≤ Q ≤ t γ

2
(n − 2)

)
= P (a ≤ yx ≤ b),

where

a = α̂ + β̂ x − t γ
2
(n − 2) σ̂

√
(n + 1)Sxx + n

(n − 2) Sxx

and

b = α̂ + β̂ x + t γ
2
(n − 2) σ̂

√
(n + 1)Sxx + n

(n − 2) Sxx
.

This confidence interval for yx is usually known as the prediction interval for
predicted value yx based on the given x. The prediction interval represents an
interval that has a probability equal to 1−γ of containing not a parameter but
a future value yx of the random variable Yx. In many instances the prediction
interval is more relevant to a scientist or engineer than the confidence interval
on the mean µx.

Example 19.10. Let the following data on the number chirps per second, x

by the striped ground cricket and the temperature, y in Fahrenheit is shown
below:
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x 20 16 20 18 17 16 15 17 15 16
y 89 72 93 84 81 75 70 82 69 83

What is the 95% prediction interval for yx when x = 14?

Answer: From Example 19.8, we have

n = 10, β̂ = 4.067, α̂ = 9.761, σ̂ = 3.047 and Sxx = 376.

Thus the normal regression line is

yx = 9.761 + 4.067x.

Since x = 14, the corresponding predicted value yx is given by

yx = 9.761 + (4.067) (14) = 66.699.

Therefore

a = α̂ + β̂ x − t γ
2
(n − 2) σ̂

√
(n + 1)Sxx + n

(n − 2)Sxx

= 66.699 − t0.025(8) (3.047)

√
(11) (376) + 10

(8) (376)

= 66.699 − (2.306) (3.047) (1.1740)

= 58.4501.

Similarly

b = α̂ + β̂ x + t γ
2
(n − 2) σ̂

√
(n + 1)Sxx + n

(n − 2) Sxx

= 66.699 + t0.025(8) (3.047)

√
(11) (376) + 10

(8) (376)

= 66.699 + (2.306) (3.047) (1.1740)

= 74.9479.

Hence the 95% prediction interval for yx when x = 14 is [58.4501, 74.9479].

19.3. The Correlation Analysis

In the first two sections of this chapter, we examine the regression prob-
lem and have done an in-depth study of the least squares and the normal
regression analysis. In the regression analysis, we assumed that the values
of X are not random variables, but are fixed. However, the values of Yx for



Probability and Mathematical Statistics 603

a given value of x are randomly distributed about E(Yx) = µx = α + βx.
Further, letting ε to be a random variable with E(ε) = 0 and V ar(ε) = σ2,
one can model the so called regression problem by

Yx = α + β x + ε.

In this section, we examine the correlation problem. Unlike the regres-
sion problem, here both X and Y are random variables and the correlation
problem can be modeled by

E(Y ) = α + β E(X).

From an experimental point of view this means that we are observing random
vector (X, Y ) drawn from some bivariate population.

Recall that if (X, Y ) is a bivariate random variable then the correlation
coefficient ρ is defined as

ρ =
E ((X − µX) (Y − µY ))√

E ((X − µX)2) E ((Y − µY )2)

where µX and µY are the mean of the random variables X and Y , respec-
tively.
Definition 19.1. If (X1, Y1), (X2, Y2), ..., (Xn, Yn) is a random sample from
a bivariate population, then the sample correlation coefficient is defined as

R =

n∑
i=1

(Xi − X) (Yi − Y )√√√√ n∑
i=1

(Xi − X)2

√√√√ n∑
i=1

(Yi − Y )2

.

The corresponding quantity computed from data (x1, y1), (x2, y2), ..., (xn, yn)
will be denoted by r and it is an estimate of the correlation coefficient ρ.

Now we give a geometrical interpretation of the sample correlation coeffi-
cient based on a paired data set {(x1, y1), (x2, y2), ..., (xn, yn)}. We can asso-
ciate this data set with two vectors �x = (x1, x2, ..., xn) and �y = (y1, y2, ..., yn)
in IRn. Let L be the subset {λ�e |λ ∈ IR} of IRn, where �e = (1, 1, ..., 1) ∈ IRn.
Consider the linear space V given by IRn modulo L, that is V = IRn/L. The
linear space V is illustrated in figure below when n = 2.



x

y
L

V

[x]

Illustration of the linear space V   for n=2
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We denote the equivalence class associated with the vector �x by [�x]. In
the linear space V it can be shown that the points (x1, y1), (x2, y2), ..., (xn, yn)
are collinear if and only if the the vectors [�x] and [�y] in V are proportional.

We define an inner product on this linear space V by

〈[�x], [�y]〉 =
n∑

i=1

(xi − x) (yi − y).

Then the angle θ between the vectors [�x] and [�y] is given by

cos(θ) =
〈[�x], [�y]〉√

〈[�x], [�x]〉
√
〈[�y], [�y]〉

which is

cos(θ) =

n∑
i=1

(xi − x) (yi − y)√√√√ n∑
i=1

(xi − x)2

√√√√ n∑
i=1

(yi − y)2

= r.

Thus the sample correlation coefficient r can be interpreted geometrically as
the cosine of the angle between the vectors [�x] and [�y]. From this view point
the following theorem is obvious.
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Theorem 19.7. The sample correlation coefficient r satisfies the inequality

−1 ≤ r ≤ 1.

The sample correlation coefficient r = ±1 if and only if the set of points
{(x1, y1), (x2, y2), ..., (xn, yn)} for n ≥ 3 are collinear.

To do some statistical analysis, we assume that the paired data is a
random sample of size n from a bivariate normal population (X, Y ) ∼
BV N(µ1, µ2, σ

2
1 , σ2

2 , ρ). Then the conditional distribution of the random
variable Y given X = x is normal, that is

Y |x ∼ N

(
µ2 + ρ

σ2

σ1
(x − µ1), σ2

2(1 − ρ2)
)

.

This can be viewed as a normal regression model E(Y |x) = α + β x where
α = µ − ρσ2

σ1
µ1, β = ρσ2

σ1
, and V ar(Y |x) = σ2

2(1 − ρ2).

Since β = ρσ2
σ1

, if ρ = 0, then β = 0. Hence the null hypothesis Ho : ρ = 0
is equivalent to Ho : β = 0. In the previous section, we devised a hypothesis
test for testing Ho : β = βo against Ha : β 
= βo. This hypothesis test, at
significance level γ, is “Reject Ho : β = βo if |t| ≥ t γ

2
(n − 2)”, where

t =
β̂ − β

σ̂

√
(n − 2)Sxx

n
.

If β = 0, then we have

t =
β̂

σ̂

√
(n − 2)Sxx

n
. (10)

Now we express t in term of the sample correlation coefficient r. Recall that

β̂ =
Sxy

Sxx
, (11)

σ̂2 =
1
n

[
Syy − Sxy

Sxx
Sxy

]
, (12)

and

r =
Sxy√

Sxx Syy

. (13)
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Now using (11), (12), and (13), we compute

t =
β̂

σ̂

√
(n − 2)Sxx

n

=
Sxy

Sxx

√
n√[

Syy − Sxy

Sxx
Sxy

]
√

(n − 2) Sxx

n

=
Sxy√

Sxx Syy

1√[
1 − Sxy

Sxx

Sxy

Syy

] √
n − 2

=
√

n − 2
r√

1 − r2
.

Hence to test the null hypothesis Ho : ρ = 0 against Ha : ρ 
= 0, at
significance level γ, is “Reject Ho : ρ = 0 if |t| ≥ t γ

2
(n − 2)”, where t =√

n − 2 r
1−r2 .

This above test does not extend to test other values of ρ except ρ = 0.
However, tests for the nonzero values of ρ can be achieved by the following
result.

Theorem 19.8. Let (X1, Y1), (X2, Y2), ..., (Xn, Yn) be a random sample from
a bivariate normal population (X, Y ) ∼ BV N(µ1, µ2, σ

2
1 , σ2

2 , ρ). If

V =
1
2

ln
(

1 + R

1 − R

)
and m =

1
2

ln
(

1 + ρ

1 − ρ

)
,

then
Z =

√
n − 3 (V − m) → N(0, 1) as n → ∞.

This theorem says that the statistic V is approximately normal with
mean m and variance 1

n−3 when n is large. This statistic can be used to
devise a hypothesis test for the nonzero values of ρ. Hence to test the null
hypothesis Ho : ρ = ρo against Ha : ρ 
= ρo, at significance level γ, is “Reject
Ho : ρ = ρo if |z| ≥ z γ

2
”, where z =

√
n − 3 (V −mo) and mo = 1

2 ln
(

1+ρo

1−ρo

)
.

Example 19.11. The following data were obtained in a study of the rela-
tionship between the weight and chest size of infants at birth:

x, weight in kg 2.76 2.17 5.53 4.31 2.30 3.70
y, chest size in cm 29.5 26.3 36.6 27.8 28.3 28.6
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Determine the sample correlation coefficient r and then test the null hypoth-
esis Ho : ρ = 0 against the alternative hypothesis Ha : ρ 
= 0 at a significance
level 0.01.

Answer: From the above data we find that

x = 3.46 and y = 29.51.

Next, we compute Sxx, Syy and Sxy using a tabular representation.

x − x y − y (x − x)(y − y) (x − x)2 (y − y)2

−0.70 −0.01 0.007 0.490 0.000
−1.29 −3.21 4.141 1.664 10.304

2.07 7.09 14.676 4.285 50.268
0.85 −1.71 −1.453 0.722 2.924

−1.16 −1.21 1.404 1.346 1.464
0.24 −0.91 −0.218 0.058 0.828

Sxy = 18.557 Sxx = 8.565 Syy = 65.788

Hence, the correlation coefficient r is given by

r =
Sxy√

Sxx Syy

=
18.557√

(8.565) (65.788)
= 0.782.

The computed t value is give by

t =
√

n − 2
r√

1 − r2
=

√
(6 − 2)

0.782√
1 − (0.782)2

= 2.509.

From the t-table we have t0.005(4) = 4.604. Since

2.509 = |t| 
≥ t0.005(4) = 4.604

we do not reject the null hypothesis Ho : ρ = 0.

19.4. Review Exercises

1. Let Y1, Y2, ..., Yn be n independent random variables such that each
Yi ∼ N(βxi, σ

2), where both β and σ2 are unknown parameters. If
{(x1, y1), (x2, y2), ..., (xn, yn)} is a data set where y1, y2, ..., yn are the ob-
served values based on x1, x2, ..., xn, then find the maximum likelihood esti-
mators of β̂ and σ̂2 of β and σ2.
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2. Let Y1, Y2, ..., Yn be n independent random variables such that each
Yi ∼ N(βxi, σ

2), where both β and σ2 are unknown parameters. If
{(x1, y1), (x2, y2), ..., (xn, yn)} is a data set where y1, y2, ..., yn are the ob-
served values based on x1, x2, ..., xn, then show that the maximum likelihood
estimator of β̂ is normally distributed. What are the mean and variance of
β̂?

3. Let Y1, Y2, ..., Yn be n independent random variables such that each
Yi ∼ N(βxi, σ

2), where both β and σ2 are unknown parameters. If
{(x1, y1), (x2, y2), ..., (xn, yn)} is a data set where y1, y2, ..., yn are the ob-
served values based on x1, x2, ..., xn, then find an unbiased estimator σ̂2 of
σ2 and then find a constant k such that k σ̂2 ∼ χ2(2n).

4. Let Y1, Y2, ..., Yn be n independent random variables such that each
Yi ∼ N(βxi, σ

2), where both β and σ2 are unknown parameters. If
{(x1, y1), (x2, y2), ..., (xn, yn)} is a data set where y1, y2, ..., yn are the ob-
served values based on x1, x2, ..., xn, then find a pivotal quantity for β and
using this pivotal quantity construct a (1−γ)100% confidence interval for β.

5. Let Y1, Y2, ..., Yn be n independent random variables such that each
Yi ∼ N(βxi, σ

2), where both β and σ2 are unknown parameters. If
{(x1, y1), (x2, y2), ..., (xn, yn)} is a data set where y1, y2, ..., yn are the ob-
served values based on x1, x2, ..., xn, then find a pivotal quantity for σ2 and
using this pivotal quantity construct a (1 − γ)100% confidence interval for
σ2.

6. Let Y1, Y2, ..., Yn be n independent random variables such that
each Yi ∼ EXP (βxi), where β is an unknown parameter. If
{(x1, y1), (x2, y2), ..., (xn, yn)} is a data set where y1, y2, ..., yn are the ob-
served values based on x1, x2, ..., xn, then find the maximum likelihood esti-
mator of β̂ of β.

7. Let Y1, Y2, ..., Yn be n independent random variables such that
each Yi ∼ EXP (βxi), where β is an unknown parameter. If
{(x1, y1), (x2, y2), ..., (xn, yn)} is a data set where y1, y2, ..., yn are the ob-
served values based on x1, x2, ..., xn, then find the least squares estimator of
β̂ of β.

8. Let Y1, Y2, ..., Yn be n independent random variables such that
each Yi ∼ POI(βxi), where β is an unknown parameter. If
{(x1, y1), (x2, y2), ..., (xn, yn)} is a data set where y1, y2, ..., yn are the ob-
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served values based on x1, x2, ..., xn, then find the maximum likelihood esti-
mator of β̂ of β.

9. Let Y1, Y2, ..., Yn be n independent random variables such that
each Yi ∼ POI(βxi), where β is an unknown parameter. If
{(x1, y1), (x2, y2), ..., (xn, yn)} is a data set where y1, y2, ..., yn are the ob-
served values based on x1, x2, ..., xn, then find the least squares estimator of
β̂ of β.

10. Let Y1, Y2, ..., Yn be n independent random variables such that
each Yi ∼ POI(βxi), where β is an unknown parameter. If
{(x1, y1), (x2, y2), ..., (xn, yn)} is a data set where y1, y2, ..., yn are the ob-
served values based on x1, x2, ..., xn, show that the least squares estimator
and the maximum likelihood estimator of β are both unbiased estimator of
β.

11. Let Y1, Y2, ..., Yn be n independent random variables such that
each Yi ∼ POI(βxi), where β is an unknown parameter. If
{(x1, y1), (x2, y2), ..., (xn, yn)} is a data set where y1, y2, ..., yn are the ob-
served values based on x1, x2, ..., xn, the find the variances of both the least
squares estimator and the maximum likelihood estimator of β.

12. Given the five pairs of points (x, y) shown below:

x 10 20 30 40 50
y 50.071 0.078 0.112 0.120 0.131

What is the curve of the form y = a + bx + cx2 best fits the data by method
of least squares?

13. Given the five pairs of points (x, y) shown below:

x 4 7 9 10 11
y 10 16 22 20 25

What is the curve of the form y = a + b x best fits the data by method of
least squares?

14. The following data were obtained from the grades of six students selected
at random:

Mathematics Grade, x 72 94 82 74 65 85
English Grade, y 76 86 65 89 80 92
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Find the sample correlation coefficient r and then test the null hypothesis
Ho : ρ = 0 against the alternative hypothesis Ha : ρ 
= 0 at a significance
level 0.01.
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Chapter 20

ANALYSIS OF VARIANCE

In Chapter 19, we examine how a quantitative independent variable x

can be used for predicting the value of a quantitative dependent variable y. In
this chapter we would like to examine whether one or more independent (or
predictor) variable affects a dependent (or response) variable y. This chap-
ter differs from the last chapter because the independent variable may now
be either quantitative or qualitative. It also differs from the last chapter in
assuming that the response measurements were obtained for specific settings
of the independent variables. Selecting the settings of the independent vari-
ables is another aspect of experimental design. It enable us to tell whether
changes in the independent variables cause changes in the mean response
and it permits us to analyze the data using a method known as analysis of
variance (or ANOVA). Sir Ronald Aylmer Fisher (1890-1962) developed the
analysis of variance in 1920’s and used it to analyze data from agricultural
experiments.

The ANOVA investigates independent measurements from several treat-
ments or levels of one or more than one factors (that is, the predictor vari-
ables). The technique of ANOVA consists of partitioning the total sum of
squares into component sum of squares due to different factors and the error.
For instance, suppose there are Q factors. Then the total sum of squares
(SST) is partitioned as

SST = SSA + SSB + · · · + SSQ + SSError,

where SSA, SSB, ..., and SSQ represent the sum of squares associated with
the factors A, B, ..., and Q, respectively. If the ANOVA involves only one
factor, then it is called one-way analysis of variance. Similarly if it involves
two factors, then it is called the two-way analysis of variance. If it involves
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more then two factors, then the corresponding ANOVA is called the higher
order analysis of variance. In this chapter we only treat the one-way analysis
of variance.

The analysis of variance is a special case of the linear models that rep-
resent the relationship between a continuous response variable y and one or
more predictor variables (either continuous or categorical) in the form

y = X β + ε (1)

where y is an m × 1 vector of observations of response variable, X is the
m×n design matrix determined by the predictor variables, β is n× 1 vector
of parameters, and ε is an m × 1 vector of random error (or disturbances)
independent of each other and having distribution.

20.1. One-Way Analysis of Variance with Equal Sample Sizes

The standard model of one-way ANOVA is given by

Yij = µi + εij for i = 1, 2, ..., m, j = 1, 2, ..., n, (2)

where m ≥ 2 and n ≥ 2. In this model, we assume that each random variable

Yij ∼ N(µi, σ
2) for i = 1, 2, ..., m, j = 1, 2, ..., n. (3)

Note that because of (3), each εij in model (2) is normally distributed with
mean zero and variance σ2.

Given m independent samples, each of size n, where the members of the
ith sample, Yi1, Yi2, ..., Yin, are normal random variables with mean µi and
unknown variance σ2. That is,

Yij ∼ N
(
µi, σ

2
)
, i = 1, 2, ..., m, j = 1, 2, ..., n.

We will be interested in testing the null hypothesis

Ho : µ1 = µ2 = · · · = µm = µ

against the alternative hypothesis

Ha : not all the means are equal.
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In the following theorem we present the maximum likelihood estimators
of the parameters µ1, µ1, ..., µm and σ2.

Theorem 20.1. Suppose the one-way ANOVA model is given by the equa-
tion (2) where the εij ’s are independent and normally distributed random
variables with mean zero and variance σ2 for i = 1, 2, ..., m and j = 1, 2, ..., n.
Then the MLE’s of the parameters µi (i = 1, 2, ..., m) and σ2 of the model
are given by

µ̂i = Y i• i = 1, 2, ..., m,

σ̂2 =
1

nm
SSW,

where Y i• = 1
n

n∑
j=1

Yij and SSW =
m∑

i=1

n∑
j=1

(
Yij − Y i•

)2
is the within samples

sum of squares.

Proof: The likelihood function is given by

L(µ1, µ2, ..., µm, σ2) =
m∏

i=1

n∏
j=1

{
1√

2πσ2
e−

(Yij−µi)
2

2σ2

}

=
(

1√
2πσ2

)nm

e

− 1
2σ2

m∑
i=1

n∑
j=1

(Yij − µi)2

.

Taking the natural logarithm of the likelihood function L, we obtain

lnL(µ1, µ2, ..., µm, σ2) = −nm

2
ln(2π σ2) − 1

2σ2

m∑
i=1

n∑
j=1

(Yij − µi)2. (4)

Now taking the partial derivative of (4) with respect to µ1, µ2, ..., µm and
σ2, we get

∂lnL

∂µi
=

1
σ2

n∑
j=1

(Yij − µi) (5)

and
∂lnL

∂σ2
= −nm

2σ2
+

1
σ4

m∑
i=1

n∑
j=1

(Yij − µi)2. (6)

Equating these partial derivatives to zero and solving for µi and σ2, respec-
tively, we have

µi = Y i• i = 1, 2, ..., m,

σ2 =
m∑

i=1

n∑
j=1

(
Yij − Y i•

)2
,
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where

Y i• =
1
n

n∑
j=1

Yij .

It can be checked that these solutions yield the maximum of the likelihood
function and we leave this verification to the reader. Thus the maximum
likelihood estimators of the model parameters are given by

µ̂i = Y i• i = 1, 2, ..., m,

σ̂2 =
1

nm
SSW,

where SSW =
n∑

i=1

n∑
j=1

(
Yij − Y i•

)2
. The proof of the theorem is now complete.

Define

Y •• =
1

nm

m∑
i=1

n∑
j=1

Yij . (7)

Further, define

SST =
m∑

i=1

n∑
j=1

(
Yij − Y ••

)2
(8)

SSW =
m∑

i=1

n∑
j=1

(
Yij − Y i•

)2
(9)

and

SSB =
m∑

i=1

n∑
j=1

(
Y i• − Y ••

)2
(10)

Here SST is the total sum of square, SSW is the within sum of square, and
SSB is the between sum of square.

Next we consider the partitioning of the total sum of squares. The fol-
lowing lemma gives us such a partition.

Lemma 20.1. The total sum of squares is equal to the sum of within and
between sum of squares, that is

SST = SSW + SSB. (11)
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Proof: Rewriting (8) we have

SST =
m∑

i=1

n∑
j=1

(
Yij − Y ••

)2

=
m∑

i=1

n∑
j=1

[
(Yij − Y i•) + (Yi• − Y ••)

]2
=

m∑
i=1

n∑
j=1

(Yij − Y i•)2 +
m∑

i=1

n∑
j=1

(Y i• − Y ••)2

+ 2
m∑

i=1

n∑
j=1

(Yij − Y i•) (Y i• − Y ••)

= SSW + SSB + 2
m∑

i=1

n∑
j=1

(Yij − Y i•) (Y i• − Y ••).

The cross-product term vanishes, that is

m∑
i=1

n∑
j=1

(Yij − Y i•) (Y i• − Y ••) =
m∑

i=1

(Yi• − Y••)
n∑

j=1

(Yij − Y i•) = 0.

Hence we obtain the asserted result SST = SSW + SSB and the proof of the
lemma is complete.

The following theorem is a technical result and is needed for testing the
null hypothesis against the alternative hypothesis.

Theorem 20.2. Consider the ANOVA model

Yij = µi + εij i = 1, 2, ..., m, j = 1, 2, ..., n,

where Yij ∼ N
(
νi, σ

2
)
. Then

(a) the random variable SSW
σ2 ∼ χ2 (m(n − 1)), and

(b) the statistics SSW and SSB are independent.

Further, if the null hypothesis Ho : µ1 = µ2 = · · · = µm = µ is true, then

(c) the random variable SSB
σ2 ∼ χ2(m − 1),

(d) the statistics SSB m(n−1)
SSW(m−1) ∼ F (m − 1, m(n − 1)), and

(e) the random variable SST
σ2 ∼ χ2(nm − 1).
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Proof: In Chapter 13, we have seen in Theorem 13.7 that if X1, X2, ..., Xn

are independent random variables each one having the distribution N(µ, σ2),

then their mean X and
n∑

i=1

(Xi − X)2 have the following properties:

(i) X and
n∑

i=1

(Xi − X)2 are independent, and

(ii) 1
σ2

n∑
i=1

(Xi − X)2 ∼ χ2(n − 1).

Now using (i) and (ii), we establish this theorem.

(a) Using (ii), we see that

1
σ2

n∑
j=1

(
Yij − Y i•

)2 ∼ χ2(n − 1)

for each i = 1, 2, ..., m. Since

n∑
j=1

(
Yij − Y i•

)2
and

n∑
j=1

(
Yi′j − Y i′•

)2

are independent for i′ 
= i, we obtain

m∑
i=1

1
σ2

n∑
j=1

(
Yij − Y i•

)2 ∼ χ2(m(n − 1)).

Hence
SSW

σ2
=

1
σ2

m∑
i=1

n∑
j=1

(
Yij − Y i•

)2

=
m∑

i=1

1
σ2

n∑
j=1

(
Yij − Y i•

)2 ∼ χ2(m(n − 1)).

(b) Since for each i = 1, 2, ..., m, the random variables Yi1, Yi2, ..., Yin are
independent and

Yi1, Yi2, ..., Yin ∼ N
(
µi, σ

2
)

we conclude by (i) that

n∑
j=1

(
Yij − Y i•

)2
and Y i•
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are independent. Further

n∑
j=1

(
Yij − Y i•

)2
and Y i′•

are independent for i′ 
= i. Therefore, each of the statistics

n∑
j=1

(
Yij − Y i•

)2
i = 1, 2, ..., m

is independent of the statistics Y 1•, Y 2•, ..., Y m•, and the statistics

n∑
j=1

(
Yij − Y i•

)2
i = 1, 2, ..., m

are independent. Thus it follows that the sets

n∑
j=1

(
Yij − Y i•

)2
i = 1, 2, ..., m and Y i• i = 1, 2, ..., m

are independent. Thus

m∑
i=1

n∑
j=1

(
Yij − Y i•

)2
and

m∑
i=1

n∑
j=1

(
Y i• − Y ••

)2

are independent. Hence by definition, the statistics SSW and SSB are
independent.

Suppose the null hypothesis Ho : µ1 = µ2 = · · · = µm = µ is true.

(c) Under Ho, the random variables Y 1•, Y 2•, ..., Y m• are independent and
identically distributed with N

(
µ, σ2

n

)
. Therefore by (ii)

n

σ2

m∑
i=1

(
Y i• − Y ••

)2 ∼ χ2(m − 1).

Therefore
SSB

σ2
=

1
σ2

m∑
i=1

n∑
j=1

(
Y i• − Y ••

)2

=
n

σ2

m∑
i=1

(
Y i• − Y ••

)2 ∼ χ2(m − 1).



Analysis of Variance 618

(d) Since
SSW

σ2
∼ χ2 (m(n − 1))

and
SSB

σ2
∼ χ2(m − 1)

therefore
SSB

(m−1) σ2

SSW
(n(m−1) σ2

∼ F (m − 1, m(n − 1)).

That is
SSB

(m−1)

SSW
(n(m−1)

∼ F (m − 1, m(n − 1)).

(e) Under Ho, the random variables Yij , i = 1, 2, ..., m, j = 1, 2, ..., n are
independent and each has the distribution N(µ, σ2). By (ii) we see that

1
σ2

m∑
i=1

n∑
j=1

(
Yij − Y ••

)2 ∼ χ2(nm − 1).

Hence we have
SST

σ2
∼ χ2(nm − 1)

and the proof of the theorem is now complete.

From Theorem 20.1, we see that the maximum likelihood estimator of
each µi (i = 1, 2, ..., m) is given by

µ̂i = Y i•,

and since Y i• ∼ N
(
µi,

σ2

n

)
,

E (µ̂i) = E
(
Y i•

)
= µi.

Thus the maximum likelihood estimators are unbiased estimator of µi for
i = 1, 2, ..., m.

Since
σ̂2 =

SSW

mn

and by Theorem 2, 1
σ2 SSW ∼ χ2(m(n − 1)), we have

E
(
σ̂2

)
= E

(
SSW

mn

)
=

1
mn

σ2 E

(
1
σ2

SSW

)
=

1
mn

σ2 m(n − 1) 
= σ2.
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Thus the maximum likelihood estimator σ̂2 of σ2 is biased. However, the
estimator SSW

m(n−1) is an unbiased estimator. Similarly, the estimator SST
mn−1 is

an unbiased estimator where as SST
mn is a biased estimator of σ2.

Theorem 20.3. Suppose the one-way ANOVA model is given by the equa-
tion (2) where the εij ’s are independent and normally distributed random
variables with mean zero and variance σ2 for i = 1, 2, ..., m and j = 1, 2, ..., n.
The null hypothesis Ho : µ1 = µ2 = · · · = µm = µ is rejected whenever the
test statistics F satisfies

F =
SSB/(m − 1)

SSW/(m(n − 1))
> Fα(m − 1, m(n − 1)), (12)

where α is the significance level of the hypothesis test and Fα(m−1, m(n−1))
denotes the 100(1−α) percentile of the F -distribution with m−1 numerator
and nm − m denominator degrees of freedom.

Proof: Under the null hypothesis Ho : µ1 = µ2 = · · · = µm = µ, the
likelihood function takes the form

L(µ, σ2) =
m∏

i=1

n∏
j=1

{
1√

2πσ2
e−

(Yij−µ)2

2σ2

}

=
(

1√
2πσ2

)nm

e

− 1
2σ2

m∑
i=1

n∑
j=1

(Yij − µ)2

.

Taking the natural logarithm of the likelihood function and then maximizing
it, we obtain

µ̂ = Y •• and σ̂Ho =
1

mn
SST

as the maximum likelihood estimators of µ and σ2, respectively. Inserting
these estimators into the likelihood function, we have the maximum of the
likelihood function, that is

max L(µ, σ2) =

 1√
2πσ̂2

Ho

nm

e

− 1

2σ̂2
Ho

m∑
i=1

n∑
j=1

(Yij − Y ••)2

.

Simplifying the above expression, we see that

max L(µ, σ2) =

 1√
2πσ̂2

Ho

nm

e
− mn

2 SST
SST
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which is

max L(µ, σ2) =

 1√
2πσ̂2

Ho

nm

e−
mn
2 . (13)

When no restrictions imposed, we get the maximum of the likelihood function
from Theorem 20.1 as

max L(µ1, µ2, ..., µm, σ2) =

(
1√
2πσ̂2

)nm

e

− 1

2σ̂2

m∑
i=1

n∑
j=1

(Yij − Y i•)2

.

Simplifying the above expression, we see that

max L(µ1, µ2, ..., µm, σ2) =

(
1√
2πσ̂2

)nm

e
− mn

2 SSW
SSW

which is

max L(µ1, µ2, ..., µm, σ2) =

(
1√
2πσ̂2

)nm

e−
mn
2 . (14)

Next we find the likelihood ratio statistic W for testing the null hypoth-
esis Ho : µ1 = µ2 = · · · = µm = µ. Recall that the likelihood ratio statistic
W can be found by evaluating

W =
max L(µ, σ2)

max L(µ1, µ2, ..., µm, σ2)
.

Using (13) and (14), we see that

W =

(
σ̂2

σ̂2
Ho

)mn
2

. (15)

Hence the likelihood ratio test to reject the null hypothesis Ho is given by
the inequality

W < k0

where k0 is a constant. Using (15) and simplifying, we get

σ̂2
Ho

σ̂2
> k1
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where k1 =
(

1
k0

) 2
mn

. Hence

SST/mn

SSW/mn
=

σ̂2
Ho

σ̂2
> k1.

Using Lemma 20.1 we have

SSW + SSB

SSW
> k1.

Therefore
SSB

SSW
> k (16)

where k = k1−1. In order to find the cutoff point k in (16), we use Theorem
20.2 (d). Therefore

F =
SSB/(m − 1)

SSW/(m(n − 1))
>

m(n − 1)
m − 1

k

Since F has F distribution, we obtain

m(n − 1)
m − 1

k = Fα(m − 1, m(n − 1)).

Thus, at a significance level α, reject the null hypothesis Ho if

F =
SSB/(m − 1)

SSW/(m(n − 1))
> Fα(m − 1, m(n − 1))

and the proof of the theorem is complete.

The various quantities used in carrying out the test described in Theorem
20.3 are presented in a tabular form known as the ANOVA table.

Source of Sums of Degree of Mean F-statistics
variation squares freedom squares F

Between SSB m − 1 MSB = SSB
m−1 F = MSB

MSW

Within SSW m(n − 1) MSW = SSW
m(n−1)

Total SST mn − 1

Table 20.1. One-Way ANOVA Table



Grand Mean

variation

Between
sample
variation

Within
sample

Key concepts in ANOVA

Analysis of Variance 622

At a significance level α, the likelihood ratio test is: “Reject the null
hypothesis Ho : µ1 = µ2 = · · · = µm = µ if F > Fα(m − 1, m(n − 1)).” One
can also use the notion of p−value to perform this hypothesis test. If the
value of the test statistics is F = γ, then the p-value is defined as

p − value = P (F (m − 1, m(n − 1)) ≥ γ).

Alternatively, at a significance level α, the likelihood ratio test is: “Reject
the null hypothesis Ho : µ1 = µ2 = · · · = µm = µ if p − value < α.”

The following figure illustrates the notions of between sample variation
and within sample variation.

The ANOVA model described in (2), that is

Yij = µi + εij for i = 1, 2, ..., m, j = 1, 2, ..., n,

can be rewritten as

Yij = µ + αi + εij for i = 1, 2, ..., m, j = 1, 2, ..., n,

where µ is the mean of the m values of µi, and
m∑

i=1

αi = 0. The quantity αi is

called the effect of the ith treatment. Thus any observed value is the sum of



Probability and Mathematical Statistics 623

an overall mean µ, a treatment or class deviation αi, and a random element
from a normally distributed random variable εij with mean zero and variance
σ2. This model is called model I, the fixed effects model. The effects of the
treatments or classes, measured by the parameters αi, are regarded as fixed
but unknown quantities to be estimated. In this fixed effect model the null
hypothesis H0 is now

Ho : α1 = α2 = · · · = αm = 0

and the alternative hypothesis is

Ha : not all the αi are zero.

The random effects model, also known as model II, is given by

Yij = µ + Ai + εij for i = 1, 2, ..., m, j = 1, 2, ..., n,

where µ is the overall mean and

Ai ∼ N(0, σ2
A) and εij ∼ N(0, σ2).

In this model, the variances σ2
A and σ2 are unknown quantities to be esti-

mated. The null hypothesis of the random effect model is Ho : σ2
A = 0 and

the alternative hypothesis is Ha : σ2
A > 0. In this chapter we do not consider

the random effect model.

Before we present some examples, we point out the assumptions on which
the ANOVA is based on. The ANOVA is based on the following three as-
sumptions:

(1) Independent Samples: The samples taken from the population under
consideration should be independent of one another.

(2) Normal Population: For each population, the variable under considera-
tion should be normally distributed.

(3) Equal Variance: The variances of the variables under consideration
should be the same for all the populations.

Example 20.1. The data in the following table gives the number of hours of
relief provided by 5 different brands of headache tablets administered to 25
subjects experiencing fevers of 38oC or more. Perform the analysis of variance
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and test the hypothesis at the 0.05 level of significance that the mean number
of hours of relief provided by the tablets is same for all 5 brands.

Tablets
A B C D F

5 9 3 2 7
4 7 5 3 6
8 8 2 4 9
6 6 3 1 4
3 9 7 4 7

Answer: Using the formulas (8), (9) and (10), we compute the sum of
squares SSW, SSB and SST as

SSW = 57.60, SSB = 79.94, and SST = 137.04.

The ANOVA table for this problem is shown below.

Source of Sums of Degree of Mean F-statistics
variation squares freedom squares F

Between 79.94 4 19.86 6.90

Within 57.60 20 2.88

Total 137.04 24

At the significance level α = 0.05, we find the F-table that F0.05(4, 20) =
2.8661. Since

6.90 = F > F0.05(4, 20) = 2.8661

we reject the null hypothesis that the mean number of hours of relief provided
by the tablets is same for all 5 brands.

Note that using a statistical package like MINITAB, SAS or SPSS we
can compute the p-value to be

p − value = P (F (4, 20) ≥ 6.90) = 0.001.

Hence again we reach the same conclusion since p-value is less then the given
α for this problem.
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Example 20.2. Perform the analysis of variance and test the null hypothesis
at the 0.05 level of significance for the following two data sets.

Data Set 1 Data Set 2

Sample Sample
A B C A B C

8.1 8.0 14.8 9.2 9.5 9.4
4.2 15.1 5.3 9.1 9.5 9.3
14.7 4.7 11.1 9.2 9.5 9.3
9.9 10.4 7.9 9.2 9.6 9.3
12.1 9.0 9.3 9.3 9.5 9.2
6.2 9.8 7.4 9.2 9.4 9.3

Answer: Computing the sum of squares SSW, SSB and SST, we have the
following two ANOVA tables:

Source of Sums of Degree of Mean F-statistics
variation squares freedom squares F

Between 0.3 2 0.1 0.01

Within 187.2 15 12.5

Total 187.5 17

and

Source of Sums of Degree of Mean F-statistics
variation squares freedom squares F

Between 0.280 2 0.140 35.0

Within 0.600 15 0.004

Total 0.340 17
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At the significance level α = 0.05, we find from the F-table that F0.05(2, 15) =
3.68. For the first data set, since

0.01 = F < F0.05(2, 15) = 3.68

we do not reject the null hypothesis whereas for the second data set,

35.0 = F > F0.05(2, 15) = 3.68

we reject the null hypothesis.

Remark 20.1. Note that the sample means are same in both the data
sets. However, there is a less variation among the sample points in samples
of the second data set. The ANOVA finds a more significant differences
among the means in the second data set. This example suggests that the
larger the variation among sample means compared with the variation of
the measurements within samples, the greater is the evidence to indicate a
difference among population means.

20.2. One-Way Analysis of Variance with Unequal Sample Sizes

In the previous section, we examined the theory of ANOVA when sam-
ples are same sizes. When the samples are same sizes we say that the ANOVA
is in the balanced case. In this section we examine the theory of ANOVA
for unbalanced case, that is when the samples are of different sizes. In ex-
perimental work, one often encounters unbalance case due to the death of
experimental animals in a study or drop out of the human subjects from
a study or due to damage of experimental materials used in a study. Our
analysis of the last section for the equal sample size will be valid but have to
be modified to accommodate the different sample size.

Consider m independent samples of respective sizes n1, n2, ..., nm, where
the members of the ith sample, Yi1, Yi2, ..., Yini , are normal random variables
with mean µi and unknown variance σ2. That is,

Yij ∼ N
(
µi, σ

2
)
, i = 1, 2, ..., m, j = 1, 2, ..., ni.

Let us denote N = n1 + n2 + · · ·nm. Again, we will be interested in testing
the null hypothesis

Ho : µ1 = µ2 = · · · = µm = µ
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against the alternative hypothesis

Ha : not all the means are equal.

Now we defining

Y i• =
1
ni

n∑
j=1

Yij , (17)

Y •• =
1
N

m∑
i=1

ni∑
j=1

Yij , (18)

SST =
m∑

i=1

ni∑
j=1

(
Yij − Y ••

)2
, (19)

SSW =
m∑

i=1

ni∑
j=1

(
Yij − Y i•

)2
, (20)

and

SSB =
m∑

i=1

ni∑
j=1

(
Y i• − Y ••

)2
(21)

we have the following results analogous to the results in the previous section.

Theorem 20.4. Suppose the one-way ANOVA model is given by the equa-
tion (2) where the εij ’s are independent and normally distributed random
variables with mean zero and variance σ2 for i = 1, 2, ..., m and j = 1, 2, ..., ni.
Then the MLE’s of the parameters µi (i = 1, 2, ..., m) and σ2 of the model
are given by

µ̂i = Y i• i = 1, 2, ..., m,

σ̂2 =
1
N

SSW,

where Y i• = 1
ni

ni∑
j=1

Yij and SSW =
m∑

i=1

ni∑
j=1

(
Yij − Y i•

)2
is the within samples

sum of squares.

Lemma 20.2. The total sum of squares is equal to the sum of within and
between sum of squares, that is SST = SSW + SSB.

Theorem 20.5. Consider the ANOVA model

Yij = µi + εij i = 1, 2, ..., m, j = 1, 2, ..., ni,
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where Yij ∼ N
(
νi, σ

2
)
. Then

(a) the random variable SSW
σ2 ∼ χ2 (N − m), and

(b) the statistics SSW and SSB are independent.

Further, if the null hypothesis Ho : µ1 = µ2 = · · · = µm = µ is true, then

(c) the random variable SSB
σ2 ∼ χ2(m − 1),

(d) the statistics SSB m(n−1)
SSW(m−1) ∼ F (m − 1, N − m), and

(e) the random variable SST
σ2 ∼ χ2(N − 1).

Theorem 20.6. Suppose the one-way ANOVA model is given by the equa-
tion (2) where the εij ’s are independent and normally distributed random
variables with mean zero and variance σ2 for i = 1, 2, ..., m and j = 1, 2, ..., ni.
The null hypothesis Ho : µ1 = µ2 = · · · = µm = µ is rejected whenever the
test statistics F satisfies

F =
SSB/(m − 1)

SSW/(N − m)
> Fα(m − 1, N − m),

where α is the significance level of the hypothesis test and Fα(m−1, N −m)
denotes the 100(1−α) percentile of the F -distribution with m−1 numerator
and N − m denominator degrees of freedom.

The corresponding ANOVA table for this case is

Source of Sums of Degree of Mean F-statistics
variation squares freedom squares F

Between SSB m − 1 MSB = SSB
m−1 F = MSB

MSW

Within SSW N − m MSW = SSW
N−m

Total SST N − 1

Table 20.2. One-Way ANOVA Table with unequal sample size

Example 20.3. Three sections of elementary statistics were taught by dif-
ferent instructors. A common final examination was given. The test scores
are given in the table below. Perform the analysis of variance and test the
hypothesis at the 0.05 level of significance that there is a difference in the
average grades given by the three instructors.
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Elementary Statistics
Instructor A Instructor B Instructor C

75 90 17
91 80 81
83 50 55
45 93 70
82 53 61
75 87 43
68 76 89
47 82 73
38 78 58

80 70
33
79

Answer: Using the formulas (17) - (21), we compute the sum of squares
SSW, SSB and SST as

SSW = 10362, SSB = 755, and SST = 11117.

The ANOVA table for this problem is shown below.

Source of Sums of Degree of Mean F-statistics
variation squares freedom squares F

Between 755 2 377 1.02

Within 10362 28 370

Total 11117 30

At the significance level α = 0.05, we find the F-table that F0.05(2, 28) =
3.34. Since

1.02 = F < F0.05(2, 28) = 3.34

we accept the null hypothesis that there is no difference in the average grades
given by the three instructors.

Note that using a statistical package like MINITAB, SAS or SPSS we
can compute the p-value to be

p − value = P (F (2, 28) ≥ 1.02) = 0.374.
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Hence again we reach the same conclusion since p-value is less then the given
α for this problem.

We conclude this section pointing out the advantages of choosing equal
sample sizes (balance case) over the choice of unequal sample sizes (unbalance
case). The first advantage is that the F-statistics is insensitive to slight
departures from the assumption of equal variances when the sample sizes are
equal. The second advantage is that the choice of equal sample size minimizes
the probability of committing a type II error.

20.3. Pair wise Comparisons

When the null hypothesis is rejected using the F -test in ANOVA, one
may still wants to know where the difference among the means is. There are
several methods to find out where the significant differences in the means
lie after the ANOVA procedure is performed. Among the most commonly
used tests are Scheffé test and Tuckey test. In this section, we give a brief
description of these tests.

In order to perform the Scheffé test, we have to compare the means two
at a time using all possible combinations of means. Since we have m means,
we need

(
m
2

)
pair wise comparisons. A pair wise comparison can be viewed as

a test of the null hypothesis H0 : µi = µk against the alternative Ha : µi 
= µk

for all i 
= k.

To conduct this test we compute the statistics

Fs =

(
Y i• − Y k•

)2

MSW

(
1
ni

+ 1
nk

) ,

where Y i• and Y k• are the means of the samples being compared, ni and
nk are the respective sample sizes, and MSW is the mean sum of squared of
within group. We reject the null hypothesis at a significance level of α if

Fs > (m − 1)Fα(m − 1, N − m)

where N = n1 + n2 + · · · + nm.

Example 20.4. Perform the analysis of variance and test the null hypothesis
at the 0.05 level of significance for the following data given in the table below.
Further perform a Scheffé test to determine where the significant differences
in the means lie.
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Sample
1 2 3

9.2 9.5 9.4
9.1 9.5 9.3
9.2 9.5 9.3
9.2 9.6 9.3
9.3 9.5 9.2
9.2 9.4 9.3

Answer: The ANOVA table for this data is given by

Source of Sums of Degree of Mean F-statistics
variation squares freedom squares F

Between 0.280 2 0.140 35.0

Within 0.600 15 0.004

Total 0.340 17

At the significance level α = 0.05, we find the F-table that F0.05(2, 15) =
3.68. Since

35.0 = F > F0.05(2, 15) = 3.68

we reject the null hypothesis. Now we perform the Scheffé test to determine
where the significant differences in the means lie. From given data, we obtain
Y 1• = 9.2, Y 2• = 9.5 and Y 3• = 9.3. Since m = 3, we have to make 3 pair
wise comparisons, namely µ1 with µ2, µ1 with µ3, and µ2 with µ3. First we
consider the comparison of µ1 with µ2. For this case, we find

Fs =

(
Y 1• − Y 2•

)2

MSW

(
1

n1
+ 1

n2

) =
(9.2 − 9.5)2

0.004
(

1
6 + 1

6

) = 67.5.

Since

67.5 = Fs > 2 F0.05(2, 15) = 7.36

we reject the null hypothesis H0 : µ1 = µ2 in favor of the alternative Ha :
µ1 
= µ2.
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Next we consider the comparison of µ1 with µ3. For this case, we find

Fs =

(
Y 1• − Y 3•

)2

MSW

(
1

n1
+ 1

n3

) =
(9.2 − 9.3)2

0.004
(

1
6 + 1

6

) = 7.5.

Since
7.5 = Fs > 2 F0.05(2, 15) = 7.36

we reject the null hypothesis H0 : µ1 = µ3 in favor of the alternative Ha :
µ1 
= µ3.

Finally we consider the comparison of µ2 with µ3. For this case, we find

Fs =

(
Y 2• − Y 3•

)2

MSW

(
1

n2
+ 1

n3

) =
(9.5 − 9.3)2

0.004
(

1
6 + 1

6

) = 30.0.

Since
30.0 = Fs > 2 F0.05(2, 15) = 7.36

we reject the null hypothesis H0 : µ2 = µ3 in favor of the alternative Ha :
µ2 
= µ3.

Next consider the Tukey test. Tuckey test is applicable when we have a
balanced case, that is when the sample sizes are equal. For Tukey test we
compute the statistics

Q =
Y i• − Y k•√

MSW

n

,

where Y i• and Y k• are the means of the samples being compared, n is the
size of the samples, and MSW is the mean sum of squared of within group.
At a significance level α, we reject the null hypothesis H0 if

|Q| > Qα(m, ν)

where ν represents the degrees of freedom for the error mean square.

Example 20.5. For the data given in Example 20.4 perform a Tukey test
to determine where the significant differences in the means lie.

Answer: We have seen that Y 1• = 9.2, Y 2• = 9.5 and Y 3• = 9.3.

First we compare µ1 with µ2. For this we compute

Q =
Y 1• − Y 2•√

MSW

n

=
9.2 − 9.3√

0.004
6

= −11.6189.
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Since
11.6189 = |Q| > Q0.05(2, 15) = 3.01

we reject the null hypothesis H0 : µ1 = µ2 in favor of the alternative Ha :
µ1 
= µ2.

Next we compare µ1 with µ3. For this we compute

Q =
Y 1• − Y 3•√

MSW

n

=
9.2 − 9.5√

0.004
6

= −3.8729.

Since
3.8729 = |Q| > Q0.05(2, 15) = 3.01

we reject the null hypothesis H0 : µ1 = µ3 in favor of the alternative Ha :
µ1 
= µ3.

Finally we compare µ2 with µ3. For this we compute

Q =
Y 2• − Y 3•√

MSW

n

=
9.5 − 9.3√

0.004
6

= 7.7459.

Since
7.7459 = |Q| > Q0.05(2, 15) = 3.01

we reject the null hypothesis H0 : µ2 = µ3 in favor of the alternative Ha :
µ2 
= µ3.

Often in scientific and engineering problems, the experiment dictates
the need for comparing simultaneously each treatment with a control. Now
we describe a test developed by C. W. Dunnett for determining significant
differences between each treatment mean and the control. Suppose we wish
to test the m hypotheses

H0 : µ0 = µi versus Ha : µ0 
= µi for i = 1, 2, ..., m,

where µ0 represents the mean yield for the population of measurements in
which the control is used. To test the null hypotheses specified by H0 against
two-sided alternatives for an experimental situation in which there are m

treatments, excluding the control, and n observation per treatment, we first
calculate

Di =
Y i• − Y 0•√

2 MSW

n

, i = 1, 2, ..., m.
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At a significance level α, we reject the null hypothesis H0 if

|Di| > Dα
2
(m, ν)

where ν represents the degrees of freedom for the error mean square. The
values of the quantity Dα

2
(m, ν) are tabulated for various α, m and ν.

Example 20.6. For the data given in the table below perform a Dunnett
test to determine any significant differences between each treatment mean
and the control.

Control Sample 1 Sample 2

9.2 9.5 9.4
9.1 9.5 9.3
9.2 9.5 9.3
9.2 9.6 9.3
9.3 9.5 9.2
9.2 9.4 9.3

Answer: The ANOVA table for this data is given by

Source of Sums of Degree of Mean F-statistics
variation squares freedom squares F

Between 0.280 2 0.140 35.0

Within 0.600 15 0.004

Total 0.340 17

At the significance level α = 0.05, we find that D0.025(2, 15) = 2.44. Since

35.0 = D > D0.025(2, 15) = 2.44

we reject the null hypothesis. Now we perform the Dunnett test to determine
if there is any significant differences between each treatment mean and the
control. From given data, we obtain Y 0• = 9.2, Y 1• = 9.5 and Y 2• = 9.3.
Since m = 2, we have to make 2 pair wise comparisons, namely µ0 with µ1,
and µ0 with µ2. First we consider the comparison of µ0 with µ1. For this
case, we find

D1 =
Y 1• − Y 0•√

2 MSW

n

=
9.5 − 9.2√

2 (0.004)
6

= 8.2158.
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Since

8.2158 = D1 > D0.025(2, 15) = 2.44

we reject the null hypothesis H0 : µ1 = µ0 in favor of the alternative Ha :
µ1 
= µ0.

Next we find

D2 =
Y 2• − Y 0•√

2 MSW

n

=
9.3 − 9.2√

2 (0.004)
6

= 2.7386.

Since

2.7386 = D2 > D0.025(2, 15) = 2.44

we reject the null hypothesis H0 : µ2 = µ0 in favor of the alternative Ha :
µ2 
= µ0.

20.4. Tests for the Homogeneity of Variances

One of the assumptions behind the ANOVA is the equal variance, that is
the variances of the variables under consideration should be the same for all
population. Earlier we have pointed out that the F-statistics is insensitive
to slight departures from the assumption of equal variances when the sample
sizes are equal. Nevertheless it is advisable to run a preliminary test for
homogeneity of variances. Such a test would certainly be advisable in the
case of unequal sample sizes if there is a doubt concerning the homogeneity
of population variances.

Suppose we want to test the null hypothesis

H0 : σ2
1 = σ2

2 = · · ·σ2
m

versus the alternative hypothesis

Ha : not all variances are equal.

A frequently used test for the homogeneity of population variances is the
Bartlett test. Bartlett (1937) proposed a test for equal variances that was
modification of the normal-theory likelihood ratio test.

We will use this test to test the above null hypothesis H0 against Ha.
First, we compute the m sample variances S2

1 , S2
2 , ..., S2

m from the samples of
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size n1, n2, ..., nm, with n1 + n2 + · · · + nm = N . The test statistics Bc is
given by

Bc =

(N − m) lnS2
p −

m∑
i=1

(ni − 1) lnS2
i

1 + 1
3 (m−1)

(
m∑

i=1

1
ni − 1

− 1
N − m

)
where the pooled variance S2

p is given by

S2
p =

m∑
i=1

(ni − 1)S2
i

N − m
= MSW.

It is known that the sampling distribution of Bc is approximately chi-square
with m − 1 degrees of freedom, that is

Bc ∼ χ2(m − 1)

when (ni − 1) ≥ 3. Thus the Bartlett test rejects the null hypothesis H0 :
σ2

1 = σ2
2 = · · ·σ2

m at a significance level α if

Bc > χ2
1−α(m − 1),

where χ2
1−α(m− 1) denotes the upper (1−α)100 percentile of the chi-square

distribution with m − 1 degrees of freedom.

Example 20.7. For the following data perform an ANOVA and then apply
Bartlett test to examine if the homogeneity of variances condition is met for
a significance level 0.05.

Data
Sample 1 Sample 2 Sample 3 Sample 4

34 29 32 34
28 32 34 29
29 31 30 32
37 43 42 28
42 31 32 32
27 29 33 34
29 28 29 29
35 30 27 31
25 37 37 30
29 44 26 37
41 29 29 43
40 31 31 42
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Answer: The ANOVA table for this data is given by

Source of Sums of Degree of Mean F-statistics
variation squares freedom squares F

Between 16.2 3 5.4 0.20

Within 1202.2 44 27.3

Total 1218.5 47

At the significance level α = 0.05, we find the F-table that F0.05(2, 44) =
3.23. Since

0.20 = F < F0.05(2, 44) = 3.23

we do not reject the null hypothesis.

Now we compute Bartlett test statistic Bc. From the data the variances
of each group can be found to be

S2
1 = 35.2836, S2

2 = 30.1401, S2
3 = 19.4481, S2

4 = 24.4036.

Further, the pooled variance is

S2
p = MSW = 27.3.

The statistics Bc is

Bc =

(N − m) lnS2
p −

m∑
i=1

(ni − 1) lnS2
i

1 + 1
3 (m−1)

(
m∑

i=1

1
ni − 1

− 1
N − m

)

=
44 ln 27.3 − 11 [ ln 35.2836 − ln 30.1401 − ln 19.4481 − ln 24.4036 ]

1 + 1
3 (4−1)

(
4

12−1 − 1
48−4

)
=

1.0537
1.0378

= 1.0153.

From chi-square table we find that χ2
0.95(3) = 7.815. Hence, since

1.0153 = Bc < χ2
0.95(3) = 7.815,
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we do not reject the null hypothesis that the variances are equal. Hence
Bartlett test suggests that the homogeneity of variances condition is met.

The Bartlett test assumes that the m samples should be taken from
m normal populations. Thus Bartlett test is sensitive to departures from
normality. The Levene test is an alternative to the Bartlett test that is less
sensitive to departures from normality. Levene (1960) proposed a test for the
homogeneity of population variances that considers the random variables

Wij =
(
Yij − Y i•

)2

and apply a one-way analysis of variance to these variables. If the F -test is
significant, the homogeneity of variances is rejected.

Levene (1960) also proposed using F -tests based on the variables

Wij = |Yij − Y i•|, Wij = ln |Yij − Y i•|, and Wij =
√
|Yij − Y i•|.

Brown and Forsythe (1974c) proposed using the transformed variables based
on the absolute deviations from the median, that is Wij = |Yij −Med(Yi•)|,
where Med(Yi•) denotes the median of group i. Again if the F -test is signif-
icant, the homogeneity of variances is rejected.

Example 20.8. For the data in Example 20.7 do a Levene test to examine
if the homogeneity of variances condition is met for a significance level 0.05.

Answer: From data we find that Y 1• = 33.00, Y 2• = 32.83, Y 3• = 31.83,
and Y 4• = 33.42. Next we compute Wij =

(
Yij − Y i•

)2
. The resulting

values are given in the table below.

Transformed Data
Sample 1 Sample 2 Sample 3 Sample 4

1 14.7 0.0 0.3
25 0.7 4.7 19.5
16 3.4 3.4 2.0
16 103.4 103.4 29.3
81 3.4 0.0 2.0
36 14.7 1.4 0.3
16 23.4 8.0 19.5
4 8.0 23.4 5.8
64 17.4 26.7 11.7
16 124.7 34.0 12.8
64 14.7 0.0 91.8
49 3.4 0.7 73.7
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Now we perform an ANOVA to the data given in the table above. The
ANOVA table for this data is given by

Source of Sums of Degree of Mean F-statistics
variation squares freedom squares F

Between 1430 3 477 0.46

Within 45491 44 1034

Total 46922 47

At the significance level α = 0.05, we find the F-table that F0.05(3, 44) =
2.84. Since

0.46 = F < F0.05(3, 44) = 2.84

we do not reject the null hypothesis that the variances are equal. Hence
Bartlett test suggests that the homogeneity of variances condition is met.

Although Bartlet test is most widely used test for homogeneity of vari-
ances a test due to Cochran provides a computationally simple procedure.
Cochran test is one of the best method for detecting cases where the variance
of one of the groups is much larger than that of the other groups. The test
statistics of Cochran test is give by

C =
max

1≤i≤m
S2

i

m∑
i=1

S2
i

.

The Cochran test rejects the null hypothesis H0 : σ2
1 = σ2

2 = · · ·σ2
m at a

significance level α if
C > Cα.

The critical values of Cα were originally published by Eisenhart et al (1947)
for some combinations of degrees of freedom ν and the number of groups m.
Here the degrees of freedom ν are

ν = max
1≤i≤m

(ni − 1).

Example 20.9. For the data in Example 20.7 perform a Cochran test to
examine if the homogeneity of variances condition is met for a significance
level 0.05.



Analysis of Variance 640

Answer: From the data the variances of each group can be found to be

S2
1 = 35.2836, S2

2 = 30.1401, S2
3 = 19.4481, S2

4 = 24.4036.

Hence the test statistic for Cochran test is

C =
35.2836

35.2836 + 30.1401 + 19.4481 + 24.4036
=

35.2836
109.2754

= 0.3328.

The critical value C0.5(3, 11) is given by 0.4884. Since

0.3328 = C < C0.5(3, 11) = 0.4884.

At a significance level α = 0.05, we do not reject the null hypothesis that
the variances are equal. Hence Cochran test suggests that the homogeneity
of variances condition is met.

20.5. Exercises

1. A consumer organization wants to compare the prices charged for a par-
ticular brand of refrigerator in three types of stores in Louisville: discount
stores, department stores and appliance stores. Random samples of 6 stores
of each type were selected. The results were shown below.

Discount Department Appliance

1200 1700 1600
1300 1500 1500
1100 1450 1300
1400 1300 1500
1250 1300 1700
1150 1500 1400

At the 0.05 level of significance, is there any evidence of a difference in the
average price between the types of stores?

2. It is conjectured that a certain gene might be linked to ovarian cancer.
The ovarian cancer is sub-classified into three categories: stage I, stage II and
stage III-IV. There are three random samples available; one from each stage.
The samples are labelled with three colors dyes and hybridized on a four
channel cDNA microarray (one channel remains unused). The experiment is
repeated 5 times and the following data were obtained.



Probability and Mathematical Statistics 641

Microarray Data
Array mRNA 1 mRNA 2 mRNA 3

1 100 95 70
2 90 93 72
3 105 79 81
4 83 85 74
5 78 90 75

Is there any difference between the three mRNA samples at 0.05 significance
level?
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Chapter 21

GOODNESS OF FITS
TESTS

In point estimation, interval estimation or hypothesis test we always
started with a random sample X1, X2, ..., Xn of size n from a known dis-
tribution. In order to apply the theory to data analysis one has to know
the distribution of the sample. Quite often the experimenter (or data ana-
lyst) assumes the nature of the sample distribution based on his subjective
knowledge.

Goodness of fit tests are performed to validate experimenter opinion
about the distribution of the population from where the sample is drawn.
The most commonly known and most frequently used goodness of fit tests
are the Kolmogorov-Smirnov (KS) test and the Pearson chi-square (χ2) test.
There is a controversy over which test is the most powerful, but the gen-
eral feeling seems to be that the Kolmogorov-Smirnov test is probably more
powerful than the chi-square test in most situations. The KS test measures
the distance between distribution functions, while the χ2 test measures the
distance between density functions. Usually, if the population distribution
is continuous, then one uses the Kolmogorov-Smirnov where as if the pop-
ulation distribution is discrete, then one performs the Pearson’s chi-square
goodness of fit test.

21.1. Kolmogorov-Smirnov Test

Let X1, X2, ..., Xn be a random sample from a population X. We hy-
pothesized that the distribution of X if F (x). Further, we wish to test our
hypothesis. Thus our null hypothesis is

Ho : X ∼ F (x).
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We would like to design a test of this null hypothesis against the alternative
Ha : X 
∼ F (x).

In order to design a test, first of all we need a statistic which will unbias-
edly estimate the unknown distribution F (x) of the population X using the
random sample X1, X2, ..., Xn. Let x(1) < x(2) < · · · < x(n) be the observed
values of the ordered statistics X(1), X(2), ..., X(n). The empirical distribution
of the random sample is defined as

Fn(x) =


0 if x < x(1),

k
n if x(k) ≤ x < x(k+1), for k = 1, 2, ..., n − 1,

1 if x(n) ≤ x.

The graph of the empirical distribution function F4(x) is shown below.

For a fixed value of x, the empirical distribution function can be considered
as a random variable that takes on the values

0,
1
n

,
2
n

, ...,
n − 1

n
,

n

n
.

First we show that Fn(x) is an unbiased estimator of the population distri-
bution F (x). That is,

E(Fn(x)) = F (x) (1)
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for a fixed value of x. To establish (1), we need the probability density
function of the random variable Fn(x). From the definition of the empirical
distribution we see that if exactly k observations are less than or equal to x,
then

Fn(x) =
k

n

which is

n Fn(x) = k.

The probability that an observation is less than or equal to x is given by
F (x).

Hence (see figure above)

P (n Fn(x) = k) = P

(
Fn(x) =

k

n

)
=

(
n

k

)
[F (x)]k [1 − F (x)]n−k

for k = 0, 1, ..., n. Thus

n Fn(x) ∼ BIN(n, F (x)).



Goodness of Fit Tests 646

Thus the expected value of the random variable n Fn(x) is given by

E(n Fn(x)) = n F (x)

n E(Fn(x)) = n F (x)

E(Fn(x)) = F (x).

This shows that, for a fixed x, Fn(x), on an average, equals to the population
distribution function F (x). Hence the empirical distribution function Fn(x)
is an unbiased estimator of F (x).

Since n Fn(x) ∼ BIN(n, F (x)), the variance of n Fn(x) is given by

V ar(n Fn(x)) = n F (x) [1 − F (x)].

Hence the variance of Fn(x) is

V ar(Fn(x)) =
F (x) [1 − F (x)]

n
.

It is easy to see that V ar(Fn(x)) → 0 as n → ∞ for all values of x. Thus
the empirical distribution function Fn(x) and F (x) tend to be closer to each
other with large n. As a matter of fact, Glivenkno, a Russian mathemati-
cian, proved that Fn(x) converges to F (x) uniformly in x as n → ∞ with
probability one.

Because of the convergence of the empirical distribution function to the
theoretical distribution function, it makes sense to construct a goodness of
fit test based on the closeness of Fn(x) and hypothesized distribution F (x).

Let
Dn = max

x∈ IR
|Fn(x) − F (x)|.

That is Dn is the maximum of all pointwise differences |Fn(x) − F (x)|. The
distribution of the Kolmogorov-Smirnov statistic, Dn can be derived. How-
ever, we shall not do that here as the derivation is quite involved. In stead,
we give a closed form formula for P (Dn ≤ d). If X1, X2, ..., Xn is a sample
from a population with continuous distribution function F (x), then

P (Dn ≤ d) =


0 if d ≤ 1

2 n

n!
n∏

i=1

∫ 2 i− 1
n +d

2 i−d

du if 1
2n < d < 1

1 if d ≥ 1
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where du = du1du2 · · · dun with 0 < u1 < u2 < · · · < un < 1. Further,

lim
n→∞

P (
√

n Dn ≤ d) = 1 − 2
∞∑

k=1

(−1)k−1e−2 k2 d2
.

These formulas show that the distribution of the Kolmogorov-Smirnov statis-
tic Dn is distribution free, that is, it does not depend on the distribution F

of the population.

For most situations, it is sufficient to use the following approximations
due to Kolmogorov:

P (
√

n Dn ≤ d) ≈ 1 − 2e−2nd2
for d >

1√
n

.

If the null hypothesis Ho : X ∼ F (x) is true, the statistic Dn is small. It
is therefore reasonable to reject Ho if and only if the observed value of Dn

is larger than some constant dn. If the level of significance is given to be α,
then the constant dn can be found from

α = P (Dn > dn / Ho is true) ≈ 2e−2nd2
n .

This yields the following hypothesis test: Reject Ho if Dn ≥ dn where

dn =

√
− 1

2n
ln

(α

2

)
is obtained from the above Kolmogorov’s approximation. Note that the ap-
proximate value of d12 obtained by the above formula is equal to 0.3533 when
α = 0.1, however more accurate value of d12 is 0.34.

Next we address the issue of the computation of the statistics Dn. Let
us define

D+
n = max

x∈ IR
{Fn(x) − F (x)}

and
D−

n = max
x∈ IR

{F (x) − Fn(x)}.

Then it is easy to see that

Dn = max{D+
n , D−

N}.

Further it can be shown that

D+
n = max

{
max

1≤i≤n

[
i

n
− F (x(i))

]
, 0

}
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and

D−
n = max

{
max

1≤i≤n

[
F (x(i)) −

i − 1
n

]
, 0

}
.

Therefore it can also be shown that

Dn = max
1≤i≤n

{
max

[
i

n
− F (x(i)), F (x(i)) −

i − 1
n

]}
,

where Fn(x(i)) = i
n . The following figure illustrates the Kolmogorov-Smirnov

statistics Dn when n = 4.

Example 21.1. The data on the heights of 12 infants are given be-
low: 18.2, 21.4, 22.6, 17.4, 17.6, 16.7, 17.1, 21.4, 20.1, 17.9, 16.8, 23.1. Test
the hypothesis that the data came from some normal population at a sig-
nificance level α = 0.1.

Answer: Here, the null hypothesis is

Ho : X ∼ N(µ, σ2).

First we estimate µ and σ2 from the data. Thus, we get

x =
230.3
12

= 19.2.
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and

s2 =
4482.01 − 1

12 (230.3)2

12 − 1
=

62.17
11

= 5.65.

Hence s = 2.38. Then by the null hypothesis

F (x(i)) = P

(
Z ≤ x(i) − 19.2

2.38

)
where Z ∼ N(0, 1) and i = 1, 2, ..., n. Next we compute the Kolmogorov-
Smirnov statistic Dn the given sample of size 12 using the following tabular
form.

i x(i) F (x(i)) i
12 − F (x(i)) F (x(i)) − i−1

12

1 16.7 0.1469 −0.0636 0.1469
2 16.8 0.1562 0.0105 0.0729
3 17.1 0.1894 0.0606 0.0227
4 17.4 0.2236 0.1097 −0.0264
5 17.6 0.2514 0.1653 −0.0819
6 17.9 0.2912 0.2088 −0.1255
7 18.2 0.3372 0.2461 −0.1628
8 20.1 0.6480 0.0187 0.0647
9 21.4 0.8212 0.0121 0.0712

10 21.4
11 22.6 0.9236 −0.0069 0.0903
12 23.1 0.9495 0.0505 0.0328

Thus
D12 = 0.2461.

From the tabulated value, we see that d12 = 0.34 for significance level α =
0.1. Since D12 is smaller than d12 we accept the null hypothesis Ho : X ∼
N(µ, σ2). Hence the data came from a normal population.

Example 21.2. Let X1, X2, ..., X10 be a random sample from a distribution
whose probability density function is

f(x) =

{ 1 if 0 < x < 1

0 otherwise.

Based on the observed values 0.62, 0.36, 0.23, 0.76, 0.65, 0.09, 0.55, 0.26,

0.38, 0.24, test the hypothesis Ho : X ∼ UNIF (0, 1) against Ha : X 
∼
UNIF (0, 1) at a significance level α = 0.1.
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Answer: The null hypothesis is Ho : X ∼ UNIF (0, 1). Thus

F (x) =

{ 0 if x < 0
x if 0 ≤ x < 1
1 if x ≥ 1.

Hence
F (x(i)) = x(i) for i = 1, 2, ..., n.

Next we compute the Kolmogorov-Smirnov statistic Dn the given sample of
size 10 using the following tabular form.

i x(i) F (x(i)) i
10 − F (x(i)) F (x(i)) − i−1

10

1 0.09 0.09 0.01 0.09
2 0.23 0.23 −0.03 0.13
3 0.24 0.24 0.06 0.04
4 0.26 0.26 0.14 −0.04
5 0.36 0.36 0.14 −0.04
6 0.38 0.38 0.22 −0.12
7 0.55 0.55 0.15 −0.05
8 0.62 0.62 0.18 −0.08
9 0.65 0.65 0.25 −0.15

10 0.76 0.76 0.24 −0.14

Thus
D10 = 0.25.

From the tabulated value, we see that d10 = 0.37 for significance level α = 0.1.
Since D10 is smaller than d10 we accept the null hypothesis

Ho : X ∼ UNIF (0, 1).

21.2 Chi-square Test

The chi-square goodness of fit test was introduced by Karl Pearson in
1900. Recall that the Kolmogorov-Smirnov test is only for testing a specific
continuous distribution. Thus if we wish to test the null hypothesis

Ho : X ∼ BIN(n, p)

against the alternative Ha : X 
∼ BIN(n, p), then we can not use the
Kolmogorov-Smirnov test. Pearson chi-square goodness of fit test can be
used for testing of null hypothesis involving discrete as well as continuous
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distribution. Unlike Kolmogorov-Smirnov test, the Pearson chi-square test
uses the density function the population X.

Let X1, X2, ..., Xn be a random sample from a population X with prob-
ability density function f(x). We wish to test the null hypothesis

Ho : X ∼ f(x)

against
Ha : X 
∼ f(x).

If the probability density function f(x) is continuous, then we divide up the
abscissa of the probability density function f(x) and calculate the probability
pi for each of the interval by using

pi =
∫ xi

xi−1

f(x) dx,

where {x0, x1, ..., xn} is a partition of the domain of the f(x).

Let Y1, Y2, ..., Ym denote the number of observations (from the random sample
X1, X2, ..., Xn) is 1st, 2nd, 3rd, ..., mth interval, respectively.

Since the sample size is n, the number of observations expected to fall in
the ith interval is equal to npi. Then

Q =
m∑

i=1

(Yi − npi)2

npi
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measures the closeness of observed Yi to expected number npi. The distribu-
tion of Q is chi-square with m− 1 degrees of freedom. The derivation of this
fact is quite involved and beyond the scope of this introductory level book.

Although the distribution of Q for m > 2 is hard to derive, yet for m = 2
it not very difficult. Thus we give a derivation to convince the reader that Q

has χ2 distribution. Notice that Y1 ∼ BIN(n, p1). Hence for large n by the
central limit theorem, we have

Y1 − n p1√
n p1 (1 − p1)

∼ N(0, 1).

Thus
(Y1 − n p1)2

n p1 (1 − p1)
∼ χ2(1).

Since
(Y1 − n p1)2

n p1 (1 − p1)
=

(Y1 − n p1)2

n p1
+

(Y1 − n p1)2

n (1 − p1)
,

we have This implies that

(Y1 − n p1)2

n p1
+

(Y1 − n p1)2

n (1 − p1)
∼ χ2(1)

which is
(Y1 − n p1)2

n p1
+

(n − Y2 − n + n p2)2

n p2
∼ χ2(1)

due to the facts that Y1 + Y2 = n and p1 + p2 = 1. Hence

2∑
i=1

(Yi − n pi)2

n pi
∼ χ2(1),

that is, the chi-square statistic Q has approximate chi-square distribution.

Now the simple null hypothesis

H0 : p1 = p10, p2 = p20, · · · pm = pm0

is to be tested against the composite alternative

Ha : at least one pi is not equal to pi0 for some i.

Here p10, p20, ..., pm0 are fixed probability values. If the null hypothesis is
true, then the statistic

Q =
m∑

i=1

(Yi − n pi0)2

n pi0
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has an approximate chi-square distribution with m − 1 degrees of freedom.
If the significance level α of the hypothesis test is given, then

α = P
(
Q ≥ χ2

1−α(m − 1)
)

and the test is “Reject Ho if Q ≥ χ2
1−α(m − 1).” Here χ2

1−α(m − 1) denotes
a real number such that the integral of the chi-square density function with
m−1 degrees of freedom from zero to this real number χ2

1−α(m−1) is 1−α.
Now we give several examples to illustrate the chi-square goodness-of-fit test.

Example 21.3. A die was rolled 30 times with the results shown below:

Number of spots 1 2 3 4 5 6
Frequency (xi) 1 4 9 9 2 5

If a chi-square goodness of fit test is used to test the hypothesis that the die
is fair at a significance level α = 0.05, then what is the value of the chi-square
statistic and decision reached?

Answer: In this problem, the null hypothesis is

Ho : p1 = p2 = · · · = p6 =
1
6
.

The alternative hypothesis is that not all pi’s are equal to 1
6 . The test will

be based on 30 trials, so n = 30. The test statistic

Q =
6∑

i=1

(xi − n pi)2

n pi
,

where p1 = p2 = · · · = p6 = 1
6 . Thus

n pi = (30)
1
6

= 5

and

Q =
6∑

i=1

(xi − n pi)2

n pi

=
6∑

i=1

(xi − 5)2

5

=
1
5

[16 + 1 + 16 + 16 + 9]

=
58
5

= 11.6.
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The tabulated χ2 value for χ2
0.95(5) is given by

χ2
0.95(5) = 11.07.

Since
11.6 = Q > χ2

0.95(5) = 11.07

the null hypothesis Ho : p1 = p2 = · · · = p6 = 1
6 should be rejected.

Example 21.4. It is hypothesized that an experiment results in outcomes
K, L, M and N with probabilities 1

5 , 3
10 , 1

10 and 2
5 , respectively. Forty

independent repetitions of the experiment have results as follows:

Outcome K L M N
Frequency 11 14 5 10

If a chi-square goodness of fit test is used to test the above hypothesis at the
significance level α = 0.01, then what is the value of the chi-square statistic
and the decision reached?

Answer: Here the null hypothesis to be tested is

Ho : p(K) =
1
5
, p(L) =

3
10

, p(M) =
1
10

, p(N) =
2
5
.

The test will be based on n = 40 trials. The test statistic

Q =
4∑

k=1

(xk − npk)2

n pk

=
(x1 − 8)2

8
+

(x2 − 12)2

12
+

(x3 − 4)2

4
+

(x4 − 16)2

16

=
(11 − 8)2

8
+

(14 − 12)2

12
+

(5 − 4)2

4
+

(10 − 16)2

16

=
9
8

+
4
12

+
1
4

+
36
16

=
95
24

= 3.958.

From chi-square table, we have

χ2
0.99(3) = 11.35.

Thus
3.958 = Q < χ2

0.99(3) = 11.35.



Probability and Mathematical Statistics 655

Therefore we accept the null hypothesis.

Example 21.5. Test at the 10% significance level the hypothesis that the
following data

06.88 06.92 04.80 09.85 07.05 19.06 06.54 03.67 02.94 04.89
69.82 06.97 04.34 13.45 05.74 10.07 16.91 07.47 05.04 07.97
15.74 00.32 04.14 05.19 18.69 02.45 23.69 44.10 01.70 02.14
05.79 03.02 09.87 02.44 18.99 18.90 05.42 01.54 01.55 20.99
07.99 05.38 02.36 09.66 00.97 04.82 10.43 15.06 00.49 02.81

give the values of a random sample of size 50 from an exponential distribution
with probability density function

f(x; θ) =


1
θ e−

x
θ if 0 < x < ∞

0 elsewhere,

where θ > 0.

Answer: From the data x = 9.74 and s = 11.71. Notice that

Ho : X ∼ EXP (θ).

Hence we have to partition the domain of the experimental distribution into
m parts. There is no rule to determine what should be the value of m. We
assume m = 10 (an arbitrary choice for the sake of convenience). We partition
the domain of the given probability density function into 10 mutually disjoint
sets of equal probability. This partition can be found as follow.

Note that x estimate θ. Thus

θ̂ = x = 9.74.

Now we compute the points x1, x2, ..., x10 which will be used to partition the
domain of f(x)

1
10

=
∫ x1

xo

1
θ

e−
x
θ

= −
[
e−

x
θ

]x1

0

= 1 − e−
x1
θ .

Hence

x1 = θ ln
(

10
9

)
= 9.74 ln

(
10
9

)
= 1.026.
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Using the value of x1, we can find the value of x2. That is

1
10

=
∫ x2

x1

1
θ

e−
x
θ

= e−
x1
θ − e−

x2
θ .

Hence

x2 = −θ ln
(

e−
x1
θ − 1

10

)
.

In general

xk = −θ ln
(

e−
xk−1

θ − 1
10

)
for k = 1, 2, ..., 9, and x10 = ∞. Using these xk’s we find the intervals
Ak = [xk, xk+1) which are tabulates in the table below along with the number
of data points in each each interval.

Interval Ai Frequency (oi) Expected value (ei)
[0, 1.026) 3 5
[1.026, 2.173) 4 5
[2.173, 3.474) 6 5
[3.474, 4.975) 6 5
[4.975, 6.751) 7 5
[6.751, 8.925) 7 5
[8.925, 11.727) 5 5
[11.727, 15.676) 2 5
[15.676, 22.437) 7 5
[22.437, ∞) 3 5
Total 50 50

From this table, we compute the statistics

Q =
10∑

i=1

(oi − ei)2

ei
= 6.4.

and from the chi-square table, we obtain

χ2
0.9(9) = 14.68.

Since
6.4 = Q < χ2

0.9(9) = 14.68
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we accept the null hypothesis that the sample was taken from a population
with exponential distribution.

21.3. Review Exercises

1. The data on the heights of 4 infants are: 18.2, 21.4, 16.7 and 23.1. For
a significance level α = 0.1, use Kolmogorov-Smirnov Test to test the hy-
pothesis that the data came from some uniform population on the interval
(15, 25). (Use d4 = 0.56 at α = 0.1.)

2. A four-sided die was rolled 40 times with the following results

Number of spots 1 2 3 4

Frequency 5 9 10 16

If a chi-square goodness of fit test is used to test the hypothesis that the die
is fair at a significance level α = 0.05, then what is the value of the chi-square
statistic?

3. A coin is tossed 500 times and k heads are observed. If the chi-squares
distribution is used to test the hypothesis that the coin is unbiased, this
hypothesis will be accepted at 5 percents level of significance if and only if k

lies between what values? (Use χ2
0.05(1) = 3.84.)
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ANSWERES
TO

SELECTED
REVIEW EXERCISES

CHAPTER 1

1. 7
1912 .

2. 244.
3. 7488.
4. (a) 4

24 , (b) 6
24 and (c) 4

24 .
5. 0.95.
6. 4

7 .
7. 2

3 .
8. 7560.
10. 43.
11. 2.
12. 0.3238.
13. S has countable number of elements.
14. S has uncountable number of elements.
15. 25

648 .
16. (n − 1)(n − 2)

(
1
2

)n+1.
17. (5!)2.
18. 7

10 .
19. 1

3 .
20. n+1

3n−1 .
21. 6

11 .
22. 1

5 .
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CHAPTER 2

1. 1
3 .

2. (6!)2

(21)6 .

3. 0.941.

4. 4
5 .

5. 6
11 .

6. 255
256 .

7. 0.2929.

8. 10
17 .

9. 30
31 .

10. 7
24 .

11. ( 4
10 )( 3

6 )
( 4

10 ) ( 3
6 )+( 6

10 ) ( 2
5 )

.

12. (0.01) (0.9)
(0.01) (0.9)+(0.99) (0.1) .

13. 1
5 .

14. 2
9 .

15. (a)
(

2
5

) (
4
52

)
+

(
3
5

) (
4
16

)
and (b) ( 3

5 )( 4
16 )

( 2
5 ) ( 4

52 )+( 3
5 ) ( 4

16 )
.

16. 1
4 .

17. 3
8 .

18. 5.

19. 5
42 .

20. 1
4 .
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CHAPTER 3

1. 1
4 .

2. k+1
2k+1 .

3. 1
3√2

.

4. Mode of X = 0 and median of X = 0.

5. θ ln
(

10
9

)
.

6. 2 ln 2.

7. 0.25.

8. f(2) = 0.5, f(3) = 0.2, f(π) = 0.3.

9. f(x) = 1
6x3e−x.

10. 3
4 .

11. a = 500, mode = 0.2, and P (X ≥ 0.2) = 0.6766.

12. 0.5.

13. 0.5.

14. 1 − F (−y).

15. 1
4 .

16. RX = {3, 4, 5, 6, 7, 8, 9};
f(3) = f(4) = 2

20 , f(5) = f(6) = f(7) = 4
20 , f(8) = f(9) = 2

20 .

17. RX = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
f(2) = 1

36 , f(3) = 2
36 , f(4) = 3

36 , f(5) = 4
36 , f(6) = 5

36 , f(7) = 6
36 , f(8) =

5
36 , f(9) = 4

36 , f(10) = 3
36 , f(11) = 2

36 , f(12) = 1
36 .

18. RX = {0, 1, 2, 3, 4, 5};
f(0) = 59049

105 , f(1) = 32805
105 , f(2) = 7290

105 , f(3) = 810
105 , f(4) = 45

105 , f(5) = 1
105 .

19. RX = {1, 2, 3, 4, 5, 6, 7};
f(1) = 0.4, f(2) = 0.2666, f(3) = 0.1666, f(4) = 0.0952, f(5) =

0.0476, f(6) = 0.0190, f(7) = 0.0048.

20. c = 1 and P (X = even) = 1
4 .

21. c = 1
2 , P (1 ≤ X ≤ 2) = 3

4 .

22. c = 3
2 and P

(
X ≤ 1

2

)
= 3

16 .
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CHAPTER 4

1. −0.995.

2. (a) 1
33 , (b) 12

33 , (c) 65
33 .

3. (c) 0.25, (d) 0.75, (e) 0.75, (f) 0.

4. (a) 3.75, (b) 2.6875, (c) 10.5, (d) 10.75, (e) −71.5.

5. (a) 0.5, (b) π, (c) 3
10 π.

6. 17
24

1√
θ
.

7. 4

√
1

E(x2) .

8. 8
3 .

9. 280.

10. 9
20 .

11. 5.25.

12. a = 4h3
√

π
, E(X) = 2

h
√

π
, V ar(X) = 1

h2

[
3
2 − 4

π

]
.

13. E(X) = 7
4 , E(Y ) = 7

8 .

14. − 2
38 .

15. −38.

16. M(t) = 1 + 2t + 6t2 + · · ·.
17. 1

4 .

18. βn
∏n−1

i=1 (k + i).

19. 1
4

[
3e2t + e3t

]
.

20. 120.

21. E(X) = 3, V ar(X) = 2.

22. 11.

23. c = E(X).

24. F (c) = 0.5.

25. E(X) = 0, V ar(X) = 2.

26. 1
625 .

27. 38.

28. a = 5 and b = −34 or a = −5 and b = 36.

29. −0.25.

30. 10.

31. − 1
1−p p ln p.
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CHAPTER 5

1. 5
16 .

2. 5
16 .

3. 25
72 .

4. 4375
279936 .

5. 3
8 .

6. 11
16 .

7. 0.008304.

8. 3
8 .

9. 1
4 .

10. 0.671.

11. 1
16 .

12. 0.0000399994.

13. n2−3n+2
2n+1 .

14. 0.2668.

15. ( 6
3−k) (4

k)
(10

3 ) , 0 ≤ k ≤ 3.

16. 0.4019.

17. 1 − 1
e2 .

18.
(
x−1

2

) (
1
6

)3 (
5
6

)x−3.

19. 5
16 .

20. 0.22345.

21. 1.43.

22. 24.

23. 26.25.

24. 2.

25. 0.3005.

26. 4
e4−1 .

27. 0.9130.

28. 0.1239.
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1. f(x) = e−x 0 < x < ∞.
2. Y ∼ UNIF (0, 1).
3. f(w) = 1

w
√

2πσ2 e−
1
2 ( ln w−µ

σ )2

.
4. 0.2313.
5. 3 ln 4.
6. 20.1σ.
7. 3

4 .
8. 2.0.
9. 53.04.
10. 44.5314.
11. 75.
12. 0.4649.
13. n!

θn .
14. 0.8664.
15. e

1
2 k2

.
16. 1

a .
17. 64.3441.

18. g(y) =

{ 4
y3 if 0 < y <

√
2

0 otherwise.
19. 0.5.
20. 0.7745.
21. 0.4.

22. 2
3θ y− 1

3 e−
y

2
3

θ .

23. 4√
2π

y e−
y4

2 .
24. ln(X) ∼

∧
\(µ, σ2).

25. eµ−σ2
.

26. eµ.
27. 0.3669.
29. Y ∼ GBETA(α, β, a, b).
32. (i) 1

2

√
π, (ii) 1

2 , (iii) 1
4

√
π, (iv) 1

2 .
33. (i) 1

180 , (ii) (100)13 5! 7!
13! , (iii) 1

360 .

35.
(
1 − α

β

)2

.

36. E(Xn) = θn Γ(n+α)
Γ(α) .
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CHAPTER 7

1. f1(x) = 2x+3
21 , and f2(y) = 3y+6

21 .

2. f(x, y) =

{ 1
36 if 1 < x < y = 2x < 12
2
36 if 1 < x < y < 2x < 12
0 otherwise.

3. 1
18 .

4. 1
2e4 .

5. 1
3 .

6. f1(x) =
{

2(1 − x) if 0 < x < 1
0 otherwise.

7. (e2−1)(e−1)
e5 .

8. 0.2922.

9. 5
7 .

10. f1(x) =
{

5
48x(8 − x3) if 0 < x < 2
0 otherwise.

11. f2(y) =
{ 2y if 0 < y < 1

0 otherwise.

12. f(y/x) =
{

1

1+
√

1−(x−1)2
if (x − 1)2 + (y − 1)2 ≤ 1

0 otherwise.
13. 6

7 .

14. f(y/x) =
{

1
2x if 0 < y < 2x < 1
0 otherwise.

15. 4
9 .

16. g(w) = 2e−w − 2e−2w.

17. g(w) =
(
1 − w3

θ3

)
6w2

θ3 .

18. 11
36 .

19. 7
12 .

20. 5
6 .

21. No.

22. Yes.

23. 7
32 .

24. 1
4 .

25. 1
2 .

26. x e−x.
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CHAPTER 8

1. 13.

2. Cov(X, Y ) = 0. Since 0 = f(0, 0) 
= f1(0)f2(0) = 1
4 , X and Y are not

independent.

3. 1√
8
.

4. 1
(1−4t)(1−6t) .

5. X + Y ∼ BIN(n + m, p).

6. 1
2

(
X2 − Y 2

)
∼ EXP (1).

7. M(s, t) = es−1
s + et−1

t .

8.

9. − 15
16 .

10. Cov(X, Y ) = 0. No.

11. a = 6
8 and b = 9

8 .

12. Cov = − 45
112 .

13. Corr(X, Y ) = − 1
5 .

14. 136.

15. 1
2

√
1 + ρ .

16. (1 − p + pet)(1 − p + pe−t).

17. σ2

n [1 + (n − 1)ρ].

18. 2.

19. 4
3 .

20. 1.

21. 1
2 .
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CHAPTER 9

1. 6.

2. 1
2 (1 + x2).

3. 1
2 y2.

4. 1
2 + x.

5. 2x.

6. µX = − 22
3 and µY = 112

9 .

7. 1
3

2+3y−28y3

1+2y−8y2 .

8. 3
2 x.

9. 1
2 y.

10. 4
3 x.

11. 203.

12. 15 − 1
π .

13. 1
12 (1 − x)2.

14. 1
12

(
1 − x2

)2.

15. 5
192 .

16. 1
12 .

17. 180.

19. x
6 + 5

12 .

20. x
2 + 1.
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1. g(y) =

{ 1
2 + 1

4
√

y for 0 ≤ y ≤ 1

0 otherwise.

2. g(y) =


3
16

√
y

m
√

m
for 0 ≤ y ≤ 4m

0 otherwise.

3. g(y) =

{ 2y for 0 ≤ y ≤ 1

0 otherwise.

4. g(z) =


1
16 (z + 4) for −4 ≤ z ≤ 0

1
16 (4 − z) for 0 ≤ z ≤ 4

0 otherwise.

5. g(z, x) =

{ 1
2 e−x for 0 < x < z < 2 + x < ∞

0 otherwise.

6. g(y) =

{ 4
y3 for 0 < y <

√
2

0 otherwise.

7. g(z) =


z3

15000 − z2

250 + z
25 for 0 ≤ z ≤ 10

8
15 − 2z

25 − z2

250 − z3

15000 for 10 ≤ z ≤ 20

0 otherwise.

8. g(u) =


4a2

u3 ln
(

u−a
a

)
+ 2a (u−2a)

u2 (u−a) for 2a ≤ u < ∞

0 otherwise.

9. h(y) = 3z2−2z+1
216 , z = 1, 2, 3, 4, 5, 6.

10. g(z) =


4h3

m
√

π

√
2z
m e−

2h2z
m for 0 ≤ z < ∞

0 otherwise.

11. g(u, v) =

{− 3u
350 + 9v

350 for 10 ≤ 3u + v ≤ 20, u ≥ 0, v ≥ 0

0 otherwise.

12. g1(u) =

{ 2u
(1+u)3 if 0 ≤ u < ∞

0 otherwise.
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13. g(u, v) =


5 [9v3−5u2v+3uv2+u3]

32768 for 0 < 2v + 2u < 3v − u < 16

0 otherwise.

14. g(u, v) =

{ u+v
32 for 0 < u + v < 2

√
5v − 3u < 8

0 otherwise.

15. g1(u) =


2 + 4u + 2u2 if −1 ≤ u ≤ 0

2
√

1 − 4u if 0 ≤ u ≤ 1
4

0 otherwise.

16. g1(u) =


4
3 u if 0 ≤ u ≤ 1

4
3 u−5 if 1 ≤ u < ∞

0 otherwise.

17. g1(u) =

 4u
1
3 − 4u if 0 ≤ u ≤ 1

0 otherwise.

18. g1(u) =

{
2 u−3 if 1 ≤ u < ∞

0 otherwise.

19. f(w) =



w
6 if 0 ≤ w ≤ 2

2
6 if 2 ≤ w ≤ 3

5−w
6 if 3 ≤ w ≤ 5

0 otherwise.
20. BIN(2n, p)

21. GAM(θ, 2)

22. CAU(0)

23. N(2µ, 2σ2)

24. f1(α) =


1
4 (2 − |α|) if |α| ≤ 2

0 otherwise,
f2(β) =

{− 1
2 ln(|β|) if |β| ≤ 1

0 otherwise.
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CHAPTER 11

2. 7
10 .

3. 960
75 .

6. 0.7627.
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CHAPTER 12
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CHAPTER 13

3. 0.115.

4. 1.0.

5. 7
16 .

6. 0.352.

7. 6
5 .

8. 101.282.

9. 1+ln(2)
2 .

10. [1 − F (x6)]5.

11. θ + 1
5 .

12. 2 e−2w.

13. 6 w2

θ3

(
1 − w3

θ3

)
.

14. N(0, 1).

15. 25.

16. X has a degenerate distribution with MGF M(t) = e
1
2 t.

17. POI(1995λ).

18.
(

1
2

)n (n + 1).

19. 88

119 35.

20. f(x) = 60
θ

(
1 − e−

x
θ

)3
e−

3x
θ for 0 < x < ∞.

21. X(n+1) ∼ Beta(n + 1, n + 1).
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CHAPTER 14

1. N(0, 32).

2. χ2(3); the MGF of X2
1 − X2

2 is M(t) = 1√
1−4t2

.

3. t(3).

4. f(x1, x2, x3) = 1
θ3 e−

(x1+x2+x3)
θ .

5. σ2

6. t(2).

7. M(t) = 1√
(1−2t)(1−4t)(1−6t)(1−8t)

.

8. 0.625.

9. σ4

n2 2(n − 1).

10. 0.

11. 27.

12. χ2(2n).

13. t(n + p).

14. χ2(n).

15. (1, 2).

16. 0.84.

17. 2σ2

n2 .

18. 11.07.

19. χ2(2n − 2).

20. 2.25.

21. 6.37.
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CHAPTER 15

1.

√√√√ 3
n

n∑
i=1

X2
i .

2. 1
1−X̄

.

3. 2
X̄

.

4. − n
n∑

i=1

lnXi

.

5. n
n∑

i=1

lnXi

− 1.

6. 2
X̄

.

7. 4.2

8. 19
26 .

9. 15
4 .

10. 2.

11. α̂ = 3.534 and β̂ = 3.409.

12. 1.

13. 1
3 max{x1, x2, ..., xn}.

14.
√

1 − 1
max{x1,x2,...,xn} .

15. 0.6207.

18. 0.75.

19. −1 + 5
ln(2) .

20. X̄
1+X̄

.

21. X̄
4 .

22. 8.

23. n
n∑

i=1

|Xi − µ|
.
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24. 1
N .

25.
√

X̄.

26. λ̂ = nX̄
(n−1)S2 and α̂ = nX̄2

(n−1)S2 .

27. 10 n
p (1−p) .

28. 2n
θ2 .

29.
(

n
σ2 0
0 n

2σ4

)
.

30.
(

nλ
µ3 0
0 n

2λ2

)
.

31. α̂ = X

β̂
, β̂ = 1

X

[
1
n

∑n
i=1 X2

i − X
]
.

32. θ̂ is obtained by solving numerically the equation
∑n

i=1
2(xi−θ)

1+(xi−θ)2 = 0.

33. θ̂ is the median of the sample.

34. n
λ .

35. n
(1−p) p2 .
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CHAPTER 16

1. b = σ2
2−cov(T1,T2)

σ2
1+σ2

2−2cov(T1,T2
.

2. θ̂ = |X| , E( |X| ) = θ, unbiased.

4. n = 20.

5. k = 2.

6. a = 25
61 , b = 36

61 , ĉ = 12.47.

7.
n∑

i=1

X3
i .

8.
n∑

i=1

X2
i , no.

10. k = 2.

11. k = 2.

13. ln
n∏

i=1

(1 + Xi).

14.
n∑

i=1

X2
i .

15. X(1), and sufficient.

16. X(1) is biased and X − 1 is unbiased. X(1) is efficient then X − 1.

17.
n∑

i=1

lnXi.

18.
n∑

i=1

Xi.

19.
n∑

i=1

lnXi.

22. Yes.

23. Yes.

24. Yes.

25. Yes.
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CHAPTER 17
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CHAPTER 18

1. α = 0.03125 and β = 0.76.

2. Do not reject Ho.

3. α = 0.0511 and β(λ) = 1 −
7∑

x=0

(8λ)xe−8λ

x!
, λ 
= 0.5.

4. α = 0.08 and β = 0.46.

5. α = 0.19.

6. α = 0.0109.

7. α = 0.0668 and β = 0.0062.

8. C = {(x1, x2) |x2 ≥ 3.9395}.

9. C = {(x1, ..., x10) |x ≥ 0.3}.

10. C = {x ∈ [0, 1] |x ≥ 0.829}.

11. C = {(x1, x2) |x1 + x2 ≥ 5}.

12. C = {(x1, ..., x8) |x − x lnx ≤ a}.

13. C = {(x1, ..., xn) | 35 lnx − x ≤ a}.

14.

15.

16.

17.

18.

19.

20.




