
CHAPTER 15

Probability inequalities

We already used several types of inequalities, and in this Chapter we give a more systematic
description of the inequalities and bounds used in probability and statistics.

15.1.∗ Boole’s inequality, Bonferroni inequalities

Boole’s inequality(or the union bound) states that for any at most countable collection of
events, the probability that at least one of the events happens is no greater than the sum of
the probabilities of the events in the collection.

Proposition 15.1 (Boole’s inequality)

Suppose (S,F ,P) is a probability space, and E1, E2, ... ∈ F are events. Then

P

( ∞⋃

i=1

Ei

)
6

∞∑

i=1

P (Ei) .

Proof. We only give a proof for a finite collection of events, and we mathematical
induction on the number of events.

For the n = 1 we see that

P (E1) 6 P (E1) .

Suppose that for some n and any collection of events E1, ..., En we have

P

(
n⋃

i=1

Ei

)
6

n∑

i=1

P (Ei) .

Recall that by (2.1.1) for any events A and B we have

P(A ∪B) = P(A) + P(B)− P(A ∩B).

We apply it to A =
⋃n
i=1Ei and B = En+1 and using the associativity of the union

⋃n+1
i=1 Ei =

A ∪B, we get that

P

(
n+1⋃

i=1

Ei

)
= P

(
n⋃

i=1

Ei) + P(En+1

)
− P

((
n⋃

i=1

Ei

)⋂
En+1

)
.
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By the first axiom of probability

P

(
n⋃

i=1

Ai ∩ An+1

)
> 0,

and therefore we have

P

(
n+1⋃

i=1

Ei

)
6 P

(
n⋃

i=1

Ei

)
+ P (En+1) .

Thus using the induction hypothesis we see that

P

(
n+1⋃

i=1

Ei

)
6

n∑

i=1

P (Ei) + P (En+1) =
n+1∑

i=1

P (Ei) .

�

One of the interpretations of Boole’s inequality is what is known as σ-sub-additivity in
measure theory applied here to the probability measure P.
Boole’s inequality can be extended to get lower and upper bounds on probability of unions of
events known as Bonferroni inequalities. As before suppose (S,F ,P) is a probability space,
and E1, E2, ...En ∈ F are events. Define

S1 :=
n∑

i=1

P (Ei) ,

S2 :=
∑

16i<j6n
P (Ei ∩ Ej)

Sk :=
∑

16i1<···<ik6n
P (Ei1 ∩ · · · ∩ Eik) , k = 3, ..., n.

Proposition 15.2 (Bonferroni inequalities)

For odd k in 1, ..., n

P

(
n⋃

i=1

Ei

)
6

k∑

j=1

(−1)j−1Sj,

for even k in 2, ..., n

P

(
n⋃

i=1

Ei

)
>

k∑

j=1

(−1)j−1Sj.

We omit the proof which starts with considering the case k = 1 for which we need to show
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P

(
n⋃

i=1

Ei

)
6

1∑

j=1

(−1)j−1Sj = S1 =
n∑

i=1

P (Ei) ,

which is Boole’s inequality. When k = 2

P

(
n⋃

i=1

Ai

)
>

2∑

j=1

(−1)j−1Sj = S1 − S1 =
n∑

i=1

P (Ei)−
∑

16i<j6n
P (Ei ∩ Ej) .

which for n = 2 is the inclusion-exclusion identity (Proposition 2.2).

Example 15.1. Suppose we place n distinguishable balls into m distinguishable boxes at
random (n > m). Let E be the event that a box is empty. The sample space can be described
as

Ω = {ω = (ω1, ..., ωn) : 1 6 ωi 6 m}
with P (ω) = 1

mn
. Denote El := {ω : ωi 6= l for all i = 1, ..., n} for l = 1, 2, ...,m. Then,

E = E1 ∪ ... ∪ Em−1 since Em is empty, and we can include it or not, this does not change
the result.

We can see that for any m we have

P (Ei1 ∪ ... ∪ Eik) =
(m− k)n

kn
=

(
1− k

m

)n
.

Then we can use the inclusion-exclusion principle to get

P (E) = m

(
1− 1

m

)n
−
(
m

2

)(
1− 2

m

)n
+ ...+ (−1)m−2

(
m

m− 1

)(
1− m− 1

m

)n

The last term is zero, since all boxes can not be empty. The expression is quite complicated.
But if we use Bonferroni inequalities we see that

m

(
1− 1

m

)n
−
(
m

2

)(
1− 2

m

)n
6 P (E) 6 m

(
1− 1

m

)n

This gives a good estimate when n is large compared to m. For example, if m = 10 then

10 · (0.9)n − 45 · (0.8)n 6 P (E) 6 10 · (0.9)n .

In particular, for n = 50, then 45 · (0.8)50 = 0.00064226146, which is the difference between
the left and right sides of the estimates. This gives a rather good estimate.

15.2. Markov’s inequality

Proposition 15.3 (Markov’s inequality)

Suppose X is a nonnegative random variable, then for any a > 0 we have

P (X > a) 6 EX
a
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Proof. We only give the proof for a continuous random variable, the case of a discrete
random variable is similar. Suppose X is a positive continuous random variable, we can
write

EX =

ˆ ∞

−∞
xfX (x) dx

X>0
=

ˆ ∞

0

xfX (x) dx

a>0

>
ˆ ∞

a

xfX (x) dx
x>a

>
ˆ ∞

a

afX (x) dx = a

ˆ ∞

a

fX (x) dx = aP (X > a) .

Therefore
aP (X > a) 6 EX

which is what we wanted to prove. �

Example 15.2. First we observe that Boole’s inequality can be interpreted as expectations
of the number of occurred events. Suppose (S,F ,P) is a probability space, and E1, E2, ... ∈ F
are events. Define

Xi :=





1, if Ei occurs

0, otherwise.

Then X := X1 + ...+Xn is the number of events that occur. Then

EX = P (E1) + ...+ P (En) .

Now we would like to prove Boole’s inequality using Markov’s inequality. Note that X is a
nonnegative random variable, so we can apply Markov’s inequality. For a = 1 we get

P (X > 1) 6 EX = P (E1) + ...+ P (En) .

Finally we see that the event X > 1 means that at least one of the events E1, E2, ...En occur,
so

P (X > 1) = P

( ∞⋃

i=1

Ei

)
,

therefore

P

( ∞⋃

i=1

Ei

)
= P (X > 1) 6 EX = P (E1) + ...+ P (En)

which completes the proof.

Example 15.3. Suppose X ∼ Binom (n, p). We would like to use Markov’s inequality to
find an upper bound on P (X > qn) for p < q < 1.

Note that X is a nonnegative random variable and EX = np. By Markov’s inequality, we
have

P (X > qn) 6 EX
qn

=
p

q
.
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15.3. Chebyshev’s inequality

Here we revisit Chebyshev’s inequality Proposition 14.1 we used previously. This results
shows that the difference between a random variable and its expectation is controlled by its
variance. Informally we can say that it shows how far the random variable is from its mean
on average.

Proposition 15.4 (Chebyshev’s inequality)

Suppose X is a random variable, then for any b > 0 we have

P (|X − EX| > b) 6 Var (X)

b2
.

Proof. Define Y := (X − EX)2, then Y is a nonnegative random variable and we can
apply Markov’s inequality (Proposition 15.3) to Y . Then for b > 0 we have

P
(
Y > b2

)
6 EY

b2
.

Note that

EY = E (X − EX)2 = Var (X) ,

P
(
Y > b2

)
= P

(
(X − EX)2 > b2

)
= P (|X − EX| > b)

which completes the proof. �

Example 15.4. Consider againX ∼ Binom (n, p). We now will use Chebyshev’s inequality
to find an upper bound on P (X > qn) for p < q < 1.

Recall that EX = np. By Chebyshev’s inequality with b = (q − p)n > 0 we have

P (X > qn) = P (X − np > (q − p)n) 6 P (|X − np| > (q − p)n)

6 Var (X)

((q − p)n)2 =
p (1− p)n
((q − p)n)2 =

p (1− p)
(q − p)2 n

.
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15.4. Chernoff bounds

Proposition 15.5 (Chernoff bounds)

Suppose X is a random variable and we denote by mX (t) its moment generating
function, then for any a ∈ R

P (X > a) 6 min
t>0

e−tamX (t) ,

P (X 6 a) 6 min
t<0

e−tamX (t) .

Proof.

P (X > a) = P
(
etX > eta

)
, t > 0,

P (X 6 a) = P
(
etX > eta

)
, t < 0.

Note that note that etX is a positive random variable for any t ∈ R. Therefore we can apply
Markov’s inequality (Proposition 15.3) to see that

P (X > a) = P
(
etX > eta

)
6 Ee

tX

eta
, t > 0,

P (X 6 a) = P
(
etX > eta

)
6 Ee

tX

eta
, t < 0.

Recall that EetX is the moment generating function mX (t), and so we have

P (X > a) 6 mX (t)

eta
, t > 0,

P (X 6 a) 6 mX (t)

eta
, t < 0.

Taking the minimum over appropriate t we get the result.

�

Example 15.5. Consider again X ∼ Binom (n, p). We now will use Chernoff bounds for
P (X > qn) for p < q < 1. Recall that in Example 13.2 we found the moment generating
function for X as follows

mX (t) = (pet + (1− p))n.
Thus a Chernoff bound gives

P (X > qn) 6 min
t>0

e−tqn
(
pet + (1− p)

)n
.

To find the minimum of g (t) = e−tqn (pet + (1− p))n we can take its derivative and using
the only critical point of this function , we can see that the minimum on (0,∞) is achieved
at t∗ such that
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et∗ =
q (1− p)
(1− q) p,

and so

g (t∗) =

(
q (1− p)
(1− q) p

)−qn(
p
q (1− p)
(1− q) p + (1− p)

)n

=

(
q (1− p)
(1− q) p

)−qn(
1− p
1− q

)n
=

(
p

q

)qn(
1− p
1− q

)−qn(
1− p
1− q

)n

=

(
p

q

)qn(
1− p
1− q

)(1−q)n
.

Thus the Chernoff bound gives

P (X > qn) 6
(
p

q

)qn(
1− p
1− q

)(1−q)n
.

Example 15.6 (Comparison of Markov’s, Chebyshev’s inequalities and Chernoff bounds).
These three inequalities for the binomial random variable X ∼ Binom (n, p) give

Markov’s inequality P (X > qn) 6 p

q
,

Chebyshev’s inequality P (X > qn) 6 p (1− p)
(q − p)2 n

,

Chernoff bound P (X > qn) 6
(
p

q

)qn(
1− p
1− q

)(1−q)n
.

Clearly the right-hand sides are very different: Markov’s inequality gives a bound indepen-
dent of n, and the Chernoff bound is the strongest with exponential convergence to 0 as
n→∞. For example, for p = 1/2 and q = 3/4 we have

Markov’s inequality P
(
X > 3n

4

)
6 2

3
,

Chebyshev’s inequality P
(
X > 3n

4

)
6 4

n
,

Chernoff bound P
(
X > 3n

4

)
6
(

16

27

)n/4
.

For example, for p = 1/3 and q = 2/3 we have
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Markov’s inequality P
(
X > 3n

4

)
6 1

2
,

Chebyshev’s inequality P
(
X > 3n

4

)
6 2

n
,

Chernoff bound P
(
X > 3n

4

)
6 2−n/2.

15.5. Cauchy-Schwarz inequality

This inequality appears in a number of areas of mathematics including linear algebra. We
will apply it to give a different proof for the bound for correlation coefficients. Note that the
Cauchy-Schwarz inequality can be easily generalized to random vectors X and Y .

Proposition 15.6 (Cauchy-Schwarz inequality)

Suppose X and Y are two random variables, then

(EXY )2 6 EX2 · EY 2,

and the equality holds if and only if X = aY for some constant a ∈ R.

Proof. Define the random variable U := (X − sY )2 which is a nonnegative random
variable for any s ∈ R. Then

0 6 EU = E (X − sY )2 = EX2 − 2sEXY + s2EY 2.

Define g (s) := EX2−2sEXY +s2EY 2 which is a quadratic polynomial in s. What we know
is that g (s) is nonnegative for all s. Completing the square we see that

g (s) = EY 2s2 − 2EXY s+ EX2 =

(√
EY 2s− EXY√

EY 2

)2

+ EX2 − (EXY )2

EY 2
,

so g (s) > 0 for all s if and only if

EX2 − (EXY )2

EY 2
> 0,

which is what we needed to show.

To deal with the last claim, observe that if U > 0 with probability one, then g (s) = EU > 0.
This happens only if

EX2 − (EXY )2

EY 2
> 0.

And if EX2 − (EXY )2

EY 2 = 0, then g
(EXY
EY 2

)
= EU = 0, which only can be true if

X − EXY
EY 2

Y = 0,

that is, X is a scalar multiple of Y . �
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Example 15.7. We can use the Cauchy-Schwartz inequality to prove one of the proper-
ties of correlation coefficient in Proposition 12.3.2. Namely, suppose X and Y are random
variables, then |ρ (X, Y ) | 6 1. Moreover, |ρ (X, Y ) | = 1 if and only if there are constants
a, b ∈ R such that X = a+ bY .

We will use normalized random variables as before, namely,

U :=
X − EX√

VarX
,

V :=
Y − EY√

VarY
.

Then EU = EV = 0,EU2 = EV 2 = 1. We can use the Cauchy-Schwartz inequality for U
and V to see that

|EUV | 6
√
EU2 · EV 2 = 1

and the identity holds if and only if U = aV for some a ∈ R.
Recall Equation (12.3.1)

ρ (X, Y ) = E (UV ) ,

which gives the bound we need. Note that if U = aV , then

X − EX√
VarX

= a

(
Y − EY√

VarY

)
,

therefore

X = a
√

VarX

(
Y − EY√

VarY

)
+ EX = a

√
VarX√
VarY

Y − a
√

VarX√
VarY

EY + EX,

which completes the proof.

15.6. Jensen’s inequality

Recall that a function g : R −→ R is convex on [a, b] if for each x, y ∈ [a, b] and each λ ∈ [0, 1]
we have

g (λx+ (1− λ) y) 6 λg (x) + (1− λ) g (y) .

Note that for a convex function g this property holds for any convex linear combination of
points in [a, b], that is,

g (λ1x1 + ...+ λnxn) 6 λ1g (x1) + ...+ g (λnxn) ,

λ1 + ...+ λn = 1, 0 6 λ1, ..., λn 6 1,

x1, ..., xn ∈ [a, b].
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If g is twice differentiable, then we have a simple test to see if a function is convex, namely, g
is convex if g′′ (x) > 0 for all x ∈ [a, b]. Geometrically one can show that if g is convex, then
if we draw a line segment between any two points on the graph of the function, the entire
segment lies above the graph of g, as we show formally bellow. A function g is concave if −g
is convex. Typical examples of convex functions are g (x) = x2 and g (x) = ex. Examples
of concave functions are g (x) = −x2 and g (x) = log x. Convex and concave functions are
always continuous.

Convex functions lie above tangents

Suppose a < c < b and g : [a, b] −→ R be convex. Then there exist A,B ∈ R such
that g (c) = Ac+B and for all x ∈ [a, b] we have g (x) > Ax+B.

Proof. For a 6 x < c < y 6 b we can write c as a convex combination of x and y,
namely, C = λx+ (1− λ) y with λ = y−c

y−x ∈ [0, 1]. Therefore

g (c) 6 λg (x)) + (1− λ) g (y)

which implies that
g (c)− g (x)

c− x 6 g (y)− g (c)

y − c .

Thus we can take
sup
x<c

g (c)− g (x)

c− x 6 A 6 inf
y>c

g (y)− g (c)

y − c ,

so that we have for all x < y in [a, b] that

g (x) > A (x− c) + g (c) = Ax+ (g (c)− Ac) .
�

Proposition 15.7 (Jensen’s inequality)

Suppose X is a random variable such that P (a 6 X 6 b) = 1. If g : R −→ R is convex
on [a, b], then

Eg (X) > g (EX) .

If g is concave, then

Eg (X) 6 g (EX) .

Proof. If X is constant, then there is nothing to prove, so assume X is not constant.
Then we have

a < EX < b.

Denote c := EX. Then

g (x) > AX +B and g (EX) = AEX +B

for some A,B ∈ R. Also note that

|g (X) | 6 |A||X|+ |B| 6 |Amax {|a|, |b|} |X|+ |B|,
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so E|g (X) | <∞ and therefore Eg (X) is well defined. Now we can use AX +B 6 g (X) to
see that

g (EX) = AEX +B = E (AX +B) 6 Eg (X)

�

Example 15.8 (Arithmetic-geometric mean inequality). Suppose a1, ..., an are positive
numbers, and X is a discrete random variable with the mass density

fX (ak) =
1

n
for k = 1, ..., n.

Note that the function g (x) = − log x is a convex function on (0,∞). Jensen’s inequality
gives that

− log

(
1

n

n∑

k=1

ak

)
= − log (EX) 6 E (− logX) = − 1

n

n∑

k=1

log ak.

Exponentiating this we get

1

n

n∑

k=1

ak >
(

n∏

k=1

ak

)1/n

.

Example 15.9. Suppose p > 1, then the function g (x) = |x|p is convex. Then
E|X|p > |EX|p

for any random variable X such that EX is defined. In particular,

EX2 > (EX)2 ,

and therefore EX2 − (EX)2 > 0.
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15.7. Exercises

Exercise 15.1. Suppose we wire up a circuit containing a total of n connections. The
probability of getting any one connection wrong is p. What can we say about the probability
of wiring the circuit correctly? The circuit is wired correctly if all the connections are made
correctly.

Exercise 15.2. Suppose X ∼ Exp (λ). Using Markov’s inequality estimate P (X > a) for
a > 0 and compare it with the exact value of this probability.

Exercise 15.3. SupposeX ∼ Exp (λ). Using Chebyshev’s inequality estimate P (|X − EX| > b)
for b > 0.

Exercise 15.4. Suppose X ∼ Exp (λ). Using Chernoff bounds estimate P (X > a) for
a > EX and compare it with the exact value of this probability.

Exercise 15.5. Suppose X > 0 is a random variable such that Var(X) > 0. Decide which
of the two quantities is larger.

(A) EX3 or (EX)3?
(B) EX3/2 or (EX)3/2?
(C) EX2/3 or (EX)2/3?
(D) E log(X + 1) or log(EX + 1)?
(E) EeX or eEX?
(F) Ee−X or e−EX?
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15.8. Selected solutions

Solution to Exercise 15.1: Let Ei denote the event that connection i is made correctly, so
P (Ec

i ) = p. We do not anything beyond this (such as whether these events are dependent),
so we will use Boole’s inequality to estimate this probability as follows. The event we are
interested in is ∩ni=1Ei.

P

(
n⋂

i=1

Ei

)
= 1− P

((
n⋂

i=1

Ei

)c)
= 1− P

(
n⋃

i=1

Ec
i

)

Boole

> 1−
n∑

i=1

P (Ec
i ) = 1− np.

Solution to Exercise 15.2: Markov’s inequality gives

P (X > a) 6 EX
a

=
1

aλ
,

while the exact value is

P (X > a) =

ˆ ∞

a

λe−λxdx = e−λa 6 1

aλ
.

Solution to Exercise 15.3: We have EX = 1/λ and VarX = 1/λ2. By Chebyshev’s
inequality we have

P (|X − EX| > b) 6 VarX

b2
=

1

b2λ2
.

Solution to Exercise 15.4: recall first that

mX (t) =
λ

λ− t for t < λ.

Using Chernoff bounds, we see

P (X > a) 6 min t > 0
(
e−tamX (t)

)
= min

t>0

(
e−ta

λ

λ− t

)
for t < λ.

To find the minimum of e−ta λ
λ−t as a function of t, we can find the critical point and see that

it is λ− 1/a > 0 since we assume that a > EX = 1/λ. Using this value for t we get

e−aλ = P (X > a) 6 aλe1−aλ = (aλe) · e−aλ = (aλe)P (X > a) .

Note that aλe > 1.

Solution to Exercise 15.5(A): EX3 > (EX)3 since (x3)′′ = x/3 > 0 for x > 0.

Solution to Exercise 15.5(B): EX3/2 > (EX)3/2 since (x3/2)′′ = 3
4
√
x
> 0 for x > 0.

Solution to Exercise 15.5(C): EX2/3 < (EX)2/3 since (x2/3)′′ = − 2
9x4/3

< 0 for x > 0.



208 15. PROBABILITY INEQUALITIES

Solution to Exercise 15.5(D): E log(X + 1) < log(EX + 1) since (log(x))′′ = −1/x2 < 0
for x > 0.

Solution to Exercise 15.5(E): EeX > eEX since (ex)′′ = ex > 0 for any x.

Solution to Exercise 15.5(F): Ee−X > e−EX since (e−x)′′ = e−x > 0 for any x.


