Lecture 3

Conditional Probability
Text: A Course in Probability by Weiss 4.1
STAT 225 Introduction to Probability Models January 20, 2014

Whitney Huang Purdue University

Agenda

(1) Conditional ProbabilityGeneral Multiplication Rule

Purdue

Conditional Probability

Purdue

Conditional
Probability
Probability
General
Multiplication Rule

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Motivating Example

In a certain population, the probability a person lives to be 80 is 80% while the probability a person lives to be 90 is 68%. Given that a person lives to be 80 , what is the probability that she/he will live to be 90 ?

Conditional Probability

Let A and B be events. The probability that event A occurs given (knowing) that event B occurs is called a conditional probability. It is denoted as $\mathbb{P}(A \mid B)$. The formula of conditional probability is

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

The above formula works so long as $\mathbb{P}(B)>0$. Under the equally likely framework the formula above can be written as

$$
\mathbb{P}(A \mid B)=\frac{\#(A \cap B)}{\#(B)}
$$

Purdue

Conditional Probability

PuRduE

Notes

\qquad

Motivating Example

In a certain population, the probability a person lives to be 80 is 80% while the probability a person lives to be 90 is 68%. Given that a person lives to be 80 , what is the probability that she/he will live to be 90 ?

Solution.

- Event A : a person lives to be 90
- Event B : a person lives to be 80
$\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}=$
$\underline{\mathbb{P}(\text { a person lives to be } 80 \text { AND a person lives to be } 90)}=$

$$
\mathbb{P}(\text { a person lives to be } 80)
$$

$\frac{\mathbb{P}(\text { a person lives to be } 90)}{\mathbb{P}(\text { a person lives to be } 80)}=\frac{0.68}{0.80}=0.85$

Venn Diagram Illustration of Conditional Probability

In a conditional probability problem, the
sample space is "reduced" to the "space" of the given outcome (e.g. if given B, we now just care about the probability of A occurring "inside" of B)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
${ }^{3.5}$

Conditional
 Probability

PuRduE

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

General Multiplication Rule

Suppose we know the conditional probability $\mathbb{P}(A \mid B)$ and the marginal probability i.e. the probability of the given event $\mathbb{P}(B)$. Then the formula of conditional probability provides a way to compute the joint probability $\mathbb{P}(A \cap B)$

- 2 events:

$$
\mathbb{P}(A \cap B)=\mathbb{P}(B) \times \mathbb{P}(A \mid B)
$$

- More than 2 events:

$$
\begin{aligned}
\mathbb{P}\left(\cap_{i=1}^{n} A_{i}\right) & =\mathbb{P}\left(A_{1}\right) \times \mathbb{P}\left(A_{2} \mid A_{1}\right) \times \mathbb{P}\left(A_{3} \mid A_{1} \cap A_{2}\right) \\
& \times \cdots \times \mathbb{P}\left(A_{n} \mid A_{n-1} \cap \cdots \cap A_{1}\right)
\end{aligned}
$$

Example 11

A Morgan Stanley Consumer Research Survey sampled men and women and asked each whether they preferred to drink plain bottled water or a sports drink such as Gatorade or Propel Fitness water (The Atlanta Journal-Constitution, December 28, 2005). Suppose 200 men and 200 women participated in the study, and 280 reported they preferred plain bottled water. Of the group preferring a sports drink, 80 were men and 40 were women. Let

- M : the event the consumer is a man
- W : the event the consumer is a woman
- B : the event the consumer preferred plain bottled water
- S : the event the consumer preferred a sports drink

Purdue

Conditional

Probability
General
Multiplication Rule
${ }^{3} .7$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conditional
Probability
Probability

PURDUE

Conditional Probability

Multiplication Rule

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 11 (cont'd)

Answer the following:
(1) What is the probability a person in the study preferred plain bottled water?
(2) What is the probability a person in the study preferred a sports drink?
(3) What are the conditional probabilities $\mathbb{P}(M \mid S)$ and $\mathbb{P}(W \mid S)$?
(4) What are the joint probabilities $\mathbb{P}(M \cap S)$ and $\mathbb{P}(W \cap S)$?
(6) Given a consumer is a man, what is the probability he will prefer a sports drink?

Example 11

Solution.

(1) $\mathbb{P}(B)=\frac{280}{400}=0.7$
(2) $\mathbb{P}(S)=\frac{120}{400}=0.3$
(3) $\mathbb{P}(M \mid S)=\frac{\mathbb{P}(M \cap S)}{\mathbb{P}(S)}=\frac{\frac{80}{400}}{\frac{400}{400}}=\frac{2}{3}, \mathbb{P}(W \mid S)=\frac{\mathbb{P}(W \cap S)}{\mathbb{P}(S)}=$ $\frac{\frac{40}{400}}{\frac{400}{400}}=\frac{1}{3}$
(9) $\mathbb{P}(M \cap S)=\mathbb{P}(S) \times \mathbb{P}(M \mid S)=0.3 \times \frac{2}{3}=$ $0.2, \mathbb{P}(W \cap S)=\mathbb{P}(S) \times \mathbb{P}(W \mid S)=0.3 \times \frac{1}{3}=0.1$
(5) $\mathbb{P}(S \mid M)=\frac{\mathbb{P}(S \cap M)}{\mathbb{P}(M)}=\frac{\frac{80}{200}}{\frac{400}{400}}=0.4$

Notes

PuRDUE

Conditional Probability

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3.9

Conditional Probability
 Probability

PURDUE

Conditiona Probability

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 12 (Example 10 revisit)

Using the Venn Diagram summarizing the distribution of operating systems previously described, calculate the following:
(1) The probability that a randomly chosen student uses all three operating systems, given the student uses Windows
(2) The probability that a randomly chosen student uses all three operating systems, given the student does not use Windows
(3) The probability that a randomly chosen student uses Windows, given the student uses Mac OS
(9) The probability that a randomly chosen student does not use any of the operating systems, given the student does not use Windows

Conditional Probability

PuRDUE

Conditional

Probability
General
Multiplication Rule

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3.11

Conditional Probability

PuRduE

Conditional Probability
 General Multiplication Rule

Notes
\qquad

Example 12

Solution.

(1) $\mathbb{P}(W \cap M \cap L \mid W)=\frac{\mathbb{P}((W \cap M \cap L) \cap W)}{\mathbb{P}(W)}=\frac{\mathbb{P}(W \cap M \cap L)}{\mathbb{P}(W)}=$ $\frac{\frac{9}{50}}{\frac{30}{50}}=0.3$
(2) $\mathbb{P}\left(W \cap M \cap L \mid W^{c}\right)=\frac{\mathbb{P}\left((W \cap M \cap L) \cap W^{c}\right)}{\mathbb{P}\left(W^{c}\right)}=\frac{\mathbb{P}(\nmid)}{\mathbb{P}\left(W^{c}\right)}=\frac{\frac{0}{50}}{\frac{20}{50}}=0$
(3) $\mathbb{P}(W \mid M)=\frac{\mathbb{P}(W \cap M)}{\mathbb{P}(M)}=\frac{\frac{11}{50}}{\frac{18}{50}}=\frac{11}{18}$
(4) $\mathbb{P}\left((W \cup M \cup L)^{c} \mid W^{c}\right)=\frac{\mathbb{P}\left((W \cup M \cup L)^{c} \cap W^{c}\right)}{\mathbb{P}\left(W^{c}\right)}=$ $\frac{\mathbb{P}\left((W \cup M \cup L)^{c}\right)}{\mathbb{P}\left(W^{c}\right)}=\frac{1-\frac{46}{50}}{\frac{20}{50}}=0.2$

Summary

In this lecture, we learned

- Conditional probability: definition, formula, venn diagram representation
- General multiplication rule

PuRDUE

Conditional Conditional Probability

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
${ }^{3.13}$

Probability

PuRduE

Conditional Probability

Multiplication Rule

Notes
\qquad

