
Problem Set 1 Solutions

MAS.622J/1.126J: Pattern Recognition and Analysis

Originally Due Monday, 15 September 2008

Problem 1: Why?

a. Describe an application of pattern recognition related to your research.
What are the features? What is the decision to be made? Speculate on
how one might solve the problem. Limit your answer to a page.

b. In the same way, describe an application of pattern recognition you would
be interested in pursuing for fun in your life outside of work.

Solution: Refer to examples discussed in lecture.

Problem 2: Probability Warm-Up

Let X and Y be random variables. Let µX ≡ E[X] denote the expected value
of X and σ2

X ≡ E[(X − µX)2] = E[X2]− µ2
X denote the variance of X. a and b

are constant values. Use excruciating detail to answer the following:

a. Show E[aX + bY ] = aE[X] + bE[Y ].

b. Show that independent implies uncorrelated.

c. Show that uncorrelated does not imply independent.

d. Let Z = aX + bY . Show that if X and Y are uncorrelated, then σ2
Z =

a2σ2
X + b2σ2

Y .

e. Let Xi (i = 1, ..., n) be random variables independently drawn from the
same probability distribution with mean µX and variance σ2

X . For the

sample mean X = 1
n

n∑
i=1

Xi, show the following: (i) E[X] = µX . (ii)

Var[X] (variance of the sample mean) = σ2
X/n. Note that this is different

from the sample variance s2n = 1
n

n∑
i=1

(Xi −X)2.

f. The conditional expected value E(X|Y ) is a random variable in its own
right, whose value depends on the value of Y. Notice that the condi-
tional expected value of X given the event Y = y is a function of y.
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If we write E(X|Y = y) = g(y) then the random variable E[X|Y =
y] =

∑
x
xP (x|Y = y) is just g(Y ). Show E[X] = E[E[X|Y ]] and E[Y ] =

E[E[Y |X]].

g. For a real value function f and discrete random variables X and Y ,
E[f(X,Y )] =

∑
x

∑
y
f(x, y)P (x, y). Show E[f(X,Y )] = E[E[f(X,Y )|Y ]].

h. Let X1 and X2 be independent and identically distributed continuous
random variables. Can Pr[X1 ≤ X2] be calculated? If so, find its value.
If not, explain.

i. Let X1 and X2 be independent and identically distributed discrete random
variables. Can Pr[X1 ≤ X2] be calculated? If so, find its value. If not,
explain.

Solution:

a. The following is for continuous random variables. A similar argument
holds for discrete random variables.

E[aX + bY ] =
∫ ∫

(ax+ by) p(x, y) dx dy

= a

∫ ∫
x p(x, y) dx dy + b

∫ ∫
y p(x, y) dx dy

= a

∫
x p(x) dx+ b

∫
y p(y) dy

= aE[X] + bE[Y ]

b. Let X and Y be independent continuous random variables (a similar ar-
gument holds for discrete random variables). Then,

E[XY ] =
∫ ∫

xy p(x, y) dx dy

=
∫ ∫

xy p(x) p(y) dx dy

=
∫
x p(x) dx

∫
y p(y) dy

= E[X] E[Y ]

c. Let X and Y be discrete random variables such that X takes on values
from {0, 1} and Y takes on values from {−1, 0, 1}. Let the probability
mass function of X be

px[x = 0] = 0.5
px[x = 1] = 0.5
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and the probability mass function of Y conditioned on X be

py|x[y = −1|x = 0] = 0.5
py|x[y = 0|x = 0] = 0
py|x[y = 1|x = 0] = 0.5

py|x[y = −1|x = 1] = 0
py|x[y = 0|x = 1] = 1
py|x[y = 1|x = 1] = 0.

Given the above, and the fact that px,y[x, y] = py|x[y|x] px[x], we get

px,y[x = 0, y = −1] = 0.25
px,y[x = 0, y = 0] = 0
px,y[x = 0, y = 1] = 0.25

px,y[x = 1, y = −1] = 0
px,y[x = 1, y = 0] = 0.5
px,y[x = 1, y = 1] = 0.

However, the product of the marginals is given by

px[x = 0] py[y = −1] = 0.125
px[x = 0] py[y = 0] = 0.25
px[x = 0] py[y = 1] = 0.125

px[x = 1] py[y = −1] = 0.125
px[x = 1] py[y = 0] = 0.25
px[x = 1] py[y = 1] = 0.125.

Thus, we see that px,y[x, y] 6= px[x] py[y] andX and Y are not independent.
independent. However, since XY is identically zero, we also get

cov(X,Y ) = σ2
XY = E[(X − µX)(Y − µY )]

= E[XY ]− µXµY
= E[0]− (0.5)(0)
= 0− 0
= 0.

Therefore, X and Y are uncorrelated but not independent.

d. Given that Z = aX + bY and that X and Y are uncorrelated, we have

σ2
Z = E[(Z − µZ)2]
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= E[Z2]− µ2
Z

= E[(aX + bY )2]− (aµX + bµY )2

= E[a2X2 + 2abXY + b2Y 2]− (a2µ2
X + 2abµXµY + b2µ2

Y )
= a2E[X2] + 2abE[XY ] + b2E[Y 2]− a2µ2

X − 2abµXµY − b2µ2
Y

= a2(E[X2]− µ2
X) + 2ab(E[XY ]− µXµY ) + b2(E[Y 2]− µ2

Y )
= a2σ2

X + 2abσ2
XY + b2σ2

Y

= a2σ2
X + b2σ2

Y ,

where only the last equality depends on X and Y being uncorrelated.

e. Using the result of (a) and the fact E[Xi] = µX ,

E[X̄] = E[
1
n

n∑
i=1

Xi] =
1
n

n∑
i=1

E[Xi] =
1
n
n µX = µX

Also, using the result of (d) and the fact Var[Xi] = σ2
X

Var[X̄] = Var[
1
n

n∑
i=1

Xi] =
1
n2

n∑
i=1

Var[Xi] =
1
n2

n σ2
X = σ2

X/n

f. The following is for discrete random variables. A similar argument holds
for continuous random variables. E[X|Y ] = E[X|Y = y] is a function of
y, i.e., E[X|Y = y] =

∑
x
xP (x|Y = y) = g(y)

E[E[X|Y ]] = E[g(y)]

=
∑
y

g(y)P (y)

=
∑
y

∑
x

xP (x|Y = y)P (y)

=
∑
y

∑
x

xP (x, y)

=
∑
x

x
∑
y

P (x, y)

=
∑
x

xP (x)

= E[X]

In like manner, we can prove E[E[X|Y ]] = E[Y ]

g. The following is for discrete random variables. A similar argument holds
for continuous random variables. E[f(X,Y )|Y ] = E[f(X,Y )|Y = y] is a

4



function of y, i.e., E[f(X,Y )|Y = y] =
∑
x
f(x, y)P (x|Y = y) = g(y)

E[E[f(X,Y )|Y ]] = E[g(y)]

=
∑
y

g(y)P (y)

=
∑
y

∑
x

f(x, y)P (x|Y = y)P (y)

=
∑
x

∑
y

f(x, y)P (x, y)

= E[f(X,Y )]

h. Given that X1 and X2 are continuous random variables, we know that
Pr[X1 = x] = 0 and Pr[X2 = x] = 0 for any value of x. Thus,

Pr[X1 ≤ X2] = Pr[X1 < X2].

Given that X1 and X2 are i.i.d., we know that replacing X1 with X2 and
X2 with X1 will have no effect on the world. In particular, we know that

Pr[X1 < X2] = Pr[X2 < X1].

However, since probabilities must sum to one, we have

Pr[X1 < X2] + Pr[X2 < X1] = 1.

Thus,

Pr[X1 ≤ X2] =
1
2
.

i. For discrete random variables, unlike the continuous case above, we need
to know the distributions of X1 and X2 in order to find Pr[X1 = x] and
Pr[X2 = x]. Thus, the argument we used above fails. In general, it is not
possible to find Pr[X1 ≤ X2] without knowledge of the distributions of
both X1 and X2.

Problem 3: Teatime with Gauss and Bayes

Let p(x, y) = 1
2παβ e

−
(

(y−µ)2

2α2 +
(x−y)2

2β2

)
.

a. Find p(x), p(y), p(x|y), and p(y|x). In addition, give a brief description
of each of these distributions.

b. Let µ = 0, α = 20, and β = 2.5. Plot p(y) and p(y|x = 10.5) for a reason-
able range of y. What is the difference between these two distributions?
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Solution:

a. To find p(y), simply factor p(x, y) and then integrate over x:

p(y) =
∫ ∞
−∞

p(x, y) dx

=
∫ ∞
−∞

1
2παβ

e
−
(

(y−µ)2

2α2 +
(x−y)2

2β2

)
dx

=
∫ ∞
−∞

1
2παβ

e−
(y−µ)2

2α2 e
− (x−y)2

2β2 dx

=
1√

2πα2
e−

(y−µ)2

2α2

∫ ∞
−∞

1√
2πβ2

e
− (x−y)2

2β2 dx

=
1√

2πα2
e−

(y−µ)2

2α2

= N (µ, α2)

The integral goes to 1 because it is of the form of a probability distribution
integrated over the entire domain. To find p(x|y), divide p(x, y) by p(y):

p(x|y) =
p(x, y)
p(y)

=
1√

2πβ2
e
− (x−y)2

2β2

= N (y, β2)

Finding p(x) and p(y|x) follows essentially the same procedure, but the
algebra is more involved and requires completing the square in the expo-
nent.

p(x) =
∫ ∞
−∞

p(x, y) dy

=
∫ ∞
−∞

1
2παβ

e
−
(

(y−µ)2

2α2 +
(x−y)2

2β2

)
dy

=
∫ ∞
−∞

1
2παβ

e
−
(
β2(y−µ)2+α2(x−y)2

2α2β2

)
dy

=
∫ ∞
−∞

1
2παβ

e
−
(
β2y2−2β2µy+β2µ2+α2x2−2α2xy+α2y2

2α2β2

)
dy

=
∫ ∞
−∞

1
2παβ

e
−
(

(α2+β2)y2−2(α2x+β2µ)y+(β2µ2+α2x2)
2α2β2

)
dy

=
∫ ∞
−∞

1
2παβ

e

−

(
y2−2α

2x+β2µ
α2+β2 y+ β

2µ2+α2x2

α2+β2

2 α2β2

α2+β2

)
dy
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=
∫ ∞
−∞

1
2παβ

e

−

 y2−2α
2x+β2µ
α2+β2 y+

(
α2x+β2µ
α2+β2

)2

−

(
α2x+β2µ
α2+β2

)2

+ β
2µ2+α2x2

α2+β2

2 α2β2

α2+β2


dy

=
∫ ∞
−∞

1
2παβ

e

−

(y−α2x+β2µ
α2+β2

)2

−

(
α2x+β2µ
α2+β2

)2

+ β
2µ2+α2x2

α2+β2

2 α2β2

α2+β2


dy

=
∫ ∞
−∞

1
2παβ

e

−

(y−α2x+β2µ
α2+β2

)2

2 α2β2

α2+β2


e

−

 β2µ2+α2x2

α2+β2 −

(
α2x+β2µ
α2+β2

)2

2 α2β2

α2+β2


dy

=
1

2παβ

√
2π

α2β2

α2 + β2
e

−

 β2µ2+α2x2

α2+β2 −

(
α2x+β2µ
α2+β2

)2

2 α2β2

α2+β2

 ∫ ∞
−∞

1√
2π α2β2

α2+β2

e

−

(y−α2x+β2µ
α2+β2

)2

2 α2β2

α2+β2


dy

=
1√

2π(α2 + β2)
e

−

 β2µ2+α2x2

α2+β2 −

(
α2x+β2µ
α2+β2

)2

2 α2β2

α2+β2



=
1√

2π(α2 + β2)
e
−
(

(α2+β2)(β2µ2+α2x2)−(α2x+β2µ)2

2α2β2(α2+β2)

)

=
1√

2π(α2 + β2)
e
−
(
α2β2µ2+α4x2+β4µ2+α2β2x2−α4x2−2α2β2µx−β4µ2

2α2β2(α2+β2)

)

=
1√

2π(α2 + β2)
e
−
(
α2β2x2−2α2β2µx+α2β2µ2

2α2β2(α2+β2)

)

=
1√

2π(α2 + β2)
e
−
(

(x−µ)2

2(α2+β2)

)
= N (µ, α2 + β2)

To find p(y|x) we simply divide p(x, y) by p(x). In finding p(x), we already
know the form of p(y|x) (see the longest line in the derivation of p(x)
above):

p(y|x) =
p(x, y)
p(x)
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=
1√

2π α2β2

α2+β2

e

−

(y−α2x+β2µ
α2+β2

)2

2 α2β2

α2+β2



= N (
α2x+ β2µ

α2 + β2
,
α2β2

α2 + β2
)

Note that all the above distibutions are Gaussian.

b. The following Matlab code produced Figure 1:

m = 0.0
a = 20 .0
b = 2 .5
x = 10 .5

y = −100:1:100
mean = ( ( a ˆ2)∗x + (bˆ2)∗m)/( aˆ2 + bˆ2)
var = ( ( a∗b )ˆ2 )/ ( aˆ2 + bˆ2)
p y g iven x = ( 1 . 0 / s q r t (2∗ pi ∗var ) )∗ exp (−((y−mean ) . ˆ 2 ) / ( 2∗ var ) )
var2 = a ˆ2 ;
p y = ( 1 . 0 / s q r t (2∗ pi ∗var2 ) )∗ exp (−((y−m) . ˆ 2 ) / ( 2∗ var2 ) )

hold o f f
p l o t (y , p y g iven x , ’ b ’ )
hold on
p lo t (y , p y , ’ r ’ )
l egend ( ’ p ( y | x ) ’ , ’ p ( y ) ’ )
sy = s i z e ( y )
a x i s ( [ y ( 1 ) , y ( sy ( 2 ) ) , 0 , 0 . 2 ] )
x l a b e l ( ’ y ’ )
t ex t (−70 ,0.14 , ’\mu=0 ’)
t ex t (−70 ,0.12 , ’\ alpha =20 ’)
t ex t (−70 ,0.1 , ’\ beta =2.5 ’)

Problem 4: Covariance Matrix

Let ΛX =
[

37 −15
−15 37

]
.

a. Verify that ΛX is a valid covariance matrix.

b. Find the eigenvalues and eigenvectors of ΛX by hand. Show all your work.

c. Write a program to find and verify the eigenvalues and eigenvectors of ΛX .
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Figure 1: The marginal p.d.f. of y and the p.d.f. of y given x for a specific value
of x. Notice how knowing x makes your knowledge of y more certain.

d. We provide 200 data points sampled from the distribution N (0,ΛX).
Download the dataset from the course website and plot the data points.
Project the data onto the covariance matrix eigenvectors and plot the
transformed data. What is the difference between the two plots?

Solution:

a. The matrix ΛX is a valid covariance matrix if it is symmetric and positive
semi-definite. Clearly, it is symmetric, since ΛTX = ΛX . One way to
prove it is positive semi-definite is to show that all its eigenvalues are
non-negative. This is indeed the case, as shown in the next part of the
problem.

b. We can find the eigenvectors and eigenvalues of ΛX by starting with the
definition of an eigenvector. Namely, an vector e is an eigenvector of ΛX
if it satisfies

ΛXe = λe

for some constant scalar λ, which is called the eigenvalue corresponding
to e. This can be rewritten as

(ΛX − λI)e = 0.
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This is equivalent to
det(ΛX − λI) = 0.

Thus, we require that
(37− λ)2 − 152 = 0

By inspection, this is true when λ = 52 and λ = 22, both of which are
non-negative, thus confirming that ΛX is indeed a positive semi-definite
matrix.

To find the eigenvectors, we plug the eigenvalues back into the equation
above to get

(ΛX−52I)e =
[

37− 52 −15
−15 37− 52

] [
a
b

]
=
[
−15 −15
−15 −15

] [
a
b

]
=
[

0
0

]
,

which gives a = −b. Normalized, this results in the eigenvector

e1 =

[
1√
2

− 1√
2

]
.

Similarly, λ = 39 gives

(ΛX−22I)e =
[

37− 22 −15
−15 37− 22

] [
a
b

]
=
[

15 −15
−15 15

] [
a
b

]
=
[

0
0

]
,

which gives a = b. Normalized, this results in the eigenvector

e1 =

[
1√
2

1√
2

]
.

c. The following Matlab program prints out the eigenvectors and eigenvalues
of ΛX :

A = [37 −15; −15 37 ]
[V,D] = e i g (A)

d. The following Matlab program generated Figure 2:

t t = load ( ’ ps1 . txt ’ )

% o r i g i n a l c o r r e l a t i o n
t t c o r r = c o r r c o e f ( t t ( 1 , : ) , t t ( 2 , : ) )
f i g u r e
p l o t ( t t ( 1 , : ) , t t ( 2 , : ) , ’ . ’ )
x l a b e l ( ’ x ’ )
y l a b e l ( ’ y ’ )
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% e i g e n v e c t o r
% A = [37 −15; −15 37 ]
% [V,D] = e i g (A)

V =[ 0 .7071 0 .7071
−0.7071 0 . 7 0 7 1 ]

zz = V’∗ t t ; % a x i s t rans fo rmat ion

% c o r r e l a t i o n a f t e r t rans fo rmat ion
z z c o r r = c o r r c o e f ( zz ( 1 , : ) , zz ( 2 , : ) )
f i g u r e
p l o t ( zz ( 1 , : ) , zz ( 2 , : ) , ’ . ’ )
x l a b e l ( ’ f i r s t e i genvec to r ’ )
y l a b e l ( ’ second e igenvec to r ’ )

The second plot in Figure 2 shows the data rotated to align with the
eigenvectors of the data’s covariance matrix.

Problem 5: Distribution Linearity

Let X1 and X2 be i.i.d. according to

p(xi) =
{

1, for 0 ≤ xi ≤ 1
0, otherwise for i = 1, 2

Let Y = X1 +X2.

a. Find an expression for p(y). Plot p(y) for some reasonable range of y.

b. Find an expression for p(x1|y). Plot p(x1|y) as a function of x1 with y
treated as a known parameter for some reasonable value of y and some
reasonable range of x1.

c. Repeat the parts above, this time letting X1 and X2 be i.i.d. according
to N (0, 1).

d. What was the point of this problem? Hint: check out the title.

Solution:

a. From basic probability theory, we know that the probability density func-
tion of the sum of two independent random variables is the convolution of
the two probability density functions. So,

py(y) = (px1 ∗ px2)(y)

=
∫ ∞
−∞

px1(x) px2(y − x) dx
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=
∫ 1

0

1 px2(y − x) dx

=
∫ 1

0

px2(y − x) dx

=
∫ 1

0

{
1 for 0 ≤ y − x ≤ 1
0 otherwise

}
dx

=
∫ 1

0

{
1 for y − 1 ≤ x ≤ y
0 otherwise

}
dx

=
∫ min(1,y)

max(0,y−1)

1 dx

= max{0,min(1, y)−max(0, y − 1)}

=


0 for y ≤ 0
y for 0 ≤ y ≤ 1
2− y for 1 ≤ y ≤ 2
0 for y ≥ 2

This p.d.f. is shown in Figure 3, which was produced using the following
Python program:

from matp lo t l i b . numerix import ∗
from numarray import ∗
from pylab import plot , subplot , legend , ax i s , x labe l , y labe l , text , show
Error . setMode ( a l l=None , over f l ow =’warn ’ , underf low =’ ignore ’ , d iv idebyze ro =’warn ’ , i n v a l i d =’warn ’ )

p l o t ( [ −1 , 0 , 1 , 2 , 3 ] , [ 0 , 0 , 1 , 0 , 0 ] )
a x i s ( [ −1 ,3 , −0 .5 ,2 ] )
x l a b e l ( ’ y ’ )
y l a b e l ( ’ p ( y ) ’ )
show ( )

This p.d.f. is shown in Figure 3, which was produced using the following
Matlab program:

hold o f f
subplot (111)
p l o t ( [ −1 , 0 , 1 , 2 , 3 ] , [ 0 , 0 , 1 , 0 , 0 ] )
hold on
a x i s ( [ −1 ,3 , −0 .5 ,2 ] )
x l a b e l ( ’ y ’ )
y l a b e l ( ’ p ( y ) ’ )

b. Using Bayes’ Rule, we have

px1|y(x1|y) =
px1,y(x1, y)
py(y)
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=
py|x1(y|x1) px1(x1)

py(y)

We already know py(y) and px1(x1). Finding py|x1(y|x1) is a matter of
realizing that y = x1 + x2 implies that, given x1, y is simply x2 offset by
a constant. Thus,

py|x1(y|x1) = px2(y − x1)

and

px1|y(x1|y) =
px2(y − x1) px1(x1)

py(y)

=


1
y for 0 ≤ y ≤ 1 and 0 ≤ x1 ≤ y
1

2−y for 1 ≤ y ≤ 2 and y − 1 ≤ x1 ≤ 1
0 otherwise

See Figure 4, which was produced by the following Python program:

from matp lo t l i b . numerix import ∗
from numarray import ∗
from pylab import plot , subplot , legend , ax i s , x labe l , y labe l , text , show
Error . setMode ( a l l=None , over f l ow =’warn ’ , underf low =’ ignore ’ , d iv idebyze ro =’warn ’ , i n v a l i d =’warn ’ )

subplot (211)
f o r y in arange ( 0 . 1 , 1 . 1 , s t r i d e =0.1) :

x = array ( [ 0 , 0 , y , y , 1 , 1 ] )
Px given y = array ( [ 0 , 1 . 0 / y , 1 . 0 / y , 0 , 0 , 0 ] )
p l o t (x , Px given y )

x l a b e l ( r ’ $x 1$ ’ )
y l a b e l ( r ’ $p ( x 1 \ given \ 0<y<1)$ ’ )
a x i s ( [ −0 . 1 , 1 . 1 , 0 , 1 2 ] )

subplot (212)
f o r y in arange ( 1 . 0 , 2 . 0 , s t r i d e =0.1) :

x = array ( [ 0 , 0 , y−1,y−1 ,1 ,1 ] )
Px given y = array ( [0 ,0 , 0 , 1 . 0/ (2 − y ) ,1 .0/(2−y ) , 0 ] )
p l o t (x , Px given y )

x l a b e l ( ’ $x 1$ ’ )
y l a b e l ( ’ $p ( x 1 \ given \ 1<y<2)$ ’ )
a x i s ( [ −0 . 1 , 1 . 1 , 0 , 1 2 ] )

show ( )

See Figure 4, which was produced by the following Matlab program:
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hold o f f
subplot (211)
hold on
f o r y = 0 . 1 : 0 . 1 : 1

x = [ 0 , 0 , y , y , 1 ]
Px given y = [ 0 , 1 . 0 / y , 1 . 0 / y , 0 , 0 ]
p l o t (x , Px given y , ’ b ’ )

end

x l a b e l ( ’ x 1 ’ )
y l a b e l ( ’ p ( x 1 | 0<y<1) ’)
a x i s ( [ −0 . 1 , 1 . 1 , 0 , 1 2 ] )

subplot (212)
hold on
f o r y = 1 . 0 : 0 . 1 : 1 . 9

x = [ 0 , y−1,y−1 ,1 ,1 ]
Px given y = [0 ,0 ,1 .0/(2 −y ) ,1 .0/(2−y ) , 0 ]
p l o t (x , Px given y , ’ r ’ )

end

x l a b e l ( ’ x 1 ’ )
y l a b e l ( ’ p ( x 1 | 1<y<2) ’)
a x i s ( [ −0 . 1 , 1 . 1 , 0 , 1 2 ] )

c. Repeating the above using normal distributions, we get

py(y) = (px1 ∗ px2)(y)

=
∫ ∞
−∞

px1(x) px2(y − x) dx

=
∫ ∞
−∞

(
1√
2π
e
−x2

2

)(
1√
2π
e
−(y−x)2

2

)
dx

=
∫ ∞
−∞

1
2π
e
−(2x2−2xy+y2)

2 dx

=
∫ ∞
−∞

1
2π
e

−(x2−xy+ y
2
4 −

y2
4 + y

2
2 )

2 1
2 dx

=
∫ ∞
−∞

1
2π
e
−
(

(x− y2 )2− y
2

4 + y2

2

)
dx

=
1√
4π
e−

y2

4

∫ ∞
−∞

1√
π
e−(x− y2 )2 dx

=
1√
4π
e−

y2

4

14



= N (0, 2)

Similarly,

px1|y(x1|y) =
px2(y − x1) px1(x1)

py(y)

=

(
1√
2π
e
−(y−x1)2

2

)(
1√
2π
e
−x21

2

)
(

1√
4π
e
−y2

4

)
=

1√
π
e−

y2−4x1y+4x21
4

=
1√
π
e−(x1− y2 )2

= N
(
y

2
,

1
2

)
See Figure 5, which was produced by the following Python program:

from matp lo t l i b . numerix import ∗
from numarray import ∗
from pylab import plot , subplot , legend , ax i s , x labe l , y labe l , text , show
Error . setMode ( a l l=None , over f l ow =’warn ’ , underf low =’ ignore ’ , d iv idebyze ro =’warn ’ , i n v a l i d =’warn ’ )
import LinearAlgebra as l a

subplot (211)
y = arange (−5 ,5 ,0 .01)
p = ( 1 . 0 / s q r t (4∗ pi ) )∗ ( e∗∗(−(y ∗∗2)/4) )
p l o t (y , p )
x l a b e l ( r ’ $y$ ’ )
y l a b e l ( r ’ $p ( y ) $ ’ )
a x i s ( [ −5 ,5 , −0 .2 ,1 .0 ] )

subplot (212)
y = 1 .6
x = arange (−5 ,5 ,0 .01)
p = ( 1 . 0 / s q r t ( p i ) )∗ ( e ∗∗(−((x−y /2)∗∗2 ) ) )
p l o t (x , p )
x l a b e l ( r ’ $x 1$ ’ )
y l a b e l ( r ’ $p ( x 1 \ given \ y=1.6)$ ’ )
a x i s ( [ −5 ,5 , −0 .2 ,1 .0 ] )

show ( )

See Figure 5, which was produced by the following Matlab program:
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subplot ( 2 1 1 ) ;
y = −5 : 0 . 01 : 5 ;
p = ( 1 . 0 / s q r t (4∗ pi ) )∗ ( exp(−(y . ˆ 2 ) / 4 ) ) ;
p l o t (y , p ) ;
x l a b e l ( ’ y ’ ) ;
y l a b e l ( ’ p ( y ) ’ ) ;
a x i s ( [ −5 , 5 , −0 . 2 , 1 . 0 ] ) ;

subplot ( 2 1 2 ) ;
y = 1 . 6 ;
x = −5 : 0 . 01 : 5 ;
p = ( 1 . 0 / s q r t ( p i ) )∗ ( exp (−((x−y / 2 ) . ˆ 2 ) ) ) ;
p l o t (x , p ) ;
x l a b e l ( ’ x 1 ’ ) ;
y l a b e l ( ’ p ( x 1 | y = 1 . 6 ) ’ ) ;
a x i s ( [ −5 , 5 , −0 . 2 , 1 . 0 ] ) ;

d. The point of this problem is to show that probability density functions are
in general not closed under linear combinations of i.i.d. random variables.
That is, given two i.i.d. random variables x1 and x2 with distribution
of type A, the random variable y = x1 + x2 does not in general have
a distribution of type A. Gaussian (a.k.a normal) distributions are an
exception. In fact, Gaussians are the only non-trivial family of functions
that are both closed and linear under convolution (and therefore under
addition of i.i.d. random variables):

N (µ1, σ
2
1) ∗ N (µ2, σ

2
2) = N (µ1 + µ2, σ

2
1 + σ2

2)

Problem 6: Probabilistic Modeling

Let x ∈ {0, 1} denote a person’s affective state (x = 0 for “positive-feeling
state”, and x = 1 for “negative-feeling state”). The person feels positive with
probability θ1. Suppose that an affect-tagging system (or a robot) recognizes
her feeling state and reports the observed state (variable y) to you. But this
system is unreliable and obtains the correct result with probability θ2.

a. Represent the joint probability distribution P (x, y|θ) for all x, y (a 2x2
matrix) as a function of the parameters θ = (θ1, θ2).

b. The Maximum Likelihood estimation criterion for the parameter θ is de-
fined as:

θ̂ML = arg max
θ
L(t1, ..., tn; θ) = arg max

θ

n∏
i=1

p(ti|θ)

where we have assumed that each data point ti is drawn independently
from the same distribution so that the likelihood of the data is L(t1, ..., tn; θ) =

16



n∏
i=1

p(ti|θ). Likelihood is viewed as a function of the parameters, which de-

pends on the data. Since the above expression can be technically challeng-
ing, we maximize the log-likelihood logL(t1, ..., tn; θ) instead of likelihood.
Note that any monotonically increasing function (i.e., log function) of the
likelihood has the same maxima. Thus,

θ̂ML = arg max
θ

logL(t1, ..., tn; θ) = arg max
θ

n∑
i=1

log p(ti|θ)

Suppose we get the following joint observations t = (x, y).

x y
1 0
1 1
0 0
1 1
1 0
0 1
0 0

What are the maximum-likelihood (ML) values of θ1 and θ2? (Hint. Since
P (x, y|θ) = P (y|x, θ2)P (x|θ1), the estimation of the two parameters can
be done separately in the log-likelihood criterion.)

Solution:

a. The probability mass function (pmf) of x ∈ {0, 1} is

P (x) =
{
θ1, x = 0
1− θ1, x = 1

}
The conditional pmf of y ∈ {0, 1} given that x = 0 is

P (y|x = 0) =
{
θ2, y = 0
1− θ2, y = 1

}
The conditional pmf of y given that x = 1 is

P (y|x = 1) =
{

1− θ2, y = 0
θ2, y = 1

}
Use P (x, y) = P (y|x)P (x) to tabulate the joint pmf of (x, y).

P (x, y) =
(
P (0, 0) P (0, 1)
P (1, 0) P (1, 1)

)
=
(

θ2θ1 (1− θ2)θ1
(1− θ2)(1− θ1) θ2(1− θ1)

)
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b. We select (θ1, θ2) to maximize the log-likelihood of the samples {(xi, yi), i =
1, ..., n} which may be expressed as

J(θ1, θ2) =
∑
i

logP (xi, yi)

=
∑
i

(logP (yi|xi) + logP (xi))

=

(∑
i

logP (yi|xi)

)
+

(∑
i

logP (xi)

)
= J2(θ2) + J1(θ1)

Hence, we choose θ1 to maximize

J1(θ1) =
∑
i

logP (xi)

= N(x = 1) log(1− θ1) + (n−N(x = 1)) log θ1

where N(x = 1) =
∑
i xi. Differentiating w.r.t. θ1 gives

∂J1

∂θ1
=
−N(x = 1)

1− θ1
+
n−N(x = 1)

θ1

We set this derivative to zero and solve for θ1 to obtain

θ̂1 = 1− N(x = 1)
n

Similarly, we choose θ2 to maximize

J2(θ2) =
∑
i

logP (yi|xi)

= N(x = y) log θ2 + (n−N(x = y)) log(1− θ2)

where N(x = y) =
∑
i (xiyi + (1− xi)(1− yi)). Differentiating J2 w.r.t.

θ2, setting to zero and solving for θ2 gives

θ̂2 =
N(x = y)

n

For the example data, θ̂1 = 3
7 , θ̂2 = 4

7 . Thus,

P̂ (x, y) =

(
θ̂2θ̂1 (1− θ̂2)θ̂1

(1− θ̂2)(1− θ̂1) θ̂2(1− θ̂1)

)

The maximum likelihood of the data under this model is∏
i

P̂ (xi, yi) =
(

4
7

)8(3
7

)6

≈ 7.044× 10−5
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Problem 7: Monty Hall

To get credit for this problem, you must not only write your own correct solution,
but also write a computer simulation (in either Matlab or Python) of the process
of playing this game:

Suppose I hide the ring of power in one of three identical boxes while you
weren’t looking. The other two boxes remain empty. After hiding the ring of
power, I ask you to guess which box it’s in. I know which box it’s in and, after
you’ve made your guess, I deliberately open the lid of an empty box, which is
one of the two boxes you did not choose. Thus, the ring of power is either in the
box you chose or the remaining closed box you did not choose. Once you have
made your initial choice and I’ve revealed to you an empty box, I then give you
the opportunity to change your mind – you can either stick with your original
choice, or choose the unopened box. You get to keep the contents of whichever
box you finally decide upon.

• What choice should you make in order to maximize your chances of re-
ceiving the ring of power? Explain your answer.

• Write a simulation. There are two choices in this game for the contestant
in this game: (1) choice of box, (2) choice of whether or not to switch. In
your simulation, first let the host choose a random box to place the ring
of power. Show a trace of your program’s output for a single game play,
as well as a cumulative probability of winning for 1000 rounds of the two
policies (1) to choose a random box and then switch and (2) to choose a
random box and not switch.

Solution:

• Always switch your answer to the box you didn’t choose the first time.
This reason is as follows. You have a 1/3 chance of initially picking the
correct box. That is, there is a 2/3 chance the correct answer is one of
the other two boxes. Learning which of the two other boxes is empty does
not change these probabilities; your initial choice still has a 1/3 chance
of being correct. That is, there is a 2/3 chance the remaining box is the
correct answer. Therefore you should change your choice.

More formally,

event right first choice = the event that your first choice is right

event wrong first choice = the event that your first choice is wrong

event right when change = the event that you get the ring when changing
your initial choice

event an empty box opened = the event that an empty box is opened after
your first choice

First, P(event right first choice) = 1/3

19



Second, P(event right when change | event an empty box opened)

= P(event right when change, event right first choice | event an empty box opened)
+ P(event right when change, event wrong first choice | event an empty box opened)

= P(event right when change | event right first choice, event an empty box opened)
P(event right first choice) + P(event right when change | event wrong first choice,
event an empty box opened) P(event wrong first choice)

= 0*1/3 + 1*2/3 = 2/3

Thus, P(event right when change | event an empty box opened)> P(event right first choice)

Another way to understand the problem is to extend it to 100 boxes, only
one of which has the ring of power. After you make your initial choice,
I then open 98 of the 99 remaining boxes and show you that they are
empty. Clearly, with very high probability the ring of power resides in the
one remaining box you did not initially choose.

• Here is a sample simulation output for the Monty Hall problem:

ac tua l : 1
guess1 : 2
r e v e a l : 3
swap : 0
guess2 : 2

ac tua l : 3
guess1 : 3
r e v e a l : 1
swap : 0
guess2 : 3

ac tua l : 2
guess1 : 3
r e v e a l : 1
swap : 0
guess2 : 3

swap : 0
win : 292
l o s e : 708
win /( win+l o s e ) : 0 .292

ac tua l : 3
guess1 : 1
r e v e a l : 2
swap : 1
guess2 : 3
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ac tua l : 1
guess1 : 1
r e v e a l : 2
swap : 1
guess2 : 3

ac tua l : 3
guess1 : 2
r e v e a l : 1
swap : 1
guess2 : 3

swap : 1
win : 686
l o s e : 314
win /( win+l o s e ) : 0 .686

Here is a Python program that generates the Monty Hall simulation output
above:

from matp lo t l i b . numerix import ∗
from numarray import ∗
from pylab import plot , subplot , legend , ax i s , x labe l , y labe l , text , show , rand
Error . setMode ( a l l=None , over f l ow =’warn ’ , underf low =’ ignore ’ , d iv idebyze ro =’warn ’ , i n v a l i d =’warn ’ )
from LinearAlgebra import ∗

f o r swap in range (2 ) :
win = 0
l o s e = 0
f o r i in range (1000) :

a c tua l = i n t ( rand ()∗3)+1;
guess1 = i n t ( rand ()∗3)+1;
i f guess1 == actua l :

r e v e a l = i n t ( rand ()∗2)+1;
i f r e v e a l == actua l :

r e v e a l = r e v e a l + 1 ;
e l s e :

i f guess1 == 1 and ac tua l == 2 :
r e v e a l = 3 ;

e l i f guess1 == 1 and ac tua l == 3 :
r e v e a l = 2 ;

e l i f guess1 == 2 and ac tua l == 1 :
r e v e a l = 3 ;

e l i f guess1 == 2 and ac tua l == 3 :
r e v e a l = 1 ;
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e l i f guess1 == 3 and ac tua l == 1 :
r e v e a l = 2 ;

e l i f guess1 == 3 and ac tua l == 2 :
r e v e a l = 1 ;

i f swap == 1 :
i f guess1 == 1 and r e v e a l == 2 :

guess2 = 3 ;
e l i f guess1 == 1 and r e v e a l == 3 :

guess2 = 2 ;
e l i f guess1 == 2 and r e v e a l == 1 :

guess2 = 3 ;
e l i f guess1 == 2 and r e v e a l == 3 :

guess2 = 1 ;
e l i f guess1 == 3 and r e v e a l == 1 :

guess2 = 2 ;
e l i f guess1 == 3 and r e v e a l == 2 :

guess2 = 1 ;
e l s e :

guess2 = guess1 ;

i f guess2 == actua l :
win = win + 1 ;

e l s e :
l o s e = l o s e + 1 ;

# only p r i n t t r a c e f o r f i r s t 3 games
i f i < 3 :

p r i n t ’ a c tua l : ’ , a c tua l
p r i n t ’ guess1 : ’ , guess1
p r i n t ’ r e v e a l : ’ , r e v e a l
p r i n t ’ swap : ’ , swap
pr in t ’ guess2 : ’ , guess2

# pr in t r e s u l t s f o r each game play p o l i c y
p r i n t ’ swap : ’ , swap
pr in t ’ win : ’ , win
p r in t ’ l o s e : ’ , l o s e
p r i n t ’ win /( win+l o s e ) : ’ , f l o a t ( win ) / f l o a t ( win + l o s e )

Here is a Matlab program that simulates the Monty Hall simulation output
above:

f o r swap = 0 :1
win = 0 ;
l o s e = 0 ;
f o r i = 1:1000

ac tua l = f l o o r ( rand ()∗3)+1;
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guess1 = f l o o r ( rand ()∗3)+1;
i f guess1 == actua l

r e v e a l = f l o o r ( rand ()∗2)+1;
i f r e v e a l == actua l

r e v e a l = r e v e a l + 1 ;
end

e l s e
i f guess1 == 1 && actua l == 2

r e v e a l = 3 ;
e l s e i f guess1 == 1 && actua l == 3

r e v e a l = 2 ;
e l s e i f guess1 == 2 && actua l == 1

r e v e a l = 3 ;
e l s e i f guess1 == 2 && actua l == 3

r e v e a l = 1 ;
e l s e i f guess1 == 3 && actua l == 1

r e v e a l = 2 ;
e l s e i f guess1 == 3 && actua l == 2

r e v e a l = 1 ;
end

end
i f swap == 1

i f guess1 == 1 && r e v e a l == 2
guess2 = 3 ;

e l s e i f guess1 == 1 && r e v e a l == 3
guess2 = 2 ;

e l s e i f guess1 == 2 && r e v e a l == 1
guess2 = 3 ;

e l s e i f guess1 == 2 && r e v e a l == 3
guess2 = 1 ;

e l s e i f guess1 == 3 && r e v e a l == 1
guess2 = 2 ;

e l s e i f guess1 == 3 && r e v e a l == 2
guess2 = 1 ;

end
e l s e

guess2 = guess1 ;
end
i f guess2 == actua l

win = win + 1 ;
e l s e

l o s e = l o s e + 1 ;
end
%% only p r in t t r a c e f o r f i r s t 3 games
i f i <= 3

actua l
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guess1
r e v e a l
swap
guess2

end
end
%% p r i n t r e s u l t s f o r each game play p o l i c y
swap
win / ( win + l o s e )

end
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Figure 2: The original data and the data transformed into the coordinate system
defined by the eigenvectors of their covariance matrix.
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Figure 3: The probability density function of the sum of two independent uni-
form random variables.
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Figure 4: The probability density function of x1 given certain values of y, where
y = x1 + x2 and x1 and x2 are i.i.d. uniform random variables.
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Figure 5: The probability density function of y and the probability density
function for x1 given y = 1.6, where y = x1 +x2 and x1 and x2 are i.i.d. N (0, 1)
random variables.
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